arXiv:2402.09017v1 [math.RT] 14 Feb 2024

THE COHOMOLOGY OF p-ADIC DELIGNE-LUSZITG
SCHEMES OF COXETER TYPE

ALEXANDER B. IVANOV AND SIAN NIE

ABSTRACT. We determine the cohomology of the closed Drinfeld stra-
tum of p-Deligne—Lusztig schemes of Coxeter type attached to arbitrary
inner forms of unramified groups over a local non-archimedean field.
We prove that the corresponding torus weight spaces are supported in
exactly one cohomological degree, and are pairwisely non-isomorphic ir-
reducible representations of the pro-unipotent radical of the correspond-
ing parahoric subgroup. We also prove that all Moy—Prasad quotients
of this stratum are maximal varieties, and we investigate the relation
between the resulting representations and Kirillov’s orbit method.

1. INTRODUCTION

Let k£ be a non-archimedean local field with residue characteristic p > 0
and residue field F,. Let k be the completion of the maximal unramified
extension of k and let F' denote the Frobenius automorphism of k over k.
Let G be a reductive group over k, which splits over k. Let T C B be a
maximal torus and a Borel subgroup of GG, such that 7" splits and B becomes
rational over k. Let U resp. U denote the unipotent radical of B resp. of
the opposed Borel subgroup. To G, T, U one can attach the space

(1.1) Xry={g9eGk): g'F(9) e UNFUY},

which is a variant of the p-adic Deligne-Lusztig spaces from [Iva23b]. Then
X7, has the structure of an ind-(perfect scheme) over Fq. Moreover, X7.1r
is endowed with an action of the locally compact group G(k) x T'(k), so that
its f-adic cohomology realizes smooth G(k)-representations, parametrized
by smooth characters of T'(k), very much in the style of Deligne-Lusztig
theory [DL.76]. Recently, the ¢-adic cohomology of these and closely related
spaces was extensively studied (especially when T is elliptic) and related
with the local Langlands correspondences. See, for example, [(123, C023]
for the relation with the type-theoretic construction of J.-K. Yu [Yu01] and
the related work of Kaletha and others (see e.g. [[{all9]). On the other
hand, see [('123, §9], [Fen24] for relations with Fargues—Scholze’s and Zhu’s
geometric local Langlands [F'521, Zhu20]. In this article we continue the
study of geometry and cohomology of X7 .

Assume that (T, U) is a Coxeter pair (see §2.5). In particular, T is elliptic
and the apartment of T in the reduced affine building of G over k consists of
one point. Bruhat—Tits theory attaches to this point a parahoric model G of
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G over the integers O C k with connected special fiber. Let O denote the

integers of k. It was shown in [ , ] that Xrv = [ew) 600 95X
where
(1.2) X = {g € 6(0): g F(g) € TN FU)(0)}

is a perfect affine Fy-scheme with G(Of) x T(Og)-action, and where we
denote by 7,4 C G the closures of T,U. Cohomology of X7 is then
obtained by compactly inducing that of X.

There is a fibration X — Xoi over a Deligne-Lusztig variety Xo4 of
the reductive quotient Go+ = (G ®0, Fy)rea of the special fiber of G. The
variety Xo4+ admits a natural stratification by locally closed subschemes.
The stratification of X obtained by pulling it back was first considered in
[ | (for GL,, and inner forms) resp. in | , §6.2] (in general) and
called the Drinfeld stratification there. There is a (in full generality only
conjectural) relation between the cohomologies of X and of the strata, see
[ , Theorem 5.1], | , Conjecture 7.2.1], | , Conjecture 6.5]

The cohomology of the unique closed stratum is very interesting, and
seems to be the most accessible one. When G is an inner form of GL,, its
cohomology as a G(O) x T (Ok)-representation was determined in | ,
Theorem 6.1.1], the case of division algebras (where the closed stratum co-
incides with the whole scheme X) being already handled in [ ]. The
main goal of the present article is to extend these results to all G, thus giving
a full account of the cohomology of the closed stratum. As a consequence
we also produce a rich supply of maximal varieties in the sense of | ]
associated with groups other than GL,. Our second goal is to investigate
how this cohomology relates to representations obtained via Kirillov’s orbit
method, see below.

To state our main result, let G be the pro-unipotent radical of G and let
T+,U™ be the closures of T,U in G*. Then the closed stratum is a disjoint
union of finitely many copies of the affine perfect scheme

(1.3) Y ={g€GT(0): g7 F(g) € UNFUT)O)}.

with GT(Ok) x T (O)-action. AsY is infinite-dimensional, it has no reason-
able cohomology with compact support. We could remedy this by working
with quotients of Y attached to Moy-Prasad quotients of G™ (and on the
technical level we will do precisely this). However, it seems most natural
to state our results in terms of the homology functor f,, which is the left
adjoint of f*, introduced in [[M] in the schematic context following the ap-
proach of | , VIL3] (see §2.7 for more details). Let therefore H;(Y,Qy)
denote the homology groups of the complex fu@e, where f: Y — Spec Fq

is the structure map. If y is a smooth character 7+(Oy) — @Z, we also
have the y-weight part f;Q,[x] of f;Q,. Let N > 1 be the smallest positive
integer with FNU = U. Then Y has an obvious F,~-rational structure.
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Theorem 1.1. Suppose that (T,U) is a Coxeter pair. For a smooth char-
acter x: TH(OL) — Q, the following hold.

(1) Assume that p satisfies Condition 2.1'. The homology of f,Qu[x] is non-
vanishing in precisely one degree s, > 0.

(2) Assumejhatp satisfies Condition 2.1. The Frobenius FN acts in the space
H, (Y,Qq)[x] as multiplication by the scalar (—=1)*xg*xN/2. In particular,
all Moy—Prasad quotients of Y are F n-mazimal varieties.

(8) For varying x, Hs, (Y,Qp)[x] runs through pairwise non-isomorphic irre-
ducible smooth GT (Oy)-representations.

This theorem follows from Theorems 5.5, 7.1 and Corollary 6.2 (where for
part (1) the discussion of §2.7 and Corollary 5.10 apply). We determine the
integer s, explicitly in terms of the Howe factorization of x, see Corollary
5.19.

In fact, the same proof of Theorem 7.1, combined with Remark 3.2, shows
that the statement (3) of Theorem 1.1 is true if (7', U) is a minimal elliptic
pair, see §2.5. This partially motivates us to propose the following conjec-
ture.

Conjecture 1.2. Theorem 1.1 holds for all minimal elliptic pairs (T,U).

Using parts (1),(2) of the theorem along with a fixed point formula of
Boyarchenko [ , Lemma 2.12], we give the following representation-
theoretic interpretation of the integer s, generalizing | , Lemma 8.1].

Corollary 1.3. If Condition 2.1 holds for p, then dim@Z HsX(Yy@Z)[X] =
syN/2
g N2,

This corollary is proven in §6. More generally, we obtain a trace formula
for any element of G*(Oy) on Hy (Y,Q)[x] in terms of geometric points of
(a Moy—Prasad quotient of) Y, see Proposition 6.1.

To apply our main result to the cohomology of X7 (in the style of
[ ]) it is necessary to study the relation between the cohomology of X

and of the closed stratum ([ , Conjecture 6.5]); this will be considered
in a follow-up work. Once this is done, our results, combined with the main
results of | | and [ ] (see | , Corollary 1.0.2]), would give geo-

metric approaches to some representation-theoretic questions. For example,
Corollary 1.3 allows a purely geometric proof of the formal degree formulas
for many supercuspidal representations (note that an algebraic computation
is given in the recent work of Schwein | D-

The second goal of this article is to formulate and verify in a special case
a conjecture about the relation of the homology of Y with Kirillov’s orbit
method for the pro-p-group G*(Oy), whenever the latter applies. Namely,

Lthis holds if if the derived group of G is simply connected and p > 5; it also always
holds if p does not divide the order of the Weyl group of G.
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by a theory of Lazard, a uniform pro-p-group (resp. a p-group of nilpotence
class < p) I' is completely described by its Z,-Lie algebra (resp. finite Lie
ring) g via an exponential map, see [ , §2]. Kirillov’s orbit method es-
tablishes a natural bijection between smooth irreducible representations of
I' and adjoint T'-orbits in the dual g* = Homcont(g,@gX ), see [ ], charac-
terized by a trace formula. Often it happens that GT(Oy) (resp. its Moy—
Prasad quotient) is a uniform pro-p-group (resp. p-group of nilpotence class
< p). In this case the natural question to determine the adjoint orbit cor-
responding to H, (Y, Qy)[x] arises. In Conjecture 8.4 we make this precise.
We verify this conjecture for the finite p-group {g € GLa(F,[w]/w?): g =1
mod w} if ¢ is odd.

Finally, we complete the task of comparing the spaces X7 from (1.1)
with the p-adic Deligne-Lusztig spaces from [ |, when (T, U) is a Cox-
eter pair. This was done for classical groups in | , Proposition 5.12],
and in §4.1 we prove it for general G. To achieve this, we need to extend the
loop version of twisted Steinberg’s cross-section (see | , 3.6, [ ,
Proposition 5.3] and | |) to non-classical groups, see Proposition 3.1.
Note that this result is also used in the proof of Theorem 1.1(3).
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(grant nr. 462505253). He would like to thank Moritz Firsching for answer-
ing his questions related to SAGE. The second author would like to thank
Miaofen Chen, Xuhua He, Jilong Tong and Weizhe Zheng for answering his
questions and for helpful discussions.

2. NOTATION AND SETUP

2.1. General notation. Throughout the article we let /::/ k with integers
O C O, residue field extension ?q /Fq4, and Frobenius F' be as in the intro-
duction. We denote by w a uniformizer of k.

Given a [Fs-algebra R, let Perfr be the category of perfect R-algebras.
For R € Perfr,, let W(R) be the ring of p-typical Witt vectors of R, and
put W(R) = W(R) ®z, O if char(k) = 0, resp. W(R) = R[w] otherwise.
In particular, W(F,) = O and W(F,) = O. Let []: R — W(R) be the
Teichmiiller lift if char(k) = 0, resp. [z] = « if char(k) > 0.

Let X be any O-scheme and let X be any k-scheme. We will abbreviate

X:=X() and X =X(k).

Suppose that X is affine and of finite type over O. We regard the set X as
a perfect affine scheme X over Fy, so that X(F,) = X. More precisely, one
puts X = LTX, where LTX: Perfz — Sets, LT X(R) = X(W(R)) is the
functor of positive loops, see e.g. | , §2.5] for details. We always will
identify the scheme X with the set X of its geometric points. If X is defined
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over Oy, X has a natural IF;-structure, corresponding to the F-action on X.
Moreover, the set

X(Fy) = X = X(Oy)
has a natural structure of a profinite set. Similarly, if X is affine of finite

type over lvﬂ, then we regard X as an ind-(perfect affine scheme) over Fq via
the loop functor LX: Perfy > R — X(W(R) [p7Y]), and the same claim

about F-structure holds, except that now XF s only locally profinite.

2.2. Group-theoretic setup. We fix a reductive group G defined over k
and split over k. We fix a k-rational, I::—split maximal torus 1" of G, we
denote by Ng(T) its normalizer. Its Weyl group W = Ng(T')/T is a finite
étale group scheme over k becoming constant over k. We identify W with
the set of its k-points, endowed with the action of F. We denote by X, (T,
X*(T') the groups of (co)characters of T}, equipped with natural F-actions,
and by (,): X*(T') x X.(T') — Z the natural W- and F-equivariant pairing.
We denote by N the order of F' as an automorphism of X, (7).

We fix a Borel subgroup T' C B C G defined over l?:, and we denote by U
the unipotent radical of B. Denote by ® C X*(T') the set of roots of T" in G,
and by ®T resp. ®~ the subset of positive roots corresponding to U resp.
U. For each o € ®, let U, = Ga,fc denote the corresponding root subgroup.

2.3. Filtration of the torus and affine roots. Let 7 denote the con-
nected Néron model of T'. Let T° be the maximal bounded subgroup of T'.
Then T (O) = T°. Moreover, for r € Z>y,

T = {t e T°: ord,(x(t) —1) > rvx € X*(T)}

defines a descending separated filtration on T. For each r one has an iso-
morphism

V=X, (T)oF, = T7/T™, Aoz — M1+ [z]o").
Fix some (e.g., hyperspecial) point x¢ in the apartment Ay of T in the
reduced affine building of G over k. Let

Pg={a+m:x+— —afr —x0)+maePmeZ} =P X7
be the set of affine roots. Let ® = @5 U Z>o be the (enlarged) set of
affine roots of T' in G. For an affine root o + m, we have the corresponding
subgroup Uy4m C U. For m € Z>q, the corresponding root subgroup is 7.
There is an action of F' on @, such that FUstm = Up(atm)-

2.4. Parahoric model and Moy—Prasad quotients. Assume that T is
elliptic. Then the apartment of T in the reduced affine building of G over k
consists of precisely one point x. We denote by G the parahoric Op-model of
G with connected special fiber attached to x, and by GT its pro-unipotent
radical.
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If H C G is a closed subgroup, then we denote by H the closure of H in
G.2 Similarly, we denote by 7 the closure of T in G1.

Note that G (resp. GT) is generated by all U ¢ with f € d satisfying
f(x) > 0 (resp. f(x) > 0), and that G/G* is naturally isomorphic to the
reductive quotient of the special fiber of G.

For any h = r or h = r+ with r» € Z>o, Moy-Prasad have defined in
[ | the normal F-stable subgroup G" C G generated by all U ¢ with
f € ® satisfying f(x) > h. Note that G = G(0)° and G+ = G(0)%F. There
is a smooth Fg-group scheme G, with

Gr(Fq) = G/G".

It has the subgroup G;" = gt / G", and the set of affine roots appearing in
Gl is
Ot ={fed:0< f(x)<r}.

According with §2.1, we have also the Fy-groups G and G* such that
G(F,) = G and G*(F,) = GT. Note that G = lim G, and G* = lim G

Note that any of the subgroups H = T, B,U,... of G defines a closed
subgroup H, C G, (resp. H C G) by first taking the closure X C G of H,
and then letting H,.(F,) be the image of the map H(O) — G(O) — G, (F,).
Similarly, H defines a closed subgroup H;t C G, (and H* C G*). Note
that if FSH = H for some s > 1, then H,, H are defined over Fs.

2.5. Coxeter pairs. Let ¢ € W be the unique element such that F'B = “B.
Then for any lift ¢ of ¢, Ad(¢) ™' o F : G — @ fixes the pinning (T, B), hence
defines an automorphism oy of the Coxeter system (W, S). We call (T, B)
(and (T,U)) a Cozeter pair if c is a Coxeter element in the Coxeter triple
(W, S,ow), that is, if a(ny) reduced expression of ¢ contains precisely one
element from each oy-orbit on S. More generally, (T, U) is called a minimal
elliptic pair if ¢ is of minimal length in its oy -twisted conjugacy class. We
have implications (T, B) Coxeter = (7T, B) minimal elliptic = T is elliptic.
We define
A= NFO*
Note that if (T, B) is Coxeter, then each F-orbit in ® has length exactly
N and intersects the set in precisely one element, see e.g. [ , §7]. In

particular, #A is equal to the semisimple rank of G, ®/(cow) = A and
4D — N - #A.

2.6. A condition on p. Assume that T is elliptic. We will prove Theorem
5.5 under the following condition on the characteristic p of F,, which is
satisfied if p does not divide the order of the Weyl group of G.

2Note that for H = T there is no conflict of notation with §2.3 as the closure of T in
G is the connected Néron model of T by | , 4.7.4 Lemma and 8.2 Corollary].
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Condition 2.1. The characteristic p of F, is not a torsion prime for ® (see
[ , Definition 1.3]) and p does not divide #mi(Mqye;) for any F-stable
Levi subgroup M containing T'. Here Mg, denotes the derived subgroup of
M.

Note the all torsion primes for ® are < 5. Note that the second part of this
condition holds for all p when G, is simply connected. Let P = P(G,T)
denote the set of primes, for which this condition does not hold. If G is of
type A,, then P C {/ prime : ¢ divides n}. If G is of type B,, or C,, with n
even, then P C {2}. If G is of type B,, or C,, with n odd, then P C {2} U
{¢ prime : ¢ divides n}. If G is of type D,,, then P C {/ prime : { < n}.

We will use this condition in the proof of Theorem 5.5 by applying the
following lemma to derived subgroups of various F-stable unramified twisted
Levi subgroups of G containing 7. Recall V = X.(T) @ F, from §2.3 and
consider the following norm map

Nmy:V —V, ve— v+ F)+---+ F¥N1(v).

Lemma 2.2. Suppose that G is semisimple and p does not divide #m1(G).
Then VI = Nmy (Z®V ® F,~), where ®V is the set of coroots.

Proof. By assumption we have Z®" ® F,v = Xo(T) ® F n. Hence

VE = Nmy (V") = Nmy (X (T) © Fyv) = Nmpy (Z0Y @ Fn)
as desired. O

2.7. Homology. For a morphism Y — Z of perfect [F,-schemes and a co-
efficient ring A, which we assume to be either Q, or F, here, in [I\] the left
adjoint fy: Dm(Y,A) — Dm(Z,A) of f* on unramified solid sheaves is con-
structed. Readers feeling uncomfortable with the use f,, could just regard
(2.2) as a definition (which is well-behaved because of (2.1)). Assume that
Z = SpecF,, in which case we get the A-module

Hi(Y,A) == H"fyA.

Assume now that Y = T&lrﬁ, with all f,.: Y, — Spech perfections of
smooth morphisms of dimension d,. Assume that there are compatible ac-
tions of finite groups I';. on Y., inducing an action of I' = I’&nr I',onY. Let

x: I' = A* be a smooth character. There is some 7, > 0 such that for each
r > ry, x factors through a character of I', again denoted x. Assume that
for all » > 7, the map

(2.1) frAX][2(dr — dr )] = fraAlX]-

is an isomorphism. As f, commute with cofiltered limits of schemes, we have

fillx] = lim frpA[x] = Jim frA[X][2d,] = fr oA [2dy, ],
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where the second equality holds because f, is smooth (and hence f.y =
fr1[2d,]) and the last equality is by (2.1). With other words,

(2.2) H;(Y,\N)[x] = Hgd“_i(YrX,A) [x] forallr>r,.

3. STEINBERG’S CROSS-SECTION

The following proposition is a variant of | , 3.6, 3.14], generalizing
[ , Proposition 5.3].

Proposition 3.1. Suppose (T, U) is a Cozeter pair. Then the map (x,y) —
r 7 yF(x) induces isomorphisms:
(1) (U, N FU,) x (U, N FU,) = FU,;

(2) U, x (U, N FU,) 2U,FU, = U, (U, N FU,) 2 U, x (U, N FU,).
Moreover, the analogous statements also hold with U, replaced by U} or
byU or byU™ or by U.

Remark 3.2. Using a different approach, Malten | | shows that Propo-
sition 3.1 holds for all minimal elliptic pairs (7,U). We will not use this
result in the paper.

We use this result for U} in §7 to deduce the irreducibility of Hy, (Y, Q)[x],

and for U in §4 to prove the isomorphism of X7 with the p-adic Deligne—
Lusztig space from | ].

Proof. In any of the setups (U,, U;",Z/UI,Z/?JF, (V]), (1) is equivalent to (2) as in
[ , 3.14], so it suffices to prove (1). By | , 3.6], the map in (1) is
always injective.

In the setup with U, resp. U the proposition follows from injectivity and
[ , Proposition 1.2(ii)], as the source and the target of the map in (1) are
isomorphic to the (perfect) affine space over F, of the same finite dimension.
By passing to the inverse limit over r, the proposition also follows in the
setup with U, U™.

It remains to handle the setup with U, where we argue as in [ ,
Proposition 5.3]. By | , §3.5] it suffices to prove (1) for a single Coxeter
element. By [ , Lemma 5.5], it suffices to assume that the Dynkin
diagram of G is connected. The cases when G is classical were handled in
[ , Proposition 5.3], so it suffices to verify | , Lemma 5.7] for the
remaining types (G2, Fy, Es, E7, Es, 3Dy, 2Eg). That is, we must provide
a filtration

T =0, D0, ;1 D.. 0D =0T NF D),

such that for each 4, ¥; and ¥; \ ¥, are closed under addition; the impli-
cation o, € ¥;, a4+ € ® = a+ [ € ¥;_1 holds for all ¢ > 1; and
for all 4, F(¥; \V¥;) C ¥,;. We do this using an algorithm implemented in
SAGE | |. It even turns out that it is always possible to arrange that
#(Uip1 N ¥;) = 1. Our algorithm is explained in Appendix A. O
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4. REVIEW AND SOME PROPERTIES OF Xt/

Let X7 ¢ be as in (1.1). Here we recall/prove some facts about it. As
we explain below, if T is elliptic there is an equivariant map X7y — X;(b)

into a certain p-adic Deligne-Lusztig space from | , 88]. If (T, U) is
Coxeter and if G is classical in the sense of | , Definition 5.1], it was
shown in [ , Proposition 5.12] that this map is an isomorphism. We

prove in this section that this holds for all G.

4.1. Comparison with the definition in | ]. Assume that T is el-
liptic. Assume that G admits a (necessarily unique) unramified inner form
Go over k (the general case easily reduces to this by using a derived embed-
ding of G into a group with connected center). Then one can choose

e a k-rational pinning (Ty, Bo = ToUp) of Gy with Weyl group (W, Sp),

e an elliptic element w € W),

e alift v e N(Tp)(k),

such that there is a k-rational isomorphism G = Gy, identifying T, B, U, W
with T, By, Up, Wp, and F' with Ad(w) o o as an automorphism of G = Gy.
Let be G. In | , §8], the p-adic Deligne—Lusztig space attached to the
datum (Go,w,b) is defined as the arc-sheaf on perfect F,-schemes,

Xi(b) = {x € L(Gy/Up): 2 bo(x) € L(Ugwly)},

where L(-) is the perfect loop functor as in §2.1. Note that (g,t): x — gzt
defines an action of the locally profinite group G(k) x T'(k) on this arc-
sheaf, see | , §8] for details. This seems to be a natural definition,
most similar to classical Deligne—Lusztig varieties.

Note that w equals the relative position of U with FU. Thus (T,U) is
a Coxeter (resp. minimal elliptic) pair if and only if w is a Coxeter (resp.
minimal elliptic) element.

Identifying G with G via the given isomorphism, we have the composition

Xru — {9 € Go: g Mio(g) € wlp}/(Uo N Ty)

(4.1) = X (),
given by g — g(ﬁo N “’(70) — gUp. Just as was done in [ , Proposition

5.12] for classical groups, we deduce from Proposition 3.1:

Corollary 4.1. Assume (T,U) is a Coxeter pair. Then the map (4.1) is a
G(k) x T(k)-equivariant isomorphism.

4.2. Integral decomposition of Xrpry. A priori, X7 is a huge ind-
scheme, which is hard to control. However, in the Coxeter case, it has
the following decomposition. Let X be as in (1.2) and note that X C X7 ¢
is a closed subscheme. Surprisingly, it is also open and the following holds.
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Theorem 4.2 (] Al ). Suppose (T,U) is a Cozeter pair and let
X be as in (1.2). Then there is a decomposition
Xru = |_| gX.
9€G(k)/G(Ok)

In particular, X7y is a disjoint union of affine perfect F,-schemes.
This reduces the study of the cohomology of X7 to that of X.

4.3. Drinfeld stratification. In this subsection, the ellipticity assumption
on T can be dropped. Note that the projection G — Gg4 restricts to a
projection

X — X0+ = {g € G0+I gilF(g) € ®0+ N F[U0+}
over (a variant of) a classical Deligne-Lusztig variety. Let £ denote the set

of all twisted Levi subgroups of Gg+ containing Tg4. For any Loy € £ we
have the locally closed G{’ X T -stable closed subscheme

X&OH = {9 € Got: g7 'F(g) € Low NUoy N FUp}

Pulling back to X we obtain a closed subscheme X{0+) C X. Following
[ | and [ , §6.2], we then call

XG0 ) xh)
]Léprg]LoJrEE

a Drinfeld stratum of X. This defines a finite and locally closed stratification
of X. Its has a unique minimal/closed stratum X (To+),

Lemma 4.3. With Y as in (1.3), we have X(To+) = |_|ge65+/1r§+ g(X N

Proof. The first equality is | , Lemma 3.3.3]. As To. NUgy NFUyy =1,
the image of X (To+) under X — Xo, is contained in the finite subset G&’ L C
Xo+. By exploiting the G-action on X and the surjectivity of GF' — G¥ s
each fiber is a translate of Y. O

In the rest of the article we consider Y and its cohomology. To approxi-
mate Y, consider for any r € Z~ the affine perfect F4-scheme

Y, ={g9€Gt: g 'F(9) €U, NFU/},

equipped with (G;))¥" x (T;)F-action, so that ¥ = im Y;. Similarly, we

have the schemes XT(L‘”) C G, approximating X Loy )

Recall the set A from §2.5. Let ®™? denote the set of those o € ® for
which a(x) € Z, and let AT = dred 0 A,

Lemma 4.4. The scheme Y, is the perfection of an affine smooth scheme
of dimension r - #A — #A™*d = %(T CHP — Pred),
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Proof. The last equality follows from the last sentense of §2.5. Note that
the if a € A™ (resp. a € A~ A™), then there are precisely r — 1 (resp.
precisely r) affine roots with vector part o appearing in U, N FU,}. Thus

U,NFU; is isomorphic to the perfection of A%#A_#Amd. Note that Y, is the
— q

pullback of U, N FU;" under the Lang map g — g 1 F(g) of G;". By | ,

Lemma A.26], there is a smooth algebraic group H over F, with perfection

G}. Let W C H be the (reduced) closed subgroup whose perfection is

—_ . _ red
U, N FU, . In particular, W is necessarily isomorphic to A% HAHA™ et
q

Y. be the pullback of W under the Lang map of H. As perfection commutes
with limits, Y, is the perfection of Y. As the Lang map is étale, the claim
follows. (]

5. THE MINIMAL DRINFELD STRATUM

In this section we assume that ®/(coy) = A and #P = N - #A, where ¢
and oy are as in §2.5. This condition is satisfied if (T, U) is a Coxeter pair.

We will study the geometric and cohomological properties of Y, for r €
Z~g. To this end, we will study Deligne-Lusztig type constructions for var-
ious subquotient groups of G;t.

5.1. A total order on affine roots. For f € P we write ay € ¢LI{0} and
my € Z such that f = ay +my. Let Oy be the F-orbit of f.

Let @ (resp. CB*) be the set of affine roots f € @, (resp. f € ®) such
that f(x) > 0. Note that &+ = & LI Z>; and & = &, U L P ;. Here
B0 = {f € &: f(x) = 0}.

Recall that A = " NF®T. Set Afy = (AXZ)N®}; and At = AL UZ;.

Lemma 5.1. The map f — Oy induces a bijection At = &+ /(F).
Proof. This follows from our assumption on (7, U) in this section. O

Definition 5.2. We define a linear order < on ®* such that

o [ < flif either (1) f(x) < f'(x) or (2) f(x) = f'(x), f € Z=1 and
f'e A:ﬁ;

e if f1, fo € AT such that f; < fo, then fi < f5 for any f{ € Oy, and any
fé S Of2‘

o f<F(f)<--<FNTIf) for fe Al
Let f € A+. We denote by f+ and f— the descendant and the ascendant

of fin AT L {0} respectively such that 0 = f— if f = min At. Set & =
{freetf >}
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5.2. The variety YZ'. We fix an integer r € Z1. Let G = ¢°F/G" and
let & = {f € ®;0 < f(x) < r} be the set of affine roots appearing in G,

Let f € ®T. If f € @1, we take Ay = G, and define uy : Al — G} by
x> U, ([z]@™) for @ € Fy. If f € Zz1, we take Ay =V := X, (T) ® F,
and define uy : Ay — G by A®@ z — A1 + [z]@"™) for A € X,(T) and
z €F,.

We define an abelian group A[r] =[] red+ Ay Then we have an isomor-
phism of varieties

w:Alr] 5 GE o () [Jur(ap),
f
where the product is taking with respect to the linear order < on .

Let E C ®f. We set Ap = erE Ay, which is viewed as a subgroup
group of A[r] in the natural way. Denote by pgp : A[r] — Ag the natural
projection. Using the identification u : A[r] = G;" we define

prp=uopgou ' :GF — u(Ag).
For f € &3j we put py = pyyy and pry = prys. By abuse of notation, we
will identify pr; : G;7 — u(Ay) with u=' opry : G} — Ay freely according
to the context.

Let A, B C ®T be two subsets. We set

A+B={f+f ec®; fcAf cB}
We say A is closed if A+ A C A and A+ Z>o = A. In this case, we denote
by G4 C G the subgroup generated by u(A g) for f e A

Suppose that ®” C A, B C ®* are F-stable and closed such that B C A
and A+ B C B. Then GZ is a normal subgroup of Gf. The isomorphism
w: Alr] = G restricts to an isomorphism ua.p : Ag\p — GA/GE. So we
get an embedding

sap=uouyly: G /G — GF.
We define
Yy ={g€Glig"'Flg) € (U; N FU,)G}/GP C GI/GP,
which admits a natural action by (G x (T;FNGA)F. Let x : (THNGHF —
@, be a character. We denote by H Y4, Qp)[x] the x-weight space of the
(T)F-action on HY(YZ, Q). For f € &} we define
7T}/cx:B —uto pro, © Lospp: Gf/@f — Aof.
Here, for any F-stable sub-quotient group of G;", we always denote by L the
Lang’s self-map given by g — g~ 'F(g).

Proposition 5.3. Let P - fEB - ®F be F-stable and closed. Let feB
and C = B\Oy. Suppose that ®" C C is closed, C+A C C and Oy+A C C.
Then
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(1) if f € Ajﬁ, then the map ¢ = (qr,pry) : Yé4 = ng‘ X Ay is an
isomorphism;

(2) if f € Zz1 (in which case Ao, = Ay =V ), then there is a Cartesian
diagram

pI'
YA LAy

q,l Ll
ﬂ.A:B

AT
YB — Af.
Here qy denotes the natural projection.

Proof. By assumption, the map u induces an identification Ap, = GB/G¢
as abelian groups. Moreover,

(a) GB/GY lies in the center of G /G¢.

Assume that f € A:H. We define a morphism ¢ : Y§ X Ay — Yc‘f‘ as
follows. Let (g,y) € Y# x Ay. Write W]‘?:B(g) = (2i)1<i<v € Ao, with each
zi € Api(r). We define

$(9,y) = sas(@)u)Flu) - FN u) [ wu)Fuz)- - FN (u(z).
1<i<N-1
By (a) one checks that
o(Y5 x Ap) C Y
and Y o¢ =id. Let g € Yé4 and set ¢ = ¢(¢(g)) € ch‘. Then ¥ (g) = ¥(¢),
that is, g~'¢’ € Aongpy C GPB/GE. As g,¢' € Y4, it follows by (a) that
L(g™'g') = L(9)'L(¢') € Ay S G/Gy.

Hence g = ¢’ by Lemma 5.4. So ¢ o1 = id and (1) is proved.

Assume that f € Z>;. As both vertical maps in the diagram are finite
étale VF-torsors, it suffices to show that the square commutes. Let g € YCA.
Write sa.c(g) = u(r)u(y) with x € Ay g and y € Ay. Then pry(g) = y and
qr(g9) = u(z). As f € Zz1 and g € YZ', we have pre(L(sac(g)) =0 € Ay,
Using (a) one computes that

77 (ap(9)) = pry

So (2) is proved. O
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Lemma 5.4. Let [ € A;FH and let © = (x;)o<i<N—1 € Ao, with each z; €
Api(y) such that L(z) € Ay. Then x; = F'(zo) for 1 <i < N—1. In
particular, (1) L(z) = FN(zo) — xo and (2) x = 0 if and only if o = 0.

Proof. By definition we have

N-1
L(z)=F(z) —x =Y _ F(zi1)—x € Ao,,
=0
from which the lemma follows. O

5.3. Main result. For f' < f € AT we set G;f = G,T/Gg’f, Yy = Yg:,
Ty = Tpyy and T} = ker(T; — Ty/), where &/ = {f' € &*; ' > f} and

[f] = min{n € Z=1,n > f}. Note that T}CJF is nontrivial if and only if

f € Z>1, in which case ']T§+ >~V =X,.(T)®F,
Theorem 5.5. Assume that p satisfies Condition 2.1. Let f € AT and let
X: (’]I‘}F)F — Q, be a character. Then there exists s = sty € Lz such that

Hy(Y, Q)X #0 == i = s,
on which FN acts by multiplication by (—1)%¢*N/2.

After necessary preparations we prove Theorem 5.5 in §5.7. We compute
the cohomological degree s, , explicitly in terms of the Howe factorization
of x in §5.8. A variety over a finite field is called mazimal in [ ], if its
number of rational points attains the Weil-Deligne bound given by its Betti
numbers.

Theorem 5.6. Let f : Z — Y be an étale I'-torsor, where I is a finite group.
Let A be a ring. Assume that either A is finite, or Z,Y are irreducible and
geometrically unibranch. Then

H8) = Pree,
P

where p ranges over irreducible representations of I' and €, is a local system
onY.

Proof. The category of locally constant A-sheaves on Zg is equivalent to
the category of continuous 71 (Z)-representations on finite A-modules [ ,
0GIY, 0DV5]. The same holds for Y and the functor fi = f, correspond
to induction of representations. Thus fi(A) corresponds to the m(Y)-
representation indfrig)) Lz, (z), which is equal to the inflation along 7 (Y') —

I" of the regular I'-representation. The latter decomposes as @ pelrr(I) p®dim(p)

Thus, if £, denotes the local system on Y corresponding to the inflation of
p, we deduce fi(A) = @pgp@dlm(p). .
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Proposition 5.7. Let T be a finite group. Suppose that Z and Y = Z x Al
are '-varieties, and the natural projection 7 : Y — Z is I'-equivariant. Then
we have H(Y,Q,) = H:=2(Z,Qy) as T'-modules.

Proof. Tt suffices to show m(Qy) = Q,[—2] as I'-equivariant sheaves. Indeed,
the adjunction map gives an isomorphism

m(Qp) =2 m7*(Qy) = mr' (Qy[—2]) = Qy[—2]

as I'-equivariant sheaves. U

5.4. Multiplicative local systems. Let P be a commutative unipotent
algebraic group defined over F,. Then the map £ — t, induces a bijec-
tion from the isomorphism classes of multiplicative local systems on P to

the set Hom(H(F,),Q, ) of characters of P(F,). Here t; : P(F,) — Q,
is the trace-of-Frobenius function for £. See | , §1.8] for details. For

6 € Hom(P(F,), Q,) we denote by Ly the multiplicative local system corre-
sponding to 6.

Lemma 5.8. Let £ be a multiplicative local system on P. Then the base
change of L to P]Fqn (with n € Z>1) corresponds to the character tp o Nmy,,

where Nm,,(z) = zFp(x) - Fp ' (z) and Fp denotes the Frobenius auto-
morphism of P.
For a character x of (T}ZF)F we denote by X}c 4 the restriction of x to

(T; +)F . Proposition 5.3 has the following consequence:

Corollary 5.9. Let f € At and let y be a character of (']I'};)E
(1) f F € Al then HA(Y74, Q)] = B2V, Q) b:
(2) if f € Zov, then HI(Vp4, Q)lx},] = Hi(Yy,w(L,s ), and hence
Hy(Yye, Qo) [x] = Ho(Yy, 7" (L s ).

f+
d+-of 1 - . .
Here m = ﬂ?+'(b and HY (Y4, Qg)[X;Jr] is the X}c+—wezght space of (']I‘;Jr)F.
Proof. If f € A, by Lemma 5.3 (1) we have Yy, = Y x G, and the natural
projection gy : Yy — Y} respects the right actions of ("JI‘?JF)F = (T;{)F on
Yr4 and Yy. So the statement (1) follows from Proposition 5.7.
Now assume that f € Z>;. Note that the Lang’s map L : ’]1‘%_ — T§+ is

an étale (T§ +)F -torsor. It follows from Theorem 5.6 that
L(Q,) = P £,
0

where 6 ranges over characters of (T; +)F , and Ly is the multiplicative local
system corresponding to 6. By the Cartesian diagram in Proposition 5.3
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(2), it follows from the base change theorem that
(g)1(Qp) = (gp)ipr(Qp) = 73 Li1(Qy) = @W}Ee-
0

So the statement (2) follows by noticing that (T; +)F acts on the sheaf Ly
via the character 6. 0

From this we deduce:

Corollary 5.10. Let x: T(O) — @Z be a smooth character, which factors
through (T;7)Y". Then for any ro > r1 > r, the map fry1Qq[x][2(dimY;, —
dimY,,)] = fr.Qulx] s an isomorphism, where f.: Yy, — SpecF, is the
structure map. With other words, (2.1) holds for the schemes Y.

5.5. Reduction to the semisimple case. Let G’ C G be the derived
subgroup. Let T be a maximal torus of G’ contained in 7. One can define
the objects Y} = Yy for G’ in a similar way.

Lemma 5.11. For f € At we have

Yy = | | xY} = | | Vi~
z€(THF /(TFH)F z€(THF /(TFH)F
In particular, H (Y}, Q) = ind(T?)F HIY!, Q) as (T -modules
p y e\ fy ) = (’]I‘;Z")F c\1 s8¢ f .

Proof. Let g € Y. Then g7 1F(g) € E}r N FTU? C G'f+. By Lang’s theorem,
there exists ¢’ € G’;r such that ¢ 'F(¢) = g F(g). So g = (99 g €
(G?)FY; and hence Yy = (G}*‘)FY;
On the other hand, there is a natural isomorphism
(THT /(T = (GH /(G
Now it follows that

+ _ +\Fy + 1
vo=@pryy= ] avi= ] vt
ze(TF /(TFHF e€(THF /(THF
where the last equality follows from the observation that (T}F)F normalizes
Y?. O
f

5.6. Handling jumps in the Howe factorization of y. We fix a positive
integer h < r and a character y of (']I‘;JF)F. Recall that T}, = A, =V =

X.(T) ® Fy, and recall from §2.6 the norm map
Nmy :V —V, v v+ F(v) + -+ FN ().
Using the character y we define a root system

P, ={a € ®;xoNmy(a' @F,n) = {1}}.
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Note that ®, is F-stable. By | , Lemma 3.6.1] it is a Levi subsystem
of ® (note that by Condition 2.1, p is not a torsion prime for ).
Let M = M, C G be the twisted Levi subgroup generated by 7" and U,

for a € ®,. Let &)M be the set of affine roots of M. We set
D=(ALN®N)\ By = {f € Al \ ®as; f < R}
By Lemma 5.1 the map f + O gives a natural bijection
D =5 (B \ @) /(F).

Let f € D. As f < h, it follows by Definition 5.2 that 0 < f(x) < h and
hence h — f € <I>}JLr \ ®5;. Hence there exists a unique affine root f’e A:ﬁ

such that —f +h € Op. In particular, f> € D and f(x)+ f°(x) = h. We
label all the affine roots in D by

f17"'7fm—17fm:fzw"‘afn:f757ffnfl7"‘7 1b
such that

) <+ < Fnoa(a) < 5 = fnx) = o = falx) =

f¢<fibfor1<i<m—1andle_1<---<f1b.
Let 1 <7< m. WesetD?:{fjl?ED;lgjgi}iflgigm—land
D?:{f;;lgjgn}ifi:m. Define
Ay =0T \UZI0f, B;=0"U () Oy, Cioi=Bi1\{h}.
fen?
Moreover, we set Ag = A :&)Jr, By = ®" and Co = By \ {h}. Note that
Ay = B, U}, with @1, = @y N @7,

Lemma 5.12. Let 1 <i<m. Then A;_1 + A;_1 C A;, Aj + B; C B;_1,
@ +B; CCi_1, Ci1+Ciz1 C Ciy and Ajp1+ B; C Ci_q, where Apyq =
B, 1U @}\F/j. In particular, A;, B; and C;_1 are F'-stable and closed.

Proof. We only show the second and the third inclusions. The others can
be proved similarly. Let f € A; and f’ € B; such that f + f' € ®.
First we assume that f € ®,. Then f + f' ¢ ®, since f' ¢ ®1,. As

(f+ 160 > /(%) = f7(x) > h/2.
we have f + f' € Uf”ED'L1O£" C C;_1 € Bj_1 as desired.
Now we assume that f ¢ ®1,. Then f(x) > f;(x) and
(f + 1)) = fi(x) + [ (x) = h.
By Definition 5.2 we have f + f’ € ®" C B;_; as desired. O
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Let g € G, z € Alr] and E C &}. We set gg = prg(g) € u(Ag),
zp = pp(z) € Ap and & = u(z) € G}. For f € ®F we will set Ty =105
and x>y = ;. We can define g and g> € G} in a similar way. By abuse
of notation, we will identify g5 € u(Af) with u=(gf) € A according to the

context.

Lemma 5.13. Let A, B C &t such that A+ B C ®". Let x € Ay and
y € Ap. Then

A A

(§8)h = =Y af @ yn_gxy +yn +an € Ay =V,
f

where f ranges over A such that f < h — f.

Proof. As A+ B C ®" for any f € A and f/ € B we have [Gpr 2] =
yp fyj]ZI:%]Tl € G". Moreover, one computes that
(a) [g)f/,ii‘f]h = Oz}/ ®@ypaypif f+ f'=h, and [gf/,iff]h = 0 otherwise.
Assume that y = y<p and x = x> for some f' € B and f € A. We argue
by induction on f. If f > f’, the statement is trivial. Suppose that f < f’.
Then we have

(92)n = (G<pGp2s2>f)n
= (<psipldp' &5 25 )n
= (G<psipdspn+ 07527

= (G<sdsiypep@>pn+ Y a7
FrElf o]
= G<sZp)n + Oppe, >0 + Z G703 In
FrEfH 1

where [f+, f'] = {f" € ®*; f+ < f” < f'}. Now the statement follows from
(a) and induction hypothesis. O

Lemma 5.14. Let 1 < i < m. Let x € Ay, and y € Ap,. Assume that

mEAAm;I;M orl1<i<m—1. Then (29)n = xn + yn € Ap.

Proof. Assume that © = z<y and y = y>p for some f € A; and f' € B;. We
argue by induction on f’. If f < f/, the statement is trivial. Assume that
f > f’. We claim that B

(@) f+f >hif f+ [ €d.

First note that f(x) + f/(x) > 2f'(x) > 2f7(x) > h. Suppose that (a)
does not hold. Then f + f' = h. Assume z € AAmEI;M‘ Then f € Zﬁ&
and f + f' € C;_1 by Lemma 5.12, which is a contradiction. Assume 1 <
i<m-—1.1If f € Oy, then f' € Ofib and hence f < f’ by our choice that
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fi < fl-b, which is a contradiction. So f € A;11 and f+ f' € Ajy1 + B; C C;
by Lemma 5.12, which is also a contradiction. So (a) is proved.
By (a) we have [i;l,g];,l] € G, Hence

(@9)n = (@<sipdslas ' 05 )0 )n
= (Z<fUp2sh>s)n

= (@< 9r@ip+.09> )
= (T<pfp)n + (Bipy 10> )n
= (Z<pn + (g n + Erpae P> )0
Now the statement follows by induction hypothesis. [l

We set T = W%+:$h G = Gj/Gﬁ} — AR 2V.
Proposition 5.15. Let 1 < i < m. Then there is an isomorphism

Y A
P; ‘Yh ¢ _YB; XADE’

Moreover, for (z,y) € YE’?Z X Apy with x € Ay p, we have
(1)if 1 <i<m-—1, then

N

T (2,y) = af, © (2, fvfz)yfb +r(e; 1 (2,0) €V,

where 0 < n; < N — 1 such that F™(f?) = —fi + h;
(2) Zfz =m, then n(4; (5,9) = - LI af @y T+ a0 (5,0).

J
Proof. Without loss of generality we may assume that m = n. In particular,
B; = ®" U(beU UObeI‘O i< m.
ByLemma512wehaveA +(9f|,CA +B; CBj_1forl<j<i<m.

Thus by applying Proposition 5.3 (1 ) repeatedly, we obtain an 1somorphism
Ai _ v A o A o~ oA
Vi Yyt =Yg =Yg folb = 2Yp XADE.

Let z = sz, gn © ¥;H(#,y). We claim that

(a) z = zw for some w € ABi\cih such that Wpi(pr) = y;ﬁ + Pj(x) for
0 < j < N —1, where each P; is a polynomial function on A Ai\ZBz" Moreover,
Pj =0ifi=m

Indeed, the first claim follows from the Proposition 5.3. Moreover, if
i =m, then 4;\ B; C ®); and L(#) € M. Hence P; =0 for 1 <j < N —1
by Proposition 5.3. So (a) is proved.

Then we claim that
(b)ij(f)—x for 1 < m—1land0<j<N-—1.
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A A A A;
Indeed, Let v = To,; € A@fi. As T € Yg!, we have v € YAi+1 C

Gi/G = Ao, , that is, L(9) € Ay, C Ao, . Now (b) follows from
Lemma 5.4.
Assume that 1 <7 <m — 1. By (b) we have

A . A N .
(c) L(@)y = 0if f € Op \ {fi} and L(2); = 2%, —uxy, if f= f.
Note that w, F(0) € GPi, Oy < Op and B; + B; C "+, Moreover,

L(#) € GA and [, (L(&)<f,)™Y] € [GB, G/ € GE. Tt follows from
Lemma 5.13 and Lemma 5.14 that (@~ !), = 0 and

Then one computes that

m(¢; (#,y)) = (& L(#)F(@))n
= (L(@) <, 0 [, (L(#)<1,) " IL(@) 51, F ()
= (7 [, (L(2) <) L(&)5 P ()
= 3 (@ e L@) )+ (7 [, (L(E)<p) ™ D+ (L&), F ()
fe0y,
= (e, L(2) £, )0 + L(E)n
= o} @ (@}, —2p)(h" + Pu(@)) + L@

@

where the third equality follows from that f; < B;, the fourth equality
follows from Lemma 5.13, and the fifth equality follows from (c).

Assume i = m. Then #, L(&) € Mt and FN/?(f;) = h — f;. Moreover, by
the second statement of (a) we have

wé;iF(wofi) = (g, - FN7Y(doy,)) T F () - - FN "N (ay,)
= wjjilFN<wfi)[wfivFN/Q(wfi)il] mod Gﬁ’+

Thus

(ﬁ)_lF(ﬁ]))h = ('UA)(_Q;ZF(wOfl))h = [wwaNm(wfz’)_l]h = - ® Yy,
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 L(2)7Y] € GY'. In particular, [b, L(£) "], = 0

As L(z) € M}, we have [
] € GI. Now we have

and [[w, L(2)7!], F ()

N/2 1 R
= —a;/®y;1cj o L(a)
N/24q “1g4
= —aj @y} T 7 (2,0)),

where the third (resp. the fifth) equality follows from Lemma 5.14 (resp.
Lemma 5.13). The proof is finished. (]

Recall that EXZ+ is the multiplicative local system on V = X,(T) @ F,

corresponding to the character XZ L vE - @Z .

Proposition 5.16. Let a € © \ @y and let k : G, — V' be the map given
by x+— ¥ @ forx € Fy.
(1) H*EXZJr is nontrivial and hence HY(G,, E*£X2+) =0 forieZ;

(2) if N is even and FN/?(a) = —a, then

N/2 fa—1-
. . q @fl - 17
d H? G , *£ =

im H(Gq, 7 XZ+) {0, otherwise,

qN/2+1

where 7 : G, — V is given by x — oV @ . Moreover, in this case FV

acts on H(G,, T*LXZJr) via —gN/2.

Proof. Consider the composition of maps
h
N Xpy —
0 :F,n o vEY Yy 2 g

where Nmy : V. — V is given by v +— v+ --- + FN"1(v). As k is a
homomorphism defined over F ~, we have n*EXZJr = Ly by Lemma 5.8.

Moreover, since a € ® \ ®,, 6 is nontrivial by definition. Hence Ly is
nontrivial and the statement (1) follows from | , Lemma 9.4].
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Assume that N is even and FN/?(a) = —a. Then for z € F n/2 we have

Nmy (o Z Fi(a") @ 27
N/2 1 4 ‘
= Y (Fi(@V) @ + FN**i(a) 020"
7

0
N/2-1
= Z (Fi(a")@ 27 4+ Fi(—a") @ z7)
i=0
=0.
Hence the (nontrivial) character 6 of F ~ restricts to a trivial character of

F,v/2. Now the statement (2) follows from | , Proposition 6.6.1]. O

Let Z be a locally closed subvariety of G+ with the natural embedding
map iy : Z <> (G+ For a local system F on Gh, we write H2(Z,F) =
H(Z, i, F) for simplicity. We set m = 7r<I)Jr on G =G}/Gl — Ay 2 V.
Proposition 5.17. The followmg statements hold

(1) HA(Y; 7L )= HE(Y, T Ly ) Mpor1<j<m—1;

Am % 1 * (n—=m+1)N/2 _
@mmz,@wzm"ma%m@w@ (—g/2yrem=1y,
Here YhM =Y, N M;, and s is the restriction of ™ to M;Lr

Proof. By Proposition 5.15 we have an isomorphism
i Y 2 YL X Ap,.
A; A; st _
Let p: Y, — Y5 be the natural projection. Set L = EXZ+'
. ) N
Assume 1 <i<m—1. Let Y' = {2 € YAZ;xgci — x5, = 0}. Then

restricts to an isomorphism

Yl%Y; XADi?,

where Y; = {2 € YA;;JJ%V —xy, = 0}. In view of Proposition 5.15 (1), the
restriction of 7 to Yé‘; X Apy is given by

(! (&,y) = m(; (@) = n(@,y) + mo(#),
where n(z,y) = a}/i ® (a:;]cjv - :L‘fl)y;:% with 1 < n; < N — 1 such that
F”i(fl.b) = h — f;, and mg is the restriction of 7 to Yé‘; x {0} C Yg‘ii X Apy.

As £ is a multiplicative local system, we have 7*L = n*L ® p*njL. Hence
by the projection formula,

pr L= pn* L & mH L.
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For & € YhA" we define n; : A, — V be the homomorphism given by
nz(y) = n(Z,y). As ay, € &\ zI>M, it follows by Proposition 5.16 that
niL is a trivial multiplicative local system if and only if x%v —zy =0,
that is, # € ¥;. Thus pn*L is supported on Y; x A, = Y* and hence
p L = py(wlyi)* L. Noticing that '

i A
Y= Uy epiryr9¥n
and that #((G2)F /(G )F) = #(G /G ) = ¢V we have

N

H(Y w"L) = H(Y', 7" L) = H)(V;" 7" )"0",
and the first statement is proved.
By Proposition 5.15 (2), for (z,y) € Ygﬁ X Apy = Y M x Ap, we have
m(&,y) = 7(y) + 7 (2),
where 7(y) = Z?:m ayj ® y%wQH. Thus 7L = 73,L X 7*L. By Kiinneth
formula, we have
HI(Y ™ 7 L)
>~ @ H (Apy ,7L) @ HI* (VM 73,L)
> @1 B (A, 7EL) © @7 HE(A 3, Q) © HI" (1M, % )

q(n—m+1)N/2

= g YM T L) ((—=g"72ymtnh,

where 7; : G, = Ay, — V is given by z — o% ® 1“1N/2+1, and the last
isomorphism follows from Proposition 5.16 (2). This finishes the proof of
the second statement. ([

5.7. Proof of Theorem 5.5. Let G, T", YJ£ be as in §5.5. Let x’ be the
restriction of x to (T’]T)F . By Lemma 5.11 we have

+)F

BV Q0] = (i L) (B QD)

So it suffices to prove the theorem for semisimple reductive groups G = G'.
We argue by induction on f € AT and #®. Indeed, if f = min AT, then
(']I‘]T)F =Yy = {1} and the statement is trivial. On the other hand, if ® is

empty, that is, G =T, then Yy = (']I‘}F)F is a finite set and the statement is
also true. Now we assume the theorem holds for all reductive groups L such
that #®;, < #®¢, and for all Yy, with f' < f € At

Iffe Azﬂc, by Corollary 5.9 (1) we have a (T?)F -equivariant isomorphism

Hé(yf—H@Z) = Héi2(Yf7@£)(_qN)
Then the statement follows by induction hypothesis.
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Now we assume f = h € Z>;. Let notation be as in §5.6. By Corollary
5.9 (2), ‘ A
He(Ynt, Qo)x] = He(Ya, m Lo )[x]-
If xJt, is trivial, then EXZ+ = Qand H (Y, Qp)[x] = HAYn, Q/)[x]. Hence

the statement also follows by induction hypothesis. Assume XZ  Is nontrivial
and let notation be as in §5.6. By Condition 2.1 and Lemma 2.2, we have
M = M, # G. By Proposition 5.17 and Corollary 5.9 (2) we have

H (VL )] = HUG 7Ly )N
>~ (Hé*mfn+1(YhM7 777\4‘CX2+)[X])@q(m+n_1)N/2((—q)(ern*l)Nﬂ)

~ T—m—n - (m+n—1)N/2 I
(H L Q) )2 (g i DN,

So the statement follows by induction hypothesis. The proof is finished.

5.8. Computation of cohomological degree. Let x be a smooth char-
acter 71 (0},), which factors through (T;})¥. We have the Howe factoriza-
tion of an arbitrary lift of x to a smooth character of T'(k) from | ,
§3.6]. We use notation from loc. cit. In particular, we have the integers
(r >)rq > rqg_1 > rq_o > - > rg > 0 at which the breaks happen and
the increasing subsets R; := R,, C ® (which are the roots systems of the
twisted Levi subgroups M, appearing in §5.7). Moreover, r_; =0, Rg = ®
by definition. Let R;”Ed = R; N &4, where ®™4 is as in §4.3.

Proposition 5.18. We have

d—1

Nsyy =2 #& — #0™ — #RF = " ri(#Ris1 — #Ry).

i=0
Proof. We can argue by induction on #® (or on the number of jumps d). If
® = @, the statement is trivial. Suppose it is true for all reductive groups
L with #®; < #®. Then in view of §5.7 (where we can assume that x is
trivial over T/ with h = r4_1), we have

S =2(r —rq_1) - #A+ (mAn — 1) + 53

X>Td—1"
where s is the unique integer i such that Hé(l@ﬁ"_l,@g)[x] % 0. Now,

X5Td—1

m+n—1=#D
= #{f € Aug: f(x) >0, f <rg_1} N (Rg~ Ry_1))

1
— - (ra1 (#Ra = #Ra-1) = BRF ~ #R5Y))

where Ed,l - ® is the preimage of R; under the natural projection d —
® LI {0}. Note that N - #A = #® = #R,. The statement now follows by
induction hypothesis. ([

This generalizes the formula from | , Theorem 6.1.1]
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Corollary 5.19. For the integer s, from Theorem 1.1 we have

d—1
Nsy = —#O" 4 #RE + Y ri#Riv1 — #Ry).
=0
Proof. By Lemma 4.4, 2N dimY, = 2N (r-#A —#A™) = 2(r. #P — 4 pred),
As Nsy = 2N dimY, — Ns,,, the claim follows. O

Note that when y is sufficiently generic, this, combined with Corollary
1.3, gives a formula for the formal degree of the corresponding supercuspidal
representation. Moreover, note that the essential parts of the formulas of

Corollary 5.19 and of [ , Theorem A] agree.
6. TRACES
We combine Theorem 5.5 with | , Lemma 2.12] to express the traces

of all g € G(Oy) on H, (Y,Qy)[x] in terms of the geometry of Yj. In par-
ticular, we determine the dimension of H, (Y, Qy)[x] in terms of the non-
vanishing degree s, .

Proposition 6.1. Let x: T (Of) — @Z be a smooth character which fac-
tors through (T;1)F. Let g € G (Ok) with image g € (G})F. Then

_ prSxo (v _ 1
tr(g7HCX (Y;HQ@)[XD - #(T:,_)F ] qSX;T'N/Q Z X(t) : #Sg,t,
te(THF
where Syt = {x € Y, (F,): gFN(x) = xt}. For g =1 this simplifies to
#(GH)T

S Sx,r o) f—
dlng HeX" (Y, Qp)x] = #(T}")F . qsx,7.N/2.

Proof. The first statement follows from Theorem 5.5 by | , Lemma
2.12]. For the second statement we have to compute the trace for g = 1.
Therefore, let z € Sy, for some ¢t € (T})" and put u = 27 'F(z). Then
x € Sp; implies t = 27 1FN(2) = H?;Bl F'(u). We claim that this im-
pliest = u = 1. Let A C &t be an F-stable and closed subset. Sup-
pose that we have already shown that ¢,u € G;f‘. Let f € A be such that
f(x) is minimal among all roots in A. Then AN Of C A is F-stable and

closed, and A+ A C AN Oy, so that G:\Of C Gf is normal with abelian
ANOy

quotient. By induction on A it suffices to show that t,u € G, . Let
t,u € Gf/@f\of denote the images of t,u. If f € Zsg, then u = 1
and hence also ¢ = 1, so that we are done. If f ¢ Z~q, then t = 1 and
Gﬁ/@f\of = Hi]\:ol Gg, with F-action given by F((xl)f\gol) = (22 ON!
(the ith copy of G, corresponds to F*(f)). Now, as v € U, N F'U, by as-

sumption, u corresponds under this isomorphism to an element of the form
(a,0,...,0) with a € Gg, and theNe(}uation Hf\gol Fi(u) =1 in G;?/G:\Of
)

thus corresponds to (a,a?,..., a4 = 0. Thus a =0, i.e., w = 1 and our
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original claim follows by induction on A. The claim immediately implies
Sip =@ unless t =1 and S11 = (GZ)F which proves the proposition. [

Proof of Corollary 1.3. Let r € Zxy such that x factors through T;". Tt
follows from §2.7 that s, , = 2dim(Y;) — s, = 2dim(U,; N FU;}) — sy Note
that

Ndim(T N FU) = #(@F N dug) = dim G — dim T
Thus

Ndim(T, nFUH) XY dim(G; /TN

SX,T‘N/Q — q 2

q q
77 (Gr ) —syN/2
— ﬁ . q X .

Inserting this into the second formula of Proposition 6.1 gives the result. U

Corollary 6.2. Assume that p satisfies Condition 2.1. The varieties Yy for

fe (f);f' are mazximal. In particular, the varieties X,ST(”) forr € Zso are
mazimal.

Proof. By definition we need to show that either H; (Yf,@g) =0or FN acts
on H:(Y;, Q) by the scalar (—1)%¢*N/2 with sN even. By Proposition 5.3,
we can replace f with h=min{n € Z:n > f}.

Assume that HE(Y, Q) # 0. Then there exists a character y of T;
such that H (Y, Qg)[x] # 0. By Theorem 5.5, s = s, and F acts on
H2(Yy, Qp)[x] by the scalar (—1)%¢*N/2. Tt remains to show sN is even. In
view of Proposition 5.18, this question is combinatorial and we may assume
that ¢ is a suitable prime number. Then it follows from Corollary 1.3 that
5yN is even. As s = 2dim Y}, —s,, we deduce that sV is even as desired. [J

7. IRREDUCIBILITY

Until the end of this article we assume that (T,U) is a Cozeter pair.

Recall the minimal Drinfeld stratum X(To+) of X C G from §4.3. We
have its subscheme Y and the slightly bigger subscheme

7 =XT) TG = {g e TGT: g 'F(g) € UN FU}

We have the corresponding approximations Y, C G and Z, C T,G'; Y,
is equipped with an (G;})f x (T;})F-action and Z, is equipped with an
(T, G;H)F x TE-action.

In Theorem 5.5 we have seen that for any y: (T;)F — @, , H*(Y,)[x]
is concentrated in one degree. By Lemma 4.3, the same holds also for Z,
for any character y: T — @ZX . Now we prove that these weight spaces are
irreducible as GI (resp. (G;)!'-)representations and pairwise distinct.
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Theorem 7.1. For any x,x': TE — @Z we have

1 ifx=x,
HA(Z) ], HE(Z) 1Y -
(HZ(Z:) ) He(Z0)x ]>(TTGT+)F {0 otherwise.

The same holds for Y., when (T,.)Y, (TG are replaced by (TN, (GH)F.
Proof. Let
Y ={(y.2,2) € G} x (U NFUS) x (U] NFUH);y~ aF(y) = '},

equipped with T x TE-action by (¢t,t): (y,z,z') > (tyt'~', tat =1 Ua't'~1).
Asin | , §6.6] we have ¥ = (T,G;")'\(Z, x Z,). It thus suffices to show
that H*(X) = H*(TF).

By Iwahori decomposition we have y = 7y, y_ with y, € U, 7 € T, and
y_ € @:r . Then the equality y~'zF(y) = 2’ is equivalent to
(a) yr T aF(r)F(y ) F(y-) = y-a'.

By Theorem 3.1 (2) there is a unique pair (u1,ug) € (U N F_lﬁj) x U
such that
(*) yr T F(T)F(y1) = upm LF(T)F (),
and moreover, the correspondence (7,z,y4) — (T,u1,us) gives an isomor-
phism

T, x (U7 NUH) x U 2T, x (U N F~'T;) x U
Now the equality (a) becomes
(b) upT T F(T)F(un) F(y-) = y-a'.

Write y_ = y1y2 with y; € @: NF~YU;) and ys € @j N F_l(ﬁj). By
Theorem 3.1 (1), the map (2/,y2) +— u_ = y22'F(y2)~! gives an isomor-
phism (FU; N @j) X (@: N F_lﬁj) = @;L. Thus the equality (b) becomes
(c) uet ' F(7)F(uryr) = yru—.

Write u1y1 = 212022 with z; € F~Y(UF), 20 € T, and 25 € F_IE:_. Then
the equality (c) becomes
(d) us” T E(21)7 LR (1) F (20)F (22) = yhu_.

It follows from (d) that up =" FOF(21)™, 77 1F(7) = F(2) ! and u_ =

y; ' F(22). Thus we deduce that

()

S 2 {(7,u1,51) € Trx (U NF 0 ) x (T NFIU); 7F (7)™ = pro(F(uiy))},

where pry : T,G} 2 U x T, x U, — T, is the natural projection.

Note that (¢, &) € TEXTE acts on ¥ by (y, z, o) > (Cy&~t, Ca¢ ™1, €a'e7Y).
Then (¢, €) sends (7,2, y+,y-) to (r¢€7", Ca¢ ™1, €y €71, €y-€1). Using the
relation (*) we see that (¢, &) sends (uq,u2) to (uré~1, Eugé™1). Therefore,
in view of (e), (¢, &) acts on ¥ by sending (7, ug, y1) to (7¢€7Y, w1, €y €71).
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Let n € T,. Consider the action of n on ¥ by sending (7,u1,y1) to
(1,nu1n~ Y, nyin~'). Then the action of T, commutes with the action of
TE x TZ. Thus, we have an T x T -equivariant isomorphism

H;(8) = Hy (STred) = HX(T)),

where T, .4 denotes the reductive part of T,. Now the statement follows.
The proof for Y, is the same. ([

8. RELATION TO THE ORBIT METHOD

Let r € Z>1 U {occ}. We have the groups G, and T, and the variety Y,
with (G;H)F x (T;})F-action (where we put Yo, = Y, G = Hm G, and
similarly for T%). Theorems 5.5 and 7.1 show that H:.*"(Y;, Q)[x] is an
irreducible (G;})¥-representation. On the other hand, if either r < p, or
r = oo and (G;)F is uniform (see below), Kirillov’s orbit method attaches
irreducible (G;")f"-representations to adjoint (G,)"-orbits in the dual of the
Lie algebra of (G;)f. We state a conjecture about the relation between
these two constructions and verify it in a non-trivial case.

8.1. Review of the orbit method. The orbit method was originally de-
veloped by Kirillov | | and extended later to various related setups. We
briefly recall it in the two setups relevant for our article. We refer to | ]
(in particular, §2 therein), | , §2] and | | and references therein
for more detailed discussions.

Assume that p > 2.3 For the first setup, recall that a uniform Lie algebra
is a (topological) Lie algebra g over Z,, which is free of finite rank as a
Zp-module and satisfies [g, g] C pg. Following Lazard, there is a pro-p group
I' = expg attached to g, whose underlying topological space is g and on
which the group law is defined (via exp and log) by the Campbell-Hausdorff
series. For I' = exp g, one has mutually inverse homeomorphisms exp: I' — g
and log: g — I'. Set up appropriately, the functor g — exp g even defines
an isomorphism of categories. We denote the inverse functor by I — logT".
A profinite group I is called uniform (short for uniformly powerful) if there
is a uniform Lie-algebra g with I' = exp g. There is a similar isomorphism
of categories between finite p-groups I' of nilpotence class < p and finite
nilpotent Lie rings g of p-power order and nilpotence class < p. We use the
same notation as in the uniform pro-p case.

For the moment, let I" be either

(i) a uniform pro-p group, or
(ii) a finite p-group of nilpotence class < p.
Let g = logI' denote the corresponding uniform Lie Z,-algebra resp. finite

Lie ring. Let T denote the set of isomorphism classes of smooth irreducible
Qy-representations of I'. Note that there is an adjoint action of I" on g. More

3This assumption can be weakened at the cost of more technical results.
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precisely, for any ¢ € T' we have the automorphism Adg: g — g given by
x > log(gexp(x)g1). Let

g* = Homcont(g’@Z)-

be the dual of g. The adjoint action of I on g induces an action of I' on g*.
Kirillov’s orbit method, in the present setup established in | |, describes
a natural bijection between I' and the set of I'-orbits in g*.

Theorem 8.1 (Theorem 2.6 in | ). Assume p > 3 and T is either
a uniform pro-p-group or a p-group of nilpotence class < p and let g =
LieD'. Then there exists a bijection £ <> pq between I'-orbits Q2 C g* and T,

characterized by
1

tr(g, p) = o775 - 2 f(10g(9))-
9:9) = 2o % g(g

Groups of the form I' = (G;/)f may or may not satisfy the assumptions
of Theorem 8.1, as the following examples show.

Example 8.2. Suppose 7 = co. Then I' = (G;}) is the maximal pro-p
subgroup of the parahoric group G(Ok). If chark = p, I' always contains
torsion, and hence is never uniform. Suppose now that chark = 0. Then I
might or might not be uniform. For example, 1+ pM,,(Z,) is uniform. On
the other hand, if £/Q,, has ramification index e > 1, then 1 + w,,(Oy) is
not uniform. In general, it is true that a topological group has the structure
of a p-adic Lie group if and only if it contains an open uniform subgroup
[ , Theorems 8.1 and 4.2].

Example 8.3. Suppose 7 < oo. If x is hyperspecial, I' = (G})¥ is of
nilpotency class < r— 1 (as f(x) is integral for all f € ®, G = G2, and the
subgroups {G.}7_; form a central series of length  — 1). Thus if r < p, the
orbit method applies to the finite p-group I'. In contrast to Example 8.2,
there is no assumption on the characteristic of k.

8.2. Cohomological induction vs. the orbit method. For brevity we
write I' = (G;})¥" and ¥ = (T;")¥. Note that Y satisfies condition (i) or (ii) in
§8.1 and let t = log Y denote its Lie algebra. As Y is abelian, expy: t — Y is
not only a homeomorphism, but also an isomorphism of groups with inverse

logy. Also, as Y is abelian, we may identify Y with Y* := Homeont (Y,@KX ).
By Theorem 1.1 we get a map
log: ~

Riog: t* —3v* - T,

where the second map is
X > (=1)™H, (Y, Q) [x]

On the other hand, Theorem 8.1 gives a map

p: g —g*/AdT = r
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where the first arrow is the natural projection. It is a natural question, how
these two maps are related, and we make the following conjecture in this
direction. Note that there is a canonical projection

0:g—t

(as on the level of (geometric points of) the Lie algebras, t is the weight 0
subspace of the adjoint representation of Y on g; then one takes Frobenius
invariants). Let 6*: t* — g* be the dual map.

Conjecture 8.4. We have po 6" = Rjyg.

With other words, if xy € Yis a character, then Conjecture 8.4 predicts
that Hy (Y;,Qp)[x] = pa, where Q € g*/AdT is the orbit of 6*(x o expy) =
xoexpy od € g*. Note that to be able to state the conjecture we need (only)
Theorem 7.1 , but to verify it in a special case in §8.3 we use Theorem 5.5.

Remark 8.5. (1) Combined with | , Theorems 2.9 and 2.11], Conjec-
ture 8.4 allows a realization of Hy (V,,Qy)[x] as an induced representation
(at least in the case when I' is finite).

(2) In the light of Examples 8.2 and 8.3, Conjecture 8.4 says that x ~—
H, (Y:,Qp)[x] is a generalization of the orbit method (for those adjoint
orbits containing an element of t) to all groups of the form I' = (G;})¥".
The collection of all such groups is neither contained in, nor containing the
family of groups for which the orbit method applies.

8.3. An example. Assume that char(k) =p > 2, let G = GLy and r = 3.
Let G be the standard model of G over Oy. We verify Conjecture 8.4 in this
case, that is for the group

D = 1+ wMy(Fy[w]) /1 + o Mo, []),
where My denotes the 2 x 2-matrices. (I is of nilpotency class 2 < p, hence
the orbit method applies.)
Write R := F,[w]/(w?) with Frobenius o(a + wb) = a? + wb? and let
R:=R’ and Ry := §J2. Write

I

=~ L+ wMa(Fy[w])
) € 1+ wMz(R) 1+ wgJ\;Q(Fq[[[[w]]]])

with g; = gio + @wgi1 € R for i = 1,3. Let F = Ad({}) o o be the twisted

Frobenius on 1 + wMs(R), such that the diagonal torus in I" becomes the
unramified elliptic torus. We get a presentation of I" as

=\ F .
r= (1+WM2(R)) :{x(glag3):ghg3 € Ry fOI’Z:L?)},

which will be in use until the end of §8.3. Then Y = {g3 = 0} C I" and the
corresponding deep level Deligne-Lusztig space Y3 is given by

Vs = {x(v1,v3) € 1 + wMa(R): detz(vy,v3) € R*}

r(g1,93) =1+ (g; ZE%
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The condition det 2(vi,v3) € R* is equivalent to the conditions vip € F e

and 1111 —vp = v§0+q — v3!. Next we describe how I' and Y act on a point

x(vi,v3) € Y3. Let t = z(7,0) € ¥ with 7 = 79 + wr; € Re. Then for we
have
x(v1,v3).t = x(vig + 170 + @w(vi1 + 71 + v1070), V30 + @(V31 + V3070))-
Let g = g(g1,93) € I'. Then
g.z(v1,v3) = x(vip + gro+@(vi1 + g11 + grovi0 + gHV30),
v30 + g30 + @ (v31 + g31 + g30v10 + Gigv30))-

Lemma 8.6. There exists a constant C € Q* such that for all g = z(g1,93) €
I' one has

- Cq - x(z(g1,0)) if 930 =0,
tr(g, Hs, (Y3,Q/)[x]) = { C - > x(x(g10 + @w(g11 — A),0)) otherwise.
AEF 21 A4A=gi]"

Proof. Y3 is defined over F,2. Combining Theorem 5.5 with | , Lemma
2.12], we see that there is some Cy € Q*, such that for any g = g(g1, g3) € G,

(g, [Bl) = C1 - 3 #8400 - (1),
teT
where
Sgi={r € X:g.F*(2) =z}

Write ¢ = z(7,0). Using the above description of the actions on X, one
easily sees that Sy ; = @ unless gi19 = 79. Assume that gio = 79 holds. Using
the determinant condition above, one easily deduces that #5,; = q°- #S;t
where

2 1
g ¢ ={v30 € F S U30 — v§0 =gso0 and g1 — 11 — g§0+ = Ugog:’)o - v3og§o}
If gsp = 0, the claim of the lemma becomes clear now. Assume g3y # 0.
Suppose first that 7 is such that S;’t # &. Then, if vgy € S;t is arbitrary,
2
writing y := v gs0 — v30g4, we see (using that v30 = v39 — g30) that y? =

—y— 93:)r But on the other hand, g11 —71 = y+ 930 , and hence we deduce
(using that gs3p € Fy) that

1 1 1 1
(g1 =)+ (g1 —71) = (+ g3 I+ Ww+gss) =y +y+295 " = g3

With other words, S’

ot = 9, unless

(8.1) (gr1 =)'+ (gn —7) = anrl'

Assume now that this equality holds. Note that v3oggo - U3og§0 =011—T1—
ggar 1, regarded as an equation in wvsg, has precisely ¢ different solutions in

F, (as gso # 0). Moreover, if v3g is one of its solutions, then (applying the
transformation X — X7+ X to both sides of this equation) one verifies using

2
8.1) that v3g also satisfies v, — v39 = —gs30, that is v3g € S’ ,. Altogether,
30 g gt
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#Sy+ = q if (8.1) holds and #S;, = 0 otherwise. The lemma follows
immediately from this by taking A\ := ¢g11 — 71 for those 71 which satisfy
(8.1). O

Now we consider the orbit method side. Write y(g1, g3) := z(g1,93) — 1 €

wMy(R) = g = Liel. The map log: I' — g is given by log(1 + wz) =

2
we — WQZ. Let

6:g—t, ylg1,93) —> y(g1,0) andlet e:=xoexppod€g”

Consider first the I'-orbit Q5 of § (I' acts on the first factor in Hom(g, t) by
conjugation). First, note that the action of ' factors through I' = (G;)F —»
(G3)F =1+ @wMy(F2). Moreover, for h = z(hig, hso) € (G )" we have

(AdR)()(y(91,93)) = 6(hy(g1, 93)h ")
= y(g10 + @(g11 + hpg30 — h10959); 0) =: Onyo(9)-

Thus, Q5 = {0h,,: hio € Fp2} has cardinality ¢*. As expy is an isomor-
phism, the I'-orbit Qeyp. 05 = expy of2s5 of expy of € Hom(I', t) has the same
cardinality as Qs. Let now hig # hjy € Fp2. An easy computation shows
that x o expy odp,, = X © €xpy oéhzlo if and only if X|1+w2Fq— is trivial, where
we set F :={x € Fo: 2 + 27 = 0}.

Suppose first that x|, i non-trivial. Then composition with y o expy

induces a bijection Qs = Q.. Unraveling the trace formula from Theorem
8.1 we then that for g = x(g1,93):
q+1

(82) tr(g.pe.) = Co- Y X(@(gi0+ (g1 — H— + a%ga — aghy))).
ae]qu

for some constant Cy € Q. If g3p = 0, this clearly agrees with the trace
from Lemma 8.6 up to a (non-zero) scalar. Assume g3p # 0. Then the
homomorphism a — algsy — agly: F 2 — Fy2 is easily seen to have image
F, . Thus, (8.2) transforms to

q

q+1
g
tr(g,p0.) = C2-q Y, X(wlgio +w(gu — =+ )
nelry

g1
Now it is immediate to check that the map pu — A = g% — i defines a

bijection between F, and the set {A € Fy: A1+ X = 9531}. Thus the trace
of pq. agrees with the trace from Lemma 8.6 up to a non-zero scalar, which
does not depend on g. As we know that H, (V3,Qp)[x] and pq, are both
irreducible I'-representations, it follows that they must be isomorphic.

In the case that x|, bw2Fy 18 trivial, a similar (and easier) computation
leads to the same conclusion. Altogether we have shown:

Proposition 8.7. For ¢ = x o expyod we have Hy (Y3, Q)[x] = po. as
I-representations. Thus, Conjecture 8.4 holds for T'.
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APPENDIX A. ALGORITHM FOR THE STEINBERG CROSS-SECTION
The algorithm used in the proof of Proposition 3.1 consists of two proce-
dures (implemented in SAGE, v8.6), which we now describe.

find_candidate_for_one_step (procedure 1):
Input: an element w € W, a set ¥ C & of positive roots
Output: a (non-empty) set of positive roots or False.

1. Compute the set &, = {a € ®T: wo(a) < 0}.

2. Set T\ U = {f,...,8s} with s > 1.

3. For ¢ running through 1,2,...,s do:

3.1. Set U\ = WU {8;} and V) = 0V \ o,

3.2. Check whether the following conditions hold: (a) \I!gi) and \Ilgi) are
closed under addition; (b) for all a, 8 € \I’gi) such that o+ 3 € ®T, one
has o + 8 € \I/g); (c) wa(\Ifg)) - \Ifgi).

3.3 If (a)-(c) hold, return \Ifgi) and stop. Otherwise continue with the next
.

4. Return False.

iterate_steps (procedure 2):
Input: an element w € W, and ¥, which is either a subset of ®* or False.
Output: a (non-empty) set of positive roots or False or True.

Compute the set @, := {a € T : wo(a) < 0}.

If ®, = ®*, return True and stop.

If find_candidate_for_one_step(w, V) = False, return False and stop.

If ¥ = &7, return True and stop.

Set W' :=find_candidate_for_one_step(w, ¥). Return iterate_steps(w, ¥’).

ARl o B

To check if Lemma [ , Lemma 5.7] holds for an element w € W, one
runs the (recursive) procedure iterate_steps with arguments w and ®,, =
{a € ®T: wo(a) < 0}. The recursion stops after finitely many steps. If
the final output is True, the lemma holds. This holds true if w is twisted
Coxeter.

Remark A.1. Note that the final output True of iterate_steps(w, ®,,) is a
sufficient but not a necessary condition for Lemma | , Lemma 5.7] to
hold for w € W. In fact, there are (non-Coxeter) elements w € W for which
[ , Lemma 5.7] holds true, but iterate_steps(w, ®,,) outputs False.
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