AFFINE DELIGNE-LUSZTIG VARIETIES OF HIGHER LEVEL AND THE
LOCAL LANGLANDS CORRESPONDENCE FOR GL,

A. B. IVANOV

ABsTRACT. In the present article we define coverings of affine Deligne-Lusztig varieties attached
to a connected reductive group over a non-archimedean local field. In the case of GL2 and positive
characteristic, the unramified cuspidal part of the local Langlands correspondence is realized in
the f-adic cohomology of these varieties. We show this by giving a detailed comparison with the
realization of local Langlands via cuspidal types by Bushnell-Henniart. All proofs are purely local.

1. INTRODUCTION

The classical Deligne-Lusztig theory aims for a geometric construction of representations of finite
groups of Lie-type. In [9], Deligne and Lusztig constructed the so-called Deligne-Lusztig varieties
attached to a connected reductive group over a finite field and could show that any irreducible
representation of the group of F-valued points occurs in the f-adic cohomology of these varieties.
Since then one was trying to find similar constructions in the affine setting, aiming for a geometric
realization of the local Langlands correspondence. However, usual geometric realizations of local
Langlands make use of p-adic methods, formal schemes and adic spaces, also using the global
theory. In the present article we introduce a very natural affine analog of Deligne-Lusztig varieties of
arbitrary level attached to a connected reductive group over a local field F' of positive characteristic.
Using these varieties we realize the unramified part of the local Langlands correspondence for GLo
over F' using only schemes over F, and purely local methods. Moreover, we will give a detailed
comparison of our construction with the theory of cuspidal types of Bushnell-Kutzko 3] (we use the
language of Bushnell-Henniart [2]) and on the ’algebraic’ side we will show an improvement of the
Intertwining theorem [2] 15.1.

To begin with, let F' be a non-archimedean local field and let L denote the completion of the
maximal unramified extension of F'. Let Op resp. Op, be the ring of integers of F' resp. L. We
denote by k resp. k the residue field of F resp. L, and by ¢ the cardinality of k. Let o: k — k
denote the k-automorphism given by x — x?. We also denote by o the unique F-automorphism of
L, lifting o: k — k.

Let G be a connected reductive group over F' and let G be a smooth model of G over Op. It
is a central problem to realize smooth representations of the locally compact group G(F') in the
¢-adic cohomology of certain schemes (or formal schemes, or adic spaces, ...) over k (where ¢ is
prime to char(k)). Usually such schemes come up with an action of G(F') x T(F), where T is some
maximal torus of G and as a consequence the representations of G(F') occurring in their ¢-adic
cohomology are parametrized by characters of T'(F'), lying in sufficiently general position. After
the fundamental work of Deligne and Lusztig [9], which followed the pioneering example of Drinfeld
concerning SLa(k), and deals with representations of the finite group G(k), many generalizations
of their ideas aiming a construction of representations of G(Op/t") for r > 2 resp. of G(F') were

made. We give some examples. In [I2] Lusztig suggested such construction (without proofs) and
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more recently he gave proofs in [I13]. (A minor variation of) this construction was worked out for
division algebras by Boyarchenko [I] and Chan [7] (see also [6]). A further closely related approach,
was given by Stasinski in [I7], who suggested a method to construct the so called extended Deligne-
Lusztig varieties attached to G(Op/t"). The advantages of our construction are that it (i) has a
quite simple definition in terms of the Bruhat-Tits building of G, (ii) establishes a direct link with
affine Deligne-Lusztig varieties, which are well-studied in various contexts. In particular, this allows
to use the whole combinatoric machinery developed for their study.

A starting point for our construction is Rapoport’s definition of affine Deligne-Lusztig varieties
in [I6] Definition 4.1. We recall this definition (in the Iwahori case). Let #r, be the Bruhat-Tits
building of the adjoint group Gy, 4q. The Bruhat-Tits building of G,4 over F' can be identified with
the o-invariant subset of Br. Let S be a maximal L-split torus in G, which is defined over F' (such
a torus exists due to [5] 5.1.12). Let I < G(L) be the Iwahori subgroup attached to a o-stable
alcove in the apartment corresponding to S. Let .# be the affine flag manifold of G, seen as an
ind-scheme over k if F' has positive characteristic, and seen as a perfect algebraic space in the sense
of [19] otherwise. Its k-points can be identified with G(L)/I. Let W denote the extended affine
Weyl group of G attached to S. The Bruhat decomposition of G(L) induces the invariant position
map

inv: Z (k) x Z(k) —» W.
For w e W and b € G(L) the affine Deligne-Lusztig variety attached to w and b is the locally closed
subset

Xuw(b) ={g9l € .7 :inv(gl,bo(g)]) = w}
of #, which is given the structure of the reduced induced sub-Ind-scheme resp. perfect algebraic
subspace. Let Jp be the o-stabilizer of b, i.e., the algebraic group over F' defined by

Jo(R) = {g € G(R®F L): g~ 'bo(g) = b}
for any F-algebra R. Then Jp(F) acts on X, (b).

We sketch now the construction of natural covers of these varieties, which still admit an action
by Jy(F). The details are given in Section [2 Let ® = ®(G,S) be the relative root system. We see
0 as the 'root’ corresponding to the centralizer 7" of S in G (as G is quasi-split, this is a maximal
torus). After choosing a o-stable special base point z in %, with a concave function f on ® u {0}
(for a definition cf. Section one can associate a subgroup G(L); € G(L). In [I8], Yu defined a
smooth model G of G, over Oy, such that G;(Or) = G(L)y. Assume that G(L); S I and that
G(L)y is o-stable. Then G, descends to a smooth group scheme over Op. Further, G(L)/G(L);
is the set of k-points of an Ind-scheme resp. an Ind perfect algebraic space .#7, which defines a
natural cover of .#, as follows from the work of Pappas and Rapoport [I5] Theorem 1.4 resp. [19]
Theorem 1.5. Moreover, if G(L) is normal in I, then .7 f — 7 is a (right) principal homogeneous
space under I/G(L)s. There is a map

inv/: I (k) x Z1(k) - Dg y,
which covers the map inv. Here D¢ s is a set of representatives of double cosets of G(L); in G(L).

For w e Dg ¢, be G(L), we define the affine Deligne-Lusztig variety of level f attached to w and b
as the locally closed subset



X5 0) = {g=9G(L); € FI(k): inv!(3,b0(7)) = w},
endowed with its induced structure of a reduced sub-Ind-scheme resp. sub-(Ind) perfect algebraic
space (for the mixed characteristic case, compare [19] Section 0.3). In fact, in cases of interest this
is a scheme resp. perfect scheme locally of finite type over k. Assume G(L)y is normal in I. Then

I acts on Dg s by o-conjugation w it

wo (i), hence we can consider the stabilizer I7,, S I of
w under this action. It acts on X{;(b) on the right and this action commutes with the left action
of Jy(F'). Moreover this If,-action can be extended to an action of Z(F')I;,,, where Z is the
center of G. Thus we obtain the desired variety resp. perfect scheme X{;(b) with an action of
G(F) x Z(F)If,,. In the mixed characteristic case, note that perfect schemes has enough structure
such that étale cohomology groups can be attached to them.

We study further properties of Iy, and Xf;(b) for general G elsewhere. The rest of the paper
is devoted to the detailed study of G = GLs2 in the equal characteristic case. Now we explain our
results in this case. As the levels indexed by concave functions are cofinal, we restrict attention
to special functions f,, and elements w € Dgy, (cf. Sections for integers m > 0 and
write I"™ instead of G(L)y¢,,, X;'(1) instead of qu)’"(b), etc. We determine the varieties X'(1)
and the G(F)-representations in the cohomology of these varieties with Q-coefficients. Further we
compare our results with the algebraic construction of the same representations in [2] using the
theory of cuspidal types. We sketch our results here; for a precise treatment cf. Section Let
E/F be the unramified extension degree 2. If the image of w in the finite Weyl group is non-trivial,
then Z(F)Iy has a natural quotient isomorphic to E*, and the Z(F)I, ,-action in the f-adic
cohomology of X|"(1) factors through an E*-action. In this way we obtain a G(F')-representation
in the spaces Hi(X(1),Q,)[x], where x goes through smooth Q,-valued characters of E*. Tt turns
out that if x is minimal of level m, lies in sufficiently general position, then there is an integer i,
such that HL(X™(1),Q,)[x] = 0 for all i # iy and

Ry = H2 (X, (1), Qo)lx]

is an unramified irreducible cuspidal representation of G(F'), of level m (we also define R, for x
non-minimal). Here for an irreducible cuspidal representation 7 of G(F') to be unramified means
essentially that 7 arises by an automorphic induction process from a character of an (anisotropic
modulo center) torus of G(F'), which is split after an unramified extension of F. Alternatively,
unramified cuspidal representations are those which contain unramified fundamental strata in terms
of [2]. Cuspidal representations attached to (at least tamely) ramified tori can also be studied via
Deligne-Lusztig type constructions, see for example the work of Stasinski [I7] or a future work of
the author [LI].

Let P"(F) be the set of all isomorphism classes of admissible pairs over F' attached to E/F
(cf. |2] 18.2). Let o7 (F') be the set of all isomorphism classes of unramified irreducible cuspidal
representations of G(F'). We defined a map

R: Py (F) — 5" (F), (E/F,x)— Ry. (1.1)
As a consequence of our trace computations in Sections we see that this map is injective
(cf. Proposition . Using the theory of cuspidal types and strata, Bushnell-Henniart attached
to an admissible pair (E/F,x) an irreducible cuspidal G(F')-representation m, ([2] §19; we recall



the construction briefly in Section [4.6]). The tame parametrization theorem ([2] 20.2 Theorem) then
shows that the map

Py (F) — @™ (F),  (E/F,x) = my

is a bijection (also for even ¢). Here is our main result (which also works for even q).

Theorem Let (E/F,x) be an admissible pair. The representation R, is irreducible cuspidal,
unramified, has level {(x) and central character x|ps. Moreover, R, is isomorphic to my. In
particular, the map (L.1)) is a bijection.

The proof is purely local. Two ideas in the proof follow [I],[6]: it is Boyarchenko’s trace formula
(cf. Lemma and maximality of certain closed subvarieties of X'(1) (note that X]'(1) itself is
not maximal due to the presence of a ’level 0 part’). The rest of the proof is independent of [1,[6].

Finally, we remark that for G = GLs and b superbasic, J,(F) = D* for D a quaternion algebra
over I and the varieties X" (b) seem to be very close (but unequal) to the varieties studied by

Chan in [7] (cf. Section [3.6).

Outline of the paper. In Section [2] we define affine Deligne-Lusztig varieties for a connected
reductive group G of level attached to a concave function on the roots. In Section [3| we compute
these varieties for G = GLo, b = 1 and determine their f-adic cohomology. In Section we
recall the setup and state our main result for GLg, Theorem [£.3] After performing necessary trace
calculations in Sections we compare our construction with that in [2] in Sections
and finish the proof of Theorem [4.3]
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2. COVERINGS OF AFFINE DELIGNE-LUSZTIG VARIETIES
The goal of this section is to define coverings of affine Deligne-Lusztig varieties.

2.1. Concave functions and smooth models. Let G be a connected reductive group over F. As
k is algebraically closed, G, is quasi-split over L. Let S € G be a maximal L-split torus, which is
defined over F. Let T' = Z;(S) be the centralizer of S. As G, is quasi-split, 7" is a maximal torus.
Let ® = ®(G, Sr) denote the relative root system. For a € ®, write U, for the corresponding root
subgroup and let Uy = T. Let %y, be the Bruhat-Tits building of G and let /s be the apartment
corresponding to Sp. We fix a og-stable base alcove a contained in 75 and let x be one of its special
vertices. Let R = R U {r+: r € R} U {oo} be the monoid as in [4] 6.4.1. Then z defines a filtration
of U,(L) by subgroups Uy(L),, (7 € R) for a € ® (cf. [4] §6.2 and §6.4).

Moreover, choose an admissible schematic filtration on tori in the sense of Yu [I8] §4. This gives
a filtration Up(L),, = T'(L), on T. If G satisfies condition (T) from [I8] 4.7.1, then this filtration
is independent of the choice of the admissible filtration and coincide with the Moy-Prasad filtration
on T(L), cf. [18] Lemma 4.7.4. Moreover, G satisfies (T) if it is either simply connected or adjoint

or split over a tamely ramified extension [18] 8.1. We do not use this in the following.
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A function f: ® U {0} — R is called concave ([4] 6.4), if
S S
D fa) = F(O a).
i=1 i=1
Fix a concave function f: ® U {0} — Rxg~ {o0}. Let G(L),,; be the subgroup of G(L) generated
by Ua(L)g,f(a), @ € ® U {0}. By [I8] Theorem 8.3, there is a unique smooth model G, ¢ of G, over
Or, such that G, ;(Or) = G(L),y. Moreover, if G(L), s is o-stable, then G, ; descends to a group
scheme defined over Op ([18] 9.1). We denote it again by G, ;.
Let I € G(L) be the Iwahori subgroup associated with a and let ®* < & denote the set of
positive roots determined by a. Let f; be the concave function on ® u {0} defined by

fr(a) =0+ forae® .

Then G(L), s, = I (cf. [I8] 7.3). For m > 0 let fu,: ® U {0} — R=g ~ {0} be the concave function
defined by

fr(a) = {0 for a € 1 U {0}

m ifae®*
fm(a) = I _
mt ifae ® U {0}.

Write I = G(L)g,f,.-

Lemma 2.1. Form = 0, I'™ is normal in I and I'™ is o-stable. In particular, I admits a unique
smooth model G, 1, . This model 1s already defined over Op.

Proof. I (vesp. I™) is generated by Ua (L), f,(a) (tesp. Ua(L), ,.(a)) for a € @U{0}. To show normal-
ity, it is enough to show that for any roots a,b € ® U {0}, the commutator (Ua(L)4. £, (a)> Us(L)z, £ (v))
is contained in I"™. By [4] (6.2.1) V3 (we can treat 0 as a root), (Ua(L)4, f,(a)» Ub(L)z,f,.(v)) 18 cON-
tained in the subgroup generated by Upa+gb(L)p s, (a)+qfm(v) for P, g > 0 such that pa + gb e ® U {0}.
Now qfm(b) = m, hence Uparqp(L)ps,(a)+qfmp) E 1™ can only happen if fr(a) = 0, fi(b) = m,
fm(pa+qgb) = m™. This is equivalent to a € @~ U {0}, b€ ®*, a+be &~ U {0}. This is impossible,
hence Upatgb(L)pf;(a)+qfmy S 1™ and the normality is shown. We show now the o-stability of
I"™. On the one side, I is generated by the subgroups Uy(q)(L)q,f,(s(a)) (for varying a), and on the
other side I = o(I) is generated by o(Ua(L)s,f,(a)) = Us(a)(L)o(a),fr(a)- Using parts (i), (ii) of [18]
Theorem 8.3 we deduce that Uy(q)(L)s, f,(0(a)) = Us(a)(L)o(x),f;(a)- But then the same is true also
for f,, instead of f;. From this the o-stability of I™ follows. O

To have common notation for mixed and equal characteristic cases, for a k-algebra R set

W(R) = R & Op if char(F) > 0
W(R) ®W(k) OF if char(F) = 0,
where W (R) denotes the p-typical Witt ring of R. In the mixed characteristic case, W behaves only

well, if R is a perfect k-algebra. In any case, let @ denote a uniformizer of F'. Consider the loop
group LG, which is the functor on the category of k-algebras,

LG: R— G(W(R)[=™1]).
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Assume the concave function f is such that G(L),y is o-invariant. Let L¥G,  be the functor on
the category of k-algebras defined by

L+Qx,f: R— Qz,f(W(R))v
and taking perfection in the mixed characteristic case (as in [19] Section 1.1). Consider the quotient
of fpgc-sheaves

FI =LG/LG,
on the category of k-algebras in the equal characteristic case resp. on the category of perfect
k-algebras in the mixed characteristic case. By [I5] Theorem 1.4 resp. [19] Theorem 1.5 it is
represented by an Ind-k-scheme of ind-finite type over k resp. by a ind perfectly proper perfect
algebraic space over k and its k-points are .#/(k) = G(L)/G(L), . Moreover, if g < f are two
concave functions as above, then we have a natural projection .Zf — .Z9. We write .#% = .Z/1 for
the affine flag manifold associated with G, (, the smooth model of I and F™ = Flm for m > 0.

2.2. Affine Deligne-Lusztig varieties and covers. We keep the notations from Section We
fix a concave function f: ® U {0} — Rog~ {00}, such that f > f1,i.e, G(L),; S I and s.t. G(L),
is o-invariant, i.e., G, ¢ is defined over Op. We write I/ = G(L)z,¢. There are natural o-actions
on .7 (k),.Zf(k), which are compatible with natural projections.

Let N7 be the normalizer of T'in G. Let W = N¢(L)/T(L) be the finite Weyl group associated
with S and W the extended affine Weyl group. If I' denotes the absolute Galois group of L, then

W sits in the short exact sequence

0— X.(T)r > W > W — 0.

Then the Iwahori-Bruhat decomposition states that

G(L) =[] IwI,
weW
where w is any lift of w to N(L). Consider now the set of double cosets

Da,jy = G(L)2, \G(L)/G(L)a. 1,
equipped with the natural projection map Dg ¢ — I\G(L)/I = W. If m > 0, we also write D¢ m
instead of Dq ¢,,. At least for w ’big’ enough, the fiber Dg ¢(w) over a fixed w € W can be given
the structure of a finite-dimensional affine variety over k, by parametrizing it using subquotients of
(finite) root subgroups. As this seems quite technical and as in this article we only need the case
G = GLy (cf. (3.3)), we omit the corresponding result in this article. We obtain a map, which
covers the classical relative position map.

Definition 2.2. Define the map

inv/: F1(k) x Z/(k) - Dg
on k-points by inv/ (zG(L), s, yG(L). ) = w, where w is the double G(L), -coset containing =~ 'y.
We come to our main definition.

Definition 2.3. For f > f; concave, such that G(L), ¢ is o-invariant, b € G(L), and w € Dg  we

define the affine Deligne-Lusztig variety of level f associated with b, w as
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XL (b) = {7 = 9G(L)sy € FI(k): inv/ (g,b0(7)) = w},

with its induced reduced sub-Ind-scheme resp. sub-Ind perfect algebraic space structure.

We write X['(b) instead of X{,c]"(b). As usual, X{;(b) is equipped with two group actions. For
be G(L), let Jp be the o-stabilizer of b, i.e., the algebraic group over F defined by

Jy(R) = {g € G(R@p L): g~'bo(g) = b}
for any F-algebra R. Then J,(F') acts on qu,(b) for any f and we Dgy. If f = f and w e Dg ¢
lies over w’ € D¢ yr, then X{;(b) lies over Xj:,(b) and the J,(F)-actions are compatible.
To describe the second group action, assume additionally that G(L), ¢ is normal in I. For
w e W, we have a left and a right I/I/-action on D¢ ¢(w) by multiplication. We obtain the (right)
I/I7-action on D¢ (w) by (i,w) — i~ two(i).

Lemma 2.4. Assume I' is normal in I. Let be G(L),we W and w € Dg, ;(0).

(i) XZ(b) is locally of finite type over k.
(ii) For every g € G(L), the map (h,xI7) — (g7 hg, g~ xIf) defines an isomorphism of pairs

(Jo(F), X, (0)) = (Jy-1po) (F), Xk, (97100 (9))).

(iii) For i€ I, the map xIf — zil! defines an isomorphism X{:(b) — Xl.f,lwg(i)(b).

Proof. (ii) and (iii) are trivial computations. (i): The affine Deligne-Lusztig varieties X,,(b) are
locally of finite type, .Zf — % is a I/I-bundle and I/I/ is of finite dimension over k. O

By Lemma (iii), the o-stabilizer
It ={iel:i fwo(i) = w}
of we D¢ f(w) in I acts on x4 (b) by right multiplication, and this action factors through an action
of It,,/I'. Let Z denote the center of G. Note that Z(F) € J,(F), and that J,(F)-action restricted

to Z(F') can also be seen as a right action, thus extending the right I;,,-action on X{;(b) to a right
Z(F) I -action. If m > 0, we also write I, instead of Iy, ..

3. COMPUTATIONS FOR GLo

From now on and until the end of the paper we set G = GLa and restrict ourselves to the case of
positive characteristic, i.e., F' = k((t)) is the field of Laurent series with uniformizer t, L = k((t))
and o: L — L is given by o(3; a;t’) = Y, at’. In this section, we compute the associated varieties
X7M(1) and their ¢-adic cohomology.

3.1. Some notations and preliminaries. We fix the diagonal torus 7" and the upper triangular
Borel subgroup B of G. We set K = G(Op) and fix the Iwahori subgroup I and its subgroups I
for m = 0:

1+pm+1 pm ) ( O* OL )
m = L L cI= L c G(Op).
(faE ohor ) = 6lon

Note that the groups I™ coincide with those defined in Section with respect to the valuation
on the root datum, which corresponds to the vertex of the Bruhat-Tits building of G associated

with the maximal compact subgroup G(Or). The maximal torus T is split over F' and hence the
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filtration on it does not depend on the choice of an admissible schematic filtration. It is given by
1+p" 0 -
T(L), = ( —i(—)p Lty ) Let W, € W be the affine and the extended affine Weyl group of G.
The variety X,,(1) is empty, unless w = 1 or w € W, with odd length (cf. e.g. [10] Lemma 2.4).
The case w = 1 is not very interesting: X;(1) is a disjoint union of points and the cohomology of
coverings of X;(1) contains the principal series representations of G(F), as for classical Deligne-
Lusztig varieties and as in [10] in case of level 0. Thus we restrict attention to elements of odd
length in W,. To simplify some computations, we fix once for all time an even integer n > 0 and
the elements

W = ( —2% t;" ) b= ( ts - > e Np(L) € G(L) (3.1)

and denote by w (resp. v) the image of w (resp. ¥) in W, (the elements with n < 0 can be obtained
by conjugation; the elements with n odd lead to similar results). We denote the image of w in
D¢ again by w (from the context it is always clear, in which set w lies). Let pry,: F™ — F
be the natural projection. Let C, € .# denote the (open) Schubert cell attached to v. We have
the following parametrizations of C™™ = pr;-1(C,) and D¢ m(w). For m = 0, let R, denote the
Weil restriction functor Resypyym+1y, from k[t] /t™Lschemes to k-schemes. C, is parametrized

a

by Ry-1Gy, — Cy, a — ( 1 1

) v, where a = Z?:_()l a;t'. Then for m = 0, C™ is parametrized by

Y™: Ry 1Go x RpG2, x R, G2 5 O™ = [wI/I™

wenan o (V€)Y ) e

We write a = Z?:_()l ait’, A=Y, Ait" and C = ¢p(1 + 2% ¢it’). Moreover, for m < n, De pm(w)
is parametrized by

¢ s RnGry (k) X R 1 G (k) —  Dam(w) = I™M\Iwl/I™
(C,D),(E,B) — I™ ( tlE 1 )w( ¢ . ) ( 739 1 )m. (3.3)

The proof that )" resp. ¢} is an isomorphism of varieties resp. sets amounts to a simple compu-
tation. We omit the details.

Finally, we remark the existence of the following determinant maps. Let z € W,. There is a
natural k-morphism of k-varieties:

det™: C™ = IzI/T™ — RyyGyy,  yI™ > det(y) mod ™+,
In the same way we have the k-morphism

det™: Dgm(w) = RpGpy,  IMyI™ v det(y) mod t™.

3.2. The structure of X'(1).



Lemma 3.1. Let m = 0. There is a natural isomorphism

I/ T™ —> {( g é ) e G(k[t]/t™): ¢*(C) = C,D = a(o)}.

Proof. An easy computation using (3.3) shows the lemma. O

For r > m, let 7,1 k[t]/t" — k[t]/t™*! denote the reduction modulo ™+, Using coordinates
from (3.2), let S = 7,(0(a) — a) and let Y, < C" be the locally closed subset defined by

ag ¢ k

B = 0 (3.4)
o(C)D71S7t = 1
o(D)C7S = 1

Let D, € C, be the open subset defined by the condition ag ¢ k. The composition Y, — C}" — C,
factors through Y,* — D,. The natural K-action on C]" by left multiplication restricts to an action
on Y," (this will follow implicitly from the proof of Theorem . Moreover, Lemma implies
that the natural right I/I™-action on C}" restricts to a right action of I,,, ,;/I"™ on Y, ™.

Theorem 3.2. Let 0 <m <n. Let w' = ¢;}(C, D, E, B) € Dgm(w). Then X}(1) is non-empty if
and only if one has B = —o(E). If this holds true, then w' is I-o-conjugate to w = ¢"(1,1,0,0) in
D¢ m(w) (that is w' = i "o (i) € Dgm for somei € I). In particular, X™ (1) = X7 (1), compatible
with appropriate group actions. Further, there is an isomorphism equivariant for the left G(F)- and
right (1/1™)y-actions:

xpa = [[ v
G(F)/K

Proof. In [10] it was shown that Xo,(1) = [ [ ec(p)/x 9Dv is the decomposition of Xy,(1) in connected
components. As the natural projection F™ — ¥ restricts to a map
pr,: X (1) = Xy(1), we have

XpWy= [] pa'@Dy) = [[ gpr(Dy).
G(F)/K G(F)/K
Thus it is enough to determine pr,,'(D,). One sees from Lemma that if w' = ¢(C, D, E, B)
does not satisfy B = —o(FE), then pr;;}(D,) = . On the other hand, if w’ satisfies this, then

1 ,
o-conjugating w’ first by < ) € I and then by a diagonal ¢ = ( “ ; ) € I such that
2

B 1
iy 'Co(D)o?(i1) = 1 (such iy exists by Lang’s theorem) and is = Co(i1), we deduce that w' is
I-o-conjugate to w in Dg . Thus by Lemma (iii) we may assume w’ = . In this case Lemma
3.3| shows pr,,}(D,) = Y™, which finishes the proof. O

Lemma 3.3 (Key computation). Let 0 < m < n. Let 2I™ = ¢"(a,C,D, A, B) € C]" such that
ag ¢ k. Write S = 1,(0(a) —a). Then

inv™(&£I™, o (&) I™) = ¢™(o(C)D™LS™ o(D)CTLS, —B, 0(B)).
9



Proof. Let

(U)o

We have to compute the (I"™, I"™)-double coset of @ 'o(i). By assumption S is a unit and one
computes (using m < n)

n n _1 n n
t2 t"z2a tz t72a \ (1 t7"(o(a)—a) m{ S Cm
() (7 ) =( 1 A

in G(L). Thus by normality of I"™ in I, we obtain:

rem( 0 (I ) (5 e )e
(o)) Gty 1)

Then we can pull the term containing —A to the right side of w, without changing the other terms.
The corresponding term, which then appear on the right side of w will lie in I™, i.e., we can cancel
it by normality of I"™ in I. The same can be done then with the term containing o(A), by pulling
it to the left side of w and canceling it. Computing the remaining matrices together, we obtain:

L1 . m 1 . U(C)Dilsil 1 m
G ( B 1 )" c-o0)s )\ tom) 1)1
This finishes the proof. g

3.3. The structure of Y". We keep notations from Sections and Let ko/k denote the
subextension of k/k of degree two. There is a natural surjection

Tpvis = T = {( ¢ ) ) .Ce (/@[t]/tmﬂ)*}.

Let Tipmo = Twm N SLa(k2[t]/t™F1) be the subgroup defined by the condition C~! = ¢(C). Let
f: k — k denote the map f(x) = 29 — x. For X € k[t]/t" we write X = Z;:ol X;t'. We denote the
affine space (over k) spanned by coordinates Xo,..., X, 1 by A"(Xo,..., X, 1) resp. by A"(X).
Recall that S = 7,,(0(a) — a) is a function on D, with values in (k[t]/t"+1)* = (RnGy) (k).

Proposition 3.4. Let 0 < m < n.

(i) The variety Y," is isomorphic to the finite covering of D, x A™(A) which is the closed subset
of Dy x A™(A) x RinGyy, cut out by the equation

*(C)C =0 (8)S7 (3.5)

in (RinGm) (k). It is a finite étale Galois covering with Galois group Ty m.

(ii) The (set-theoretic) image of det™: Y, — R,,G,, is the disjoint union of the k-rational
points, which is as a set equal to (k[t]/t™T1)*. Moreover, mo(Y,™) = (k[t]/t™+1)*. If
m > 0, the map 7o (Y;™) — mo(Y," 1) induced by the projection corresponds to the reduction
modulo t"" map.

(iii) Let Y7y be the connected component of Y™ corresponding to 1 € (k[t]/t™T1)*. Then Y, is
(isomorphic to) a finite covering of D, x A™ given by

10



Co(C)=S5. (3.6)
It is a connected finite étale Galois covering with Galois group Ty mo. Moreover, Y —
Yv%*l x AY (A1) is given by

m—1
cl +em = ) _ Z clem_i. (3.7)

Proof. Note that for a point ¥ (a,C, D, A,0) € Y S = 7,,(a),C, D are units in k[t]/t™*. From
the last two equations in , we see that on Y, D = ¢(C)S ! is uniquely determined by C and
S and that Y,” is indeed given by the equation . Let us from now on proceed by induction
on m. We see that Y0 — D, is defined by 08271 = f(ag)?™!, ie., it is finite etale with Galois
group isomorphic to k}. Clearly, Y;™ lies over Y"1 x Al(4,,_1). Bring equation to the form
0?(C)S = Co(S). Expanding this expression with respect to C = co(1+ >0, i), S =, f(a;)t,
shows that Y™ — Y™~ x Al(A,, 1) is defined by an equation of the form

c?j —cm = p(ag, ., my €Oy -« oy Cm—1)
with p some regular function on ;"1 x A'(A,,_1). This is clearly a finite étale covering. Moreover,
it is Galois and the Galois group is isomorphic to ke, where A € ko acts by ¢, — ¢+ A. By induction,
Y™ — D, x A™(A) is also finite étale and has degree (¢> — 1)¢*™. Equation shows that the
automorphism group of this covering contains T3, ,,. Comparing the degrees we see that ¥, —
D, x A™ is Galois with Galois group Ty . This shows part (i). Let 1™ = v¢}"(a,C, D, A,0) € Y,".
As V" < X'(1), we obtain

1 = det™(¢™(1,1,0,0)) = det™(I™d 'o(2)I™) = (CD) 'o(CD).

It follows that det™(2I™) = CD € (k[t]/t™*!)*. This shows the claim about the image of det™.
In particular, we obtain a map mo(Y,™) — (k[t]/t™+1)*. Its surjectivity follows using the action of
Towm on Y™ and the fact that det: Ty m — (k[t]/t™1)* is surjective. Let Y7 be the preimage of
1 under det™: Y™ — Ry Gy, Then Y7 is connected: this is a byproduct of Lemma (i) below.
The compatibility of det” with changing the level is immediate. Thus it remains to prove part (iii)
of the proposition. Equation CD = 1, holding on Y/, inserted into shows the first claim
of (iii). The second statement of (iii) is clear from parts (i),(ii). Inserting C = co(1 + Yi%, cit?),

S =3, f(a;)t" into (3.6) shows (3.7). :

3.4. Cohomology of Y. We keep the notations from Sections [3.1}3.3] Fix a prime ¢ # char(k).
We are interested in the f-adic cohomology with compact support of the base change of Y™ to k.
To simplify notation, for a scheme X over k, we write H.(X) for the space H.(X x Speck, Q).
This space comes with a natural action of the Frobenius o. Set hi(X) = dimg, H!(X). Further,
H.(X)(r) denotes the r-th Tate twist. Set:

N_ = {a07coel;::a0€k2\k‘,cg+lzf(ao)}gl;:xl;:,

and let U, C_ be affine curves over [, defined by
11



Cp:al+x=yrm
where for C_ we additionally require x ¢ k. We write Vi = H(C4). One has dimg;, V. = q(qg—1).

Theorem 3.5. Let 0 < m < n. Then HL(Y,") = @pyem+rys HU(YR). Let do = do(n,m) =
2(n—1) +2m +1. Then HL(Y, %) = 0 4f i > do+ 1 ori < dy —m and

HEP(YR) = Qu(—(n+m))

Ch

HP(y") =~ V_(—(n+m—1))

Ch

. —q2G -1 (g—
HOI(Y) = PQ; oD forany1<j<m.
N_
For 1 < j < m the action of Frobgp on H?O‘j(Yv’jg) is given as follows: it acts by permuting the
blocks corresponding to elements of N_ (by (ag,co) — (ag, —co)) and acts as multiplication with the
scalar (—1)%0=1q%=7 in each of these blocks.

Remark 3.6. We have chosen dg such that H® 7(Y/™) corresponds to a G(F)-representation of
level j (cf. Definition [£.2).

Proof. The first statement of the theorem follows from Proposition We need some further
notation:

ko=k_(z) = {x€ky:a94+2=0}Cko
N, =Ny(z,y) = {zyek:zeky,y™ =2t +a}ckxk.

Let Yv%" be the finite étale covering of the open subset {ag ¢ k} of the m + 1-dimensional affine
space A" 1 (ag, ..., ay), which is defined by the same equations defining Y (cf. (7). There is
a projection Y’ — Y;’B’/ and the I, ,,/I™-action on Y, induces a Ty, ,-action on Yﬁ]". We have
Y = VI X A" amats -, anet, Ao, - ., A1) and hence HA(Y7y) = HE 20D (v, (—(n—1)).
For m = 0, let 2™ < YU%’/ be the closed subscheme defined by the equation a82 —ag = 0. Note
that K- and T, ,,-actions on YJ%" restrict to actions on Z™ and that equation defines Z™ <
Zm=1 x Al(c,) as a covering of Z™ 1. The equation a82 —ag = 0 divides Z™ into a disjoint union
of ¢*> — q components, which are given by the same equations as K}%" and on which ag is a fixed
constant in kg \ k. Thus on Z,, (for each m > 1) we may change our equations replacing a,, by
an, = f(ao)féam—cm. For ag € ky \ k, one computes f(ag)? = —f(ap) and equation simplifies
over the locus ag € ka \ k to

m—1
ayd +al, = Z clemi. (3.8)
i=1
|75+

Now we make a coordinate change: for all m > 1 replace a},, by ay,, = al,, — >,_3% ~ clcp—;. This

coordinate change turns equation (3.8) defining Z™ over Z™ ! into

1752

2
al +apm = Z (c; —cl el  + 5mcfn+/§, (3.9)
i=1
12



where d,, = 0if mis odd and §,, = 1if mis even. All together, Z™ is isomorphic to the locally closed
2

subset of A2 2(ag, a1 ..., m, o, C1, - - -, C) defined by al —ag =0, ad —ag # 0, ch =ad —agp

and the m equations (3.9) for m’ = 1,2,...,m. The first three of these equations and the equation

(3.9) for m’ = 1 obviously divide Z™ into N_ x k_(a1) components, which are all isomorphic, as

one sees using K- and T}, ;,-actions on Z™. Thus Z™ = ]_[N_Xk_(al) Zy, where Z" is the closed

subvariety of A?™ 2(asg,...,m,c1,-..,cn) defined by equations (3.9) for m’ = 2,...,m.
Lemma 3.7. Let m > 1. Then Z[" is connected, i.e., mo(Z™) = N_ x k_(o).

Proof. We proceed by induction: for m = 0, Z8 is a point, thus connected. Let m > 1 and assume
that ZJ" ' is connected. By Lemma (ii) below (this lemma is formulated for Z,, instead of
Z"m =~ 721 x Al(ep,) — see below in the proof of the theorem), the fibers of Z” — Z™ ! (and
hence also of ZJ' — Z{" ') over the open subset defined by c(fz —c1 # 0 are connected. Hence Zj*
is connected. 0

We see that Z* is a connected étale covering of A™(cy,. .., cp). Hence HL(Z™) = 0 for i > 2m
and H2™(Z™) = DN xk_(a1) Qe(—m). Consider now the decomposition in an open and a closed
subset:

Y NZ" > Y e 2 (3.10)

v

Lemma shows that HAL(Y,W' \ Z™) = Hi‘Qm(YU% ~ Z%(—m) and YU% . Z% can be identified

v,
with the open subset C_ ~. N_ of the curve C_ defined in the variables ag, cg.
Lemma 3.8. In the long exact sequence for HE(-) attached to (3.10) (cf. [14] IIT §1 Remark 1.30),

the map B
S HET(Z™) — HZHLY < 2) = @Tyl—m) @ V- (~m).
N_

is surjective onto the first summand.

Proof. By comparing the Frobenius-weights (which is possible due to Lemma we see that
the image is contained in the first summand. On the other hand, the natural projection K}%" —
YJ:B_I" induces a morphism between the corresponding long exact sequences for H?(+), which induces
a commutative diagram relating d,, with J,, 1. Iterating this for all levels > 1, we obtain a

commutative diagram:
6

On_ s Qu(=m) == HZ"(Z™) —"> H2" (Y, 5"\ Z™)
| oo )
Oy O =——=HAZ") ——H(C_.\N_) =——= Dy QO V-
This diagram shows the lemma. g

The long exact sequence for H¥*(-) and Lemma 3.8 implies:

H.(Z™) if 1 < 2m
Dn_[Dr_(an) Qi(=m)Za™ ifi=2m
HAY,S) =3V (~m) if i = 2m + 1 (3.11)
Qe(—m —1) ifi=2m+2
0 if i > 2m + 2,

13



where »,, = 0 means that we take the subspace of sum zero elements. Let Z"™! be the closed
subspace of A1 (ag, a1, ..., Qm, Co, €1, ..., Cm_1) given by the same equations as Z™: agQ —agp =0,
ad —ap # 0, ch = al — ap and equations form’ =1,...,m. Let H = {c(f2 — ¢1 = 0}; this
is a finite union of hyperplanes in the same affine space. Then Z™ =~ Z™~1 x Al (¢m). Form >3
Lemma [3.9(ii) shows (here and until we ignore Tate twists):

0 fi<2m—4

P i 2m9), 5 ( Q)oeVvy] ifi=2m-3
HC(Z 1 \H) = Hc A 2)(21 \H) = N,x%(al)[ N+(§2,C1) ‘ +]

@ Q if i =2m — 2,
N_ Xk_(al)
because Z' ~ H = [ [n_«p (a1)(C+ ~ Ny). Further, Lemmashows Z"™ 1nH = LTk (o) xNs (o en) Z("f)_Q,
where Z(T) 2 ~ 7m=2 and the index (1) indicates the shift in variables given by a; — «;y2,¢ — ¢iv1
(for i > 1) and hence H.(Z™ ' n H) = D (a1)x Ny (az,c1) H(Z" (1) %) and, in particular, the top co-

homology group of Z™~' A H is in degree 2m — 4 and is equal to

Hsz4(2mfl A H) — @ H2m 4(Zg717,) 2) — @ @ @Z-

k,(al)xN+(a2,cl) k_ (al)xN+(a2,cl)N,><k,(a3)
as follows from Lemma (note the index shift a; — «3). All these, the long exact sequence for
H}(-) attached to

Z"INH - 7" - mel n H,
the analog of Lemma for this sequence and Lemma show that for m > 3 we have:

D (a1)x Ny (az,c1) Hf}_2(ZZ'ff2) ifi<2m—2
AN =0 e B
Hi(Zm) = Hi_2(2m_1) = @Nfka(al)XNMaz,Cl)[G_)kf(as) Q] s ifti=2m-—2 (3.12)
@N_xk;_(al) Vi ifi=2m—-1
@N,xk,(al)@z if ¢ = 2m.

Note that N, = ¢3,#k_ = ¢. Hence for m > 3, we have h2™(Z™) = ({N_)q and hZ™ 7 (Z™) =
($N_)q¥(q — 1) for j € {1,2}. For Z', Z? one computes: H3(Z') = @n_ 1. Q, and HL(Z) = 0 if
1 # 2 and

0 ifi<2o0ri=5
HU(Z%) = HL 2(Z") = { @ (o) Ve ifi=3 (3.13)
DN xr (o Qe ifi=4
Let now m > 3. For j > 0, write j = 2[%] + ', where 7/ = 1if j odd, j' = 2 otherwise.
Iterating [%J times, we get for all 0 < j < m:

gﬁlﬁj) = (tN-)g* (g — 1). (3.14)

where Z(’?) ~ Z™ using the index shift as above [ times. Thus for all m > 1, j > 0:

hgmfj(Zm) _ q4[%Jhi(m*2[%J)*Jl(Z
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(BN-)q ifj=1
R2H=I (7Y = S (IN )20V (g—1) ifl1<j<m (3.15)
0 otherwise.

Combined with , this implies the dimension formula in the theorem. It remains to compute the
Frobenius action. The Tate twists in the two top cohomology groups of Y can be deduced easily by
relating Y, with Y;} o - To prove the claim about Frobz-action in degrees ¢ < do—1, note that Frob,.
acts on N_ by (ag, co) (ap, —cp). Further, let Z7" be the subvariety of A*™(cy,...,cm,a},...,al,)
defined by m equations form’ =1,...,m,ie., Z™ = N_ x Z]", where N_ is seen as a discrete
variety. Lemma shows that Z{" is a maximal variety over F > (for a definition cf. the paragraph
preceding Lemm , i.e., Frob,2 acts on H.(Z]") by (=1)i(¢?)? = (—q)" for any i € Z. Further
we have for all 2 < 7 < m:

HP I (Yyh) = B 9 (Y (=(n = 1) = B2 (Z7) (—(n = 1))
(note that for j = 1, this remains true if one replaces the second equality by an inclusion, cf. (3.11})).
This implies the last statement of the theorem. O

Lemma 3.9. With notations as in the proof of Theorem [3.5, we have:

(i) Let m = 1. The fibers of the natural projection 7: Y, 0’ NZM > YJ% L' 2™ are isomor-
phic to A'. We have:

HL(Y) 5~ 2™) = H (v S Z2m ) (-1).

v

(ii) Let m = 3. The fibers of the natural projection 7"V H — Z™ 2 H are isomorphic to
Al. We have:
HA(Z™ N H)=H,2(Z™ 2\ H)(-1).

Proof. Let us prove part (i). The scheme Y'; "\ Z™ is the closed subspace of (Y, 0o L Zzm=1y x

A2%(ay,, ¢y) defined by the equation (3.7). Lettlng x be a point of Yv% 17 Zm=1 we see that the
fiber of m over x is given by the equation

C%m +tCm = f(CLO(x))il(aﬂqn - am) + )‘(1')7

with ag(z) ¢ ke the ag-coordinate of z and A(x) € k depending on z. Using the substitution
1

!/

am

= f(ao(x)) 9am — cm, this equation can be rewritten as

1 1

apl = flao)sap, = (1+ flan(x)s e — Ma).
As ag(z) ¢ ko we have f(ao(l‘))%il # 0,—1 and hence the fiber of 7 over x is isomorphic (over k)
to the Artin-Schreier covering of Al(c,,), hence is itself isomorphic to the affine line. This shows
the first statement of the lemma.

For the second statement, note that as the fibers of 7 are = A, we have R2m,Qp = Qu(—1) and

Rl7,.Qp = 0 for j # 2. This together with the spectral sequence

Hz (Ym 1, Zm_l, Rzﬂ'*@ﬁ) HH—] (Yv : ~ Zm)

implies the second statement of part (i). Part (ii) of the lemma has a similar proof, using (3.9)

instead of (3.7)). O
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Lemma 3.10. With notations as in the proof of Theorem for m = 3, we have Z™" ' A H =~

L[ L[ me2.

k_(a1) Nt (ag,c1)

Proof. On the union of hyperplanes H, the term (¢; — c‘{’Q)c?qn_1 in the equation defining Z™ 1
over Z™~2 cancels, leaving the free variable ¢,, and the equation arising from it (after renaming the
variables by «; — a;_o for i = 3, ¢; ¥ ¢;—1 for i > 2) is simply the equation defining Z™2 over
Z™=3. The lemma follows from this observation. ([l

We recall the definition of maximal varieties from the introduction of [6], where it appears in a
similar setup. Let X be a scheme of finite type over a finite field Fg with @ elements. Let Frobg
denote the Frobenius over Fg. By [8] Theorem 3.3.1, for each 7 and each eigenvalue « of Frobg
in H'(X), there exists an integer i’ < i, such that all complex conjugates of a have absolute value
Q?/2. Hence by Grothendieck-Lefschetz formula we get an upper bound on the number of points
on X:

§X(Fq) = > .(—1)'tr(Frobg; HA(X)) < Y Q7*hi(X), (3.16)
1€Z €7
where equality holds if and only if Frobg acts on H.(X) by the scalar (—1)'Q%? for each i € Z. If
this is the case, then X /Fg is called mazimal.

Lemma 3.11. Let Z* be as in the proof of Theorem[3.5 For m = 1, Z{" is a mazimal variety
over F 2.
q

Proof. Frob,» acts on H.(Z]") as an endomorphism with eigenvalues being Weil numbers with
absolute value (¢2)"/2 < (¢?)"? = ¢*. From (3.16)) we obtain the upper bound u(Z™, q?) for the
number of F-points on Z7":

ﬁZ{”(Iqu) u(Zi" ,q Zq hl (Z1")

Using equation (3.15)), we see that u(Z}", ¢*) = ¢*™. On the other hand, let p;(c) = Z; Lejel _j
and let ¢; € F2 for j = 1,...,m be given. Then we have p;(c)? = p;i(c), i.e., pi((c j);zll) e I, for all
1 <4 < m. But the equation 27 + x = A € [ has precisely ¢ solutions in F 2. Thus for each given
point (c1,...,cm) € A™(F2), there are exactly ¢ points in Z{" lying over it (cf. equation (3.8]).

Thus §27"(F2) = ¢>™, which finishes the proof. O

3.5. Character subspaces. We keep notations from Sections and deduce some corollaries
from Theorem [B.5

Lemma 3.12. Let m > 0. The I, /1™ -action on HL.(Y,™) factors through a Ty, m-action.

Proof. This is immediate as the action of ker(I, ;/I™ — Ty m) on

ym = Y % A" Yamat, .1, Ag, ..., Apm_1) (where ;™' is defined analogously to Yv%’/ in
the proof of theorem [3.5) comes from an action on A"~!  which contributes to the cohomology of
Y™ only via a dimension shift. O

For an abelian (locally compact) group A, let AV denote the group of (smooth) Qj-valued char-

acters of A. By Lemma [3.12] we have a decomposition
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HA(Y,") = @ HLYM[ (3.17)
eTV

into isotypical components with respect to the action of Ty, .

Corollary 3.13. Letm > 1 and 1 < j < m. Let x: Tyym — @E be a character. Then Frobg: acts
on HO (Y™ [x] by multiplication wzth the scalar x(—1)(—1)%0—igdo—J,

Proof. We have H.(Y,") = D (e 1) o «(Y)5) and Frobg: acts trivially on the index set of the
direct sum, so it is enough to study its action on Hf:(YJ%) With notations as in the proof of Theorem
[3.5] we have for 1 < j < m:

)

HOI (v7) = B2 (V) (—(n1)) = B2 (2™ (~(n-1)) = (@ Q)@ (Z7) (~(n-1)).
N

as Z™ = N_ x Z7", where N_ is seen as a disjoint union of points (for j = 1 this remains true if
we replace the second equality by an inclusion, cf. (3.11)). Now, Frob, acts on N_ by (aog, co)
(ag, —co) and in H2™ 177 (Z1") by the scalar (—1)27+1=7¢?+1=7 Note that —1 € T}, acts on N_

2m+1—j (Zm)

in the same way as Frob,2 and trivially in He Thus the eigenspaces for —1 and Frob,

coincide. There are only two such eigenspaces Uy and U-1, and Frobg acts on U4y by the scalar
(£1)(—1)2m+1-ig?m+1=3 Now let X be the restriction of x to pg S Typm. Then

HL(Y,")[x] € HL(Y,MIX] = Ux(—1y,s
which proves the corollary. 0
Let T7, g m denote the subgroup of Ty, ,,, of elements which are congruent 1 modulo tt. Let T, J gen

denote the set of all characters of Ty, ,, which are non-trivial on T3, m o N Ty, We also need the
following purity result.

Corollary 3.14. Let m > 1. Let dg = do(n,m). The finite étale morphism Y — Y1 x
AY(A,,_1) induces an isomorphism

HL(Y)) = HL(Y, 5t < Al(An—1)) = HE2(Y5 (1)
foralli #do—m. If x€ Ty, then

HL (Y™ [X] =0 foralli+#dy—m
Conversely, if X € Ty, ~Tus ", then HO—™(Y™)[x] = 0.

Proof. The first statement follows directly from Theorem by comparing dimensions. Let N =
ker((k[t]/t™F1)* — (k[t]/t™)*). The finite étale covering Y™ — Y* 1 x Al(A,,_1) factors as Y —
[Ty Y x Al(Ap—1) — Y7 x AL(A,,—1), where the first morphism has Galois group Ty.m,0 N
Tim- The first statement of the corollary implies that the first morphism in this factorization
induces an isomorphism in the cohomology for all i # dy — m. The second statement of the
corollary follows from it. If y is trivial on Ty m,0 N T3, then

He (Y] € BT (L[ v~ < Al(Ano) = @BET2 () = @ HEC Dy
N N
17



and the last group is 0 by Theorem [3.5] Hence the third statement of the corollary. O

3.6. Superbasic case. Before going on, we make a digression and study the varieties X3 (b) in
: 1 . =" : .
the superbasic case b = ( ; ) Let z = < g+l ) with even n > 0 and let z resp. « be

the image of & in W resp. in Dgm(x). Let 9, v be as in ([3.1). The group Jy(F) is the group of
units D* of the quaternion algebra D over F'. If Op are the integers of D, then Up = O, is a
maximal compact subgroup of D* and D*/Up = Z. Then [10] Theorem 3.3(i) shows

X)) =[] Cu
D*/Up
The same arguments as used in the proof of Theorem [3.2] show that for m < 2k one has:

xpe) = 1] vro),
D*/Up
where Y, (b) < C}" is the closed subscheme given by equations

D 'o(C)(1 - tac(a))™t = 1
Clo(D)(1 —tac(a)) = 1
B = 0.
Again after eliminating D, it is defined in the coordinates a,C, A by

Co(1 —tac(a)) = (1 — tac(a))o?(C). (3.18)
An explicit comparison with results of Boyarchenko [1], who carried out the closely related con-
struction of Lusztig for a division algebra over F' of invariant % (for levels m = 1,2, with a suggestion
of how one can continue for higher levels) and Chan [7] (who then extended Boyarchenko’s results
to all levels for the quaternion algebra) shows that the varieties X}, defined in the quoted papers
are very similar to varieties X7*(b) defined by , but do not coincide completely, at least due
to the presence of the additional coordinate A in our approach. Also note that level h > 2 in the
quoted papers correspond to level m = h — 1 = 1 in the present article.

4. REPRESENTATION THEORY OF GLy(F)

We continue to assume G = G Lo throughout this section and keep the notations from Section
and the beginning of Section Let us collect some further important notation here. We try
to keep it consistent with the notation in [2]. The only major difference is that we write K (and not
U = Upy) for the maximal compact subgroup G(Or) of G(F). For A € X.(T) we write t* € T(L)
for the image of the uniformizer ¢ under \. For an element x € k[t]/t™"! we mean by its t-adic
valuation v;(x) the largest integer y > 0, such that x € t# - k[t]/t™F!. Moreover:

e Z is the center of G(F')
E = ko((t)) < L is the unramified degree two extension of F

o Uy (resp. Uy} for m > 1) denote the units (resp. the m-units) of a local field M
M = Moo (Op); it is an Op-algebra
K = G(Op) = MM*; it is a maximal compact subgroup of G(F')
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e K' =1+t for i > 0, and (K%, defines a descending filtration of K by open normal
subgroups

Ky = K/K™! ~ G(Og/t™H)

Ki = KY/K™ =14+ ¢901/1 + t™ 190 define a filtration on K,

Twm, Twmo are as in the beginning of Section and Tqﬁ}’m,Tiﬁy’ngf" as in the paragraph
preceding Corollary

For a locally compact abelian group A, a Q,-vector space W with a right A-action and a @Z—Valued
character x of A, we let W[x] be the maximal quotient of W, on which A acts by x (if A is compact,
W finite dimensional, W|[x] is canonically isomorphic to the maximal y-isotypical subspace of W).
A left G(F')-action on W, which commutes with the A-action, induces a left G(F')-action on W[x].

4.1. Definitions and results. Let tp: E — My(L) be the embedding of F-algebras given by
e > diag(e,o(e)). We have tp(Ug)/tp(Up™!) = Tyym. Inflating the T, p-action to tx(Ug) and
pulling back via ¢g, we obtain an Ug-action on X'(1). The center Z of G(F) is F'*, thus (as in
the last lines of Section, the action of Ug on X'(1) extends to an action of E* = F*Ug, which
commutes with the left G(F)-action.

Let x be a non-trivial character of E*. The level £(x) of x is the least integer m > 0, such
that X|UgL+1 is trivial. Moreover, the pair (E/F,x) is said to be admissible ([2] 18.2) if x does not
factor through the norm Ng/p: E* — F*. Two pairs (E/F, x), (E/F,x') are F-isomorphic, if there
is some v € Gg/p such that x’ = x ov. Let Py"(F') denote the set of all isomorphism classes of
admissible pairs over ' attached to E/F. An admissible pair (E/F,X) is called minimal if x|
does not factor through Ng,p, where m is the level of x.

Definition 4.1. Let x be a character of E*, such that (E/F, x) is admissible. The essential level
Loss () of x is the smallest integer m’ > 0, such that there is a character ¢ of F* with {(¢px) = m/,
where ¢ = ¢ o Ng/p.

Clearly, less(x) < £(x). Moreover, an admissible pair (E/F,x) is minimal if and only if £(x) =
less(X). Using the geometric constructions from last sections, we associate to any admissible pair
(E/F,x) a G(F)-representation. Recall the element w € Np(L) introduced in (3.1)), which depends
on an even integer n > 0. Recall from the beginning of Section that we write H%(X) instead of
HY(X xy, Speck, Q) for a k-scheme X.

Definition 4.2. Let (E/F, x) be admissible. Let £(x) = m > fess(x) = m’. We take n > 0 even such
that 0 < m < n and let do(n, m) be as in Theorem B.5] Define Ry to be the G(F)-representation

Ry = HOO 7 (X 1) ],

One easily sees that this definition is independent of the choice of n (cf. Theorem and the
definition of Y,”). To state our main result, we need some terminology from [2], which we will freely
use here. In particular, the level {(m) € 3Z of an irreducible G(F)-representation is defined in [2]
12.6. Moreover, in [2] 20.1, 20.3 Lemma it is explained when an irreducible cuspidal representation 7
of G(F) is called unramified. We denote by %™ (F') the set of all isomorphism classes of irreducible
cuspidal unramified representations of G(F). This is a subset of the set @ (F) of the isomorphism
classes of all irreducible cuspidal representations of G(F) (2], §20). The (unramified part of the)
tame parametrization theorem (|2] 20.2 Theorem) states the existence of a certain bijection (also

for even q):
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Py (F) — " (F), (E/F,x) — my (4.1)
where 7, is a certain G(F)-representation constructed in [2] §19. Below, in Section we briefly
recall this construction. Here is our main result.

Theorem 4.3. Let (E/F,x) be an admissible pair. The representation R, is irreducible cuspidal,
unramified, has level {(x) and central character x|px. Moreover, Ry is isomorphic to my, i.e., the
map

R:PyY(F) = a"(F),  (E/F,x) — Ry (4.2)

is a bijection and coincides with the map from the tame parametrization theorem (4.1)).

The theorem will be proven at the end of Section [4.6] after the necessary preparations in Sections
are done. We wish to point out here, that the injectivity of follows from Proposition
and does not use the theory developed in [2], whereas to prove surjectivity of , we use the
full machinery of [2].

In the rest of this section, we only deal with the central character, reduce to the minimal case
and introduce some further notation. For a character ¢ of F'* and a representation 7 of G(F), we
write ¢m for the G(F)-representation given by g — ¢(det(g))m(g) and we let ¢p = ¢ o Ng/ be the
corresponding character of E*. If ¢ is a character of F** and (E/F, x) an admissible pair, then (4.1)
satisfies: the central character of 7, is x|p+ and ¢my = m,4,. We have an analogous statement for
R,.

Lemma 4.4. Let (E/F,x) be admissible. Then the central character of R, is x|px. If ¢ is a
character of F'*, then ¢R, = R4,

Proof. The first statement follows from the definition of R, as the x-isotypic component of some
cohomology space, and the fact that the actions of F* =~ Z € G(F) and F* € E* in this cohomology
space coincide as they already coincide on the level of varieties. The second statement follows by
unraveling the definition of R,, using the natural isomorphism pdo(rm)=m’ (Yh) = pdo(mA)=m’ (Y)

for m = X\ = m/ from Theorem and Xlxer(Np, ) = OBXlker(N g, )- O

We fix some notations for the rest of Section Let (E/F, x) be a minimal pair, let m be the level
of x and write iy = do(n,m) —m. Let Y be the (disjoint) union of all Z-translates of Y, inside
X"(1). Note that Y, is fixed by K, hence Y, is fixed by ZK. Define the ZK-representation =,
by

2y = Ho (V") [x].
Then Theorem shows

Ry =c—Md5F =,
Moreover, let £, be the restriction of Z, to K, i.e., 2, is the unique extension of §, to ZK such
that t(D acts as y(t(M1). Let Vy denote the space in which =, (resp. §,) acts. Note that &, is
inflated from a representation of the finite group K,, = K/K™" as K™"! acts trivially in the

cohomology of Y™

Lemma 4.5. &, = H(Y,")[x|v,]
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Proof. Let W be a Q/-vector space in which K acts on the left, Uz on the right such that these
actions commute. Let

W[t] = 2 witi: w; € w
1EZ
—0K1K0
with obvious K and Ug-actions. Extend them to ZK- resp. FE*-actions by letting ¢t act as
t.(>; wit") = ¥, wi_1t'. Then one checks that (W[t])[x|v,] = WixluzD[t] and that the com-
posed map Wx|vz] = (WxluzD[t] = (WI[t])[x] is a bijection. Apply this to W = H(Y;™) and
W[t] = ¢ — IndZE W = Hio(Y;™). O

4.2. Trace computations I: preliminaries. Let (E/F, x) be a minimal pair of level m > 0. Via
g, X|up induces a character of Ty, .. We denote this character of Ty, ., also by x. The context
excludes any ambiguity.

Lemma 4.6. We have x € T,,;%", i.e., x is non-trivial on Ty mo N T

Proof. As (E/F,x) is minimal, X|ker(NE/F: Up—upy is non-trivial. The level of y is m, i.e., x is trivial
on U, Now we have U /Up+! ~ T}, via tp, the norm map induces the map N: Upjuptt —
(k[t]/t™*1)*, and moreover, detorp = N, where det: Ty, — (k[t]/t™*1)* is the determinant. Now
ker(det: Tpm — (K[t]/t™)*) = Twmo O T
Twm,o N Tyl This shows the lemma. O

and x € Ty " if and only it is non-trivial on

In Section we defined the K,-representation §,. Our goal in Sections will be to
compute the trace of §, on some important subgroups of K,,. We will use the following trace
formula from [I], which is similar to [9] Theorem 3.2 and is adapted to cover the situation with wild
ramification.

Lemma 4.7 ([1] Lemma 2.12). Let X be a separated scheme of finite type over a finite field Fg
with @ elements, on which a finite group A acts on the right. Let g: X — X be an automorphism
of X, which commutes with the action of A. Let ¢p: A — @Z be a character of A. Assume that
HL(X)[¢] = 0 for i # ig and Frobg acts on H(X)[¢)] by a scalar A€ Q,. Then

(-1

Te(e" HO(X)[w]) = g

Z ¢(T) . ﬁSg,Ta

TEA
where Sy, = {z € X(F,): g(Frobg(z)) = x - 7}.

We adapt this to our situation. Recall from (3.4) and Proposition[3.4{i) that ¥, was parametrized
by coordinates a € k[t]/t""1,C e (k[t]/t™T!)* A € Kk[t]/t™" with a9 = @ mod t ¢ k. We use
Lemma with Q = ¢°.

Lemma 4.8. Let (E/F,x) be a minimal pair and let g € K. Assume g acts on Y," such that there
is some rational expression p(g,a) € (k[t]/t™1)* in a, such that g.(a,C, A) = (g.a,p(g,a) - C, g.A)
on coordinates. Let T € Ty, ;. Then

; 1

(g HO (YN = — D) x(DiSk.,
q TeTw,m
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where S},  is the set of solutions in the variable a = a mod t™*! € k[t]/t™*! (with ag € k \ k) of

the equations

o(o(a) —a)(o(a) —a)™" = —p(o*(a),9)"'T (4-3)
g.o%*(a) = a.

Proof. The contribution to the cohomology of the affine space A™(A) is just a shift in degree,
the character x is trivial on ker(I,,;/I™ — Ty m) and a computation shows that g acts on A
by gA = A + r(g,a,C) for some rational expression r depending only on g,a,C. If we write
Y =Y’ x A™(A), where Y’ is given in coordinates a,C by the same equations as Y.", we are
reduced to apply Lemma to Y, on which also the finite group Ty, ,, acts. We claim that for this
scheme #S, = (¢* — 1)q2("_1)ﬂS;,_T. We observe that a point (a,C) € Y'(k) lies in S, ; if and only
if it satisfies the following equations:

o2(Cyot

g.0°(a)
p(0*a),g)-0*(C) = C-r

o(o(a) —a)(o(a) —a)™! mod t™H!

a

The coordinates a,+1,--.,an—1 occur only in the second equation and hence contributes a factor
q? to the number of solutions each. Finally, for a fixed a, the third equation has exactly (g% —1)¢*™
different solutions in C' € (k[t]/t™*1)*, and we can eliminate C by putting the first and the third
equations together. Thus 35, - is equal to (¢*— 1)q2(”_1) times the number of solutions of equations
(4.3) in a € k[t]/t™+! with T replaced by —7. This shows the claim.

Now, Corollaries and show that the conditions of Lemma[d.7] are satisfied and the lemma
follows from an easy computation involving the above claim. O

Definition 4.9. For x € G(Or/t™ 1)\ {1} the level of z is the maximal integer ¢(z) > 0, such
that z =1 mod t“®). The level of 1 is m + 1.

This definition is auxiliary and will be used in the next two sections. Note that the level is
invariant under conjugation in G(Op/t™"1).

4.3. Trace computations II: N,,-action on V,. We keep notations from Sections Let
further N,,, € K,, denote the subgroup

Nmz{( L ?):xek[t]/tm“}.

For 0 <i <m+1, let N} denote the subgroup of N, consisting of elements congruent to 1 modulo
t" and let N,,?“" denote the set of characters of N,,, which are non-trivial on N/

Proposition 4.10. As N,,-representations one has
& =IndMm 1 — Ind% 1= P .
PYEN,Y, 9"

In particular, dim@z Vy =(qg—1)g™.
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Proof. We claim that for g € N, we have

qm+l _ qm ifg =1
Tr(g*, Vy) = { —¢™ if ge N~ {1} (4.4)
0 if g¢ N

The proposition follows from this claim by comparing the traces of the Np,-representations on
the left and the right sides. We need the following lemma. Let S;J be as in Lemma

Lemma 4.11. Let g € Ny, of level £(g) < m + 1. Then S, . = &, unless vi(1 — 1) = £(g) and
7-0(1) = 1 in ka[t]/t™ L. If both are satisfied, then

ﬁg' _ (g — 1)q2m+1 if g =1 (and hence T = 1),
T O e Ny (1),

Proof. As both, the T3, - and the K,,-actions on Y,” have their origin in matrix multiplication,
one sees easily that S, , = J, unless det(7) = det(g). Thus we can assume this, i.e., To(7) = 1.
x

Write g = < 1 1
by g.(a,C) = (a + x,C). By Definition, S , is the set of solutions of

) € N,, with z € k[t]/t™*!. Then v,(x) = £(g). The action of g can be describen

o(o(a) —a)(o(a) —a)™t = —1 (4.5)
o) +z = a

ina € k[t]/t™ ! with ag ¢ k. Let s = 0(a)—a. For a fixed s € (k[t]/t™*!)*, the equation o(a)—a = s
in a has exactly ¢™*! solutions. After adding —o(a) to both sides of the second equation in (4.5,

this second equation gets o(s) + z = —s. Thus we are reduced to solve the equations
o(s)+x = =—s (4.6)
o(s)s 1 = —1

in the variable s € (k[t]/t™*1)*. Putting o(s) = —(z + s) into the second equation, we obtain

1 —7 = —xs ! and one checks that equations (4.6) are equivalent to

o(s)+x = —s (4.7)

1—7 = —gxs !

From the second equation of and since s must be a unit, we see that either S;J = ¢ or
ve(1 —7) = vy(x). Assume the second holds and let g = v (x). f pu=m+1,then g =1, 7 =1 and
the lemma follows. Assume now 0 < g < m + 1. Then x = t*% for some 7 € (k[t]/t™*17#)* and
7 =1+ 7tH for some 7 € (ko[t]/t™ 1 #)*. The condition 7o (7) = 1 is equivalent to

F+0(F) +7o(F)t* =0 mod t™mTI7H, (4.8)

The second equation of (4.7)) is equivalent to s = 77!'Z mod ™1 7# i.e., s is uniquely determined

1% mod tmT1# we have
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o8)+z+s=c(F @) +ax+7 =2t +o(F) L+ 7)) =0 mod t™TITH

where the last equation follows from . Thus s = 7' mod t™T1# is the unique solution of
equation modulo t™T1#_ One easily sees that over any solution of the first equation of
modulo t* lie precisely ¢ solutions of it modulo t**!. This shows that has precisely ¢* solutions
if 4 > 0. It remains to handle the case p = 0, but this is done similarly to the case p > 0. g

1). The claim (4.4) follows

For ¢ = 1, we have S} = J unless 7 = 1 and £S]; = ¢™(q —
(9) < m. Then Lemmas and

immediately from Lemma Let now g € Ny, ~ {1} of level £ = ¢
show

1
Tr(g*,VX) = qm+1 Z X(T)ﬁséﬂ'

L+1
7€Tw,m,0 (T ~ Tiotn)

= ¢ > x(r)==¢"- > x()

l+1 l+1
TETw,myoﬁ(Té’m ~ Tw_f—m) T€Tw,m,0 ﬁTw_f—m

the last equation being true as x is a non-trivial character on Ty, ;.0 N Tf,m. Unless £ = m, the sum
in the last expression vanishes, as x is still a non-trivial character on T ;0 N Tf:;}b. If / =m, we
have T4} = {1}, and (£.4) follows. O

Corollary 4.12. (£,,V,) is drreducible as B(Op/t™"1)-representation and hence also as K-
representation.

Proof. For ¢ € Ny 9", let Vy[¢] denote the t)-isotypic component of Vy. By Proposition
Vi [¢] is one-dimensional. For z € T(Op/t™T1), let 4® be the character of N, defined by 1%(g) =
Y(z~1gz). Then z.Vy [¢] € Vi[¢*]. Let 0 # W <V, be a B(Op/t™!)-invariant subspace. Then
W decomposes as the sum of its Ny,-isotypical components W] (¢ € Np?") and W[y] < Vy [¢].
As Vi [4] is one-dimensional, W] is either 0 or equal to V,[¢]. But as W # 0, there is a 9, such
that W[y] = Vi [¢]. Note that the natural action of T(Op/t™1) on N,¥ restricts to a transitive
action on Np,Y“". This transitivity implies that W[y] = V, [¢] for all ¢ € Ny 9" ie., W =V,. O

4.4. Trace computations III: H,,-action on V). We keep notations from Sections and
Let H,, < K, be a non-split torus, i.e., a subgroup which is conjugate to Ty, inside G(Op/t™T1).
Let Z,, be the center of K,,,. One has Z,, € H,,. We fix an isomorphism cs: Ty m — Hp,, given by
conjugation with s € G(ka[[t]]), and let H} = cs(T},,,). Let x = x o' and X7 = x7 o ¢!, where
X7 =xoo.

Note that if s’ € G(L) is another matrix conjugating Ty m into H,,, then ¢,c;? is either identity
or 0. In particular, up to o-action, x¥ does not depend on the choice of the element s.

For a character ¢ € H,., let i(y)) € {0,...,m + 1} be the smallest integer such that ¢ coincides
with ¥ or x? on the subgroup Hfr(Lw) (in particular, i(¢)) = 0 if and only if ¢» = x or 7).
Theorem 4.13. Let v be a character of H,,. Then (4,&)H,, = 0 unless |z, = X|z,,. Assume
Y|z, = X|z,,- Then

1 ifm—1i(y) odd

0 if m—i(y) even.
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The proof of Theorem [4.13]is given at the end of this section. To prepare it, we have to compute
the traces of elements x € H,, in V,. This is done in Proposition below, for which Lemma [4.17]
is the main technical tool. We have an immediate consequence of Theorem [.13]

Corollary 4.14. Let m > 0. The character X (and hence also x) is up to o-conjugacy uniquely
determined by &, among all characters of Hy, as follows: it is the unique (up to o-conjugacy)
character ¢ € Hy,, such that 1|z, is the central character of & and

m’
(i) if m is odd: v occurs in &, and all characters ¢' # 1, which coincide with 1) on ZymHL do
not occur in &,.
(ii) if m is even: v does not occur in &, and all characters |’ # 1, which coincide with ¥ on
ZmHY, occur in &,.

Moreover, the map (E/F, x) — Ey from Py (F) to the set of isomorphism classes of Z K -representations
15 injective.

Proof. The first statement is immediate from Theorem [.13} We show injectivity of x = Z,. From
the first statement of the corollary, x|, is uniquely determined by the K,,-representation &, , hence
also by its inflation to K, which is equal to =, |x. Moreover, by Lemma X|F#* is equal to the
restriction of Z, to the center Z >~ F* of ZK. This finishes the proof, as £* = F*Ug. ([l

Definition 4.15. We say that z is mazimal if {(x) = {(zx) for all z € Z,,.

ry X2

Lemma 4.16. Let x = ( ) € Hy,, ~{1}. Then x mazimal if and only if vi(xs) = {(x).

T3 T4
Proof. Assume first £ = £(z) > 0. Consider 7, = ¢; (x) € Tyym and write 7, = 1 + 7, gt" + -+ +
Tzmt™. One sees immediately that maximality of an element is invariant under conjugation, hence
x is maximal if and only if 7, is, i.e., if and only if 7, 0 ¢ k. A computation (using the fact that all
entries of s must be units) shows that 23 = t‘u(r, — o(7;)) with some unit u € (k[t]/t™*1)*. The
lemma follows in the case £(z) > 0. The case ¢(x) = 0 is similar. O

We introduce the following version of the characteristic polynomial of an element x € K,,. Let
¢ = £(x) be the level of z. Let & be some lift of 2 to K. Then the characteristic polynomial of &
can be seen as the function

pi: OL = O A pz(A) = det(A-1Id — z).
Note that p;z(Uf) € t*Op,. Let now A € Ut and &1, 39 two lifts of # to K. Then pz, (\) — pz,(\) €
tmHFIO e, pz(\) modulo #™F+1 depends only on z, not on the lift . This gives a well-
defined map pl,: Ut — t2*Op/t™++10). Moreover, one immediately computes that this induces
the following map defined as the composition:

pa: UL /U™ 25 25O ™0 — 0L/t 410y, (4.9)

where the second arrow is multiplication by ¢t 2¢. Explicitly, if £ > 0 and z = 1 + ¢¢ ( zl 52 ),
3 Y4
then

pe(1+ 7Y = (F — 1) (F — ya) — y213.
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We identify Ty, with (ko[t]/t™T1)* < (k[t]/t™F1)* by sending ( 4 o(r) ) to 7. In particular,

for z € Kf, and 7 € T}, we have the element p,(7) € k[¢]/(t™*™'), where £ is the level of z. Let
S:, » be as in Lemma

Lemma 4.17. Let x € Hy, be mazimal of level £ = ((x) < m. Let 7 € Ty . Then S;VT = &, unless
re Tt . and det(r) = det(z). For 7 € TY . with det(r) = det(x) we have:

w,m w,m

m—+£

q if p=(7) =0 and m — £ even
b5 = g if p2(7) =0 and m — £ odd
o 0 if vi(pz(T)) < o0 is odd

)
(g4 Dg™*  if vi(pe(T)) < 00 is even.

Proof. Let x € H,, be maximal of level £ < m and let 7, = ¢;!(z). Let 7 € Tow,m- From the definition
of S;',,,’T one immediately deduces that S;;’T = ¢, unless det(z) = det(r), i.e., 7 € T Tiym,0 = Tz(0).

rr X2

Hence we can assume 70(7) = det(z). Write z = < ) A point of Y" is parametrized by

T3 T4
the coordinates a,C' and A as above. One computes:

zria + xp det(z)C
:1:3a+a:4’ xr3a + 14 '
By Lemma , #S;. - is the number of solutions of equations in the variable a € k[t]/t™*!
(satisfying ag ¢ k). Explicitly, these equations are:

z.(a,C) = (z.a,2.C) = ( (4.10)

r10%(a) + o = a(zzac?(a) + x4)
(0*(a) —a(a))o(r) = —(z30°(a) +z4)(0(a) — a).

Inserting the first equation into the second and applying o' to the result, we see that the equations
are equivalent to

r3a0%(a) — x10%(a) + 240 — x5 = 0 (4.11)

xzao(a) + (1 —x1)o(a) — (T —x4)a —2z0 = 0. (4.12)

Sublemma 4.18. For i > 1, there are precisely q* solutions of equation (&.11)) modulo t'™' lying
over a given solution (satisfying ag ¢ k) of (&.11)) modulo .

Proof. Write a = Z;':o ajt), z) = Z;:o zy;. The coefficient of ¢* on the right side of (£.11]) modulo
ti—i—l is

2 2
(mggao — xlo)ag + (ﬂ?goag + a:40)a2- + R, (4.13)
where R € k depends only on ag, ...,a;_1 and 2 and not on a;. As ag ¢ k and = € G(k), it is clear

that x30ag — z19 # 0 and 1‘30a82 + 240 # 0. Thus (4.13)) is a separable polynomial in a; of degree

¢?, i.e., it has exactly ¢? different roots. ([l

Now we concentrate on the case £ > 0, i.e.,, z = 1 + t¢ ( SRS ) Equation (4.12) modulo tt
Ys Y4

shows (7 — 1)o(a) = (1 — 1)a mod t'. If 7 £ 1 mod t¢, then this forces ag € k, which contradicts
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(a,c,A) € Y. Hence S, . = J, unless 7 € Tf,’m. Assume 7 € Tif;,m. and 7 = 1 + 7t¢, with some
7 € ko[t]/t™ 1. Note that the condition det(z) = det(r) satisfied by z, 7 is equivalent to

Y1+ ya + (y1ya — yoys)t: =7+ o(F) + 7o)t mod L (4.14)

Equations (4.11)) and (4.12)) transform to

t“(ysa0®(a) —y10”(a) +yaa —y2) = o°(a) —a (4.15)
ysao(a) + (F—y1)o(a) — (F—y)a—y2 = 0 mod tm ! (4.16)
Sublemma, shows that the number of solutions of (#.15)), (#.16)) is equal to ¢* times the number

of solutions of (£.15) and (#.16) mod tm™—+1.
Let us write @ = p,(7) with p, as in (4.9). A computation involving (4.14)) implies
F+o(F) =y —ya=tv71Q mod ML (4.17)
Sublemma allows us to make the linear change of variables a = b — ?;—Byl and equations (4.15]),

([#.16) modulo t™—*+1 take the following form (using (#.17)) and the fact that 0%(a) —a = o?(b) —b):

¢t (yngQ(b) —%UQ(b)—(th—lQ—a(%))berng) = o2(b)—b mod "1 (4.18)

ysba(b) —t'7 Qb+ y3'Q = 0 mod t™ L. (4.19)

Write b = Y. bit'. We have three cases: v(Q) = o0, 1,(Q) < o odd, 1(Q) < o even. Assume

first v(Q) = o0, i.e., @ = 0. Then (4.19) is equivalent to by = by = -+ = ble =0. Asb=01is
2

also a solution of (4.18) mod #1141 it follows from Sublemma that the number of solutions

m—~

of @18) and [EI9) mod t™~ 1 is exactly (¢%)™ “~1"5 | and the lemma follows in this case, once
we have shown that no of these solutions lies in the forbidden’ subset, determined by ag € k. This
is done in Sublemma below.

Now assume v4(Q) < . Equation shows that we must have v4(Q) = 2vy(b). In particular,
85, . = & if v(Q) is odd. Assume vy(Q) = 2j < o0 is even and write Q = t*@’. Then b €

k[t]/tm™ =+ solves (@19) if and only if b = #8 (i.e., by = --- = bj_1 = 0) and V' = Z;i;“l bt
solves
ysb'o(b) — 7 1Q' + yg_lQ' =0 mod " HHL (4.20)

Note that such a solution o’ is necessarily a unit. Using this, we can express o(b') in terms of ¥/,
apply o to it, and then insert again the expression of o(b') in (4.20)). This shows:

N a(Q") — i —1, —0—2j
02([)) = % . y3t€+j7'_1Q' + s ltZ+JU(T 1Q ) (mod m ¢ 2]+1)’
which multiplied by #/ gives an expression of ¢2(b) mod t™ ¢ 7*! in terms of '. Now a (very ugly,
but straightforward) computation shows that if we put this expression for o2(b) into equation
modulo t™¢7*1 we obtain the tautological equation 0 = 0. This simply means that any solution
b of mod t™ ¢+ is a solution of mod t™~¢=+1, Similarly as in Sublemma
one checks that modulo #™ =7+ has precisely (¢ +1)¢™ =% solutions (g + 1 corresponds to
the freedom of choosing b; and ¢ t2 corresponds to the freedom of choosing bitts-y bm—p—j)-
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Again by Sublemma the lemma also follows in this case, once we have shown that no of these
solutions lie in the forbidden’ subset, determined by ag € k. This is done in Sublemma [4.19
In the case ¢(z) = 0, the lemma can be proven in the same way. U

Sublemma 4.19. With notations as in the proof of Lemma m assume T € T¢

w,m
det(z). Let a be a solution of equations (4.11), {.12)), then ap ¢ k.

Proof. For any r > 1 and an element X € k[t]/(t"), denote by Xg € k the reduction of X modulo ¢.
Write 7, = c;1(z) € Tw,m- We handle the case ¢ > 0 first. Write 7 = 1+7t 7 = 147, gt£+ . As
a is a solution of (4.11] - - b=a+= y1 is a solution of (4.18] - - We have ag = by — TO y“’
Assume first v:(Q) > 0. Maxnnahty of x (and hence of 7,) implies 7, ¢ k. Now, vt(Q) =
ve(pe(7)) > 0 is equivalent to 7y = 7,0 or = o(7,¢) mod t. Hence 7y ¢ k. On the other hand, the
solution b must satisfy by = 0 and we have y19, y30 € k. As Ty ¢ k we obtain ag ¢ k.
Now assume v:(Q) = 0 and suppose that ag € k, i.e., a} = ap. Then for by we must have:

and det(r) =

~q _ ~
bl =by+ 00 (4.21)
Y30
Putting this into equation (4.19) mod ¢, we deduce that by must satisfy
b2+ 0" T0p 4 % =0, (4.22)
Y30 Y3

where Qo = (7o — Tu0)(Fo — 0(724)). By assumption we have det(7,) = det(z) = det(r) mod t'+1,
hence

o+ 0(T0) = Ta + 0(7a0)- (4.23)
Assume first char(k) > 2. A computation shows that the discriminant of equation (4.22)) is
D = y3*02(a(7'$’g) — 7'33,4)2 and hence the solutions of it are

(7o) = 7o | 0(Tu) = Tt

2ys0 2y30 '

Putting any of this solutions into equation shows 7, ¢ = 0(7,¢), which is a contradiction to
maximality of z. This finishes the proof in the case char(k) > 2.

Assume now char(k) = 2. Let p = T“ +T° . Then u € k. Further, shows g # 0 (otherwise,
Tz € k, which is a contradiction to max1mahty of z). Set also § = yQZQ. Note that by -,
Qo € k and hence also § € k. Make the change of variables by = us, i.e., by satisfies - ) if
and only if s satisfies

bO,i = —

sT+s+1 = 0
2+s+86 = 0.

The second of these equations implies s? = s + Try,(6). This together with the first equation
implies Try/r, (0) = 1. On the other hand, let R = T°+T’“ . Using (£.23), we see that

(7:0 + Tx,g)(f'o + Tg’g) B

R+ R* =
(Tx,f + 7';1!)2

This implies Try/p,(6) = 0, which is a contradiction. This proves the lemma in the case char(k) = 2.
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Let us now consider the case {(z) = 0. By maximality of =, we have z3 € (k[t]/t")*. If char(k) > 2,
the variable change a = b — x5 '(7 — x1) analogous to the one in the case £(z) > 0 leads to a very
similar proof. Assume char(k) = 2. We have to show that equations mod ¢ and af = ag do
not have a common solution. Let

A= 95501 (z10 + 40) = 1':;01(75,0 + T20);
Then A7 = X and X\ # 0 by maximality of z. Make the change of variables given by ag = )\r—i-xgolxlo.
Then al = ag transforms into 7? = r and ([4.12)) gets (after using r? = r and canceling)

230\212 4+ 230 \2r + xgol det(z) = 0,
or equivalently

q+1
2 x 0
4+ s =0.
(T$,O + T;E70)2

We have to show that this equation has no solution in k. But observe that the two solutions of it

q
are given by T ii - and 710 lie in ko \ k (note that they are different by maximality of z).
x, ;p 0 Tz,

This finishes the proof also in thls case. O

Proposition 4.20. Let x € Hy,, be mazimal of level £(x) < m. Then
tr(a; V) = (=1)" O O (j(@) + 17 ().

Proof. Let 7, = cs—l(gc) € Tfu For 7/ € {0,1,...,m — £, 0}, let
T.(j") = {remTlnovo(m)Thme: T =" oro(r) mod 9

= Toker(Th 0= Topyjr10) Y o(me)ker(TY 0= To o 10) S Tiom

be the union of the two ker(T? m 0 - T ¢+ j1—1,0)-Cosets inside Tf,vm in which 7, and o(7;) lie (note
that these cosets are disjoint if 7/ > 0 and equal if j/ = 0). Note that 7 € T,(0) if and only if
det () = det(z) and 7€ T m

Sublemma 4.21. For 7 e T¢

w,m

with det(r) = det(x) we have: 7 € T,.(§') < v(p.(7)) = 5.

Proof of Sublemma [[.21, Write 7 = 1 + % and 7, = ¢; '(z) = 1 + ‘7. The characteristic poly-
nomial is invariant under conjugation, hence vy (py(7)) = v¢(pr, (7). Write 7, = 1 + t'F,. As
(and hence also 7) is maximal, 7, — 0(7;) is a unit. We have p; (7) = (7 — 72)(T — 0(7z)). Thus
vi(pe(T)) = j' & 7 =7, mod t/ or 7 = 0(7,) mod t/". The sublemma follows. O

By Lemma and the first statement of Lemma, we have:

tr(; Vy) = qml RGN (4.24)

TeTfj,m
det(7)=det(x)

m—L
1
= —=( > xS+ D> D x(MESL,).
q T€Ty (00) J'=0 1Ty (j")
T¢Tz(j/+1)
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Write T, ., o = Tw,m,o O T, - Lemma implies for 0 < j' < m — ¢:

Y XS, = (X(@) +X7(x)) - (const) - > x(7)
o Ea
= (X(2) +X7(x)) - (const) - >, x(1) =0
reker(Ty, 010 o)
and similarly > e, (o) X(7)5; » = 0 as x is non-trivial on ker(Tf}’m’O — Ty 1447,0) (one has to apply

T¢I (1)
this twice). Further if m — ¢ is odd, then S,

case Lemma [4.17] implies:

is empty for 7 € T, (m — £) \Ty(o0), hence in this

z,T

tr(x;vx>=qmlﬂ S XS, = () + X7 (7).

T€T, (00)
If m — ¢ is even, then
1 m (og m
@) = N O )Y e
T€T,(0) €D, 0~ {1}
= —¢" (x(1) + X7 (7).
This finishes the proof of Proposition .20 O

Proof of Theorem [{.13 1f |z,, # X|z,, then (¢, & m, = 0 by Lemma [£.4] Note that for = €
H,,,z € Zy, we have tr(zz; Vy) = x(2)tr(z; Vy). Let ¢ be a character of Hy, with ¥|z,, = x|z,.-
Note that

{x € Hy,: maxl(zzx) =L} =
2€0m

Zm, ifl=m+1.
As |z, = x|z, and tr(z;Vy) = (¢ — 1)¢"™x(z) for z € Z,, by Lemma we have

m

{Zme;l N ZpHAL if 0 <m

W, 6O H,, = @ =g Z Y(z)tr(e; Vy) = 5o, ((a — 1)%¢*™ + Z Se), (4.25)
x€H (q 1)q £=0
where
Sy = > P(a)tr(z; V) = (=)™ g’ > Y(z)(x(z) + X7 (2))
x€Zm HY, N Zp Hpt! :EGZmen\Zmen'H

b(Zm Hyp )0, X + X7 7,018, = 8(ZmHy ) X+ X e

for 0 < £ < m, by Proposition For £ > 1 we have #(Z,,H.,) = (¢—1)¢*™ !, and we compute:
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(=1l (g—1) ifi(y) =0
So =9 (=1)™(g—1)¢*" if i(y) = 1
0 otherwise,
and for 0 < £ < m:
(=)™ g — 1) ifi(y) < ¢
Se=(-D)""g-Dg™  ifi(p)=L+1
0 otherwise,

and

_ =DM e —D(g-2) i) <m

B {Q(q — 1)g?m if i(y) = m+ 1.

Here one uses that if i(¢)) < m + 1, then 1 coincides with precisely one of the characters y, 7 on
H,i,(ld}) and does not coincide with the other even on the last filtration step H])' (because x # x? on
T, o). The theorem follows if we put these values into (£.25). O

w,m,0

4.5. Relation to strata. We will freely use the terminology of intertwining from [2] §11 and of
strata and cuspidal inducing data from [2] Chapter 4. From results of Section we deduce that
R, is irreducible, cuspidal and contains an unramified stratum. First we have the following general
result.

Proposition 4.22. Let m = 0 and lel Z be a ZK-representation, which restriction to K is the
inflation of an irreducible K,,-representation &, which does not contain the trivial character on N].
Then the G(F)-representation Ilz = ¢ — Indgg) = s irreducible, cuspidal and admissible. If m > 0,
it contains an unramified simple stratum (9N, m, «) for some a € t~™IM. Moreover, {(Ilz) = m and

II= does not contain an essentially scalar stratum. In particular, for any character ¢ of F*, one

Corollary 4.23. Let (E/F, x) be a minimal pair, such that x has level m > 0. The representation
R, is irreducible, cuspidal and admissible. Assume m > 0. Then the representation R, contains
an unramified simple stratum. In particular, {(R,) = m and R, is unramified. Moreover, for any

character ¢ of F*, one has 0 < {(R,) < l(¢R,).

Proof. All assumptions of Proposition are satisfied for the ZK-representation =, and the
corresponding K,,-representation £, by Corollary and Proposition 4.10} 4

Proof of Proposition[4.29 Irreducibility and cuspidality of IIz follow from [2] Theorem 11.4, which
assumptions are satisfied due to irreducibility of Z and Lemma 4.24] Then admissibility follows
from irreducibility (cf. e.g. [2] 10.2 Corollary). Now assume m > 0. To contain a stratum is a priori
defined with respect to a choice of an additive character. So fix some ¢ € F'¥ of level 1 (i.e., ¥|o,
non-trivial, ¥|to, trivial). Then [2] 12.5 Proposition gives us an isomorphism (here we use m > 0):

tfmgﬁ/tfm—}—lm -~ (Km/Km+1)v — (Kg})\/’ a+ tfm—i-lm s wa|K"",
where 1, is given by ¥, (x) = ¥ (trogp(a(x — 1))), where troy is the trace map 9 — Op. Explicitly,
ifazt_m( @ ) et_mﬂJTandle—i-tm( o1 ) € Kj;, then
as a4 I3 T4
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Ya(z) = Y(a1x1 + agxs + asze + agzy). (4.26)

We show that Ilz contains an unramified simple stratum. Therefore, note that II= contains the
inflation to K of the K,,-representation £. Thus it is enough to show that for any « € t=™9, such
that 1, is contained in £ on K7, the stratum (9, m, «) is unramified simple. As in [2] 13.2, for
a €t we can write o = t7 g with ag € M and let fo(T) € Op|T] be the characteristic
polynomial of a. Let fo(T) be its reduction modulo ¢. By definition, (9%, m,«) is unramified
simple if and only if f,(T) is irreducible in k[T], or equivalently, if and only if ay mod t € G(k) is
not triangularizable.

Let now a = 7™y be arbitrary such that £ contains ¢, on K. It is enough to show that agp
b B2 ) € 7™M such
0 B4
that gog~! = 8 mod ™M, i.e., Ygag—1 and g coincide on K. By Lemma , g also occurs
in £ on K and shows that tg|ym is the trivial character of N;7. This is a contradiction
to our assumption that £ does not contain the trivial character on N]'. This contradiction shows

mod ¢ is not triangularizable. Suppose it is. Then there is some g = ¢t~ (

that Ilz contains an unramified simple stratum. As an unramified simple stratum is fundamental,
[2] 12.9 Theorem shows that ((Ilz) = m.

Suppose now (M, m’, a’) is some essentially scalar stratum contained in IIz. It has to intertwine
with the previously found unramified simple stratum (9, m, ) contained in Iz (cf. [2] 12.9). As
essentially scalar strata are fundamental, [2] 12.9 Lemma 2 implies m' = m. But in this case the
above argumentation shows that (9%, m,a’) is unramified simple and hence not essentially scalar.
Finally, Theorem [2] 13.3 implies the last statement of the proposition. O

Lemma 4.24. Let 2,2 be two ZK -representations, which restrictions to K are inflations of K,,-
representations £,&. Assume that & does not contain the trivial character on N!'. An element
g€ G(F)\ ZK never intertwines = with Z'.

Proof. The property of intertwining only depend on the double coset ZKgZK of g. By Cartan
decomposition, a set of representatives of these cosets is given by the diagonal matrices {m, =
t09): o € Zoo} (cf. eg. [2] 7.2.2). Assume a > 0. Then ZK n " (ZK) = ZK n maZKm_
1 t"Op

contains the subgroup N = < 1

), on which = does not contain the trivial character, and

on the other hand we have
1 g _ 1 g 1 t%g
Meao—! = 1 =
= ==(m Ma) = =
< 1 ) ( « < 1 ) OZ) ( 1 I
i.e., M= restricted to N™ is the trivial representation (as o > 0 and =’ is trivial on K™*1). Hence
HomZKmma (ZK) (E,maEI) c HOIIle (E,maE/) =0. ]
Lemma 4.25. Let a € t™™M, g€ K. If 1, occurs in § on K}, then tgyq,-1 occurs in § on K.

Proof. For z € K] one has:

Ygag1(2) = Y(trm(gag™ (z — 1)) = ¢(trm(ag™" (z — 1)g)) = ¢(trm(alg™ zg — 1)) = Ya(g™ g).
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Let V' denote the space in which ¢ acts. For simplicity we write z.v instead of £(x)(v) for
x € Kp,veV. Let ve V, such that z.v = ¢,(x)v for all z € K. Then for all x € K] we have:

gz (gv) = g agw = (g ag)v = Vgag—1 (T)v.

Thus 2.(g.v) = Yyqe-1(7)(g.v), i.e., on the linear span of g.v any element z € K acts as the scalar
Ygag-1 (7). In particular, ¢gq,-1 occurs in £ on K. O

Proposition 4.26. The map R: P (F) — /3" (F) from Theorem is injective.

Proof. Let (E/F, x1),(E/F, x2) be two non-isomorphic admissible pairs. By Corollary we may
assume that x1,x2 have the same level and by Lemma {4.4] we may assume that xi,x2 coincide
on F*. Twisting by a central character, we may assume that both pairs are minimal. The last
statement of Corollary shows =y, # E,,. It remains to show that this implies R,, % R,,.
Frobenius reciprocity and Mackey formula show that

HomG(F) (RXN RXQ) = @ HomZng(ZK)(EXNgEXQ)
JeZK\G(F)/ZK

= HomZK(EM ) E’X2)7

where the second equality follows from Lemmal4.24] As Z,,,=,, are irreducible (by Corollary 4.12)
and unequal, the Hom-space is zero. ]

4.6. Relation to cuspidal inducing data. Now we want to compare our construction to the
construction in [2] §19 of representations attached to minimal pairs. For the convenience of the
reader and to have appropriate notations, we briefly recall their set up ([2] §15,§19). Let ¢ be some
fixed (additive) character of F' of level one. Let ¢p = ¢ o trg/p, Yo = ¢ o tran. Let (E/F,x) be
a minimal pair. Let m > 0 be the level of x. Let o € p™* be such that x(1 + z) = Yg(ax) for
x € pEE%JH. Choose an F-embedding E < My (F') such that E* € ZK (not to be confused with
vp from the beginning of Section [.1). Then (9, m, ) is an unramified simple stratum. Let then

Jo = EXK1"3 ],

this is an open subgroup of ZK. Moreover, via the embedding of E into Mas(F'), a defines ([2] 12.5)
a character 1, of K!Z!*! which is trivial on K™*1 (thus inducing a character of K,L?JH). Let
C(1a, M) be the set of isomorphism classes of all irreducible representations A of J,, such that A
contains the character 1, on KlZ1*1 or equivalently (by [2] 15.3 Theorem), Al 1m+1 is a multiple
of g

For any A € C()q, M), the triple (M, J,, A) is a (in our case, unramified) cuspidal type in G(F) in
the sense of [2] 15.5 Definition. An equivalent reformulation is given in terms of cuspidal inducing
data (|2] 15.8): the cuspidal inducing datum attached to (9, J,,A) is the pair (9, =), where
E = Ind7® A. The G(F)-representation ¢ — Ind%F)A =c— Indgg) E attached to (M, J,, A),
resp. to (9, Z) is then irreducible and cuspidal.

Out of the given minimal pair (E/F, x) one constructs now the representation A of J,, and thus
gets a corresponding cuspidal type. We have two different cases.

Case m odd. ([2] 19.3) Then |Z| + 1 = |%]|. Let A be the character of J, defined by

Al ety = o, Alpe =X (4.27)
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m m+1
(this is a consistent definition, as one sees from tron|o, = trglo,, E* N K" = }3 2.
Case m > 0 even. ([2] 15.6, 19.4) Let J. = J, n K' = ULK!™), H! = ULKLZ1+1. Then

JL 2 HL. Let 6 be the character of H. defined (as in the odd case) by

O(uz) = x(wW)o(z), ueUp,ze€ KLzl
Let 1 be the unique irreducible (g-dimensional) Jl-representation containing 0. Let uys denote the
group of roots unity of a field M and let 77 be the unique irreducible representation of pug/up x J:
such that 7| 1 = 7 and tr7j((u) = —6(u) for all u € H}, ¢ € pug/ur~ {1}. Then 7 factors through a
representation of up/up x JL/ker(f). Let v be the representation of E* x J1/ker(f) which arises by
inflation from 7j via the surjection induced by E* — E*/F*UL =~ ug/ur. Let X be the character of
E*x JL/ker(), which is x on E* and trivial on J./ker(#). Define the E* x J} / ker(f)-representation
A = X ®u. It factors through the surjection E* x J!/ker(d) — Jo/ker(6), (e,4) — ej mod ker(f),
hence it is an inflation of a representation A of J,/ker(f). Take A to be the inflation of A; to J,.
Let then in both cases (91, ©,) be the corresponding cuspidal inducing datum, i.e.,

0, = Ind5* A. (4.28)
Thus we attached a cuspidal inducing datum to x and now the G(F')-representation 7, from (4.1)
is defined in [2] 19.4.2 as

Ty = C— Indgg) O, =c— Ind%F) A.
Proposition 4.27. Let (E/F,x) be a minimal pair. Then R, = .
Using Proposition we can prove our main result.

Proof of Theorem[{-3. By Lemma[t.4 we can assume that (E/F, x) is minimal in the first statement
of the theorem. If £(x) = 0, then the first statement follows essentially from [L0] Theorem 1.1(i).
If /(x) > 0, then the first statement follows from Corollary and the part about the central
character follows from Lemma [£4

To show R, =~ m, we can assume by Lemma (along with the fact that ¢m, = 74, ) that
(E/F,x) is minimal. Then R, = m, follows from Proposition . Now bijectivity of follows

from bijectivity of (4.1)). O

Proof of Proposition[{.27. Let m be the level of x. If m = 0, the proposition follows essentially
from [I0] Theorem 1.1(i) and 2] 19.1. Assume m > 0. The unramified representation R, is induced
from the cuspidal inducing datum (ZK, =, ). As the map in the tame parametrization theorem
is surjective, there is some character x’ such that (E/F,x’) is minimal and R, = m,,. By Corollary
4.23 £(x’) = m. One deduces =, ~ O,/ (e.g. by the same reasoning as in the proof of Lemma
4.24). We have to show that x = x' or x = (x/)?. A comparison of the central characters shows

X|r+ = X'|p#. Thus it remains to show that x|y, = X'|v, or X|lvg = (X)) |v,. The K-representation
Ey|r is inflated from the K,-representation &,. Note that the image of Ug in K, is a non-split
torus H,,, as considered in Theorem . Thus x|y, X7 |u, are the unique characters among all
Ug-characters of level m, which satisfy condition (i) resp. (ii) of Corollary if m odd resp. even.
Thus it is enough to show that ©,/|k characterizes x’|7, in the same way. This is the content of
Lemma [4.28 O

Lemma 4.28. Let x be a character of E* of level m > 0 such that (E/F,x) is a minimal pair.
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(i) If m is odd, the representation ©, Ind KA (cf. -) contains the character x on E*
(exactly once) and does not contain all the characters x' of E*, which satisfy X'|u, # X|vg
and X'|pxy1 = X|psuy -

(i) If m is even, the representation ©, = IndiK A (cf. (4.28)) does not contain the character x
on E* and it contains all the characters X' of E*, which satisfy X'|v, # x|v, and X/|F*U},; =

X|F*U§'

Proof. Let first m > 0 be arbitrary and let x' be a character of E*, satisfying X/|F*U}J = X|F*U}E-
Mackey formula and Frobenius reciprocity show:

Hom g (X/,@X) = @ Hompgx ~g 7, (XlagA)'
GEEM\ZK /o

Let g € ZK. We claim that Homps ey, (X', 9A) = 0, unless g € J,. Indeed, we have E* n9.J, 2
T+

Ug® and A| 1z1+1 18 a multiple of ¢, hence 9A|, 5.1 is a multiple of 1y-1,4. Moreover,
% |Ul% 41 X| mi1 = q. Thus if Hompgs ~e7, (X’ ,gA) # 0, then g normalizes the character 1, of

U ]lfj . Thus Proposition 4.29 shows our claim.

The claim implies that Hompgs (x’, ©y) = Hompg«(x’, A). In particular, if m is odd, we are done,
because then A is one-dimensional and A|g+ = x. Assume m is even. By construction, A arises by
an inflation process from the E* x J!/ker(f)-representation A = Y®v, where ¥ agrees with y on E*
and is trivial on J./ker(). So, it is enough to prove the following claim: v|g+ does not contain the
trivial character of Ug, but it contains all non-trivial characters of Ug, which are trivial on U, FU};.
The restriction of v to E* is the inflation via E* — E*/F*UL =~ up/ur of the restriction to ug/up
of the pp/up % Jl-representation 7. In particular, V|UFU,{3 is trivial. Now [2] 19.4 Proposition

shows that M|, /., = Reg,, /. —1 and the claim follows. O

HE/UF>

The following proposition is an improvement of a part of the Intertwining theorem [2] 15.1. Also
Lemma below improves [2] Lemma 16.2

Proposition 4.29. Let g € ZK. Then g normalizes the character 1o of Ul zf and only if
g€ Jy.

Proof. We can assume g € K. Let X be the appropriate quotient of =9/t~ L5190 such that the
following diagram commutes

ol o (kLT
i (4.29)

m 1 m v
(UL oy

where the upper horizontal map is a — 1, with 9, as in [2] 12.5, and the right vertical map is
restriction of characters. Let Y € 9N be such that 7Y < ¢t~ is the preimage in t~"90 of the
-1

ag and

X

kernel of the left vertical map. Then g normalizes 1), | [m j+1 if and only if the images of ¢

« in X coincide, i.e., if the following equation holds true in 7™M

g lag=a mod L2l 4+ ¢y
35



Then the result follows from Lemma applied to k = |71, O

Lemma 4.30. Write o = t™"ag. With notations as in the proof of Proposition for any
1<k < |2, we have

g g =ap mod t*FM +Y (4.30)
in MM if and only of g € Up + tFM.

Proof. The ’if’ part is immediate. To prove the other part, we use induction on k (as in [2] 16.2
Lemma). Let k& > 2 and assume (#.30). By induction hypothesis, g € Ug + t*"19%. We can write
g = g1(1 4+ tF"1gg) with g1 € Ug. Thus (as ag € Op) we obtain from (#.30)):

tk_lozogo = tk_lgoao mod t*9 + V.
Thus t**(apgo — goowo) = y + tFm € M for some y € YV, m € M. We deduce y = tF~1y/ with
y' € M and apgo — goap = ¥’ + tm. We claim that v/ € Y + t9N. Indeed, this claim is equivalent to
wt’my’|UgL/Ug“ = 1. But for u € 9t we have:

wt—my’(l + tmu) = ¢(t1"£m(ylu)) = wt—my(l + tm_(k_l)u) =1,
where the last equality holds as long m — (k — 1) > || + 1, or equivalently, & < [mTHJ, which
is satisfied by assumption of the Lemma. This shows our claim. From it we deduce aggy = goovo
mod Y + t9, i.e., by induction hypothesis, g0 € Op + t9N. Thus we are reduced to the case
k = 1. We handle this case explicitly. The result remains unaffected if we replace the embedding
j: E — My(F) by a conjugate one. As all such embeddings are G(F')-conjugate, we can assume

—b )
for some
1 —a

a,b € k such that the characteristic polynomial T2 + aT + b is irreducible in k[T (cf. e.g. [2] 5.3).
Then a = t ™ag with ap mod t = = + yS for some z,y € k and j(Op) = Op[ap]. After adding
and multiplying by some central elements (which does not affect the condition [4.30)), we can assume

that either char(k) > 2 and there is a D € k* \ k*2 such that ap = ( D ! ) or that char(k) = 2

that j(Og) mod t € M/t is generated as a k-algebra by a matrix § = (

and there is a D € k such that T2 + T + D € k[T] is irreducible and ag = < 1 lf
show that if g € K and (4.30)) holds for ¢, ap and k = 1, then g € Op + t9N.

Assume first char(k) > 2. The upper horizontal map in diagram (4.29) induces the isomorphism

). We have to

t_mf)ﬁ/t_m+19ﬁ -~ (Kg)v’
which shows that
Y +MAM = {t™B: Bet™"M and Y(tragn(B(e — 1)) = 1 for all e € 1 + t™Op}/tM

_ By By .
= {( _B,D -B ) : Bl,BQGk‘}

(the last equality is an easy computation). Now let g = < g 92 ) € G(k) (we can work modulo

g3 94
t). Then condition (4.30) translates into
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1 9394 — 919D —g3D + g} o 1 1 By By
2 2 =g g = +
det(g) \ 91D —935 192D — g3ga D —ByD —B;
for some By, By € k. In particular, we must have

dig) WiD — g3) = (1 = B2)D.

Computing Bs from the first equation and inserting it in the second, gives us

{deé(g)(gi —93D) =1+ By

1
det(g)

(97 — 95 — g3D* + giD) = 2D,

which is equivalent to

D(g1 — g4)* = (93 — 92D)*.
If both side are non-zero, on the left side we have a non-square in £* and on the right side we have
a square, which is a contradiction. Thus both sides are zero, i.e. g1 = g4, g3 = 2D, i.e., g€ Ug
mod ¢, finishing the proof in the case char(k) > 2.
Assume now char(k) = 2. Analogously to the previous case we deduce

vammpm—{( B0 Bt BsD g el
Bs B

A similar computation as above implies that for g € G(k) satisfying condition (4.30)) we must have

det(g) *(g192 + 9293 + g3 D) = By
det(g) '(g? + 193 + g3D) = 1+ B3
det(9) "'(g3 + gaga + 93D) = By + BsD + D.

with some Bi, Bs € k. Putting the first and the second equation into the third and bringing some
terms together shows

9+ G3D% = (g7 + g)D + g2(g1 + 01 + g3) + 93D (94 + 91).
Add 29§D = 0 to the right side of this equation and let A = go + g3D and B = g1 + g3 + g4. The
equation is then equivalent to

A%+ B*D + AB = 0.
Suppose B # 0. Dividing by B2, we obtain (A/B)? + (A/B) + D = 0, which is a contradiction to
irreducibility of 72 + T + D € k[T], as A/B € k. Thus B = 0 and we deduce also A = 0, which
finishes the proof also in the case char(k) = 2. 0
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