Adresse:
Ruhr-Universität Bochum
Fakultät für Mathematik, PF 44
Universitätsstraße 150
D-44780 Bochum
Raum:
IB 2/153
Telefon:
(+49)(0)234 / 32-19878
E-Mail:
alexander.ivanov(at)rub.de
Seit April 2023 bin ich Heisenberg Professor an der RUB mit Schwerpunkt Arithmetische Geometrie.
Seit 2022 leite ich das vom Heisenberg-Programm der DFG geförderte Projekt "p-adische Deligne--Lusztig Theorie".
Ich beschäftige mich mit algebraischer Geometrie, Zahlentheorie und Darstellungstheorie. Hier sind einige Stichworte, die meine aktuellen Interessen beschreiben: Darstellungen p-adischer Gruppen, Deligne--Lusztig Theorie, lokales Langlands Programm, Vektorbündel auf der Fargues--Scholze Kurve, ...
test
Preprints
1. Meromorphic vector bundles on the Fargues--Fontaine curve (with Ian Gleason), preprint 2023> We introduce and study the stack of meromorphic G-bundles on the Fargues--Fontaine curve. This object defines a correspondence between the Kottwitz stack \(\mathfrak{B}(G)\) and \(Bun_G\). We expect it to play a crucial role in comparing the schematic and analytic versions of the geometric local Langlands categories. Our first main result is the identification of the generic Newton strata of BunmerG with the Fargues--Scholze charts M. Our second main result is a generalization of Fargues' theorem in families. We call this the meromorphic comparison theorem. It plays a key role in proving that the analytification functor is fully faithful. Along the way, we give new proofs to what we call the topological and schematic comparison theorems. These say that the topologies of \(Bun_G\) and \(\mathfrak{B}(G)\) are reversed and that the two stacks take the same values when evaluated on schemes.
[ arXiv ]
Abstract
We analyze the geometry of some \(p\)-adic Deligne--Lusztig spaces \(X_w(b)\) introduced in this article attached to an unramified reductive group \({\bf G}\) over a non-archimedean local field. We prove that when \({\bf G}\) is classical, \(b\) basic and \(w\) Coxeter, \(X_w(b)\) decomposes as a disjoint union of translates of a certain integral \(p\)-adic Deligne--Lusztig space. Along the way we extend some observations of DeBacker and Reeder on rational conjugacy classes of unramified tori to the case of extended pure inner forms, and prove a loop version of Frobenius-twisted Steinberg's cross section.
Orthogonality relations in the classical Deligne-Luszig theory compute the inner product between two Deligne-Lusztig characters as some explicit expression in terms of the Weyl group. They form an important cornerstone of the whole theory. For deep level Deligne-Lusztig varieties a similar result in full generality is still open. In this article we prove it in the special case of Coxeter varieties, but without any assumption on the involved characters.
Published (or accepted) articles
Affine Deligne-Lusztig varieties at infinite level (with Charlotte Chan)
Mathematische Annalen 380 (2021), 1801-1890
[ arXiv ] [ Journal ]
Ordinary GL2(F)-representations in characteristic two via affine Deligne-Lusztig constructions
Mathematical Research Letters 27 (2020), No. 1, 141-187.
[ arXiv ] [ Journal ]
Ramified automorphic induction and zero-dimensional affine Deligne-Lusztig varieties
Mathematische Zeitschrift 288 (2018), 439-490.
[ arXiv ]
[ Journal ]
Densities of primes and realization of local extensions
Transactions Amer. Math. Soc. 371 (2019), 83-103.
[ arXiv ]
[ Journal ]
On a generalization of the Neukirch-Uchida theorem
Moscow Mathematical Journal 17 (2017), no. 3, 371-383.
[ arXiv ]
[ Journal ]
Affine Deligne-Lusztig varieties of higher level and the local Langlands correspondence for GL2
Advances in Mathematics 299 (2016), 640-686.
[ arXiv ]
[ Journal ]
Stable sets of primes in number fields
Algebra & Number Theory 10 (2016), No. 1, 1-36.
[ arXiv ]
[ Journal ]
On some anabelian properties of arithmetic curves
Manuscripta Mathematica 144 (2014), No. 3, 545-564.
[ arXiv ]
[ Journal ]
Cohomology of affine Deligne-Lusztig varieties for GL2
Journal of Algebra 383 (2013), 42-62.
[ arXiv ]
[ Journal ]
Here are all my articles on arXiv.