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Abstract. In the present article we de�ne coverings of a�ne Deligne-Lusztig varieties attached
to a connected reductive group over a non-archimedean local �eld. In the case of GL2 and positive
characteristic, the unrami�ed cuspidal part of the local Langlands correspondence is realized in
the `-adic cohomology of these varieties. We show this by giving a detailed comparison with the
realization of local Langlands via cuspidal types by Bushnell-Henniart. All proofs are purely local.

1. Introduction

The classical Deligne-Lusztig theory aims for a geometric construction of representations of �nite

groups of Lie-type. In [9], Deligne and Lusztig constructed the so-called Deligne-Lusztig varieties

attached to a connected reductive group over a �nite �eld and could show that any irreducible

representation of the group of Fq-valued points occurs in the `-adic cohomology of these varieties.

Since then one was trying to �nd similar constructions in the a�ne setting, aiming for a geometric

realization of the local Langlands correspondence. However, usual geometric realizations of local

Langlands make use of p-adic methods, formal schemes and adic spaces, also using the global

theory. In the present article we introduce a very natural a�ne analog of Deligne-Lusztig varieties of

arbitrary level attached to a connected reductive group over a local �eld F of positive characteristic.

Using these varieties we realize the unrami�ed part of the local Langlands correspondence for GL2

over F using only schemes over Fq and purely local methods. Moreover, we will give a detailed

comparison of our construction with the theory of cuspidal types of Bushnell-Kutzko [3] (we use the

language of Bushnell-Henniart [2]) and on the 'algebraic' side we will show an improvement of the

Intertwining theorem [2] 15.1.

To begin with, let F be a non-archimedean local �eld and let L denote the completion of the

maximal unrami�ed extension of F . Let OF resp. OL be the ring of integers of F resp. L. We

denote by k resp. k̄ the residue �eld of F resp. L, and by q the cardinality of k. Let σ : k̄ Ñ k̄

denote the k-automorphism given by x ÞÑ xq. We also denote by σ the unique F -automorphism of

L, lifting σ : k̄ Ñ k̄.

Let G be a connected reductive group over F and let G be a smooth model of G over OF . It

is a central problem to realize smooth representations of the locally compact group GpF q in the

`-adic cohomology of certain schemes (or formal schemes, or adic spaces, ...) over k (where ` is

prime to charpkq). Usually such schemes come up with an action of GpF q � T pF q, where T is some

maximal torus of G and as a consequence the representations of GpF q occurring in their `-adic

cohomology are parametrized by characters of T pF q, lying in su�ciently general position. After

the fundamental work of Deligne and Lusztig [9], which followed the pioneering example of Drinfeld

concerning SL2pkq, and deals with representations of the �nite group Gpkq, many generalizations

of their ideas aiming a construction of representations of GpOF {t
rq for r ¥ 2 resp. of GpF q were

made. We give some examples. In [12] Lusztig suggested such construction (without proofs) and
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more recently he gave proofs in [13]. (A minor variation of) this construction was worked out for

division algebras by Boyarchenko [1] and Chan [7] (see also [6]). A further closely related approach,

was given by Stasinski in [17], who suggested a method to construct the so called extended Deligne-

Lusztig varieties attached to GpOF {t
rq. The advantages of our construction are that it (i) has a

quite simple de�nition in terms of the Bruhat-Tits building of G, (ii) establishes a direct link with

a�ne Deligne-Lusztig varieties, which are well-studied in various contexts. In particular, this allows

to use the whole combinatoric machinery developed for their study.

A starting point for our construction is Rapoport's de�nition of a�ne Deligne-Lusztig varieties

in [16] De�nition 4.1. We recall this de�nition (in the Iwahori case). Let BL be the Bruhat-Tits

building of the adjoint group GL,ad. The Bruhat-Tits building of Gad over F can be identi�ed with

the σ-invariant subset of BL. Let S be a maximal L-split torus in G, which is de�ned over F (such

a torus exists due to [5] 5.1.12). Let I � GpLq be the Iwahori subgroup attached to a σ-stable

alcove in the apartment corresponding to S. Let F be the a�ne �ag manifold of G, seen as an

ind-scheme over k if F has positive characteristic, and seen as a perfect algebraic space in the sense

of [19] otherwise. Its k̄-points can be identi�ed with GpLq{I. Let W̃ denote the extended a�ne

Weyl group of G attached to S. The Bruhat decomposition of GpLq induces the invariant position

map

inv : F pk̄q �F pk̄q Ñ W̃ .

For w P W̃ and b P GpLq the a�ne Deligne-Lusztig variety attached to w and b is the locally closed

subset

Xwpbq � tgI P F : invpgI, bσpgqIq � wu

of F , which is given the structure of the reduced induced sub-Ind-scheme resp. perfect algebraic

subspace. Let Jb be the σ-stabilizer of b, i.e., the algebraic group over F de�ned by

JbpRq � tg P GpRbF Lq : g
�1bσpgq � bu

for any F -algebra R. Then JbpF q acts on Xwpbq.

We sketch now the construction of natural covers of these varieties, which still admit an action

by JbpF q. The details are given in Section 2. Let Φ � ΦpG,Sq be the relative root system. We see

0 as the 'root' corresponding to the centralizer T of S in G (as G is quasi-split, this is a maximal

torus). After choosing a σ-stable special base point x in BL, with a concave function f on ΦY t0u

(for a de�nition cf. Section 2.1) one can associate a subgroup GpLqf � GpLq. In [18], Yu de�ned a

smooth model Gf of GL over OL, such that Gf pOLq � GpLqf . Assume that GpLqf � I and that

GpLqf is σ-stable. Then Gf descends to a smooth group scheme over OF . Further, GpLq{GpLqf
is the set of k̄-points of an Ind-scheme resp. an Ind perfect algebraic space F f , which de�nes a

natural cover of F , as follows from the work of Pappas and Rapoport [15] Theorem 1.4 resp. [19]

Theorem 1.5. Moreover, if GpLqf is normal in I, then F f Ñ F is a (right) principal homogeneous

space under I{GpLqf . There is a map

invf : F f pk̄q �F f pk̄q Ñ DG,f ,

which covers the map inv. Here DG,f is a set of representatives of double cosets of GpLqf in GpLq.

For w P DG,f , b P GpLq, we de�ne the a�ne Deligne-Lusztig variety of level f attached to w and b

as the locally closed subset
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Xf
wpbq � tḡ � gGpLqf P F f pk̄q : invf pḡ, bσpḡqq � wu,

endowed with its induced structure of a reduced sub-Ind-scheme resp. sub-(Ind) perfect algebraic

space (for the mixed characteristic case, compare [19] Section 0.3). In fact, in cases of interest this

is a scheme resp. perfect scheme locally of �nite type over k. Assume GpLqf is normal in I. Then

I acts on DG,f by σ-conjugation w ÞÑ i�1wσpiq, hence we can consider the stabilizer If,w � I of

w under this action. It acts on Xf
wpbq on the right and this action commutes with the left action

of JbpF q. Moreover this If,w-action can be extended to an action of ZpF qIf,w, where Z is the

center of G. Thus we obtain the desired variety resp. perfect scheme Xf
wpbq with an action of

GpF q�ZpF qIf,w. In the mixed characteristic case, note that perfect schemes has enough structure

such that étale cohomology groups can be attached to them.

We study further properties of If,w and Xf
wpbq for general G elsewhere. The rest of the paper

is devoted to the detailed study of G � GL2 in the equal characteristic case. Now we explain our

results in this case. As the levels indexed by concave functions are co�nal, we restrict attention

to special functions fm and elements w P DG,fm (cf. Sections 2.1,3.1) for integers m ¥ 0 and

write Im instead of GpLqfm , X
m
w p1q instead of Xfm

w pbq, etc. We determine the varieties Xm
w p1q

and the GpF q-representations in the cohomology of these varieties with Q`-coe�cients. Further we

compare our results with the algebraic construction of the same representations in [2] using the

theory of cuspidal types. We sketch our results here; for a precise treatment cf. Section 4.1. Let

E{F be the unrami�ed extension degree 2. If the image of w in the �nite Weyl group is non-trivial,

then ZpF qIm,w has a natural quotient isomorphic to E�, and the ZpF qIm,w-action in the `-adic

cohomology of Xm
w p1q factors through an E�-action. In this way we obtain a GpF q-representation

in the spaces Hi
cpX

m
w p1q,Q`qrχs, where χ goes through smooth Q�

` -valued characters of E�. It turns

out that if χ is minimal of level m, lies in su�ciently general position, then there is an integer i0,

such that Hi
cpX

m
w p1q,Q`qrχs � 0 for all i � i0 and

Rχ � Hi0
c pX

m
w p1q,Q`qrχs

is an unrami�ed irreducible cuspidal representation of GpF q, of level m (we also de�ne Rχ for χ

non-minimal). Here for an irreducible cuspidal representation π of GpF q to be unrami�ed means

essentially that π arises by an automorphic induction process from a character of an (anisotropic

modulo center) torus of GpF q, which is split after an unrami�ed extension of F . Alternatively,

unrami�ed cuspidal representations are those which contain unrami�ed fundamental strata in terms

of [2]. Cuspidal representations attached to (at least tamely) rami�ed tori can also be studied via

Deligne-Lusztig type constructions, see for example the work of Stasinski [17] or a future work of

the author [11].

Let Pnr
2 pF q be the set of all isomorphism classes of admissible pairs over F attached to E{F

(cf. [2] 18.2). Let A nr
2 pF q be the set of all isomorphism classes of unrami�ed irreducible cuspidal

representations of GpF q. We de�ned a map

R : Pnr
2 pF q Ñ A nr

2 pF q, pE{F, χq ÞÑ Rχ. (1.1)

As a consequence of our trace computations in Sections 4.2-4.4, we see that this map is injective

(cf. Proposition 4.26). Using the theory of cuspidal types and strata, Bushnell-Henniart attached

to an admissible pair pE{F, χq an irreducible cuspidal GpF q-representation πχ ([2] �19; we recall
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the construction brie�y in Section 4.6). The tame parametrization theorem ([2] 20.2 Theorem) then

shows that the map

Pnr
2 pF q

�
ÝÑ A nr

2 pF q, pE{F, χq ÞÑ πχ

is a bijection (also for even q). Here is our main result (which also works for even q).

Theorem 4.3. Let pE{F, χq be an admissible pair. The representation Rχ is irreducible cuspidal,

unrami�ed, has level `pχq and central character χ|F�. Moreover, Rχ is isomorphic to πχ. In

particular, the map (1.1) is a bijection.

The proof is purely local. Two ideas in the proof follow [1],[6]: it is Boyarchenko's trace formula

(cf. Lemma 4.7) and maximality of certain closed subvarieties of Xm
w p1q (note that X

m
w p1q itself is

not maximal due to the presence of a 'level 0 part'). The rest of the proof is independent of [1],[6].

Finally, we remark that for G � GL2 and b superbasic, JbpF q � D� for D a quaternion algebra

over F and the varieties Xm
xmpbq seem to be very close (but unequal) to the varieties studied by

Chan in [7] (cf. Section 3.6).

Outline of the paper. In Section 2 we de�ne a�ne Deligne-Lusztig varieties for a connected

reductive group G of level attached to a concave function on the roots. In Section 3 we compute

these varieties for G � GL2, b � 1 and determine their `-adic cohomology. In Section 4.1 we

recall the setup and state our main result for GL2, Theorem 4.3. After performing necessary trace

calculations in Sections 4.2-4.4, we compare our construction with that in [2] in Sections 4.5-4.6,

and �nish the proof of Theorem 4.3.

Acknowledgments. The author is especially grateful to Eva Viehmann, Christian Liedtke, Stephan

Neupert and to a referee for very helpful comments concerning this work. Also he is grateful to Paul

Hamacher, Bernhard Werner and other people for interesting discussions concerning this work. Fur-
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to the �eld of a�ne Deligne-Lusztig varieties some years ago. The author was partially supported

by ERC starting grant 277889 �Moduli spaces of local G-shtukas�.

2. Coverings of affine Deligne-Lusztig varieties

The goal of this section is to de�ne coverings of a�ne Deligne-Lusztig varieties.

2.1. Concave functions and smooth models. Let G be a connected reductive group over F . As

k̄ is algebraically closed, GL is quasi-split over L. Let S � G be a maximal L-split torus, which is

de�ned over F . Let T � ZGpSq be the centralizer of S. As GL is quasi-split, T is a maximal torus.

Let Φ � ΦpGL, SLq denote the relative root system. For a P Φ, write Ua for the corresponding root

subgroup and let U0 � T . Let BL be the Bruhat-Tits building of GL and let AS be the apartment

corresponding to SL. We �x a σ-stable base alcove a contained in AS and let x be one of its special

vertices. Let R̃ � RY tr� : r P Ru Y t8u be the monoid as in [4] 6.4.1. Then x de�nes a �ltration

of UapLq by subgroups UapLqx,r (r P R̃) for a P Φ (cf. [4] �6.2 and �6.4).

Moreover, choose an admissible schematic �ltration on tori in the sense of Yu [18] �4. This gives

a �ltration U0pLqx,r � T pLqr on T . If G satis�es condition (T) from [18] 4.7.1, then this �ltration

is independent of the choice of the admissible �ltration and coincide with the Moy-Prasad �ltration

on T pLq, cf. [18] Lemma 4.7.4. Moreover, G satis�es (T) if it is either simply connected or adjoint

or split over a tamely rami�ed extension [18] 8.1. We do not use this in the following.
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A function f : ΦY t0u Ñ R̃ is called concave ([4] 6.4), if

ş

i�1

fpaiq ¥ fp
ş

i�1

aiq.

Fix a concave function f : Φ Y t0u Ñ R̃¥0 r t8u. Let GpLqx,f be the subgroup of GpLq generated

by UapLqx,fpaq, a P ΦY t0u. By [18] Theorem 8.3, there is a unique smooth model Gx,f of GL over

OL such that Gx,f pOLq � GpLqx,f . Moreover, if GpLqx,f is σ-stable, then Gx,f descends to a group

scheme de�ned over OF ([18] 9.1). We denote it again by Gx,f .

Let I � GpLq be the Iwahori subgroup associated with a and let Φ� � Φ denote the set of

positive roots determined by a. Let fI be the concave function on ΦY t0u de�ned by

fIpaq �

#
0 for a P Φ� Y t0u

fIpaq � 0� for a P Φ�.

Then GpLqx,fI � I (cf. [18] 7.3). For m ¥ 0 let fm : ΦY t0u Ñ R̃¥0 r t8u be the concave function
de�ned by

fmpaq �

#
m if a P Φ�

m� if a P Φ� Y t0u.

Write Im � GpLqx,fm .

Lemma 2.1. For m ¥ 0, Im is normal in I and Im is σ-stable. In particular, Im admits a unique

smooth model Gx,fm . This model is already de�ned over OF .

Proof. I (resp. Im) is generated by UapLqx,fIpaq (resp. UapLqx,fmpaq) for a P ΦYt0u. To show normal-

ity, it is enough to show that for any roots a, b P ΦYt0u, the commutator pUapLqx,fIpaq, UbpLqx,fmpbqq

is contained in Im. By [4] (6.2.1) V3 (we can treat 0 as a root), pUapLqx,fIpaq, UbpLqx,fmpbqq is con-

tained in the subgroup generated by Upa�qbpLqpfIpaq�qfmpbq for p, q ¡ 0 such that pa� qb P ΦYt0u.

Now qfmpbq ¥ m, hence Upa�qbpLqpfIpaq�qfmpbq � Im can only happen if fIpaq � 0, fmpbq � m,

fmppa� qbq � m�. This is equivalent to a P Φ�Yt0u, b P Φ�, a� b P Φ�Yt0u. This is impossible,

hence Upa�qbpLqpfIpaq�qfmpbq � Im and the normality is shown. We show now the σ-stability of

Im. On the one side, I is generated by the subgroups UσpaqpLqx,fIpσpaqq (for varying a), and on the

other side I � σpIq is generated by σpUapLqx,fIpaqq � UσpaqpLqσpxq,fIpaq. Using parts (i), (ii) of [18]

Theorem 8.3 we deduce that UσpaqpLqx,fIpσpaqq � UσpaqpLqσpxq,fIpaq. But then the same is true also

for fm instead of fI . From this the σ-stability of Im follows. �

To have common notation for mixed and equal characteristic cases, for a k-algebra R set

WpRq :�

#
R pbk OF if charpF q ¡ 0

W pRq bW pkq OF if charpF q � 0,

where W pRq denotes the p-typical Witt ring of R. In the mixed characteristic case, W behaves only

well, if R is a perfect k-algebra. In any case, let $ denote a uniformizer of F . Consider the loop

group LG, which is the functor on the category of k-algebras,

LG : R ÞÑ GpWpRqr$�1sq.
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Assume the concave function f is such that GpLqx,f is σ-invariant. Let L�Gx,f be the functor on

the category of k-algebras de�ned by

L�Gx,f : R ÞÑ Gx,f pWpRqq,

and taking perfection in the mixed characteristic case (as in [19] Section 1.1). Consider the quotient

of fpqc-sheaves

F f � LG{L�Gx,f

on the category of k-algebras in the equal characteristic case resp. on the category of perfect

k-algebras in the mixed characteristic case. By [15] Theorem 1.4 resp. [19] Theorem 1.5 it is

represented by an Ind-k-scheme of ind-�nite type over k̄ resp. by a ind perfectly proper perfect

algebraic space over k and its k̄-points are F f pk̄q � GpLq{GpLqx,f . Moreover, if g ¤ f are two

concave functions as above, then we have a natural projection F f � F g. We write F � F fI for

the a�ne �ag manifold associated with Gx,fI , the smooth model of I and Fm � F fm for m ¥ 0.

2.2. A�ne Deligne-Lusztig varieties and covers. We keep the notations from Section 2.1. We

�x a concave function f : ΦYt0u Ñ R̃¥0 r t8u, such that f ¥ fI , i.e., GpLqx,f � I and s.t. GpLqx,f
is σ-invariant, i.e., Gx,f is de�ned over OF . We write If � GpLqx,f . There are natural σ-actions

on F pk̄q,F f pk̄q, which are compatible with natural projections.

Let NT be the normalizer of T in G. Let W � NT pLq{T pLq be the �nite Weyl group associated

with S and W̃ the extended a�ne Weyl group. If Γ denotes the absolute Galois group of L, then

W̃ sits in the short exact sequence

0 Ñ X�pT qΓ Ñ W̃ ÑW Ñ 0.

Then the Iwahori-Bruhat decomposition states that

GpLq �
º
wPW̃

I 9wI,

where 9w is any lift of w to NpLq. Consider now the set of double cosets

DG,f � GpLqx,fzGpLq{GpLqx,f ,

equipped with the natural projection map DG,f � IzGpLq{I � W̃ . If m ¥ 0, we also write DG,m

instead of DG,fm . At least for w 'big' enough, the �ber DG,f pwq over a �xed w P W̃ can be given

the structure of a �nite-dimensional a�ne variety over k̄, by parametrizing it using subquotients of

(�nite) root subgroups. As this seems quite technical and as in this article we only need the case

G � GL2 (cf. (3.3)), we omit the corresponding result in this article. We obtain a map, which

covers the classical relative position map.

De�nition 2.2. De�ne the map

invf : F f pk̄q �F f pk̄q Ñ DG,f

on k̄-points by invf pxGpLqx,f , yGpLqx,f q � w, where w is the double GpLqx,f -coset containing x
�1y.

We come to our main de�nition.

De�nition 2.3. For f ¥ fI concave, such that GpLqx,f is σ-invariant, b P GpLq, and w P DG,f we

de�ne the a�ne Deligne-Lusztig variety of level f associated with b, w as
6



Xf
wpbq � tḡ � gGpLqx,f P F f pk̄q : invf pḡ, bσpḡqq � wu,

with its induced reduced sub-Ind-scheme resp. sub-Ind perfect algebraic space structure.

We write Xm
w pbq instead of Xfm

w pbq. As usual, Xf
wpbq is equipped with two group actions. For

b P GpLq, let Jb be the σ-stabilizer of b, i.e., the algebraic group over F de�ned by

JbpRq � tg P GpRbF Lq : g
�1bσpgq � bu

for any F -algebra R. Then JbpF q acts on X
f
wpbq for any f and w P DG,f . If f ¥ f 1 and w P DG,f

lies over w1 P DG,f 1 , then X
f
wpbq lies over X

f 1

w1pbq and the JbpF q-actions are compatible.

To describe the second group action, assume additionally that GpLqx,f is normal in I. For

w̄ P W̃ , we have a left and a right I{If -action on DG,f pw̄q by multiplication. We obtain the (right)

I{If -action on DG,f pw̄q by pi, wq ÞÑ i�1wσpiq.

Lemma 2.4. Assume If is normal in I. Let b P GpLq, w̄ P W̃ and w P DG,f pw̄q.

(i) Xf
wpbq is locally of �nite type over k.

(ii) For every g P GpLq, the map ph, xIf q ÞÑ pg�1hg, g�1xIf q de�nes an isomorphism of pairs

pJbpF q, X
f
wf pbqq

�
ÝÑ pJg�1bσpgqpF q, X

f
wf pg

�1bσpgqqq.

(iii) For i P I, the map xIf ÞÑ xiIf de�nes an isomorphism Xf
wpbq

�
ÝÑ Xf

i�1wσpiq
pbq.

Proof. (ii) and (iii) are trivial computations. (i): The a�ne Deligne-Lusztig varieties Xwpbq are

locally of �nite type, F f � F is a I{If -bundle and I{If is of �nite dimension over k̄. �

By Lemma 2.4 (iii), the σ-stabilizer

If,w � ti P I : i�1wσpiq � wu

of w P DG,f pw̄q in I acts on X
f
wpbq by right multiplication, and this action factors through an action

of If,w{I
f . Let Z denote the center of G. Note that ZpF q � JbpF q, and that JbpF q-action restricted

to ZpF q can also be seen as a right action, thus extending the right If,w-action on Xf
wpbq to a right

ZpF qIf,wf -action. If m ¥ 0, we also write Im,w instead of Ifm,w.

3. Computations for GL2

From now on and until the end of the paper we set G � GL2 and restrict ourselves to the case of

positive characteristic, i.e., F � kpptqq is the �eld of Laurent series with uniformizer t, L � k̄pptqq

and σ : LÑ L is given by σp
°
i ait

iq �
°
i a
q
i t
i. In this section, we compute the associated varieties

Xm
w p1q and their `-adic cohomology.

3.1. Some notations and preliminaries. We �x the diagonal torus T and the upper triangular

Borel subgroup B of G. We set K � GpOF q and �x the Iwahori subgroup I and its subgroups Im

for m ¥ 0:

Im �

�
1� pm�1

L pmL
pm�1
L 1� pm�1

L



� I �

�
O�
L OL

pL O�
L



� GpOLq.

Note that the groups Im coincide with those de�ned in Section 2.1 with respect to the valuation

on the root datum, which corresponds to the vertex of the Bruhat-Tits building of G associated

with the maximal compact subgroup GpOLq. The maximal torus T is split over F and hence the
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�ltration on it does not depend on the choice of an admissible schematic �ltration. It is given by

T pLqr �

�
1� pr 0

0 1� pr



. Let Wa � W̃ be the a�ne and the extended a�ne Weyl group of G.

The variety Xwp1q is empty, unless w � 1 or w P Wa with odd length (cf. e.g. [10] Lemma 2.4).

The case w � 1 is not very interesting: X1p1q is a disjoint union of points and the cohomology of

coverings of X1p1q contains the principal series representations of GpF q, as for classical Deligne-

Lusztig varieties and as in [10] in case of level 0. Thus we restrict attention to elements of odd

length in Wa. To simplify some computations, we �x once for all time an even integer n ¡ 0 and

the elements

9w �

�
0 t�n

�tn 0



, 9v �

�
t
n
2

t�
n
2



P NT pLq � GpLq (3.1)

and denote by w (resp. v) the image of 9w (resp. 9v) in Wa (the elements with n   0 can be obtained

by conjugation; the elements with n odd lead to similar results). We denote the image of 9w in

DG,m again by 9w (from the context it is always clear, in which set 9w lies). Let prm : Fm Ñ F

be the natural projection. Let Cv � F denote the (open) Schubert cell attached to v. We have

the following parametrizations of Cmv � pr�1
m pCvq and DG,mpwq. For m ¥ 0, let Rm denote the

Weil restriction functor Respkrts{tm�1q{k from krts{tm�1-schemes to k-schemes. Cv is parametrized

by Rn�1Ga Ñ Cv, a ÞÑ

�
1 a

1



v, where a �

°n�1
i�0 ait

i. Then for m ¥ 0, Cmv is parametrized by

ψmv : Rn�1Ga � RmG2
m � RmG2

a
�
ÝÑ Cmv � IvI{Im

a,C,D,A,B ÞÑ

�
1 a

1



9v

�
C

D


�
1 A

1


�
1

tB 1



Im (3.2)

We write a �
°n�1
i�0 ait

i, A �
°m
i�0Ait

i and C � c0p1�
°m
i�1 cit

iq. Moreover, for m ¤ n, DG,mpwq

is parametrized by

φmw : RmG2
mpk̄q � Rm�1G2

apk̄q
�
ÝÑ DG,mpwq � ImzIwI{Im

pC,Dq, pE,Bq ÞÑ Im
�

1

tE 1



9w

�
C

D


�
1

tB 1



Im. (3.3)

The proof that ψmv resp. φmw is an isomorphism of varieties resp. sets amounts to a simple compu-

tation. We omit the details.

Finally, we remark the existence of the following determinant maps. Let x P Wa. There is a

natural k-morphism of k-varieties:

detm : Cmx � IxI{Im Ñ RmGm, yIm ÞÑ detpyq mod tm�1.

In the same way we have the k-morphism

detm : DG,mpwq Ñ RmGm, ImyIm ÞÑ detpyq mod tm�1.

3.2. The structure of Xm
9w p1q.
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Lemma 3.1. Let m ¥ 0. There is a natural isomorphism

Im, 9w{I
m �
ÝÑ

"�
C A

0 D



P Gpk̄rts{tm�1q : σ2pCq � C,D � σpCq

*
.

Proof. An easy computation using (3.3) shows the lemma. �

For r ¡ m, let τm : k̄rts{tr � k̄rts{tm�1 denote the reduction modulo tm�1. Using coordinates

from (3.2), let S � τmpσpaq � aq and let Y m
v � Cmv be the locally closed subset de�ned by

a0 R k

B � 0 (3.4)

σpCqD�1S�1 � 1

σpDqC�1S � 1

Let Dv � Cv be the open subset de�ned by the condition a0 R k. The composition Y m
v Ñ Cmv Ñ Cv

factors through Y m
v Ñ Dv. The natural K-action on Cmv by left multiplication restricts to an action

on Y m
v (this will follow implicitly from the proof of Theorem 3.2). Moreover, Lemma 3.1 implies

that the natural right I{Im-action on Cmv restricts to a right action of Im, 9w{I
m on Y m

v .

Theorem 3.2. Let 0 ¤ m   n. Let w1 � φmw pC,D,E,Bq P DG,mpwq. Then X
m
w1p1q is non-empty if

and only if one has B � �σpEq. If this holds true, then w1 is I-σ-conjugate to 9w � φmw p1, 1, 0, 0q in

DG,mpwq (that is w
1 � i�1 9wσpiq P DG,m for some i P I). In particular, Xm

w1p1q � Xm
9w p1q, compatible

with appropriate group actions. Further, there is an isomorphism equivariant for the left GpF q- and

right pI{Imq 9w-actions:

Xm
9w p1q �

º
GpF q{K

Y m
v .

Proof. In [10] it was shown thatXwp1q �
²
gPGpF q{K gDv is the decomposition ofXwp1q in connected

components. As the natural projection Fm Ñ F restricts to a map

prm : Xm
w1p1q Ñ Xwp1q, we have

Xm
w1p1q �

º
GpF q{K

pr�1
m pgDvq �

º
GpF q{K

g pr�1
m pDvq.

Thus it is enough to determine pr�1
m pDvq. One sees from Lemma 3.3, that if w1 � φmw pC,D,E,Bq

does not satisfy B � �σpEq, then pr�1
m pDvq � H. On the other hand, if w1 satis�es this, then

σ-conjugating w1 �rst by

�
1

B 1



P I and then by a diagonal i �

�
i1

i2



P I such that

i�1
1 CσpDqσ2pi1q � 1 (such i1 exists by Lang's theorem) and i2 � Cσpi1q, we deduce that w1 is

I-σ-conjugate to 9w in DG,m. Thus by Lemma 2.4(iii) we may assume w1 � 9w. In this case Lemma

3.3 shows pr�1
m pDvq � Y m

v , which �nishes the proof. �

Lemma 3.3 (Key computation). Let 0 ¤ m   n. Let 9xIm � ψmv pa,C,D,A,Bq P C
m
v such that

a0 R k. Write S � τmpσpaq � aq. Then

invmp 9xIm, σp 9xqImq � φmw pσpCqD
�1S�1, σpDqC�1S,�B, σpBqq.

9



Proof. Let

9x �

�
t
n
2 t�

n
2 a

t�
n
2


�
C

D


�
1 A

1


�
1

tB 1



P GpLq.

We have to compute the pIm, Imq-double coset of 9x�1σp 9xq. By assumption S is a unit and one

computes (using m   n)�
t
n
2 t�

n
2 a

t�
n
2


�1

σ

�
t
n
2 t�

n
2 a

t�
n
2



�

�
1 t�npσpaq � aq

1



P Im

�
S

S�1



9wIm,

in GpLq. Thus by normality of Im in I, we obtain:

9x�1σp 9xq P Im
�

1

�tB 1


�
1 �A

1


�
C�1

D�1



�

�
S

S�1



9w . . .

. . .

�
σpCq

σpDq


�
1 σpAq

1


�
1

tσpBq 1



Im.

Then we can pull the term containing �A to the right side of 9w, without changing the other terms.

The corresponding term, which then appear on the right side of 9w will lie in Im, i.e., we can cancel

it by normality of Im in I. The same can be done then with the term containing σpAq, by pulling

it to the left side of 9w and canceling it. Computing the remaining matrices together, we obtain:

9x�1σp 9xq P Im
�

1

�tB 1



9w

�
σpCqD�1S�1

C�1σpDqS


�
1

tσpBq 1



Im.

This �nishes the proof. �

3.3. The structure of Y m
v . We keep notations from Sections 3.1 and 3.2. Let k2{k denote the

subextension of k̄{k of degree two. There is a natural surjection

Im, 9w � Tw,m �

"�
C

σpCq



: C P pk2rts{t

m�1q�
*
.

Let Tw,m,0 � Tw,m X SL2pk2rts{t
m�1q be the subgroup de�ned by the condition C�1 � σpCq. Let

f : k̄ Ñ k̄ denote the map fpxq � xq � x. For X P k̄rts{tr we write X �
°r�1
i�0 Xit

i. We denote the

a�ne space (over k̄) spanned by coordinates X0, . . . , Xr�1 by ArpX0, . . . , Xr�1q resp. by ArpXq.
Recall that S � τmpσpaq � aq is a function on Dv with values in pk̄rts{tm�1q� � pRmGmqpk̄q.

Proposition 3.4. Let 0 ¤ m ¤ n.

(i) The variety Y m
v is isomorphic to the �nite covering of Dv�AmpAq which is the closed subset

of Dv � AmpAq � RmGm cut out by the equation

σ2pCqC�1 � σpSqS�1. (3.5)

in pRmGmqpk̄q. It is a �nite étale Galois covering with Galois group Tw,m.

(ii) The (set-theoretic) image of detm : Y m
v Ñ RmGm is the disjoint union of the k-rational

points, which is as a set equal to pkrts{tm�1q�. Moreover, π0pY
m
v q � pkrts{tm�1q�. If

m ¡ 0, the map π0pY
m
v q� π0pY

m�1
v q induced by the projection corresponds to the reduction

modulo tm map.

(iii) Let Y m
v,0 be the connected component of Y m

v corresponding to 1 P pkrts{tm�1q�. Then Y m
v,0 is

(isomorphic to) a �nite covering of Dv � Am given by
10



CσpCq � S. (3.6)

It is a connected �nite étale Galois covering with Galois group Tw,m,0. Moreover, Y m
v,0 �

Y m�1
v,0 � A1pAm�1q is given by

cqm � cm �
fpamq

fpa0q
�
m�1̧

i�1

cqi cm�i. (3.7)

Proof. Note that for a point ψmv pa,C,D,A, 0q P Y
m
v , S � τmpaq, C,D are units in k̄rts{tm�1. From

the last two equations in (3.4), we see that on Y m
v , D � σpCqS�1 is uniquely determined by C and

S and that Y m
v is indeed given by the equation (3.5). Let us from now on proceed by induction

on m. We see that Y 0
v Ñ Dv is de�ned by cq

2�1
0 � fpa0q

q�1, i.e., it is �nite etale with Galois

group isomorphic to k�2 . Clearly, Y
m
v lies over Y m�1

v �A1pAm�1q. Bring equation (3.5) to the form

σ2pCqS � CσpSq. Expanding this expression with respect to C � c0p1�
°m
i�1 cit

iq, S �
°
i fpaiqt

i,

shows that Y m
v Ñ Y m�1

v � A1pAm�1q is de�ned by an equation of the form

cq
2

m � cm � ppa0, . . . , am, c0, . . . , cm�1q

with p some regular function on Y m�1
v �A1pAm�1q. This is clearly a �nite étale covering. Moreover,

it is Galois and the Galois group is isomorphic to k2, where λ P k2 acts by cm ÞÑ cm�λ. By induction,

Y m
v Ñ Dv � AmpAq is also �nite étale and has degree pq2 � 1qq2m. Equation (3.5) shows that the

automorphism group of this covering contains Tw,m. Comparing the degrees we see that Y m
v Ñ

Dv�Am is Galois with Galois group Tw,m. This shows part (i). Let 9xIm � ψmv pa,C,D,A, 0q P Y
m
v .

As Y m
v � Xm

9w p1q, we obtain

1 � detmpφmw p1, 1, 0, 0qq � detmpIm 9x�1σp 9xqImq � pCDq�1σpCDq.

It follows that detmp 9xImq � CD P pkrts{tm�1q�. This shows the claim about the image of detm.

In particular, we obtain a map π0pY
m
v q Ñ pkrts{tm�1q�. Its surjectivity follows using the action of

Tw,m on Y m
v and the fact that det : Tw,m Ñ pkrts{tm�1q� is surjective. Let Y m

v,0 be the preimage of

1 under detm : Y m
v Ñ RmGm. Then Y

m
v,0 is connected: this is a byproduct of Lemma 3.9 (i) below.

The compatibility of detm with changing the level is immediate. Thus it remains to prove part (iii)

of the proposition. Equation CD � 1, holding on Y m
v,0, inserted into (3.4) shows the �rst claim

of (iii). The second statement of (iii) is clear from parts (i),(ii). Inserting C � c0p1 �
°m
i�1 cit

iq,

S �
°
i fpaiqt

i into (3.6) shows (3.7). �

3.4. Cohomology of Y m
v . We keep the notations from Sections 3.1-3.3. Fix a prime ` � charpkq.

We are interested in the `-adic cohomology with compact support of the base change of Y m
v to k̄.

To simplify notation, for a scheme X over k, we write Hi
cpXq for the space Hi

cpX �k Spec k̄,Q`q.

This space comes with a natural action of the Frobenius σ. Set hicpXq � dimQ`
Hi
cpXq. Further,

Hi
cpXqprq denotes the r-th Tate twist. Set:

N� � ta0, c0 P k̄ : a0 P k2 r k, cq�1
0 � fpa0qu � k̄� k̄,

and let C�, C� be a�ne curves over Fq de�ned by
11



C� : xq � x � yq�1,

where for C� we additionally require x R k. We write V� � H1
cpC�q. One has dimQ` V� � qpq� 1q.

Theorem 3.5. Let 0 ¤ m   n. Then Hi
cpY

m
v q �

À
pkrts{tm�1q� Hi

cpY
m
v,0q. Let d0 � d0pn,mq �

2pn� 1q � 2m� 1. Then Hi
cpY

m
v,0q � 0 if i ¡ d0 � 1 or i   d0 �m and

Hd0�1
c pY m

v,0q � Q`p�pn�mqq

Hd0
c pY

m
v,0q � V�p�pn�m� 1qq

Hd0�j
c pY m

v,0q �
à
N�

Qq2pj�1qpq�1q
` for any 1 ¤ j ¤ m.

For 1 ¤ j ¤ m the action of Frobq2 on Hd0�j
c pY m

v,0q is given as follows: it acts by permuting the

blocks corresponding to elements of N� (by pa0, c0q ÞÑ pa0,�c0q) and acts as multiplication with the

scalar p�1qd0�jqd0�j in each of these blocks.

Remark 3.6. We have chosen d0 such that Hd0�j
c pY m

v q corresponds to a GpF q-representation of

level j (cf. De�nition 4.2).

Proof. The �rst statement of the theorem follows from Proposition 3.4. We need some further

notation:

k� � k�pxq � tx P k2 : xq � x � 0u � k2

N� � N�px, yq � tx, y P k̄ : x P k2, y
q�1 � xq � xu � k̄� k̄ .

Let Y m,1
v,0 be the �nite étale covering of the open subset ta0 R ku of the m � 1-dimensional a�ne

space Am�1pa0, . . . , amq, which is de�ned by the same equations de�ning Y m
v,0 (cf. (3.7)). There is

a projection Y m
v,0 � Y m,1

v,0 and the Im, 9w{I
m-action on Y m

v,0 induces a Tw,m-action on Y m,1
v,0 . We have

Y m
v,0 � Y m,1

v,0 �An�1pam�1, . . . , an�1, A0, . . . , Am�1q and hence Hi
cpY

m
v,0q � H

i�2pn�1q
c pY m,1

v,0 qp�pn�1qq.

For m ¥ 0, let Zm � Y m,1
v,0 be the closed subscheme de�ned by the equation aq

2

0 � a0 � 0. Note

that K- and Tw,m-actions on Y
m,1
v,0 restrict to actions on Zm and that equation (3.7) de�nes Zm �

Zm�1 �A1pcmq as a covering of Zm�1. The equation aq
2

0 � a0 � 0 divides Zm into a disjoint union

of q2 � q components, which are given by the same equations as Y m,1
v,0 and on which a0 is a �xed

constant in k2 r k. Thus on Zm (for each m ¥ 1) we may change our equations replacing am by

a1m � fpa0q
� 1
q am�cm. For a0 P k2 r k, one computes fpa0q

q � �fpa0q and equation (3.7) simpli�es

over the locus a0 P k2 r k to

a1,qm � a1m �
m�1̧

i�1

cqi cm�i. (3.8)

Now we make a coordinate change: for all m ¥ 1 replace a1m by αm � a1m �
°tm�1

2
u

i�1 cqi cm�i. This

coordinate change turns equation (3.8) de�ning Zm over Zm�1 into

αqm � αm �

tm�1
2

u¸
i�1

pci � cq
2

i qc
q
m�i � δmc

q�1
m{2, (3.9)
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where δm � 0 ifm is odd and δm � 1 ifm is even. All together, Zm is isomorphic to the locally closed

subset of A2m�2pa0, α1 . . . , αm, c0, c1, . . . , cmq de�ned by aq
2

0 � a0 � 0, aq0 � a0 � 0, cq�1
0 � aq0 � a0

and the m equations (3.9) for m1 � 1, 2, . . . ,m. The �rst three of these equations and the equation

(3.9) for m1 � 1 obviously divide Zm into N� � k�pα1q components, which are all isomorphic, as

one sees using K- and Tw,m-actions on Z
m. Thus Zm �

²
N��k�pα1q

Zm0 , where Zm0 is the closed

subvariety of A2m�2pα2, . . . , αm, c1, . . . , cmq de�ned by equations (3.9) for m1 � 2, . . . ,m.

Lemma 3.7. Let m ¥ 1. Then Zm0 is connected, i.e., π0pZ
mq � N� � k�pα1q.

Proof. We proceed by induction: for m � 0, Z0
0 is a point, thus connected. Let m ¥ 1 and assume

that Zm�1
0 is connected. By Lemma 3.9(ii) below (this lemma is formulated for Z̃m instead of

Zm � Z̃m�1 � A1pcmq � see below in the proof of the theorem), the �bers of Zm Ñ Zm�1 (and

hence also of Zm0 Ñ Zm�1
0 ) over the open subset de�ned by cq

2

1 � c1 � 0 are connected. Hence Zm0
is connected. �

We see that Zm0 is a connected étale covering of Ampc1, . . . , cmq. Hence Hi
cpZ

mq � 0 for i ¡ 2m

and H2m
c pZmq �

À
N��k�pα1q

Q`p�mq. Consider now the decomposition in an open and a closed

subset:

Y m,1
v,0 rZm ãÑ Y m,1

v,0 Ðâ Zm. (3.10)

Lemma 3.9 shows that Hi
cpY

m,1
v,0 rZmq � Hi�2m

c pY 0,1
v,0 rZ0qp�mq and Y 0,1

v,0 rZ0 can be identi�ed

with the open subset C�rN� of the curve C� de�ned in the variables a0, c0.

Lemma 3.8. In the long exact sequence for H�
c p�q attached to (3.10) (cf. [14] III �1 Remark 1.30),

the map

δm : H2m
c pZmq Ñ H2m�1

c pY m,1
v,0 rZmq �

à
N�

Q`p�mq ` V�p�mq.

is surjective onto the �rst summand.

Proof. By comparing the Frobenius-weights (which is possible due to Lemma 3.9) we see that

the image is contained in the �rst summand. On the other hand, the natural projection Y m,1
v,0 Ñ

Y m�1,1
v,0 induces a morphism between the corresponding long exact sequences for H�

c p�q, which induces

a commutative diagram relating δm with δm�1. Iterating this for all levels ¥ 1, we obtain a

commutative diagram:À
N��k�

Q`p�mq

����

H2m
c pZmq

δm // H2m�1
c pY m,1

v,0 rZmq

����À
N�

Q` H0
cpZ

0q
δ0 // H1

cpC�rN�q
À

N�
Q` ` V�

This diagram shows the lemma. �

The long exact sequence for H�
c p�q and Lemma 3.8 implies:

Hi
cpY

m,1
v,0 q �

$'''''''&'''''''%

Hi
cpZ

mq if i   2mÀ
N�
r
À

k�pα1q
Q`p�mqs

°
α1
�0 if i � 2m

V�p�mq if i � 2m� 1

Q`p�m� 1q if i � 2m� 2

0 if i ¡ 2m� 2,

(3.11)
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where
°
α1
� 0 means that we take the subspace of sum zero elements. Let Z̃m�1 be the closed

subspace of A2m�1pa0, α1, . . . , αm, c0, c1, . . . , cm�1q given by the same equations as Zm: aq
2

0 �a0 � 0,

aq0 � a0 � 0, cq�1
0 � aq0 � a0 and equations (3.9) for m1 � 1, . . . ,m. Let H � tcq

2

1 � c1 � 0u; this

is a �nite union of hyperplanes in the same a�ne space. Then Zm � Z̃m�1 � A1pcmq. For m ¥ 3

Lemma 3.9(ii) shows (here and until (3.15) we ignore Tate twists):

Hi
cpZ̃

m�1 rHq � Hi�2pm�2q
c pZ̃1 rHq �

$''''&''''%
0 if i ¤ 2m� 4À
N��k�pα1q

rp
À

N�pα2,c1q

Q`q ` V�s if i � 2m� 3À
N��k�pα1q

Q` if i � 2m� 2,

because Z̃1 rH �
²
N��k�pα1q

pC�rN�q. Further, Lemma 3.10 shows Z̃m�1XH �
²
k�pα1q�N�pα2,c1q

Zm�2
p1q ,

where Zm�2
p1q � Zm�2 and the index p1q indicates the shift in variables given by αi ÞÑ αi�2, ci ÞÑ ci�1

(for i ¥ 1) and hence Hi
cpZ̃

m�1 XHq �
À

k�pα1q�N�pα2,c1q
Hi
cpZ

m�2
p1q q and, in particular, the top co-

homology group of Z̃m�1 XH is in degree 2m� 4 and is equal to

H2m�4
c pZ̃m�1 XHq �

à
k�pα1q�N�pα2,c1q

H2m�4
c pZm�2

p1q q �
à

k�pα1q�N�pα2,c1q

à
N��k�pα3q

Q`.

as follows from Lemma 3.7 (note the index shift α1 ÞÑ α3). All these, the long exact sequence for

H�
c p�q attached to

Z̃m�1 rH ãÑ Z̃m�1 Ðâ Z̃m�1 XH,

the analog of Lemma 3.8 for this sequence and Lemma 3.10 show that for m ¥ 3 we have:

Hi
cpZ

mq � Hi�2
c pZ̃m�1q �

$''''&''''%

À
k�pα1q�N�pα2,c1q

Hi�2
c pZm�2

p1q q if i   2m� 2À
N��k�pα1q�N�pα2,c1q

r
À

k�pα3q
Q`s

°
α3
�0 if i � 2m� 2À

N��k�pα1q
V� if i � 2m� 1À

N��k�pα1q
Q` if i � 2m.

(3.12)

Note that 7N� � q3, 7k� � q. Hence for m ¥ 3, we have h2m
c pZmq � p7N�qq and h2m�j

c pZmq �

p7N�qq
2jpq � 1q for j P t1, 2u. For Z1, Z2 one computes: H2

cpZ
1q �

À
N��k�

Q` and Hi
cpZ

1q � 0 if

i � 2 and

Hi
cpZ

2q � Hi�2
c pZ̃1q �

$''&''%
0 if i ¤ 2 or i ¥ 5À

N��k�pα1q
V� if i � 3À

N��k�pα1q
Q` if i � 4.

(3.13)

Let now m ¥ 3. For j ¡ 0, write j � 2t j�1
2 u � j1, where j1 � 1 if j odd, j1 � 2 otherwise.

Iterating (3.12) t j�1
2 u times, we get for all 0   j   m:

h2m�j
c pZmq � q4t j�1

2
uh

2pm�2t j�1
2

uq�j1

c pZ
m�2t j�1

2
u

pt j�1
2

uq
q � p7N�qq

2jpq � 1q. (3.14)

where Zmplq � Zm using the index shift as above l times. Thus for all m ¥ 1, j ¡ 0:
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h2m�1�j
c pZmq �

$''&''%
p7N�qq if j � 1

p7N�qq
2pj�1qpq � 1q if 1   j ¤ m

0 otherwise.

(3.15)

Combined with (3.11), this implies the dimension formula in the theorem. It remains to compute the

Frobenius action. The Tate twists in the two top cohomology groups of Y m
v,0 can be deduced easily by

relating Y m
v,0 with Y

m,1
v,0 . To prove the claim about Frobq2-action in degrees i ¤ d0�1, note that Frobq2

acts on N� by pa0, c0q ÞÑ pa0,�c0q. Further, let Z
m
1 be the subvariety of A2mpc1, . . . , cm, a

1
1, . . . , a

1
mq

de�ned by m equations (3.8) for m1 � 1, . . . ,m, i.e., Zm � N��Z
m
1 , where N� is seen as a discrete

variety. Lemma 3.11 shows that Zm1 is a maximal variety over Fq2 (for a de�nition cf. the paragraph

preceding Lemma 3.11), i.e., Frobq2 acts on Hi
cpZ

m
1 q by p�1qipq2qi{2 � p�qqi for any i P Z. Further

we have for all 2 ¤ j ¤ m:

Hd0�j
c pY m

v,0q � H2m�1�j
c pY m,1

v,0 qp�pn� 1qq � H2m�1�j
c pZmqp�pn� 1qq

(note that for j � 1, this remains true if one replaces the second equality by an inclusion, cf. (3.11)).

This implies the last statement of the theorem. �

Lemma 3.9. With notations as in the proof of Theorem 3.5, we have:

(i) Let m ¥ 1. The �bers of the natural projection π : Y m,1
v,0 rZm Ñ Y m�1,1

v,0 rZm�1 are isomor-

phic to A1. We have:

Hi
cpY

m,1
v,0 rZmq � Hi�2pY m�1,1

v,0 rZm�1qp�1q.

(ii) Let m ¥ 3. The �bers of the natural projection Z̃m�1 rH Ñ Z̃m�2 rH are isomorphic to

A1. We have:

Hi
cpZ̃

m�1 rHq � Hi�2
c pZ̃m�2 rHqp�1q.

Proof. Let us prove part (i). The scheme Y m,1
v,0 rZm is the closed subspace of pY m�1,1

v,0 rZm�1q �

A2pam, cmq de�ned by the equation (3.7). Letting x be a point of Y m�1,1
v,0 rZm�1, we see that the

�ber of π over x is given by the equation

cqm � cm � fpa0pxqq
�1paqm � amq � λpxq,

with a0pxq R k2 the a0-coordinate of x and λpxq P k̄ depending on x. Using the substitution

a1m � fpa0pxqq
� 1
q am � cm, this equation can be rewritten as

a1,qm � fpa0q
1
q
�1
a1m � p1� fpa0pxqq

1
q
�1
qcm � λpxq.

As a0pxq R k2 we have fpa0pxqq
1
q
�1

� 0,�1 and hence the �ber of π over x is isomorphic (over k̄)

to the Artin-Schreier covering of A1pcmq, hence is itself isomorphic to the a�ne line. This shows

the �rst statement of the lemma.

For the second statement, note that as the �bers of π are � A1, we have R2
cπ�Q` � Q`p�1q and

Rj
cπ�Q` � 0 for j � 2. This together with the spectral sequence

Hi
cpY

m�1,1
v,0 rZm�1,Rj

cπ�Q`q ñ Hi�j
c pY m,1

v,0 rZmq

implies the second statement of part (i). Part (ii) of the lemma has a similar proof, using (3.9)

instead of (3.7). �
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Lemma 3.10. With notations as in the proof of Theorem 3.5, for m ¥ 3, we have Z̃m�1 X H �²
k�pα1q

²
N�pα2,c1q

Zm�2.

Proof. On the union of hyperplanes H, the term pc1� c
q2

1 qc
q
m�1 in the equation (3.9) de�ning Z̃m�1

over Z̃m�2 cancels, leaving the free variable cm and the equation arising from it (after renaming the

variables by αi ÞÑ αi�2 for i ¥ 3, ci ÞÑ ci�1 for i ¥ 2) is simply the equation de�ning Zm�2 over

Zm�3. The lemma follows from this observation. �

We recall the de�nition of maximal varieties from the introduction of [6], where it appears in a

similar setup. Let X be a scheme of �nite type over a �nite �eld FQ with Q elements. Let FrobQ
denote the Frobenius over FQ. By [8] Theorem 3.3.1, for each i and each eigenvalue α of FrobQ
in Hi

cpXq, there exists an integer i1 ¤ i, such that all complex conjugates of α have absolute value

Qi
1{2. Hence by Grothendieck-Lefschetz formula we get an upper bound on the number of points

on X:

7XpFQq �
¸
iPZ
p�1qitrpFrobQ; Hi

cpXqq ¤
¸
iPZ

Qi{2hicpXq, (3.16)

where equality holds if and only if FrobQ acts on Hi
cpXq by the scalar p�1qiQi{2 for each i P Z. If

this is the case, then X{FQ is called maximal.

Lemma 3.11. Let Zm1 be as in the proof of Theorem 3.5. For m ¥ 1, Zm1 is a maximal variety

over Fq2 .

Proof. Frobq2 acts on Hi
cpZ

m
1 q as an endomorphism with eigenvalues being Weil numbers with

absolute value pq2qi
1{2 ¤ pq2qi{2 � qi. From (3.16) we obtain the upper bound upZm1 , q

2q for the

number of Fq2-points on Zm1 :

7Zm1 pFq2q ¤ upZm1 , q
2q �

2m̧

i�0

qihicpZ
m
1 q.

Using equation (3.15), we see that upZm1 , q
2q � q3m. On the other hand, let pipcq �

°i�1
j�1 cjc

q
i�j

and let cj P Fq2 for j � 1, . . . ,m be given. Then we have pipcq
q � pipcq, i.e., pippcjq

i�1
j�1q P Fq for all

1 ¤ i ¤ m. But the equation xq � x � λ P Fq has precisely q solutions in Fq2 . Thus for each given

point pc1, . . . , cmq P AmpFq2q, there are exactly qm points in Zm1 lying over it (cf. equation (3.8)).

Thus 7Zm1 pFq2q � q3m, which �nishes the proof. �

3.5. Character subspaces. We keep notations from Sections 3.1-3.4 and deduce some corollaries

from Theorem 3.5.

Lemma 3.12. Let m ¥ 0. The Im, 9w{I
m-action on Hi

cpY
m
v q factors through a Tw,m-action.

Proof. This is immediate as the action of kerpIm, 9w{I
m � Tw,mq on

Y m
v � Y m,1

v � An�1pam�1, . . . , an�1, A0, . . . , Am�1q (where Y
m,1
v is de�ned analogously to Y m,1

v,0 in

the proof of theorem 3.5) comes from an action on An�1, which contributes to the cohomology of

Y m
v only via a dimension shift. �

For an abelian (locally compact) group A, let A_ denote the group of (smooth) Q�
` -valued char-

acters of A. By Lemma 3.12 we have a decomposition
16



Hi
cpY

m
v q �

à
χPT_w,m

Hi
cpY

m
v qrχs (3.17)

into isotypical components with respect to the action of Tw,m.

Corollary 3.13. Let m ¥ 1 and 1 ¤ j ¤ m. Let χ : Tw,m Ñ Q�
` be a character. Then Frobq2 acts

on Hd0�j
c pY m

v qrχs by multiplication with the scalar χp�1qp�1qd0�jqd0�j.

Proof. We have Hi
cpY

m
v q �

À
pkrts{tm�1q� Hi

cpY
m
v,0q and Frobq2 acts trivially on the index set of the

direct sum, so it is enough to study its action on Hi
cpY

m
v,0q. With notations as in the proof of Theorem

3.5, we have for 1   j ¤ m:

Hd0�j
c pY m

v,0q � H2m�1�j
c pY m,1

v,0 qp�pn�1qq � H2m�1�j
c pZmqp�pn�1qq � p

à
N�

Q`qbH2m�1�j
c pZm1 qp�pn�1qq,

as Zm � N� � Zm1 , where N� is seen as a disjoint union of points (for j � 1 this remains true if

we replace the second equality by an inclusion, cf. (3.11)). Now, Frobq2 acts on N� by pa0, c0q ÞÑ

pa0,�c0q and in H2m�1�j
c pZm1 q by the scalar p�1q2m�1�jq2m�1�j . Note that �1 P Tw,m acts on N�

in the same way as Frobq2 and trivially in H2m�1�j
c pZm1 q. Thus the eigenspaces for �1 and Frobq2

coincide. There are only two such eigenspaces U1 and U�1, and Frobq2 acts on U�1 by the scalar

p�1qp�1q2m�1�jq2m�1�j . Now let χ be the restriction of χ to µ2 � Tw,m. Then

Hi
cpY

m
v qrχs � Hi

cpY
m
v qrχs � Uχp�1q,

which proves the corollary. �

Let T iw,m denote the subgroup of Tw,m of elements which are congruent 1 modulo ti. Let T_,genw,m

denote the set of all characters of Tw,m, which are non-trivial on Tw,m,0 X Tmw,m. We also need the

following purity result.

Corollary 3.14. Let m ¥ 1. Let d0 � d0pn,mq. The �nite étale morphism Y m
v Ñ Y m�1

v �

A1pAm�1q induces an isomorphism

Hi
cpY

m
v,0q � Hi

cpY
m�1
v,0 � A1pAm�1qq � Hi�2

c pY m�1
v,0 qp�1q

for all i � d0 �m. If χ P T_,gen
w,m , then

Hi
cpY

m
v qrχs � 0 for all i � d0 �m.

Conversely, if χ P T_w,mrT_,gen
w,m , then Hd0�m

c pY m
v qrχs � 0.

Proof. The �rst statement follows directly from Theorem 3.5 by comparing dimensions. Let N �

kerppkrts{tm�1q� � pkrts{tmq�q. The �nite étale covering Y m
v Ñ Y m�1

v �A1pAm�1q factors as Y
m
v Ñ²

N Y
m�1
v �A1pAm�1q Ñ Y m�1

v �A1pAm�1q, where the �rst morphism has Galois group Tw,m,0 X

Tmw,m. The �rst statement of the corollary implies that the �rst morphism in this factorization

induces an isomorphism in the cohomology for all i � d0 � m. The second statement of the

corollary follows from it. If χ is trivial on Tw,m,0 X Tmw,m, then

Hd0�m
c pY m

v qrχs � Hd0�m
c p

º
N

Y m�1
v �A1pAm�1qq �

à
N

Hd0�m�2
c pY m�1

v q �
à
N

Hd0pn,m�1q�m
c pY m�1

v q
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and the last group is 0 by Theorem 3.5. Hence the third statement of the corollary. �

3.6. Superbasic case. Before going on, we make a digression and study the varieties Xm
xmpbq in

the superbasic case b �

�
1

t



. Let 9x �

�
t�n

tn�1



with even n ¡ 0 and let x resp. 9x be

the image of 9x in W̃ resp. in DG,mpxq. Let 9v, v be as in (3.1). The group JbpF q is the group of

units D� of the quaternion algebra D over F . If OD are the integers of D, then UD � O�
D is a

maximal compact subgroup of D� and D�{UD � Z. Then [10] Theorem 3.3(i) shows

Xxpbq �
º

D�{UD

Cv.

The same arguments as used in the proof of Theorem 3.2, show that for m   2k one has:

Xm
9x pbq �

º
D�{UD

Y m
v pbq,

where Y m
v pbq � Cmv is the closed subscheme given by equations

D�1σpCqp1� taσpaqq�1 � 1

C�1σpDqp1� taσpaqq � 1

B � 0.

Again after eliminating D, it is de�ned in the coordinates a,C,A by

Cσp1� taσpaqq � p1� taσpaqqσ2pCq. (3.18)

An explicit comparison with results of Boyarchenko [1], who carried out the closely related con-

struction of Lusztig for a division algebra over F of invariant 1
n (for levelsm � 1, 2, with a suggestion

of how one can continue for higher levels) and Chan [7] (who then extended Boyarchenko's results

to all levels for the quaternion algebra) shows that the varieties Xh de�ned in the quoted papers

are very similar to varieties Xm
9x pbq de�ned by (3.18), but do not coincide completely, at least due

to the presence of the additional coordinate A in our approach. Also note that level h ¥ 2 in the

quoted papers correspond to level m � h� 1 ¥ 1 in the present article.

4. Representation theory of GL2pF q

We continue to assume G � GL2 throughout this section and keep the notations from Section

3.1 and the beginning of Section 3.2. Let us collect some further important notation here. We try

to keep it consistent with the notation in [2]. The only major di�erence is that we write K (and not

U � UM) for the maximal compact subgroup GpOF q of GpF q. For λ P X�pT q we write t
λ P T pLq

for the image of the uniformizer t under λ. For an element x P k̄rts{tm�1, we mean by its t-adic

valuation vtpxq the largest integer µ ¥ 0, such that x P tµ � k̄rts{tm�1. Moreover:


 Z is the center of GpF q


 E � k2pptqq � L is the unrami�ed degree two extension of F


 UM (resp. UmM for m ¥ 1) denote the units (resp. the m-units) of a local �eld M


 M �M22pOF q; it is an OF -algebra


 K � GpOF q �M�; it is a maximal compact subgroup of GpF q
18




 Ki � 1 � tiM for i ¥ 0, and pKiq8i�0 de�nes a descending �ltration of K by open normal

subgroups


 Km � K{Km�1 � GpOF {t
m�1q


 Ki
m � Ki{Km�1 � 1� tiM{1� tm�1M de�ne a �ltration on Km


 Tw,m, Tw,m,0 are as in the beginning of Section 3.3 and T iw,m, T
_,gen
w,m as in the paragraph

preceding Corollary 3.14

For a locally compact abelian group A, a Q`-vector spaceW with a right A-action and a Q�
` -valued

character χ of A, we letW rχs be the maximal quotient ofW , on which A acts by χ (if A is compact,

W �nite dimensional, W rχs is canonically isomorphic to the maximal χ-isotypical subspace of W ).

A left GpF q-action on W , which commutes with the A-action, induces a left GpF q-action on W rχs.

4.1. De�nitions and results. Let ιE : E ãÑ M22pLq be the embedding of F -algebras given by

e ÞÑ diagpe, σpeqq. We have ιEpUEq{ιEpU
m�1
E q � Tw,m. In�ating the Tw,m-action to ιEpUEq and

pulling back via ιE , we obtain an UE-action on Xm
9w p1q. The center Z of GpF q is F �, thus (as in

the last lines of Section 2.2), the action of UE on Xm
9w p1q extends to an action of E� � F �UE , which

commutes with the left GpF q-action.

Let χ be a non-trivial character of E�. The level `pχq of χ is the least integer m ¥ 0, such

that χ|Um�1
E

is trivial. Moreover, the pair pE{F, χq is said to be admissible ([2] 18.2) if χ does not

factor through the norm NE{F : E� Ñ F �. Two pairs pE{F, χq, pE{F, χ1q are F -isomorphic, if there

is some γ P GE{F such that χ1 � χ � γ. Let Pnr
2 pF q denote the set of all isomorphism classes of

admissible pairs over F attached to E{F . An admissible pair pE{F, χq is called minimal if χ|UmE
does not factor through NE{F , where m is the level of χ.

De�nition 4.1. Let χ be a character of E�, such that pE{F, χq is admissible. The essential level

`esspχq of χ is the smallest integer m1 ¥ 0, such that there is a character φ of F � with `pφEχq � m1,

where φE � φ �NE{F .

Clearly, `esspχq ¤ `pχq. Moreover, an admissible pair pE{F, χq is minimal if and only if `pχq �

`esspχq. Using the geometric constructions from last sections, we associate to any admissible pair

pE{F, χq a GpF q-representation. Recall the element 9w P NT pLq introduced in (3.1), which depends

on an even integer n ¡ 0. Recall from the beginning of Section 3.4, that we write Hi
cpXq instead of

Hi
cpX �k Spec k̄,Q`q for a k-scheme X.

De�nition 4.2. Let pE{F, χq be admissible. Let `pχq � m ¥ `esspχq � m1. We take n ¡ 0 even such

that 0 ¤ m   n and let d0pn,mq be as in Theorem 3.5. De�ne Rχ to be the GpF q-representation

Rχ � Hd0pn,mq�m1

c pXm
9w p1qqrχs.

One easily sees that this de�nition is independent of the choice of n (cf. Theorem 3.2 and the

de�nition of Y m
v ). To state our main result, we need some terminology from [2], which we will freely

use here. In particular, the level `pπq P 1
2Z of an irreducible GpF q-representation is de�ned in [2]

12.6. Moreover, in [2] 20.1, 20.3 Lemma it is explained when an irreducible cuspidal representation π

of GpF q is called unrami�ed. We denote by A nr
2 pF q the set of all isomorphism classes of irreducible

cuspidal unrami�ed representations of GpF q. This is a subset of the set A 0
2 pF q of the isomorphism

classes of all irreducible cuspidal representations of GpF q ([2], �20). The (unrami�ed part of the)

tame parametrization theorem ([2] 20.2 Theorem) states the existence of a certain bijection (also

for even q):
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Pnr
2 pF q

�
ÝÑ A nr

2 pF q, pE{F, χq ÞÑ πχ (4.1)

where πχ is a certain GpF q-representation constructed in [2] �19. Below, in Section 4.6 we brie�y

recall this construction. Here is our main result.

Theorem 4.3. Let pE{F, χq be an admissible pair. The representation Rχ is irreducible cuspidal,

unrami�ed, has level `pχq and central character χ|F�. Moreover, Rχ is isomorphic to πχ, i.e., the

map

R : Pnr
2 pF q Ñ A nr

2 pF q, pE{F, χq ÞÑ Rχ (4.2)

is a bijection and coincides with the map from the tame parametrization theorem (4.1).

The theorem will be proven at the end of Section 4.6, after the necessary preparations in Sections

4.2-4.6 are done. We wish to point out here, that the injectivity of (4.2) follows from Proposition

4.26 and does not use the theory developed in [2], whereas to prove surjectivity of (4.2), we use the

full machinery of [2].

In the rest of this section, we only deal with the central character, reduce to the minimal case

and introduce some further notation. For a character φ of F � and a representation π of GpF q, we

write φπ for the GpF q-representation given by g ÞÑ φpdetpgqqπpgq and we let φE � φ �NE{F be the

corresponding character of E�. If φ is a character of F � and pE{F, χq an admissible pair, then (4.1)

satis�es: the central character of πχ is χ|F� and φπχ � πχφE . We have an analogous statement for

Rχ.

Lemma 4.4. Let pE{F, χq be admissible. Then the central character of Rχ is χ|F�. If φ is a

character of F �, then φRχ � RχφE .

Proof. The �rst statement follows from the de�nition of Rχ as the χ-isotypic component of some

cohomology space, and the fact that the actions of F � � Z � GpF q and F � � E� in this cohomology

space coincide as they already coincide on the level of varieties. The second statement follows by

unraveling the de�nition of Rχ, using the natural isomorphism H
d0pn,mq�m1

c pY m
v,0q � H

d0pn,λq�m1

c pY λ
v,0q

for m ¥ λ ¥ m1 from Theorem 3.5 and χ|kerpNE{F q � φEχ|kerpNE{F q. �

We �x some notations for the rest of Section 4. Let pE{F, χq be a minimal pair, let m be the level

of χ and write i0 � d0pn,mq �m. Let Ỹ m
v be the (disjoint) union of all Z-translates of Y m

v inside

Xm
9w p1q. Note that Y

m
v is �xed by K, hence Ỹ m

v is �xed by ZK. De�ne the ZK-representation Ξχ
by

Ξχ � Hi0
c pỸ

m
v qrχs.

Then Theorem 3.2 shows

Rχ � c� Ind
GpF q
ZK Ξχ.

Moreover, let ξχ be the restriction of Ξχ to K, i.e., Ξχ is the unique extension of ξχ to ZK such

that tp1,1q acts as χptp1,1qq. Let Vχ denote the space in which Ξχ (resp. ξχ) acts. Note that ξχ is

in�ated from a representation of the �nite group Km � K{Km�1, as Km�1 acts trivially in the

cohomology of Y m
v .

Lemma 4.5. ξχ � Hi0
c pY

m
v qrχ|UE s.
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Proof. Let W be a Q`-vector space in which K acts on the left, UE on the right such that these

actions commute. Let

W rts �

$'&'%
¸
iPZ

�8!i!8

wit
i : wi PW

,/./-
with obvious K and UE-actions. Extend them to ZK- resp. E�-actions by letting t act as

t.p
°
iwit

iq �
°
iwi�1t

i. Then one checks that pW rtsqrχ|UE s � pW rχ|UE sqrts and that the com-

posed map W rχ|UE s ãÑ pW rχ|UE sqrts� pW rtsqrχs is a bijection. Apply this to W � Hi0
c pY

m
v q and

W rts � c� IndZKK W � Hi0
c pỸ

m
v q. �

4.2. Trace computations I: preliminaries. Let pE{F, χq be a minimal pair of level m ¥ 0. Via

ιE , χ|UE induces a character of Tw,m. We denote this character of Tw,m also by χ. The context

excludes any ambiguity.

Lemma 4.6. We have χ P T_,genw,m , i.e., χ is non-trivial on Tw,m,0 X Tmw,m.

Proof. As pE{F, χq is minimal, χ|kerpNE{F : UmEÑUmF q is non-trivial. The level of χ ism, i.e., χ is trivial

on Um�1
E . Now we have UmE {U

m�1
E � Tmw,m via ιE , the norm map induces the map N̄ : UmE {U

m�1
E Ñ

pkrts{tm�1q�, and moreover, det �ιE � N̄, where det : Tmw,m Ñ pkrts{tm�1q� is the determinant. Now

kerpdet : Tmw,m Ñ pkrts{tm�1q�q � Tw,m,0 X Tmw,m and χ P T_,genw,m if and only it is non-trivial on

Tw,m,0 X Tmw,m. This shows the lemma. �

In Section 4.1 we de�ned the Km-representation ξχ. Our goal in Sections 4.2-4.4 will be to

compute the trace of ξχ on some important subgroups of Km. We will use the following trace

formula from [1], which is similar to [9] Theorem 3.2 and is adapted to cover the situation with wild

rami�cation.

Lemma 4.7 ([1] Lemma 2.12). Let X be a separated scheme of �nite type over a �nite �eld FQ
with Q elements, on which a �nite group A acts on the right. Let g : X Ñ X be an automorphism

of X, which commutes with the action of A. Let ψ : A Ñ Q�
` be a character of A. Assume that

Hi
cpXqrψs � 0 for i � i0 and FrobQ acts on Hi0

c pXqrψs by a scalar λ P Q�
` . Then

Trpg�,Hi0
c pXqrψsq �

p�1qi0

λ � 7A

¸
τPA

ψpτq � 7Sg,τ ,

where Sg,τ � tx P XpFqq : gpFrobQpxqq � x � τu.

We adapt this to our situation. Recall from (3.4) and Proposition 3.4(i) that Y m
v was parametrized

by coordinates a P k̄rts{tn�1, C P pk̄rts{tm�1q�, A P k̄rts{tm�1 with a0 � a mod t R k. We use

Lemma 4.7 with Q � q2.

Lemma 4.8. Let pE{F, χq be a minimal pair and let g P K. Assume g acts on Y m
v such that there

is some rational expression ppg, aq P pk̄rts{tm�1q� in a, such that g.pa,C,Aq � pg.a, ppg, aq � C, g.Aq

on coordinates. Let τ P Tw,m. Then

Trpg�; Hi0
c pY

m
v qrχsq �

1

qm�1

¸
τPTw,m

χpτq7S1g,τ ,
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where S1g,τ is the set of solutions in the variable a � a mod tm�1 P k̄rts{tm�1 (with a0 P k̄ r k) of

the equations

σpσpaq � aqpσpaq � aq�1 � �ppσ2paq, gq�1τ (4.3)

g.σ2paq � a.

Proof. The contribution to the cohomology of the a�ne space AmpAq is just a shift in degree,

the character χ is trivial on kerpIm, 9w{I
m � Tw,mq and a computation shows that g acts on A

by g.A � A � rpg, a, Cq for some rational expression r depending only on g, a, C. If we write

Y m
v � Y 1 � AmpAq, where Y 1 is given in coordinates a,C by the same equations as Y m

v , we are

reduced to apply Lemma 4.7 to Y 1, on which also the �nite group Tw,m acts. We claim that for this

scheme 7Sg,τ � pq2� 1qq2pn�1q7S1g,�τ . We observe that a point pa,Cq P Y 1pk̄q lies in Sg,τ if and only

if it satis�es the following equations:

σ2pCqC�1 � σpσpaq � aqpσpaq � aq�1 mod tm�1

g.σ2paq � a

ppσ2paq, gq � σ2pCq � C � τ

The coordinates am�1, . . . , an�1 occur only in the second equation and hence contributes a factor

q2 to the number of solutions each. Finally, for a �xed a, the third equation has exactly pq2�1qq2m

di�erent solutions in C P pk̄rts{tm�1q�, and we can eliminate C by putting the �rst and the third

equations together. Thus 7Sg,τ is equal to pq
2�1qq2pn�1q times the number of solutions of equations

(4.3) in a P k̄rts{tm�1 with τ replaced by �τ . This shows the claim.

Now, Corollaries 3.13 and 3.14 show that the conditions of Lemma 4.7 are satis�ed and the lemma

follows from an easy computation involving the above claim. �

De�nition 4.9. For x P GpOL{t
m�1qr t1u the level of x is the maximal integer `pxq ¥ 0, such

that x � 1 mod t`pxq. The level of 1 is m� 1.

This de�nition is auxiliary and will be used in the next two sections. Note that the level is

invariant under conjugation in GpOL{t
m�1q.

4.3. Trace computations II: Nm-action on Vχ. We keep notations from Sections 4.1,4.2. Let

further Nm � Km denote the subgroup

Nm �

"�
1 u

1



: x P krts{tm�1

*
.

For 0 ¤ i ¤ m�1, let N i
m denote the subgroup of Nm consisting of elements congruent to 1 modulo

ti and let N_,gen
m denote the set of characters of Nm, which are non-trivial on Nm

m .

Proposition 4.10. As Nm-representations one has

ξχ � IndNm1 1� IndNmNm
m

1 �
à

ψPN_,gen
m

ψ.

In particular, dimQ`
Vχ � pq � 1qqm.

22



Proof. We claim that for g P Nm we have

Trpg�, Vχq �

$''&''%
qm�1 � qm if g � 1

�qm if g P Nm
m r t1u

0 if g R Nm
m .

(4.4)

The proposition follows from this claim by comparing the traces of the Nm-representations on

the left and the right sides. We need the following lemma. Let S1g,τ be as in Lemma 4.8.

Lemma 4.11. Let g P Nm of level `pgq ¤ m � 1. Then S1g,τ � H, unless vtp1 � τq � `pgq and

τ � σpτq � 1 in k2rts{t
m�1. If both are satis�ed, then

7S1g,τ �

#
pq � 1qq2m�1 if g � 1 (and hence τ � 1),

qm�1�`pgq if g P Nmr t1u.

Proof. As both, the Tw,m- and the Km-actions on Y
m
v have their origin in matrix multiplication,

one sees easily that Sg,τ � H, unless detpτq � detpgq. Thus we can assume this, i.e., τσpτq � 1.

Write g �

�
1 x

1



P Nm with x P krts{tm�1. Then vtpxq � `pgq. The action of g can be describen

by g.pa,Cq � pa� x,Cq. By De�nition, S1g,τ is the set of solutions of

σpσpaq � aqpσpaq � aq�1 � �τ (4.5)

σ2paq � x � a

in a P k̄rts{tm�1 with a0 R k. Let s � σpaq�a. For a �xed s P pk̄rts{tm�1q�, the equation σpaq�a � s

in a has exactly qm�1 solutions. After adding �σpaq to both sides of the second equation in (4.5),

this second equation gets σpsq � x � �s. Thus we are reduced to solve the equations

σpsq � x � �s (4.6)

σpsqs�1 � �τ

in the variable s P pk̄rts{tm�1q�. Putting σpsq � �px � sq into the second equation, we obtain

1� τ � �xs�1 and one checks that equations (4.6) are equivalent to

σpsq � x � �s (4.7)

1� τ � �xs�1

From the second equation of (4.7) and since s must be a unit, we see that either S1g,τ � H or

vtp1� τq � vtpxq. Assume the second holds and let µ � vtpxq. If µ � m� 1, then g � 1, τ � 1 and

the lemma follows. Assume now 0   µ   m � 1. Then x � tµx̃ for some x̃ P pk̄rts{tm�1�µq� and

τ � 1� τ̃ tµ for some τ̃ P pk2rts{t
m�1�µq�. The condition τσpτq � 1 is equivalent to

τ̃ � σpτ̃q � τ̃σpτ̃qtµ � 0 mod tm�1�µ. (4.8)

The second equation of (4.7) is equivalent to s � τ̃�1x̃ mod tm�1�µ, i.e., s is uniquely determined

modulo tm�1�µ. Moreover, if s � τ̃�1x̃ mod tm�1�µ we have
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σpsq � x� s � σpτ̃�1x̃q � x� τ̃�1x̃ � x̃ptµ � σpτ̃q�1 � τ̃�1q � 0 mod tm�1�µ,

where the last equation follows from (4.8). Thus s � τ̃�1x̃ mod tm�1�µ is the unique solution of

equation (4.7) modulo tm�1�µ. One easily sees that over any solution of the �rst equation of (4.7)

modulo tλ lie precisely q solutions of it modulo tλ�1. This shows that (4.7) has precisely qµ solutions

if µ ¡ 0. It remains to handle the case µ � 0, but this is done similarly to the case µ ¡ 0. �

For g � 1, we have S11,τ � H unless τ � 1 and 7S11,1 � qmpq � 1q. The claim (4.4) follows

immediately from Lemma 4.8. Let now g P Nmr t1u of level ` � `pgq ¤ m. Then Lemmas 4.8 and

4.11 show

Trpg�, Vχq �
1

qm�1

¸
τPTw,m,0XpT `w,m rT `�1

w,mq

χpτq7S1g,τ

� q` �
¸

τPTw,m,0XpT `w,m rT `�1
w,mq

χpτq � �q` �
¸

τPTw,m,0XT
`�1
w,m

χpτq,

the last equation being true as χ is a non-trivial character on Tw,m,0XT
`
w,m. Unless ` � m, the sum

in the last expression vanishes, as χ is still a non-trivial character on Tw,m,0 X T `�1
w,m. If ` � m, we

have T `�1
w,m � t1u, and (4.4) follows. �

Corollary 4.12. pξχ, Vχq is irreducible as BpOF {t
m�1q-representation and hence also as Km-

representation.

Proof. For ψ P N_,gen
m , let Vχrψs denote the ψ-isotypic component of Vχ. By Proposition 4.10,

Vχrψs is one-dimensional. For x P T pOF {t
m�1q, let ψx be the character of Nm de�ned by ψxpgq �

ψpx�1gxq. Then x.Vχrψs � Vχrψ
xs. Let 0 � W � Vχ be a BpOF {t

m�1q-invariant subspace. Then

W decomposes as the sum of its Nm-isotypical components W rψs (ψ P N_,gen
m ) and W rψs � Vχrψs.

As Vχrψs is one-dimensional, W rψs is either 0 or equal to Vχrψs. But as W � 0, there is a ψ, such

that W rψs � Vχrψs. Note that the natural action of T pOF {t
m�1q on N_

m restricts to a transitive

action on N_,gen
m . This transitivity implies that W rψs � Vχrψs for all ψ P N

_,gen
m , i.e., W � Vχ. �

4.4. Trace computations III: Hm-action on Vχ. We keep notations from Sections 4.1 and 4.2.

Let Hm � Km be a non-split torus, i.e., a subgroup which is conjugate to Tw,m inside GpOL{t
m�1q.

Let Zm be the center of Km. One has Zm � Hm. We �x an isomorphism cs : Tw,m
�
Ñ Hm, given by

conjugation with s P Gpk2rrtssq, and let H i
m � cspT

i
w,mq. Let χ̃ � χ � c�1

s and χ̃σ � χσ � c�1
s , where

χσ � χ � σ.

Note that if s1 P GpLq is another matrix conjugating Tw,m into Hm, then c
1
sc
�1
s is either identity

or σ. In particular, up to σ-action, χ̃ does not depend on the choice of the element s.

For a character ψ P H_
m, let ipψq P t0, . . . ,m � 1u be the smallest integer such that ψ coincides

with χ̃ or χ̃σ on the subgroup H
ipψq
m (in particular, ipψq � 0 if and only if ψ � χ̃ or χ̃σ).

Theorem 4.13. Let ψ be a character of Hm. Then xψ, ξχyHm � 0 unless ψ|Zm � χ̃|Zm . Assume

ψ|Zm � χ̃|Zm . Then

xψ, ξχyHm �

#
1 if m� ipψq odd

0 if m� ipψq even.
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The proof of Theorem 4.13 is given at the end of this section. To prepare it, we have to compute

the traces of elements x P Hm in Vχ. This is done in Proposition 4.20 below, for which Lemma 4.17

is the main technical tool. We have an immediate consequence of Theorem 4.13.

Corollary 4.14. Let m ¡ 0. The character χ̃ (and hence also χ) is up to σ-conjugacy uniquely

determined by ξχ among all characters of Hm as follows: it is the unique (up to σ-conjugacy)

character ψ P H_
m, such that ψ|Zm is the central character of ξχ and

(i) if m is odd: ψ occurs in ξχ, and all characters ψ1 � ψ, which coincide with ψ on ZmH
1
m do

not occur in ξχ.

(ii) if m is even: ψ does not occur in ξχ, and all characters ψ1 � ψ, which coincide with ψ on

ZmH
1
m occur in ξχ.

Moreover, the map pE{F, χq ÞÑ Ξχ from Pnr
2 pF q to the set of isomorphism classes of ZK-representations

is injective.

Proof. The �rst statement is immediate from Theorem 4.13. We show injectivity of χ ÞÑ Ξχ. From

the �rst statement of the corollary, χ|UE is uniquely determined by the Km-representation ξχ, hence

also by its in�ation to K, which is equal to Ξχ|K . Moreover, by Lemma 4.4, χ|F� is equal to the

restriction of Ξχ to the center Z � F � of ZK. This �nishes the proof, as E� � F �UE . �

De�nition 4.15. We say that x is maximal if `pxq ¥ `pzxq for all z P Zm.

Lemma 4.16. Let x �

�
x1 x2

x3 x4



P Hmr t1u. Then x maximal if and only if vtpx3q � `pxq.

Proof. Assume �rst ` � `pxq ¡ 0. Consider τx � c�1
s pxq P Tw,m and write τx � 1 � τx,`t

` � � � � �

τx,mt
m. One sees immediately that maximality of an element is invariant under conjugation, hence

x is maximal if and only if τx is, i.e., if and only if τx,` R k. A computation (using the fact that all

entries of s must be units) shows that x3 � t`upτx � σpτxqq with some unit u P pk̄rts{tm�1q�. The

lemma follows in the case `pxq ¡ 0. The case `pxq � 0 is similar. �

We introduce the following version of the characteristic polynomial of an element x P Km. Let

` � `pxq be the level of x. Let x̃ be some lift of x to K. Then the characteristic polynomial of x̃

can be seen as the function

px̃ : OL Ñ OL λ ÞÑ px̃pλq � detpλ � Id� xq.

Note that px̃pU
`
Lq � t2`OL. Let now λ P U `L and x̃1, x̃2 two lifts of x to K. Then px̃1pλq � px̃2pλq P

tm�`�1OL, i.e., px̃pλq modulo tm�`�1 depends only on x, not on the lift x̃. This gives a well-

de�ned map p1x : U `L Ñ t2`OL{t
m�`�1OL. Moreover, one immediately computes that this induces

the following map de�ned as the composition:

px : U `L{U
m�1
L

p1xÝÑ t2`OL{t
m�`�1OL Ñ OL{t

m�`�1OL, (4.9)

where the second arrow is multiplication by t�2`. Explicitly, if ` ¡ 0 and x � 1 � t`
�
y1 y2

y3 y4



,

then

pxp1� τ̃ t`q � pτ̃ � y1qpτ̃ � y4q � y2y3.
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We identify Tw,m with pk2rts{t
m�1q� � pk̄rts{tm�1q� by sending

�
τ

σpτq



to τ . In particular,

for x P K`
m and τ P T `w,m we have the element pxpτq P k̄rts{pt

m�`�1q, where ` is the level of x. Let

S1x,τ be as in Lemma 4.8.

Lemma 4.17. Let x P Hm be maximal of level ` � `pxq ¤ m. Let τ P Tw,m. Then S
1
x,τ � H, unless

τ P T `w,m and detpτq � detpxq. For τ P T `w,m with detpτq � detpxq we have:

7S1x,τ �

$''''&''''%
qm�` if pxpτq � 0 and m� ` even

qm�`�1 if pxpτq � 0 and m� ` odd

0 if vtppxpτqq   8 is odd

pq � 1qqm�` if vtppxpτqq   8 is even.

Proof. Let x P Hm be maximal of level ` ¤ m and let τx � c�1
s pxq. Let τ P Tw,m. From the de�nition

of S1x,τ one immediately deduces that S1x,τ � H, unless detpxq � detpτq, i.e., τ P τxTw,m,0 � Txp0q.

Hence we can assume τσpτq � detpxq. Write x �

�
x1 x2

x3 x4



. A point of Y m

v is parametrized by

the coordinates a,C and A as above. One computes:

x.pa,Cq � px.a, x.Cq � p
x1a� x2

x3a� x4
,

detpxqC

x3a� x4
q. (4.10)

By Lemma 4.8, 7S1x,τ is the number of solutions of equations (4.3) in the variable a P k̄rts{tm�1

(satisfying a0 R k). Explicitly, these equations are:

x1σ
2paq � x2 � apx3aσ

2paq � x4q

pσ2paq � σpaqqσpτq � �px3σ
2paq � x4qpσpaq � aq.

Inserting the �rst equation into the second and applying σ�1 to the result, we see that the equations

are equivalent to

x3aσ
2paq � x1σ

2paq � x4a� x2 � 0 (4.11)

x3aσpaq � pτ � x1qσpaq � pτ � x4qa� x2 � 0. (4.12)

Sublemma 4.18. For i ¥ 1, there are precisely q2 solutions of equation (4.11) modulo ti�1 lying

over a given solution (satisfying a0 R k) of (4.11) modulo ti.

Proof. Write a �
°i
j�0 ajt

j , xλ �
°i
j�0 xλj . The coe�cient of ti on the right side of (4.11) modulo

ti�1 is

px30a0 � x10qa
q2

i � px30a
q2

0 � x40qai �R, (4.13)

where R P k̄ depends only on a0, . . . , ai�1 and x and not on ai. As a0 R k and x P Gpkq, it is clear

that x30a0 � x10 � 0 and x30a
q2

0 � x40 � 0. Thus (4.13) is a separable polynomial in ai of degree

q2, i.e., it has exactly q2 di�erent roots. �

Now we concentrate on the case ` ¡ 0, i.e., x � 1 � t`
�
y1 y2

y3 y4



. Equation (4.12) modulo t`

shows pτ � 1qσpaq � pτ � 1qa mod t`. If τ � 1 mod t`, then this forces a0 P k, which contradicts
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pa, c, Aq P Y m
v . Hence S1x,τ � H, unless τ P T `w,m. Assume τ P T `w,m. and τ � 1 � τ̃ t`, with some

τ̃ P k2rts{t
m�1�`. Note that the condition detpxq � detpτq satis�ed by x, τ is equivalent to

y1 � y4 � py1y4 � y2y3qt
` � τ̃ � σpτ̃q � τ̃σpτ̃qt` mod tm�`�1. (4.14)

Equations (4.11) and (4.12) transform to

t`py3aσ
2paq � y1σ

2paq � y4a� y2q � σ2paq � a (4.15)

y3aσpaq � pτ̃ � y1qσpaq � pτ̃ � y4qa� y2 � 0 mod tm�`�1 (4.16)

Sublemma 4.18 shows that the number of solutions of (4.15), (4.16) is equal to q2` times the number

of solutions of (4.15) and (4.16) mod tm�`�1.

Let us write Q � pxpτq with px as in (4.9). A computation involving (4.14) implies

τ̃ � σpτ̃q � y1 � y4 � t`τ�1Q mod tm�`�1. (4.17)

Sublemma 4.16 allows us to make the linear change of variables a � b� τ̃�y1
y3

and equations (4.15),

(4.16) modulo tm�`�1 take the following form (using (4.17) and the fact that σ2paq�a � σ2pbq� b):

t`
�
y3bσ

2pbq � τ̃σ2pbq � pt`τ�1Q� σpτ̃qqb� y�1
3 Q

	
� σ2pbq � b mod tm�`�1 (4.18)

y3bσpbq � t`τ�1Qb� y�1
3 Q � 0 mod tm�`�1. (4.19)

Write b �
°m
i�0 bit

i. We have three cases: vtpQq � 8, vtpQq   8 odd, vtpQq   8 even. Assume

�rst vtpQq � 8, i.e., Q � 0. Then (4.19) is equivalent to b0 � b1 � � � � � btm�`
2

u � 0. As b � 0 is

also a solution of (4.18) mod tt
m�`
2

u�1, it follows from Sublemma 4.16 that the number of solutions

of (4.18) and (4.19) mod tm�`�1 is exactly pq2qm�`�tm�`
2

u and the lemma follows in this case, once

we have shown that no of these solutions lies in the 'forbidden' subset, determined by a0 P k. This

is done in Sublemma 4.19 below.

Now assume vtpQq   8. Equation (4.19) shows that we must have vtpQq � 2vtpbq. In particular,

7S1x,τ � H if vtpQq is odd. Assume vtpQq � 2j   8 is even and write Q � t2jQ1. Then b P

k̄rts{tm�`�1 solves (4.19) if and only if b � tjb1 (i.e., b0 � � � � � bj�1 � 0) and b1 �
°m�`�1
i�j bit

i�j

solves

y3b
1σpb1q � t`�jτ�1Q1b1 � y�1

3 Q1 � 0 mod tm�`�2j�1. (4.20)

Note that such a solution b1 is necessarily a unit. Using this, we can express σpb1q in terms of b1,

apply σ to it, and then insert again the expression of σpb1q in (4.20). This shows:

σ2pb1q �
σpQ1q

Q1

b1 � y3t`�jτ�1Q1
� y�1

3 t`�jσpτ�1Q1q pmod tm�`�2j�1q,

which multiplied by tj gives an expression of σ2pbq mod tm�`�j�1 in terms of b1. Now a (very ugly,

but straightforward) computation shows that if we put this expression for σ2pbq into equation (4.18)

modulo tm�`�j�1, we obtain the tautological equation 0 � 0. This simply means that any solution

b of (4.19) mod tm�`�j�1 is a solution of (4.18) mod tm�`�j�1. Similarly as in Sublemma 4.18,

one checks that (4.19) modulo tm�`�j�1 has precisely pq�1qqm�`�2j solutions (q�1 corresponds to

the freedom of choosing bj and q
m�`�2j corresponds to the freedom of choosing bj�1, . . . , bm�`�j).
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Again by Sublemma 4.16, the lemma also follows in this case, once we have shown that no of these

solutions lie in the 'forbidden' subset, determined by a0 P k. This is done in Sublemma 4.19.

In the case `pxq � 0, the lemma can be proven in the same way. �

Sublemma 4.19. With notations as in the proof of Lemma 4.17, assume τ P T `w,m and detpτq �

detpxq. Let a be a solution of equations (4.11), (4.12), then a0 R k.

Proof. For any r ¥ 1 and an element X P k̄rts{ptrq, denote by X0 P k̄ the reduction of X modulo t.

Write τx � c�1
s pxq P Tw,m. We handle the case ` ¡ 0 �rst. Write τ � 1� τ̃ t`, τx � 1�τx,`t

`� . . . . As

a is a solution of (4.11), (4.12), b � a� τ̃�y1
y3

is a solution of (4.18), (4.19). We have a0 � b0�
τ̃0�y10
y30

.

Assume �rst vtpQq ¡ 0. Maximality of x (and hence of τx) implies τx,` R k. Now, vtpQq �

vtppxpτqq ¡ 0 is equivalent to τ̃0 � τx,` or � σpτx,`q mod t. Hence τ̃0 R k. On the other hand, the

solution b must satisfy b0 � 0 and we have y10, y30 P k. As τ̃0 R k we obtain a0 R k.

Now assume vtpQq � 0 and suppose that a0 P k, i.e., a
q
0 � a0. Then for b0 we must have:

bq0 � b0 �
τ̃ q0 � τ̃0

y30
. (4.21)

Putting this into equation (4.19) mod t, we deduce that b0 must satisfy

b20 �
τ̃ q0 � τ̃0

y30
b0 �

Q0

y2
30

� 0, (4.22)

where Q0 � pτ̃0 � τx,`qpτ̃0 � σpτx,`qq. By assumption we have detpτxq � detpxq � detpτq mod t`�1,

hence

τ̃0 � σpτ̃0q � τx,` � σpτx,`q. (4.23)

Assume �rst charpkq ¡ 2. A computation shows that the discriminant of equation (4.22) is

D � y�2
30 pσpτx,`q � τx,`q

2 and hence the solutions of it are

b0,� � �
σpτ̃0q � τ̃0

2y30
�
σpτx,`q � τx,`

2y30
.

Putting any of this solutions into equation (4.21) shows τx,` � σpτx,`q, which is a contradiction to

maximality of x. This �nishes the proof in the case charpkq ¡ 2.

Assume now charpkq � 2. Let µ �
τ̃q0�τ̃0
y30

. Then µ P k. Further, (4.23) shows µ � 0 (otherwise,

τx,` P k, which is a contradiction to maximality of x). Set also δ � Q0

y230µ
2 . Note that by (4.23),

Q0 P k and hence also δ P k. Make the change of variables b0 � µs, i.e., b0 satis�es (4.22), (4.21) if

and only if s satis�es

sq � s� 1 � 0

s2 � s� δ � 0.

The second of these equations implies sq � s � Trk{F2
pδq. This together with the �rst equation

implies Trk{F2
pδq � 1. On the other hand, let R �

τ̃0�τx,`
τx,`�τ

q
x,`
. Using (4.23), we see that

R�R2 �
pτ̃0 � τx,`qpτ̃0 � τ qx,`q

pτx,` � τ qx,`q
2

� δ.

This implies Trk{F2
pδq � 0, which is a contradiction. This proves the lemma in the case charpkq � 2.
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Let us now consider the case `pxq � 0. By maximality of x, we have x3 P pkrts{t
rq�. If charpkq ¡ 2,

the variable change a � b � x�1
3 pτ � x1q analogous to the one in the case `pxq ¡ 0 leads to a very

similar proof. Assume charpkq � 2. We have to show that equations (4.12) mod t and aq0 � a0 do

not have a common solution. Let

λ � x�1
30 px10 � x40q � x�1

30 pτ
q
x,0 � τx,0q,

Then λq � λ and λ � 0 by maximality of x. Make the change of variables given by a0 � λr�x�1
30 x10.

Then aq0 � a0 transforms into rq � r and (4.12) gets (after using rq � r and canceling)

x30λ
2r2 � x30λ

2r � x�1
30 detpxq � 0,

or equivalently

r2 � r �
τ q�1
x,0

pτ qx,0 � τx,0q2
� 0.

We have to show that this equation has no solution in k. But observe that the two solutions of it

are given by
τx,0

τqx,0�τx,0
and

τqx,0
τqx,0�τx,0

lie in k2 r k (note that they are di�erent by maximality of x).

This �nishes the proof also in this case. �

Proposition 4.20. Let x P Hm be maximal of level `pxq ¤ m. Then

trpx;Vχq � p�1qm�`pxq�1q`pxqpχ̃pxq � χ̃σpxqq.

Proof. Let τx � c�1
s pxq P T `w,m. For j

1 P t0, 1, . . . ,m� `,8u, let

Txpj
1q � tτ P τxT

`
w,m,0 Y σpτxqT

`
w,m,0 : τ � τx or σpτxq mod t`�j

1
u

� τx kerpT `w,m,0 � T `w,`�j1�1,0q Y σpτxq kerpT `w,m,0 � T `w,`�j1�1,0q � T `w,m

be the union of the two kerpT `w,m,0 � T `w,`�j1�1,0q-cosets inside T
`
w,m in which τx and σpτxq lie (note

that these cosets are disjoint if j1 ¡ 0 and equal if j1 � 0). Note that τ P Txp0q if and only if

detpτq � detpxq and τ P T `w,m.

Sublemma 4.21. For τ P T `w,m with detpτq � detpxq we have: τ P Txpj
1q ô vtppxpτqq ¥ j1.

Proof of Sublemma 4.21. Write τ � 1 � t`τ̃ and τx � c�1
s pxq � 1 � t`τ̃x. The characteristic poly-

nomial is invariant under conjugation, hence vtppxpτqq � vtppτxpτqq. Write τx � 1 � t`τ̃x. As x

(and hence also τx) is maximal, τ̃x � σpτ̃xq is a unit. We have pτxpτq � pτ̃ � τ̃xqpτ̃ � σpτ̃xqq. Thus

vtppxpτqq ¥ j1 ô τ̃ � τ̃x mod tj
1
or τ̃ � σpτ̃xq mod tj

1
. The sublemma follows. �

By Lemma 4.8 and the �rst statement of Lemma 4.17 we have:

trpx;Vχq �
1

qm�1

¸
τPT `w,m

detpτq�detpxq

χpτq7S1x,τ (4.24)

�
1

qm�1
p
¸

τPTxp8q

χpτq7S1x,τ �
m�`̧

j1�0

¸
τPTxpj1q
τRTxpj1�1q

χpτq7S1x,τ q.
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Write T `w,m,0 � Tw,m,0 X T `w,m. Lemma 4.17 implies for 0   j1   m� `:

¸
τPTxpj1q
τRTxpj1�1q

χpτq7S1x,τ � pχ̃pxq � χ̃σpxqq � pconstq �
¸

τPkerpT `w,m,0�T `
w,l�j1�1,0

q

τRkerpT `w,m,0�T `
w,l�j1,0

q

χpτq

� pχ̃pxq � χ̃σpxqq � pconstq �
¸

τPkerpT `w,m,0�T `
w,l�j1,0

q

χpτq � 0

and similarly
°
τPTxp0q
τRTxp1q

χpτq7S1x,τ � 0 as χ is non-trivial on kerpT `w,m,0 � Tw,l�j1,0q (one has to apply

this twice). Further, if m � ` is odd, then S1x,τ is empty for τ P Txpm � `qrTxp8q, hence in this

case Lemma 4.17 implies:

trpx;Vχq �
1

qm�1

¸
τPTxp8q

χpτq7S1x,τ � q`pχpτxq � χσpτxqq.

If m� ` is even, then

trpx;Vχq �
1

qm�1

�� ¸
τPTxp8q

χpτqqm�` � pχpτxq � χσpτxqq
¸

τPTmw,m,0 r t1u

χpτqpq � 1qqm�`

�

� �q`pχpτxq � χσpτxqq.

This �nishes the proof of Proposition 4.20. �

Proof of Theorem 4.13. If ψ|Zm � χ̃|Zm , then xψ, ξχyHm � 0 by Lemma 4.4. Note that for x P

Hm, z P Zm we have trpzx;Vχq � χpzqtrpx;Vχq. Let ψ be a character of Hm with ψ|Zm � χ|Zm .

Note that

tx P Hm : max
zPZm

`pzxq � `u �

#
ZmH

`
mrZmH

`�1
m if ` ¤ m

Zm if ` � m� 1.

As ψ|Zm � χ|Zm and trpz;Vχq � pq � 1qqmχpzq for z P Zm by Lemma 4.11, we have

xψ, ξχyHm �
1

pq2 � 1qq2m

¸
xPHm

ψpxqtrpx;Vχq �
1

pq2 � 1qq2m
ppq � 1q2q2m �

m̧

`�0

S`q, (4.25)

where

S` �
¸

xPZmH`
m rZmH`�1

m

ψpxqtrpx;Vχq � p�1qm�`�1q`
¸

xPZmH`
m rZmH`�1

m

ψpxqpχ̃pxq � χ̃σpxqq

� 7pZmH
`
mqxψ, χ̃� χ̃σyZmH`

m
� 7pZmH

`�1
m qxψ, χ̃� χ̃σyZmH`�1

m

for 0 ¤ ` ¤ m, by Proposition 4.20. For ` ¥ 1 we have 7pZmH
`
mq � pq�1qq2m�`�1, and we compute:
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S0 �

$''&''%
p�1qm�1q2m�1pq � 1q if ipψq = 0

p�1qmpq � 1qq2m if ipψq � 1

0 otherwise,

and for 0   `   m:

S` �

$''&''%
p�1qm�`�1pq � 1q2q2m if ipψq ¤ `

p�1qm�`pq � 1qq2m if ipψq � `� 1

0 otherwise,

and

Sm �

#
p�1qq2mpq � 1qpq � 2q if ipψq ¤ m

2pq � 1qq2m if ipψq � m� 1.

Here one uses that if ipψq   m � 1, then ψ coincides with precisely one of the characters χ̃, χ̃σ on

H
ipψq
m and does not coincide with the other even on the last �ltration step Hm

m (because χ � χσ on

Tmw,m,0). The theorem follows if we put these values into (4.25). �

4.5. Relation to strata. We will freely use the terminology of intertwining from [2] �11 and of

strata and cuspidal inducing data from [2] Chapter 4. From results of Section 4.3 we deduce that

Rχ is irreducible, cuspidal and contains an unrami�ed stratum. First we have the following general

result.

Proposition 4.22. Let m ¥ 0 and let Ξ be a ZK-representation, which restriction to K is the

in�ation of an irreducible Km-representation ξ, which does not contain the trivial character on Nm
m .

Then the GpF q-representation ΠΞ � c� Ind
GpF q
ZK Ξ is irreducible, cuspidal and admissible. If m ¡ 0,

it contains an unrami�ed simple stratum pM,m, αq for some α P t�mM. Moreover, `pΠΞq � m and

ΠΞ does not contain an essentially scalar stratum. In particular, for any character φ of F �, one

has 0   `pΠΞq ¤ `pφΠΞq.

Corollary 4.23. Let pE{F, χq be a minimal pair, such that χ has level m ¥ 0. The representation

Rχ is irreducible, cuspidal and admissible. Assume m ¡ 0. Then the representation Rχ contains

an unrami�ed simple stratum. In particular, `pRχq � m and Rχ is unrami�ed. Moreover, for any

character φ of F �, one has 0   `pRχq ¤ `pφRχq.

Proof. All assumptions of Proposition 4.22 are satis�ed for the ZK-representation Ξχ and the

corresponding Km-representation ξχ by Corollary 4.12 and Proposition 4.10. �

Proof of Proposition 4.22. Irreducibility and cuspidality of ΠΞ follow from [2] Theorem 11.4, which

assumptions are satis�ed due to irreducibility of Ξ and Lemma 4.24. Then admissibility follows

from irreducibility (cf. e.g. [2] 10.2 Corollary). Now assume m ¡ 0. To contain a stratum is a priori

de�ned with respect to a choice of an additive character. So �x some ψ P F_ of level 1 (i.e., ψ|OF
non-trivial, ψ|tOF trivial). Then [2] 12.5 Proposition gives us an isomorphism (here we use m ¡ 0):

t�mM{t�m�1M
�
ÝÑ pKm{Km�1q_ � pKm

m q
_, a� t�m�1M ÞÑ ψa|Km ,

where ψa is given by ψapxq � ψptrMpapx � 1qqq, where trM is the trace map M Ñ OF . Explicitly,

if a � t�m
�
a1 a2

a3 a4



P t�mM and x � 1� tm

�
x1 x2

x3 x4



P Km

m , then
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ψapxq � ψpa1x1 � a2x3 � a3x2 � a4x4q. (4.26)

We show that ΠΞ contains an unrami�ed simple stratum. Therefore, note that ΠΞ contains the

in�ation to K of the Km-representation ξ. Thus it is enough to show that for any α P t�mM, such

that ψα is contained in ξ on Km
m , the stratum pM,m, αq is unrami�ed simple. As in [2] 13.2, for

α P t�mM we can write α � t�mα0 with α0 P M and let fαpT q P OF rT s be the characteristic

polynomial of α0. Let f̃αpT q be its reduction modulo t. By de�nition, pM,m, αq is unrami�ed

simple if and only if f̃αpT q is irreducible in krT s, or equivalently, if and only if α0 mod t P Gpkq is

not triangularizable.

Let now α � t�mα0 be arbitrary such that ξ contains ψα on Km
m . It is enough to show that α0

mod t is not triangularizable. Suppose it is. Then there is some β � t�m
�
β1 β2

0 β4



P t�mM such

that gαg�1 � β mod t�m�1M, i.e., ψgαg�1 and ψβ coincide onK
m
m . By Lemma 4.25, ψβ also occurs

in ξ on Km
m and (4.26) shows that ψβ|Nm

m
is the trivial character of Nm

m . This is a contradiction

to our assumption that ξ does not contain the trivial character on Nm
m . This contradiction shows

that ΠΞ contains an unrami�ed simple stratum. As an unrami�ed simple stratum is fundamental,

[2] 12.9 Theorem shows that `pΠΞq � m.

Suppose now pM,m1, α1q is some essentially scalar stratum contained in ΠΞ. It has to intertwine

with the previously found unrami�ed simple stratum pM,m, αq contained in ΠΞ (cf. [2] 12.9). As

essentially scalar strata are fundamental, [2] 12.9 Lemma 2 implies m1 � m. But in this case the

above argumentation shows that pM,m, α1q is unrami�ed simple and hence not essentially scalar.

Finally, Theorem [2] 13.3 implies the last statement of the proposition. �

Lemma 4.24. Let Ξ,Ξ1 be two ZK-representations, which restrictions to K are in�ations of Km-

representations ξ, ξ1. Assume that ξ does not contain the trivial character on Nm
m . An element

g P GpF qrZK never intertwines Ξ with Ξ1.

Proof. The property of intertwining only depend on the double coset ZKgZK of g. By Cartan

decomposition, a set of representatives of these cosets is given by the diagonal matrices tmα �

tp0,αq : α P Z¥0u (cf. e.g. [2] 7.2.2). Assume α ¡ 0. Then ZK X mαpZKq � ZK X mαZKm
�1
α

contains the subgroup Nm �

�
1 tmOF

1



, on which Ξ does not contain the trivial character, and

on the other hand we have

mαΞ1

�
1 g

1



� Ξ1pm�1

α

�
1 g

1



mαq � Ξ1

�
1 tαg

1



,

i.e., mαΞ1 restricted to Nm is the trivial representation (as α ¡ 0 and Ξ1 is trivial on Km�1). Hence

HomZKXmα pZKqpΞ,
mαΞ1q � HomNmpΞ,mαΞ1q � 0. �

Lemma 4.25. Let a P t�mM, g P K. If ψa occurs in ξ on Km
m , then ψgag�1 occurs in ξ on Km

m .

Proof. For x P Km
m one has:

ψgag�1pxq � ψptrMpgag
�1px� 1qqq � ψptrMpag

�1px� 1qgqq � ψptrMpapg
�1xg � 1qqq � ψapg

�1xgq.
32



Let V denote the space in which ξ acts. For simplicity we write x.v instead of ξpxqpvq for

x P Km, v P V . Let v P V , such that x.v � ψapxqv for all x P Km
m . Then for all x P Km

m we have:

g�1x.pg.vq � g�1xg.v � ψapg
�1xgqv � ψgag�1pxqv.

Thus x.pg.vq � ψgag�1pxqpg.vq, i.e., on the linear span of g.v any element x P Km
m acts as the scalar

ψgag�1pxq. In particular, ψgag�1 occurs in ξ on Km
m . �

Proposition 4.26. The map R : Pnr
2 pF q Ñ A nr

2 pF q from Theorem 4.3 is injective.

Proof. Let pE{F, χ1q, pE{F, χ2q be two non-isomorphic admissible pairs. By Corollary 4.23 we may

assume that χ1, χ2 have the same level and by Lemma 4.4 we may assume that χ1, χ2 coincide

on F �. Twisting by a central character, we may assume that both pairs are minimal. The last

statement of Corollary 4.14 shows Ξχ1 � Ξχ2 . It remains to show that this implies Rχ1 � Rχ2 .

Frobenius reciprocity and Mackey formula show that

HomGpF qpRχ1 , Rχ2q �
à

gPZKzGpF q{ZK

HomZKXgpZKqpΞχ1 ,
gΞχ2q

� HomZKpΞχ1 ,Ξχ2q,

where the second equality follows from Lemma 4.24. As Ξχ1 ,Ξχ2 are irreducible (by Corollary 4.12)

and unequal, the Hom-space is zero. �

4.6. Relation to cuspidal inducing data. Now we want to compare our construction to the

construction in [2] �19 of representations attached to minimal pairs. For the convenience of the

reader and to have appropriate notations, we brie�y recall their set up ([2] �15,�19). Let ψ be some

�xed (additive) character of F of level one. Let ψE � ψ � trE{F , ψM � ψ � trM. Let pE{F, χq be

a minimal pair. Let m ¡ 0 be the level of χ. Let α P p�mE be such that χp1 � xq � ψEpαxq for

x P p
tm
2

u�1

E . Choose an F -embedding E ãÑ M22pF q such that E� � ZK (not to be confused with

ιE from the beginning of Section 4.1). Then pM,m, αq is an unrami�ed simple stratum. Let then

Jα � E�Ktm�1
2

u;

this is an open subgroup of ZK. Moreover, via the embedding of E intoM22pF q, α de�nes ([2] 12.5)

a character ψα of Ktm
2

u�1, which is trivial on Km�1 (thus inducing a character of K
tm
2

u�1
m ). Let

Cpψα,Mq be the set of isomorphism classes of all irreducible representations Λ of Jα, such that Λ

contains the character ψα on Ktm
2

u�1, or equivalently (by [2] 15.3 Theorem), Λ|
Ktm2 u�1 is a multiple

of ψα.

For any Λ P Cpψα,Mq, the triple pM, Jα,Λq is a (in our case, unrami�ed) cuspidal type in GpF q in

the sense of [2] 15.5 De�nition. An equivalent reformulation is given in terms of cuspidal inducing

data ([2] 15.8): the cuspidal inducing datum attached to pM, Jα,Λq is the pair pM,Ξq, where

Ξ � IndZKJα Λ. The GpF q-representation c� Ind
GpF q
Jα

Λ � c� Ind
GpF q
ZK Ξ attached to pM, Jα,Λq,

resp. to pM,Ξq is then irreducible and cuspidal.

Out of the given minimal pair pE{F, χq one constructs now the representation Λ of Jα, and thus

gets a corresponding cuspidal type. We have two di�erent cases.

Case m odd. ([2] 19.3) Then tm2 u� 1 � tm�1
2 u. Let Λ be the character of Jα de�ned by

Λ|
Ktm�1

2 u � ψα, Λ|E� � χ (4.27)
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(this is a consistent de�nition, as one sees from trM|OE � trE |OE , E
� XKtm�1

2
u � U

tm�1
2

u

E ).

Case m ¡ 0 even. ([2] 15.6, 19.4) Let J1
α � Jα X K1 � U1

EK
tm�1

2
u, H1

α � U1
EK

tm
2

u�1. Then

J1
α � H1

α. Let θ be the character of H
1
α de�ned (as in the odd case) by

θpuxq � χpuqψαpxq, u P U1
E , x P K

tm
2

u�1.

Let η be the unique irreducible (q-dimensional) J1
α-representation containing θ. Let µM denote the

group of roots unity of a �eld M and let η̃ be the unique irreducible representation of µE{µF 
 J1
α

such that η̃|J1
α
� η and tr η̃pζuq � �θpuq for all u P H1

α, ζ P µE{µF r t1u. Then η̃ factors through a

representation of µE{µF 
J
1
α{ kerpθq. Let ν be the representation of E�
J1

α{ kerpθq which arises by

in�ation from η̃ via the surjection induced by E� � E�{F �U1
E � µE{µF . Let χ̃ be the character of

E�
J1
α{ kerpθq, which is χ on E� and trivial on J1

α{ kerpθq. De�ne the E�
J1
α{ kerpθq-representation

Λ̃ � χ̃b ν. It factors through the surjection E�
J1
α{ kerpθq� Jα{ kerpθq, pe, jq ÞÑ ej mod kerpθq,

hence it is an in�ation of a representation Λ1 of Jα{ kerpθq. Take Λ to be the in�ation of Λ1 to Jα.

Let then in both cases pM,Θχq be the corresponding cuspidal inducing datum, i.e.,

Θχ � IndZKJα Λ. (4.28)

Thus we attached a cuspidal inducing datum to χ and now the GpF q-representation πχ from (4.1)

is de�ned in [2] 19.4.2 as

πχ � c� Ind
GpF q
ZK Θχ � c� Ind

GpF q
Jα

Λ.

Proposition 4.27. Let pE{F, χq be a minimal pair. Then Rχ � πχ.

Using Proposition 4.27, we can prove our main result.

Proof of Theorem 4.3. By Lemma 4.4 we can assume that pE{F, χq is minimal in the �rst statement

of the theorem. If `pχq � 0, then the �rst statement follows essentially from [10] Theorem 1.1(i).

If `pχq ¡ 0, then the �rst statement follows from Corollary 4.23 and the part about the central

character follows from Lemma 4.4.

To show Rχ � πχ we can assume by Lemma 4.4 (along with the fact that φπχ � πφEχ) that

pE{F, χq is minimal. Then Rχ � πχ follows from Proposition 4.27. Now bijectivity of (4.2) follows

from bijectivity of (4.1). �

Proof of Proposition 4.27. Let m be the level of χ. If m � 0, the proposition follows essentially

from [10] Theorem 1.1(i) and [2] 19.1. Assume m ¡ 0. The unrami�ed representation Rχ is induced

from the cuspidal inducing datum pZK,Ξχq. As the map (4.1) in the tame parametrization theorem

is surjective, there is some character χ1 such that pE{F, χ1q is minimal and Rχ � πχ1 . By Corollary

4.23, `pχ1q � m. One deduces Ξχ � Θχ1 (e.g. by the same reasoning as in the proof of Lemma

4.24). We have to show that χ � χ1 or χ � pχ1qσ. A comparison of the central characters shows

χ|F� � χ1|F� . Thus it remains to show that χ|UE � χ1|UE or χ|UE � pχ1qσ|UE . TheK-representation

Ξχ|K is in�ated from the Km-representation ξχ. Note that the image of UE in Km is a non-split

torus Hm, as considered in Theorem 4.13. Thus χ|UE , χ
σ|UE are the unique characters among all

UE-characters of level m, which satisfy condition (i) resp. (ii) of Corollary 4.14 if m odd resp. even.

Thus it is enough to show that Θχ1 |K characterizes χ1|UE in the same way. This is the content of

Lemma 4.28. �

Lemma 4.28. Let χ be a character of E� of level m ¡ 0 such that pE{F, χq is a minimal pair.
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(i) If m is odd, the representation Θχ � IndZKJα Λ (cf. (4.28)) contains the character χ on E�

(exactly once) and does not contain all the characters χ1 of E�, which satisfy χ1|UE � χ|UE
and χ1|F�U1

E
� χ|F�U1

E
.

(ii) If m is even, the representation Θχ � IndZKJα Λ (cf. (4.28)) does not contain the character χ

on E� and it contains all the characters χ1 of E�, which satisfy χ1|UE � χ|UE and χ1|F�U1
E
�

χ|F�U1
E
.

Proof. Let �rst m ¡ 0 be arbitrary and let χ1 be a character of E�, satisfying χ1|F�U1
E
� χ|F�U1

E
.

Mackey formula and Frobenius reciprocity show:

HomE�pχ1,Θχq �
à

gPE�zZK{Jα

HomE�XgJαpχ
1, gΛq.

Let g P ZK. We claim that HomE�XgJαpχ
1, gΛq � 0, unless g P Jα. Indeed, we have E� X gJα �

U
tm
2

u�1

E and Λ|
Ktm2 u�1 is a multiple of ψα, hence

gΛ|
Ktm2 u�1 is a multiple of ψg�1αg. Moreover,

χ1|
U

tm2 u�1

E

� χ|
U

tm2 u�1

E

� ψα. Thus if HomE�XgJαpχ
1, gΛq � 0, then g normalizes the character ψα of

U
tm
2

u�1

E . Thus Proposition 4.29 shows our claim.

The claim implies that HomE�pχ1,Θχq � HomE�pχ1,Λq. In particular, if m is odd, we are done,

because then Λ is one-dimensional and Λ|E� � χ. Assume m is even. By construction, Λ arises by

an in�ation process from the E�
J1
α{ kerpθq-representation Λ̃ � χ̃bν, where χ̃ agrees with χ on E�

and is trivial on J1
α{ kerpθq. So, it is enough to prove the following claim: ν|E� does not contain the

trivial character of UE , but it contains all non-trivial characters of UE , which are trivial on UFU
1
E .

The restriction of ν to E� is the in�ation via E� � E�{F �U1
E � µE{µF of the restriction to µE{µF

of the µE{µF 
 J1
α-representation η̃θ. In particular, ν|UFU1

E
is trivial. Now [2] 19.4 Proposition

shows that η̃θ|µE{µF � RegµE{µF �1µE{µF , and the claim follows. �

The following proposition is an improvement of a part of the Intertwining theorem [2] 15.1. Also

Lemma 4.30 below improves [2] Lemma 16.2

Proposition 4.29. Let g P ZK. Then g normalizes the character ψα of U
tm
2

u�1

E if and only if

g P Jα.

Proof. We can assume g P K. Let X be the appropriate quotient of t�mM{t�tm
2

uM such that the

following diagram commutes

t�mM{t�tm
2

uM
� //

����

pK
tm
2

u�1
m q_

����

X
� // pU

tm
2

u�1

E {Um�1
E q_

(4.29)

where the upper horizontal map is α ÞÑ ψα with ψα as in [2] 12.5, and the right vertical map is

restriction of characters. Let Y �M be such that t�mY � t�mM is the preimage in t�mM of the

kernel of the left vertical map. Then g normalizes ψα|
U

tm2 u�1

E

if and only if the images of g�1αg and

α in X coincide, i.e., if the following equation holds true in t�mM:

g�1αg � α mod t�tm
2

uM� t�mY.
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Then the result follows from Lemma 4.30 applied to k � tm�1
2 u. �

Lemma 4.30. Write α � t�mα0. With notations as in the proof of Proposition 4.29, for any

1 ¤ k ¤ tm�1
2 u, we have

g�1α0g � α0 mod tkM� Y (4.30)

in M if and only of g P UE � tkM.

Proof. The 'if' part is immediate. To prove the other part, we use induction on k (as in [2] 16.2

Lemma). Let k ¥ 2 and assume (4.30). By induction hypothesis, g P UE � tk�1M. We can write

g � g1p1� tk�1g0q with g1 P UE . Thus (as α0 P OE) we obtain from (4.30):

tk�1α0g0 � tk�1g0α0 mod tkM� Y.

Thus tk�1pα0g0 � g0α0q � y � tkm P M for some y P Y , m P M. We deduce y � tk�1y1 with

y1 PM and α0g0 � g0α0 � y1 � tm. We claim that y1 P Y � tM. Indeed, this claim is equivalent to

ψt�my1 |UmE {Um�1
E

� 1. But for u PM we have:

ψt�my1p1� tmuq � ψptrMpy
1uqq � ψt�myp1� tm�pk�1quq � 1,

where the last equality holds as long m � pk � 1q ¥ tm2 u � 1, or equivalently, k ¤ tm�1
2 u, which

is satis�ed by assumption of the Lemma. This shows our claim. From it we deduce α0g0 � g0α0

mod Y � tM, i.e., by induction hypothesis, g0 P OE � tM. Thus we are reduced to the case

k � 1. We handle this case explicitly. The result remains una�ected if we replace the embedding

j : E ãÑ M2pF q by a conjugate one. As all such embeddings are GpF q-conjugate, we can assume

that jpOEq mod t � M{tM is generated as a k-algebra by a matrix β �

�
�b

1 �a



for some

a, b P k such that the characteristic polynomial T 2 � aT � b is irreducible in krT s (cf. e.g. [2] 5.3).

Then α � t�mα0 with α0 mod t � x � yβ for some x, y P k and jpOEq � OF rα0s. After adding

and multiplying by some central elements (which does not a�ect the condition 4.30), we can assume

that either charpkq ¡ 2 and there is a D P k�r k�,2 such that α0 �

�
1

D



or that charpkq � 2

and there is a D P k such that T 2 � T �D P krT s is irreducible and α0 �

�
D

1 1



. We have to

show that if g P K and (4.30) holds for g, α0 and k � 1, then g P OE � tM.

Assume �rst charpkq ¡ 2. The upper horizontal map in diagram (4.29) induces the isomorphism

t�mM{t�m�1M
�
ÝÑ pKm

m q
_,

which shows that

Y � tM{tM � ttmβ : β P t�mM and ψptrMpβpe� 1qqq � 1 for all e P 1� tmOEu{tM

� t

�
B1 B2

�B2D �B1



: B1, B2 P ku

(the last equality is an easy computation). Now let g �

�
g1 g2

g3 g4



P Gpkq (we can work modulo

t). Then condition (4.30) translates into
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1

detpgq

�
g3g4 � g1g2D �g2

2D � g2
4

g2
1D � g2

3 g1g2D � g3g4



� g�1α0g

!
�

�
1

D



�

�
B1 B2

�B2D �B1



for some B1, B2 P k. In particular, we must have#

1
detpgqpg

2
4 � g2

2Dq � 1�B2

1
detpgqpg

2
1D � g2

3q � p1�B2qD.

Computing B2 from the �rst equation and inserting it in the second, gives us

1

detpgq
pg2

1 � g2
3 � g2

2D
2 � g2

4Dq � 2D,

which is equivalent to

Dpg1 � g4q
2 � pg3 � g2Dq

2.

If both side are non-zero, on the left side we have a non-square in k� and on the right side we have

a square, which is a contradiction. Thus both sides are zero, i.e. g1 � g4, g3 � g2D, i.e., g P UE
mod t, �nishing the proof in the case charpkq ¡ 2.

Assume now charpkq � 2. Analogously to the previous case we deduce

Y � tM{tM �

"�
B1 B1 �B3D

B3 B1



: B1, B3 P k

*
.

A similar computation as above implies that for g P Gpkq satisfying condition (4.30) we must have

detpgq�1pg1g2 � g2g3 � g3g4Dq � B1

detpgq�1pg2
1 � g1g3 � g2

3Dq � 1�B3

detpgq�1pg2
2 � g2g4 � g2

4Dq � B1 �B3D �D.

with some B1, B3 P k. Putting the �rst and the second equation into the third and bringing some

terms together shows

g2
2 � g2

3D
2 � pg2

1 � g2
4qD � g2pg4 � g1 � g3q � g3Dpg4 � g1q.

Add 2g2
3D � 0 to the right side of this equation and let A � g2 � g3D and B � g1 � g3 � g4. The

equation is then equivalent to

A2 �B2D �AB � 0.

Suppose B � 0. Dividing by B2, we obtain pA{Bq2 � pA{Bq �D � 0, which is a contradiction to

irreducibility of T 2 � T � D P krT s, as A{B P k. Thus B � 0 and we deduce also A � 0, which

�nishes the proof also in the case charpkq � 2. �
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