The smooth locus in infinite-level Rapoport-Zink spaces

Alexander Ivanov and Jared Weinstein

February 27, 2020

Abstract

Rapoport-Zink spaces are deformation spaces for p-divisible groups with additional structure. At infinite level, they become preperfectoid spaces. Let \mathscr{M}_{∞} be an infinite-level Rapoport-Zink space of EL type, and let $\mathscr{M}_{\infty}^{\circ}$ be one connected component of its geometric fiber. We show that $\mathscr{M}_{\infty}^{\circ}$ contains a dense open subset which is cohomologically smooth in the sense of Scholze. This is the locus of p-divisible groups which do not have any extra endomorphisms. As a corollary, we find that the cohomologically smooth locus in the infinite-level modular curve $X(p^{\infty})^{\circ}$ is exactly the locus of elliptic curves E with supersingular reduction, such that the formal group of E has no extra endomorphisms.

1 Main theorem

Let p be a prime number. Rapoport-Zink spaces [RZ96] are deformation spaces of p-divisible groups equipped with some extra structure. This article concerns the geometry of Rapoport-Zink spaces of EL type (endomorphisms + level structure). In particular we consider the infinite-level spaces $\mathscr{M}_{\mathcal{D},\infty}$, which are preperfectoid spaces [SW13]. An example is the space $\mathscr{M}_{H,\infty}$, where $H/\overline{\mathbf{F}}_p$ is a p-divisible group of height n. The points of $\mathscr{M}_{H,\infty}$ over a nonarchimedean field K containing $W(\overline{\mathbf{F}}_p)$ are in correspondence with isogeny classes of p-divisible groups G/\mathcal{O}_K equipped with a quasi-isogeny $G \otimes_{\mathcal{O}_K} \mathcal{O}_K/p \to H \otimes_{\overline{\mathbf{F}}_p} \mathcal{O}_K/p$ and an isomorphism $\mathbf{Q}_p^n \cong VG$ (where VG is the rational Tate module).

The infinite-level space $\mathscr{M}_{\mathcal{D},\infty}$ appears as the limit of finite-level spaces, each of which is a smooth rigidanalytic space. We would like to investigate the question of smoothness for the space $\mathscr{M}_{\mathcal{D},\infty}$ itself, which is quite a different matter. We need the notion of cohomological smoothness [Sch17], which makes sense for general morphisms of analytic adic spaces, and which is reviewed in Section 4. Roughly speaking, an adic space is cohomologically smooth over C (where C/\mathbf{Q}_p is complete and algebraically closed) if it satisfies local Verdier duality. In particular, if U is a quasi-compact adic space which is cohomologically smooth over $\operatorname{Spa}(C, \mathcal{O}_C)$, then the cohomology group $H^i(U, \mathbf{F}_\ell)$ is finite for all i and all primes $\ell \neq p$.

Our main theorem shows that each connected component of the geometric fiber of $\mathscr{M}_{\mathcal{D},\infty}$ has a dense open subset which is cohomologically smooth.

Theorem 1.0.1. Let \mathcal{D} be a basic EL datum (cf. Section 2). Let C be a complete algebraically closed extension of the field of scalars of $\mathcal{M}_{\mathcal{D},\infty}$, and let $\mathcal{M}^{\circ}_{\mathcal{D},\infty}$ be a connected component of the base change $\mathcal{M}_{\mathcal{D},\infty,C}$. Let $\mathcal{M}^{\circ,\text{non-sp}}_{\mathcal{D},\infty} \subset \mathcal{M}^{\circ}_{\mathcal{D},\infty}$ be the non-special locus (cf. Section 3.5), corresponding to p-divisible groups without extra endomorphisms. Then $\mathcal{M}^{\circ,\text{non-sp}}_{\mathcal{D},\infty}$ is cohomologically smooth over C.

We remark that outside of trivial cases, $\pi_0(\mathscr{M}_{\mathcal{D},\infty,C})$ has no isolated points, which implies that no open subset of $\mathscr{M}_{\mathcal{D},\infty,C}$ can be cohomologically smooth. (Indeed, the H^0 of any quasi-compact open fails to be finitely generated.) Therefore it really is necessary to work with individual connected components of the geometric fiber of $\mathscr{M}_{\mathcal{D},\infty}$. Theorem 1.0.1 is an application of the perfectoid version of the Jacobian criterion for smoothness, due to Fargues–Scholze [FS]; cf. Theorem 4.2.1. The latter theorem involves the Fargues-Fontaine curve X_C (reviewed in Section 3). It asserts that a functor \mathscr{M} on perfectoid spaces over $\operatorname{Spa}(C, \mathcal{O}_C)$ is cohomologically smooth, when \mathscr{M} can be interpreted as global sections of a smooth morphism $Z \to X_C$, subject to a certain condition on the tangent bundle $\operatorname{Tan}_{Z/X_C}$.

In our application to Rapoport-Zink spaces, we construct a smooth morphism $Z \to X_C$, whose moduli space of global sections is isomorphic to $\mathscr{M}^{\circ}_{\mathcal{D},\infty}$ (Lemma 5.2.1). Next, we show that a geometric point $x \in \mathscr{M}^{\circ}_{\mathcal{D},\infty}(C)$ lies in $\mathscr{M}^{\circ,\operatorname{non-sp}}_{\mathcal{D},\infty}(C)$ if and only if the corresponding section $s: X_C \to Z$ satisfies the condition that all slopes of the vector bundle $s^* \operatorname{Tan}_{Z/X_C}$ on X_C are positive (Theorem 5.5.1). This is exactly the condition on $\operatorname{Tan}_{Z/X_C}$ required by Theorem 4.2.1, so we can conclude that $\mathscr{M}^{\circ}_{\mathcal{D},\infty}$ is cohomologically smooth.

The geometry of Rapoport-Zink spaces is related to the geometry of Shimura varieties. As an example, consider the tower of classical modular curves $X(p^{\infty})$, considered as rigid spaces over C. There is a perfectoid space $X(p^{\infty})$ over C for which $X(p^{\infty}) \sim \lim_{n \to \infty} X(p^n)$, and a Hodge-Tate period map $\pi_{HT}: X(p^{\infty}) \to \mathbf{P}^1_C$ [Sch15], which is $\operatorname{GL}_2(\mathbf{Q}_p)$ -equivariant. Let $X(p^{\infty})^{\circ} \subset X(p^{\infty})$ be a connected component.

Corollary 1.0.2. The following are equivalent for a C-point x of $X(p^{\infty})^{\circ}$.

- 1. The point x corresponds to an elliptic curve E, such that the p-divisible group $E[p^{\infty}]$ has End $E[p^{\infty}] = \mathbf{Z}_p$.
- 2. The stabilizer of $\pi_{HT}(x)$ in $PGL_2(\mathbf{Q}_p)$ is trivial.
- 3. There is a neighborhood of x in $X(p^{\infty})^{\circ}$ which is cohomologically smooth over C.

2 Review of Rapoport-Zink spaces at infinite level

2.1 The infinite-level Rapoport-Zink space $\mathcal{M}_{H,\infty}$

Let k be a perfect field of characteristic p, and let H be a p-divisible group of height n and dimension d over k. We review here the definition of the infinite-level Rapoport-Zink space associated with H.

First there is the formal scheme \mathscr{M}_H over $\operatorname{Spf} W(k)$ parametrizing deformations of H up to isogeny, as in [RZ96]. For a W(k)-algebra R in which p is nilpotent, $\mathscr{M}_H(R)$ is the set of isomorphism classes of pairs (G, ρ) , where G/R is a p-divisible group and $\rho: H \otimes_k R/p \to G \otimes_R R/p$ is a quasi-isogeny.

The formal scheme \mathscr{M}_H locally admits a finitely generated ideal of definition. Therefore it makes sense to pass to its adic space $\mathscr{M}_H^{\mathrm{ad}}$, which has generic fiber $(\mathscr{M}_H^{\mathrm{ad}})_{\eta}$, a rigid-analytic space over $\mathrm{Spa}(W(k)[1/p], W(k))$. Then $(\mathscr{M}_H^{\mathrm{ad}})_{\eta}$ has the following moduli interpretation: it is the sheafification of the functor assigning to a complete affinoid (W(k)[1/p], W(k))-algebra (R, R^+) the set of pairs (G, ρ) , where G is a p-divisible group defined over an open and bounded subring $R_0 \subset R^+$, and $\rho: H \otimes_k R_0/p \to G \otimes_{R_0} R_0/p$ is a quasi-isogeny. There is an action of Aut H on $\mathscr{M}_H^{\mathrm{ad}}$ obtained by composition with ρ .

Given such a pair (G, ρ) , Grothendieck-Messing theory produces a surjection $M(H) \otimes_{W(k)} R \to \text{Lie } G[1/p]$ of locally free *R*-modules, where M(H) is the covariant Dieudonné module. There is a Grothendieck-Messing period map $\pi_{GM}: (\mathcal{M}_H^{\mathrm{ad}})_{\eta} \to \mathcal{F}\ell$, where $\mathcal{F}\ell$ is the rigid-analytic space parametrizing rank *d* locally free quotients of M(H)[1/p]. The morphism π_{GM} is equivariant for the action of Aut *H*. It has open image $\mathcal{F}\ell^a$ (the admissible locus).

We obtain a tower of rigid-analytic spaces over $(\mathscr{M}_{H}^{\mathrm{ad}})_{\eta}$ by adding level structures. For a complete affinoid (W(k)[1/p], W(k))-algebra (R, R^+) , and an element of $(\mathscr{M}_{H}^{\mathrm{ad}})_{\eta}(R, R^+)$ represented locally on $\operatorname{Spa}(R, R^+)$ by a pair (G, ρ) as above, we have the Tate module $TG = \lim_{m \to \infty} G[p^m]$, considered as an adic space over $\operatorname{Spa}(R, R^+)$ with the structure of a \mathbb{Z}_p -module [SW13, (3.3)]. Finite-level spaces $\mathscr{M}_{H,m}$ are obtained by

trivializing the $G[p^m]$; these are finite étale covers of $(\mathcal{M}_H^{\mathrm{ad}})_{\eta}$. The infinite-level space is obtained by trivializing all of TG at once, as in the following definition.

Definition 2.1.1 ([SW13, Definition 6.3.3]). Let $\mathscr{M}_{H,\infty}$ be the functor which sends a complete affinoid (W(k)[1/p], W(k))-algebra (R, R^+) to the set of triples (G, ρ, α) , where (G, ρ) is an element of $(\mathscr{M}_H)^{\mathrm{ad}}_{\eta}(R, R^+)$, and $\alpha: \mathbb{Z}_p^n \to TG$ is a \mathbb{Z}_p -linear map which is an isomorphism pointwise on $\mathrm{Spa}(R, R^+)$.

There is an equivalent definition in terms of *isogeny* classes of triples (G, ρ, α) , where this time $\alpha : \mathbf{Q}_p^n \to VG$ is a trivialization of the rational Tate module. Using this definition, it becomes clear that $\mathscr{M}_{H,\infty}$ admits an action of the product $\operatorname{GL}_n(\mathbf{Q}_p) \times \operatorname{Aut}^0 H$, where Aut^0 means automorphisms in the isogeny category. Then the period map $\pi_{GM} : \mathscr{M}_{H,\infty} \to \mathcal{F}\ell$ is equivariant for $\operatorname{GL}_n(\mathbf{Q}_p) \times \operatorname{Aut}^0 H$, where $\operatorname{GL}_n(\mathbf{Q}_p)$ acts trivially on $\mathcal{F}\ell$.

We remark that $\mathcal{M}_{H,\infty} \sim \lim_{m \to \infty} \mathcal{M}_{H,m}$ in the sense of [SW13, Definition 2.4.1].

One of the main theorems of [SW13] is the following.

Theorem 2.1.2. The adic space $\mathcal{M}_{H,\infty}$ is a preperfectoid space.

This means that for any perfectoid field K containing W(k), the base change $\mathcal{M}_{H,\infty} \times_{\mathrm{Spa}(W(k)[1/p],W(k))}$ Spa (K, \mathcal{O}_K) becomes perfectoid after *p*-adically completing.

We sketch here the proof of Theorem 2.1.2. Consider the "universal cover" $H = \varprojlim_p H$ as a sheaf of \mathbf{Q}_p -vector spaces on the category of k-algebras. This has a canonical lift to the category of W(k)algebras [SW13, Proposition 3.1.3(ii)], which we continue to call \tilde{H} . The adic generic fiber $\tilde{H}_{\eta}^{\mathrm{ad}}$ is a preperfectoid space, as can be checked "by hand": it is a product of the d-dimensional preperfectoid open ball $(\operatorname{Spa} W(k)[T_1^{1/p^{\infty}}, \ldots, T_d^{1/p^{\infty}}])_{\eta}$ by the constant adic space $VH^{\mathrm{\acute{e}t}}$, where $H^{\mathrm{\acute{e}t}}$ is the étale part of H. Given a triple (G, ρ, α) representing an element of $\mathcal{M}_{H,\infty}(R, R^+)$, the quasi-isogeny ρ induces an isomorphism $\tilde{H}_{\eta}^{\mathrm{ad}} \times_{\operatorname{Spa}(W(k)[1/p],W(k))} \operatorname{Spa}(R, R^+) \to \tilde{G}_{\eta}^{\mathrm{ad}}$; composing this with α gives a morphism $\mathbf{Q}_p^n \to \tilde{H}_{\eta}^{\mathrm{ad}}(R, R^+)$. We have therefore described a morphism $\mathcal{M}_{H,\infty} \to (\tilde{H}_{\eta}^{\mathrm{ad}})^n$.

Theorem 2.1.2 follows from the fact that the morphism $\mathscr{M}_{H,\infty} \to (\tilde{H}^{\mathrm{ad}})^n_{\eta}$ presents $\mathscr{M}_{H,\infty}$ as an open subset of a Zariski closed subset of $(\tilde{H}^{\mathrm{ad}})^n_{\eta}$. We conclude this subsection by spelling out how this is done. We have a *quasi-logarithm* map $\operatorname{qlog}_H: \tilde{H}^{\mathrm{ad}}_{\eta} \to M(H)[1/p] \otimes_{W(k)[1/p]} \mathbf{G}_a$ [SW13, Definition 3.2.3], a \mathbf{Q}_p -linear morphism of adic spaces over $\operatorname{Spa}(W(k)[1/p], W(k))$.

Now suppose (G, ρ) is a deformation of H to (R, R^+) . The logarithm map on G fits into an exact sequence of \mathbb{Z}_p -modules:

$$0 \to G_{\eta}^{\mathrm{ad}}[p^{\infty}](R, R^{+}) \to G_{\eta}^{\mathrm{ad}}(R, R^{+}) \to \mathrm{Lie}\,G[1/p].$$

After taking projective limits along multiplication-by-p, this turns into an exact sequence of \mathbf{Q}_p -vector spaces,

$$0 \to VG(R, R^+) \to \tilde{G}_n^{\mathrm{ad}}(R, R^+) \to \mathrm{Lie}\,G[1/p].$$

On the other hand, we have a commutative diagram

$$\begin{array}{c|c} \tilde{H}_{\eta}(R,R^{+}) & \xrightarrow{\cong} \tilde{G}_{\eta}(R,R^{+}) \\ & & & \downarrow^{\log_{H}} \\ & & & \downarrow^{\log_{G}} \\ M(H) \otimes_{W(k)} R & \longrightarrow \operatorname{Lie} G[1/p]. \end{array}$$

The lower horizontal map $M(H) \otimes_{W(k)} R \to \text{Lie } G[1/p]$ is the quotient by the *R*-submodule of $M(H) \otimes_{W(k)} R$ generated by the image of $VG(R, R^+) \to \tilde{G}_n^{\mathrm{ad}}(R, R^+) \cong \tilde{H}_n^{\mathrm{ad}}(R, R^+) \to M(H) \otimes_{W(k)} R$.

Now suppose we have a point of $\mathscr{M}_{H,\infty}(R, R^+)$ represented by a triple (G, ρ, α) . Then we have a \mathbf{Q}_p linear map $\mathbf{Q}_p^n \to \tilde{H}_\eta^{\mathrm{ad}}(R, R^+) \to M(H) \otimes_{W(k)} R$. The cokernel of its *R*-extension $R^n \to M(H) \otimes_{W(k)} R$ is a projective *R*-module of rank *d*, namely Lie G[1/p]. This condition on the cokernel allows us to formulate an alternate description of $\mathcal{M}_{H,\infty}$ which is independent of deformations.

Proposition 2.1.3. The adic space $\mathscr{M}_{H,\infty}$ is isomorphic to the functor which assigns to a complete affinoid (W(k)[1/p], W(k))-algebra (R, R^+) the set of n-tuples $(s_1, \ldots, s_n) \in \tilde{H}^{\mathrm{ad}}_{\eta}(R, R^+)^n$ such that the following conditions are satisfied:

- 1. The quotient of $M(H) \otimes_{W(k)} R$ by the R-span of the $\operatorname{qlog}(s_i)$ is a projective R-module W of rank d.
- 2. For all geometric points $\operatorname{Spa}(C, \mathcal{O}_C) \to \operatorname{Spa}(R, R^+)$, the sequence

$$0 \to \mathbf{Q}_p^n \stackrel{(s_1, \dots, s_n)}{\to} \tilde{H}_{\eta}^{\mathrm{ad}}(C, \mathcal{O}_C) \to W \otimes_R C \to 0$$

 $is \ exact.$

2.2 Infinite-level Rapoport-Zink spaces of EL type

This article treats the more general class of Rapoport-Zink spaces of EL type. We review these here.

Definition 2.2.1. Let k be an algebraically closed field of characteristic p. A rational EL datum is a quadruple $\mathcal{D} = (B, V, H, \mu)$, where

- B is a semisimple \mathbf{Q}_p -algebra,
- V is a finite B-module,
- H is an object of the isogeny category of p-divisible groups over k, equipped with an action $B \to \text{End } H$,
- μ is a conjugacy class of $\overline{\mathbf{Q}}_p$ -rational cocharacters $\mathbf{G}_m \to \mathbf{G}$, where \mathbf{G}/\mathbf{Q}_p is the algebraic group $\operatorname{GL}_B(V)$.

These are subject to the conditions:

- If M(H) is the (rational) Dieudonné module of H, then there exists an isomorphism $M(H) \cong V \otimes_{\mathbf{Q}_p} W(k)[1/p]$ of $B \otimes_{\mathbf{Q}_p} W(k)[1/p]$ -modules. In particular dim $V = \operatorname{ht} H$.
- In the weight decomposition of $V \otimes_{\mathbf{Q}_p} \overline{\mathbf{Q}}_p \cong \bigoplus_{i \in \mathbf{Z}} V_i$ determined by μ , only weights 0 and 1 appear, and dim $V_0 = \dim H$.

The reflex field E of \mathcal{D} is the field of definition of the conjugacy class μ . We remark that the weight filtration (but not necessarily the weight decomposition) of $V \otimes_{\mathbf{Q}_p} \overline{\mathbf{Q}}_p$ may be descended to E, and so we will be viewing V_0 and V_1 as $B \otimes_{\mathbf{Q}_p} E$ -modules.

The infinite-level Rapoport-Zink space $\mathscr{M}_{\mathcal{D},\infty}$ is defined in [SW13] in terms of moduli of deformations of the *p*-divisible group *H* along with its *B*-action. It admits an alternate description along the lines of Proposition 2.1.3.

Proposition 2.2.2 ([SW13, Theorem 6.5.4]). Let $\mathcal{D} = (B, V, H, \mu)$ be a rational EL datum. Let $\check{E} = E \cdot W(k)$. Then $\mathscr{M}_{\mathcal{D},\infty}$ is isomorphic to the functor which inputs a complete affinoid $(\check{E}, \mathcal{O}_{\check{E}})$ -algebra (R, R^+) and outputs the set of B-linear maps

$$s: V \to \tilde{H}_n^{\mathrm{ad}}(R, R^+),$$

subject to the following conditions.

• Let W be the quotient

$$V \otimes_{\mathbf{Q}_p} R \xrightarrow{\operatorname{qlog}_H \circ s} M(H) \otimes_{W(k)} R \to W \to 0.$$

Then W is a finite projective R-module, which locally on R is isomorphic to $V_0 \otimes_E R$ as a $B \otimes_{\mathbf{Q}_p} R$ -module.

• For any geometric point $x = \operatorname{Spa}(C, \mathcal{O}_C) \to \operatorname{Spa}(R, R^+)$, the sequence of B-modules

$$0 \to V \to \tilde{H}(\mathcal{O}_C) \to W \otimes_R C \to 0$$

 $is \ exact.$

If $\mathcal{D} = (\mathbf{Q}_p, \mathbf{Q}_p^n, H, \mu)$, where H has height n and dimension d and $\mu(t) = (t^{\oplus d}, 1^{\oplus (n-d)})$, then $E = \mathbf{Q}_p$ and $\mathcal{M}_{\mathcal{D},\infty} = \mathcal{M}_{H,\infty}$.

In general, we call \check{E} the field of scalars of $\mathscr{M}_{\mathcal{D},\infty}$, and for a complete algebraically closed extension C of \check{E} , we write $\mathscr{M}_{\mathcal{D},\infty,C} = \mathscr{M}_{\mathcal{D},\infty} \times_{\operatorname{Spa}(\check{E},\mathcal{O}_{\check{E}})} \operatorname{Spa}(C,\mathcal{O}_C)$ for the corresponding geometric fiber of $\mathscr{M}_{\mathcal{D},\infty}$.

The space $\mathscr{M}_{\mathcal{D},\infty}$ admits an action by the product group $\mathbf{G}(\mathbf{Q}_p) \times J(\mathbf{Q}_p)$, where J/\mathbf{Q}_p is the algebraic group $\operatorname{Aut}_B^{\circ}(H)$. A pair $(\alpha, \alpha') \in \mathbf{G}(\mathbf{Q}_p) \times J(\mathbf{Q}_p)$ sends s to $\alpha' \circ s \circ \alpha^{-1}$.

There is once again a Grothendieck-Messing period map $\pi_{GM} \colon \mathscr{M}_{\mathcal{D},\infty} \to \mathcal{F}\ell_{\mu}$ onto the rigid-analytic variety whose (R, R^+) -points parametrize $B \otimes_{\mathbf{Q}_p} R$ -module quotients of $M(H) \otimes_{W(k)} R$ which are projective over R, and which are of type μ in the sense that they are (locally on R) isomorphic to $V_0 \otimes_E R$. The morphism π_{GM} sends an (R, R^+) -point of $\mathscr{M}_{\mathcal{D},\infty}$ to the quotient W of $M(H) \otimes_{W(k)} R$ as above. It is equivariant for the action of $\mathbf{G}(\mathbf{Q}_p) \times J(\mathbf{Q}_p)$, where $\mathbf{G}(\mathbf{Q}_p)$ acts trivially on $\mathcal{F}\ell_{\mu}$. In terms of deformations of the *p*-divisible group H, the period map π_{GM} sends a deformation G to Lie G.

There is also a Hodge-Tate period map $\pi_{HT}: \mathscr{M}_{\mathcal{D},\infty} \to \mathcal{F}\ell'_{\mu}$, where $\mathcal{F}\ell'_{\mu}(R, R^+)$ parametrizes $B \otimes_{\mathbf{Q}_p} R$ module quotients of $V \otimes_{\mathbf{Q}_p} R$ which are projective over R, and which are (locally on R) isomorphic to $V_1 \otimes_E R$. The morphism π_{HT} sends an (R, R^+) -point of $\mathscr{M}_{\mathcal{D},\infty}$ to the image of $V \otimes_{\mathbf{Q}_p} R \to M(H) \otimes_{W(k)} R$. It is equivariant for the action of $\mathbf{G}(\mathbf{Q}_p) \times J(\mathbf{Q}_p)$, where this time $J(\mathbf{Q}_p)$ acts trivially on $\mathcal{F}\ell'_{\mu}(R, R^+)$. In terms of deformations of the *p*-divisible group H, the period map π_{HT} sends a deformation G to (Lie G^{\vee})^{\vee}.

3 The Fargues-Fontaine curve

3.1 Review of the curve

We briefly review here some constructions and results from [FF]. First we review the absolute curve, and then we cover the version of the curve which works in families.

Fix a perfectoid field F of characteristic p, with $F^{\circ} \subset F$ its ring of integral elements. Let $\varpi \in F^{\circ}$ be a pseudo-uniformizer for F, and let k be the residue field of F. Let $W(F^{\circ})$ be the ring of Witt vectors, which we equip with the $(p, [\varpi])$ -adic topology. Let $\mathcal{Y}_F = \operatorname{Spa}(W(F^{\circ}), W(F^{\circ})) \setminus \{|p[\varpi]| = 0\}$. Then \mathcal{Y}_F is an analytic adic space over \mathbb{Q}_p . The Frobenius automorphism of F induces an automorphism ϕ of \mathcal{Y}_F . Let $B_F = H^0(\mathcal{Y}_F, \mathcal{O}_{\mathcal{Y}_F})$, a \mathbb{Q}_p -algebra endowed with an action of ϕ . Let P_F be the graded ring $P_F = \bigoplus_{n \ge 0} B_F^{\phi = p^n}$. Finally, the Fargues-Fontaine curve is $X_F = \operatorname{Proj} P_F$. It is shown in [FF] that X_F is the union of spectra of Dedekind rings, which justifies the use of the word "curve" to describe X_F . Note however that there is no "structure morphism" $X_F \to \operatorname{Spec} F$.

If $x \in X_F$ is a closed point, then the residue field of x is a perfectoid field F_x containing \mathbf{Q}_p which comes equipped with an inclusion $i: F \hookrightarrow F_x^{\flat}$, which presents F_x^{\flat} as a finite extension of F. Such a pair (F_x, i) is called an until of F. Then $x \mapsto (F_x, i)$ is a bijection between closed points of X_F and isomorphism classes of until of F, modulo the action of Frobenius on i. Thus if $F = E^{\flat}$ is the tilt of a given perfectoid field E/\mathbf{Q}_p , then $X_{E^{\flat}}$ has a canonical closed point ∞ , corresponding to the until E of E^{\flat} . An important result in [FF] is the classification of vector bundles on X_F . (By a vector bundle on X_F we are referring to a locally free \mathcal{O}_{X_F} -module \mathcal{E} of finite rank. We will use the notation $V(\mathcal{E})$ to mean the corresponding geometric vector bundle over X_F , whose sections correspond to sections of \mathcal{E} .) Recall that an *isocrystal* over k is a finite-dimensional vector space N over W(k)[1/p] together with a Frobenius semi-linear automorphism ϕ of N. Given N, we have the graded P_F -module $\bigoplus_{n\geq 0} (N \otimes_{W(k)[1/p]} B_F)^{\phi=p^n}$, which corresponds to a vector bundle $\mathcal{E}_F(N)$ on X_F . Then the Harder-Narasimhan slopes of $\mathcal{E}_F(N)$ are negative to those of N. If F is algebraically closed, then every vector bundle on X_F is isomorphic to $\mathcal{E}_F(N)$ for some N.

It is straightforward to "relativize" the above constructions. If $S = \text{Spa}(R, R^+)$ is an affinoid perfectoid space over k, one can construct the adic space \mathcal{Y}_S , the ring B_S , the scheme X_S , and the vector bundles $\mathcal{E}_S(N)$ as above. Frobenius-equivalences classes of untilts of S correspond to effective Cartier divisors of X_S of degree 1.

In our applications, we will start with an affinoid perfectoid space S over \mathbf{Q}_p . We will write $X_S = X_{S^\flat}$, and we will use ∞ to refer to the canonical Cartier divisor of X_S corresponding to the until S of S^\flat . Thus if N is an isocrystal over k, and $S = \text{Spa}(R, R^+)$ is an affinoid perfectoid space over W(k)[1/p], then the fiber of $\mathcal{E}_S(N)$ over ∞ is $N \otimes_{W(k)[1/p]} R$.

Let $S = \text{Spa}(R, R^+)$ be as above and let ∞ be the corresponding Cartier divisor. We denote the completion of the ring of functions on \mathcal{Y}_S along ∞ by $B^+_{dR}(R)$. It comes equipped with a surjective homomorphism $\theta \colon B^+_{dR}(R) \to R$, whose kernel is a principal ideal ker $(\theta) = (\xi)$.

3.2 Relation to *p*-divisible groups

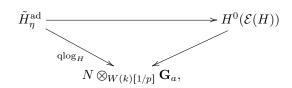
Here we recall the relationships between p-divisible groups and global sections of vector bundles on the Fargues-Fontaine curve. Let us fix a perfect field k of characteristic p, and write $\operatorname{Perf}_{W(k)[1/p]}$ for the category of perfectoid spaces over W(k)[1/p]. Given a p-divisible group H over k with covariant isocrystal N, if H has slopes $s_1, \ldots, s_k \in \mathbb{Q}$, then N has the slopes $1 - s_1, \ldots, 1 - s_k$. For an object S in $\operatorname{Perf}_{W(k)[1/p]}$ we define the vector bundle $\mathcal{E}_S(H)$ on X_S by

$$\mathcal{E}_S(H) = \mathcal{E}_S(N) \otimes_{\mathcal{O}_{X_S}} \mathcal{O}_{X_S}(1).$$

Under this normalization, the Harder-Narasimhan slopes of $\mathcal{E}_S(H)$ are (pointwise on S) the same as the slopes of H.

Let us write $H^0(\mathcal{E}(H))$ for the sheafification of the functor on $\operatorname{Perf}_{W(k)[1/p]}$, which sends S to $H^0(X_S, \mathcal{E}_S(H))$.

Proposition 3.2.1. Let H be a p-divisible group over a perfect field k of characteristic p, with isocrystal N. There is an isomorphism $\tilde{H}_{\eta}^{\mathrm{ad}} \cong H^0(\mathcal{E}(H))$ of sheaves on $\mathrm{Perf}_{W(k)[1/p]}$ making the diagram commute:



where the morphism $H^0(\mathcal{E}(H)) \to N \otimes_{W(k)[1/p]} \mathbf{G}_a$ sends a global section of $\mathcal{E}(H)$ to its fiber at ∞ .

Proof. Let $S = \text{Spa}(R, R^+)$ be an affinoid perfectoid space over W(k)[1/p]. Then $\tilde{H}^{\text{ad}}_{\eta}(R, R^+) \cong \tilde{H}(R^\circ) \cong \tilde{H}(R^\circ/p)$. Observe that $\tilde{H}(R^\circ/p) = \text{Hom}_{R^\circ/p}(\mathbf{Q}_p/\mathbf{Z}_p, H)[1/p]$, where the Hom is taken in the category of p-divisible groups over R°/p . Recall the crystalline Dieudonné functor $G \mapsto M(G)$ from p-divisible groups to Dieudonné crystals [Mes72]. Since the base ring R°/p is semiperfect, the latter category is equivalent to

the category of finite projective modules over Fontaine's period ring $A_{\rm cris}(R^{\circ}/p) = A_{\rm cris}(R^{\circ})$, equipped with Frobenius and Verschiebung.

Now we apply [SW13, Theorem A]: since R°/p is f-semiperfect, the crystalline Dieudonné functor is fully faithful up to isogeny. Thus

$$\operatorname{Hom}_{R^{\circ}/p}(\mathbf{Q}_{p}/\mathbf{Z}_{p},H)[1/p] \cong \operatorname{Hom}_{A_{\operatorname{cris}}(R^{\circ}),\phi}(M(\mathbf{Q}_{p}/\mathbf{Z}_{p}),M(H))[1/p],$$

where the latter Hom is in the category of modules over $A_{cris}(R^{\circ})$ equipped with Frobenius. Recall that $B_{cris}^+(R^{\circ}) = A_{cris}(R^{\circ})[1/p]$. Since H arises via base change from k, we have $M(H)[1/p] = B_{cris}^+(R^{\circ}) \otimes_{W(k)[1/p]} N$. For its part, $M(\mathbf{Q}_p/\mathbf{Z}_p)[1/p] = B_{cris}^+(R^{\circ})e$, for a basis element e on which Frobenius acts as p. Therefore

$$H(R^{\circ}) \cong (B^+_{\operatorname{cris}}(R^{\circ}) \otimes_{W(k)[1/p]} N)^{\phi=p}$$

On the Fargues-Fontaine curve side, we have by definition $H^0(X_S, \mathcal{E}_S(H)) = (B_S \otimes_{W(k)[1/p]} N)^{\phi=p}$. The isomorphism between $(B_S \otimes_{W(k)[1/p]} N)^{\phi=p}$ and $(B^+_{cris}(R^\circ) \otimes_{W(k)[1/p]} N)^{\phi=p}$ is discussed in [LB18, Remarque 6.6].

The commutativity of the diagram in the proposition is [SW13, Proposition 5.1.6(ii)], at least in the case that S is a geometric point, but this suffices to prove the general case. \Box

With Proposition 3.2.1 we can reinterpret the infinite-level Rapoport Zink spaces as moduli spaces of modifications of vector bundles on the Fargues-Fontaine curve. First we do this for $\mathcal{M}_{H,\infty}$. In the following, we consider $\mathcal{M}_{H,\infty}$ as a sheaf on the category of perfectoid spaces over W(k)[1/p].

Proposition 3.2.2. Let H be a p-divisible group of height n and dimension d over a perfect field k. Let N be the associated isocrystal over k. Then $\mathscr{M}_{H,\infty}$ is isomorphic to the functor which inputs an affinoid perfectoid space $S = \operatorname{Spa}(R, R^+)$ over W(k)[1/p] and outputs the set of exact sequences

$$0 \to \mathcal{O}_{X_s}^n \xrightarrow{s} \mathcal{E}_S(H) \to i_{\infty*} W \to 0, \tag{3.2.1}$$

where i_{∞} : Spec $R \to X_S$ is the inclusion, and W is a projective \mathcal{O}_S -module quotient of $N \otimes_{W(k)[1/p]} \mathcal{O}_S$ of rank d.

Proof. We briefly describe this isomorphism on the level of points over $S = \text{Spa}(R, R^+)$. Suppose that we are given a point of $\mathscr{M}_{H,\infty}(S)$, corresponding to a *p*-divisible group G over R° , together with a quasi-isogeny $\iota: H \otimes_k R^\circ/p \to G \otimes_{R^\circ} R^\circ/p$ and an isomorphism $\alpha: \mathbf{Q}_p^n \to VG$ of sheaves of \mathbf{Q}_p -vector spaces on S. The logarithm map on G fits into an exact sequence of sheaves of \mathbf{Z}_p -modules on S,

$$0 \to G_n^{\mathrm{ad}}[p^\infty] \to G_n^{\mathrm{ad}} \to \mathrm{Lie}\,G[1/p] \to 0.$$

After taking projective limits along multiplication-by-p, this turns into an exact sequence of sheaves of \mathbf{Q}_p -vector spaces on S,

$$0 \to VG \to \tilde{G}_{\eta}^{\mathrm{ad}} \to \mathrm{Lie}\,G[1/p] \to 0.$$

The quasi-isogeny induces an isomorphism $\tilde{H}^{\mathrm{ad}}_{\eta} \times_{\operatorname{Spa} W(k)[1/p]} S \cong \tilde{G}^{\mathrm{ad}}_{\eta}$; composing this with the level structure gives an injective map $\mathbf{Q}^n_p \to \tilde{H}^{\mathrm{ad}}_{\eta}(S)$, whose cokernel W is isomorphic to the projective R-module Lie G of rank d. In light of Theorem 3.2.1, the map $\mathbf{Q}^n_p \to \tilde{H}^{\mathrm{ad}}_{\eta}(S)$ corresponds to an \mathcal{O}_{X_S} -linear map $s \colon \mathcal{O}^n_{X_S} \to \mathcal{E}_S(H)$, which fits into the exact sequence in (3.2.1).

Similarly, we have a description of $\mathcal{M}_{\mathcal{D},\infty}$ in terms of modifications.

Proposition 3.2.3. Let $\mathcal{D} = (B, V, H, \mu)$ be a rational EL datum. Then $\mathscr{M}_{\mathcal{D},\infty}$ is isomorphic to the functor which inputs an affinoid perfectoid space S over \check{E} and outputs the set of exact sequences of $B \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_S}$ -modules

$$0 \to V \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_S} \xrightarrow{s} \mathcal{E}_S(H) \to i_{\infty*} W \to 0,$$

where W is a finite projective \mathcal{O}_S -module, which is locally isomorphic to $V_0 \otimes_{\mathbf{Q}_p} \mathcal{O}_S$ as a $B \otimes_{\mathbf{Q}_p} \mathcal{O}_S$ -module (using notation from Definition 2.2.1).

3.3 The determinant morphism, and connected components

If we are given a rational EL datum \mathcal{D} , there is a determinant morphism det: $\mathcal{M}_{\mathcal{D},\infty} \to \mathcal{M}_{\det \mathcal{D},\infty}$, which we review below. For an algebraically closed perfectoid field C containing W(k)[1/p], the base change $\mathcal{M}_{\det \mathcal{D},\infty,C}$ is a locally profinite set of copies of Spa C. For a point $\tau \in \mathcal{M}_{\det \mathcal{D},\infty}(C)$, let $\mathcal{M}_{\mathcal{D},\infty}^{\tau}$ be the fiber of $\mathcal{M}_{\mathcal{D},\infty} \to \mathcal{M}_{\det \mathcal{D},\infty}$ over τ . We will prove in Section 5 that each $\mathcal{M}_{\mathcal{D},\infty}^{\tau,\text{non-sp}}$ is cohomologically smooth if \mathcal{D} is basic. This implies that $\pi_0(\mathcal{M}_{\mathcal{D},\infty}^{\tau,\text{non-sp}})$ is discrete, so that cohomogical smoothness of $\mathcal{M}_{\mathcal{D},\infty}^{\tau,\text{non-sp}}$ is inherited by each of its connected components. This is Theorem 1.0.1. In certain cases (for example Lubin-Tate space) it is known that $\mathcal{M}_{\mathcal{D},\infty}^{\tau,\infty}$ is already connected [Che14].

We first review the determinant morphism for the space $\mathcal{M}_{H,\infty}$, where H is a p-divisible group of height n and dimension d over a perfect field k of characteristic p. Let $\check{E} = W(k)[1/p]$. For a perfectoid space $S = \operatorname{Spa}(R, R^+)$ over \check{E} , we have the vector bundle $\mathcal{E}_S(H)$ and its determinant det $\mathcal{E}_S(H)$, a line bundle of degree d. (This does not correspond to a p-divisible group "det H" unless $d \leq 1$.) We define $\mathcal{M}_{\det H,\infty}(S)$ to be the set of morphisms $s: \mathcal{O}_{X_S} \to \det \mathcal{E}_S(H)$, such that the cokernel of s is a projective $B^+_{\mathrm{dR}}(R)/(\xi)^d$ -module of rank 1, where (ξ) is the kernel of $B^+_{\mathrm{dR}}(R) \to R$. The morphism det: $\mathcal{M}_{H,\infty} \to \mathcal{M}_{\det H,\infty}$ is simply $s \mapsto \det s$.

Regarding the structure of $\mathscr{M}_{\det H,\infty}$: we claim that for an algebraically closed perfectoid field C/\check{E} , the set $\mathscr{M}_{\det H,\infty}(C)$ is a \mathbf{Q}_p^{\times} -torsor. Indeed, since the vector bundle $\mathcal{E}_C(H)$ has degree d, so does the line bundle $\det \mathcal{E}_C(H)$, so that $\det \mathcal{E}_C(H) \cong \mathcal{O}_{X_C}(d)$. A C-point of $\mathscr{M}_{\det H,\infty}$ is therefore a global section of $\mathcal{O}_{X_C}(d)$ with a zero of order d at ∞ . In other words, it is a nonzero element of Fil⁰ $B_C^{\phi=p^d} \cong \mathbf{Q}_p(d)$.

For the general case, let $\mathcal{D} = (B, V, H, \mu)$ be a rational EL datum. Let F = Z(B) be the center of B. Then F is a semisimple commutative \mathbf{Q}_p -algebra; *i.e.*, it is a product of fields. The idea is now to construct the determinant datum det $\mathcal{D} = (F, \det_F V, \det_F H, \det_F \circ \mu)$, noting once again that there may not be a p-divisible group "det_F H". The determinant det_F V is a free F-module of rank 1. For a perfectoid space $S = \operatorname{Spa}(R, R^+)$ over \check{E} , we have the $F \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_S}$ -module $\mathcal{E}_S(H)$ and its determinant det_F $\mathcal{E}_S(H)$; the latter is a locally free $F \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_S}$ -module of rank 1. Let d be the degree of det_F $\mathcal{E}_S(H)$, considered as a function on Spec F. We define $\mathscr{M}_{\det \mathcal{D},\infty}(S)$ to be the set of F-linear morphisms s: det_F $V \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_S} \to \det_F \mathcal{E}_S(H)$, such that the cokernel of s is (locally on Spec F) a projective $B^+_{dR}(R)/(\xi)^d$ -module of rank 1. (We remark here that the det_F in det_F $\circ \mu$ means the morphism from $\mathbf{G} = \operatorname{Aut}_B(V)$ to $\mathbf{G}^{\mathrm{ab}} = \operatorname{Aut}_F(\det_F V) = \operatorname{Res}_{F/\mathbf{Q}_p} \mathbf{G}_m$. If det_F μ is a minuscule cocharacter, meaning that it is a vector of only 0s and 1s in the character group $X_*(\mathbf{G}^{\mathrm{ab}}) \cong \mathbf{Z}^{[F:\mathbf{Q}_p]}$), then det \mathcal{D} is an honest rational EL datum.) The morphism $\mathscr{M}_{\mathcal{D},\infty} \to \mathscr{M}_{\mathrm{det}\,\mathcal{D},\infty}$ sends a $B \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_S}$ -linear map $s \colon V \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_S} \to \mathcal{E}_S(H)$ to the $F \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_S}$ -linear map det $s \colon \det_F V \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_S} \to$ $\det_F \mathcal{E}_S(H)$.

An argument similar to the above shows that for an algebraically closed perfected field C/\check{E} , the set $\mathscr{M}_{\det \mathcal{D},\infty}(C)$ is an F^{\times} -torsor, equal to the set of F-bases for F(d). Here the Tate twist is interpreted (locally on Spec F) as the dth tensor power of the rational Tate module of the Lubin-Tate module for F.

3.4 Basic Rapoport-Zink spaces

The main theorem of this article concerns basic Rapoport-Zink spaces, so we recall some facts about these here.

Let H be a p-divisible group over a perfect field k of characteristic p. The space $\mathcal{M}_{H,\infty}$ is said to be basic when the p-divisible group H (or rather, its Dieudonné module M(H)) is isoclinic. This is equivalent to saying that the natural map

$$\operatorname{End}^{\circ} H \otimes_{\mathbf{Q}_p} W(k)[1/p] \to \operatorname{End}_{W(k)[1/p]} M(H)[1/p]$$

is an isomorphism, where on the right the endomorphisms are not required to commute with Frobenius.

More generally we have a notion of basicness for a rational EL datum (B, H, V, μ) , referring to the following equivalent conditions:

- The **G**-isocrystal ($\mathbf{G} = \operatorname{Aut}_B V$) associated to H is basic in the sense of Kottwitz [Kot85].
- The natural map

$$\operatorname{End}_B^{\circ}(H) \otimes_{\mathbf{Q}_p} W(k)[1/p] \to \operatorname{End}_{B \otimes_{\mathbf{Q}_p} W(k)[1/p]} M(H)[1/p]$$

is an isomorphism.

- Considered as an algebraic group over \mathbf{Q}_p , the automorphism group $J = \operatorname{Aut}_B^{\circ} H$ is an inner form of \mathbf{G} .
- Let $D' = \operatorname{End}_B^{\circ} H$. For any algebraically closed perfectoid field C containing W(k), the map

$$D' \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_C} \to \mathcal{E}nd_{(B \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_C})} \mathcal{E}_C(H)$$

is an isomorphism.

In brief, the duality theorem from [SW13] says the following. Given a basic EL datum \mathcal{D} , there is a dual datum $\check{\mathcal{D}}$, for which the roles of the groups **G** and *J* are reversed. There is a $\mathbf{G}(\mathbf{Q}_p) \times J(\mathbf{Q}_p)$ -equivariant isomorphism $\mathscr{M}_{\mathcal{D},\infty} \cong \mathscr{M}_{\check{\mathcal{D}},\infty}$ which exchanges the roles of π_{GM} and π_{HT} .

3.5 The special locus

Let $\mathcal{D} = (B, V, H, \mu)$ be a basic rational EL datum relative to a perfect field k of characteristic p, with reflex field E. Let F be the center of B. Define F-algebras D and D' by

$$D = \operatorname{End}_B V$$
$$D' = \operatorname{End}_B H$$

Finally, let $\mathbf{G} = \operatorname{Aut}_B V$ and $J = \operatorname{Aut}_B H$, considered as algebraic groups over \mathbf{Q}_p . Then \mathbf{G} and J both contain $\operatorname{Res}_{F/\mathbf{Q}_p} \mathbf{G}_m$.

Let *C* be an algebraically closed perfectoid field containing \check{E} , and let $x \in \mathscr{M}_{\mathcal{D},\infty}(C)$. Then *x* corresponds to a *p*-divisible group *G* over \mathcal{O}_C with endomorphisms by *B*, and also it corresponds to a $B \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_C}$ -linear map $s \colon V \otimes_{\mathbf{Q}_p} \mathcal{O}_X \to \mathcal{E}_C(N)$ as in Proposition 3.2.3. Define $A_x = \operatorname{End}_B G$ (endomorphisms in the isogeny category). Then A_x is a semisimple *F*-algebra. In light of Proposition 3.2.3, an element of A_x is a pair (α, α') , where $\alpha \in \operatorname{End}_{B \otimes_{\mathbf{Q}_n} \mathcal{O}_{X_C}} V \otimes \mathcal{O}_{X_C} = \operatorname{End}_B V = D$ and $\alpha' \in \operatorname{End}_{B \otimes_{\mathbf{Q}_n} \mathcal{O}_{X_C}} \mathscr{E}_C(H) = D'$ (the last equality is due to basicness), such that $s \circ \alpha = \alpha' \circ s$. Thus:

$$A_x \cong \left\{ (\alpha, \alpha') \in D \times D' \ \middle| \ s \circ \alpha = \alpha' \circ s \right\}.$$

Lemma 3.5.1. The following are equivalent:

- 1. The F-algebra A_x strictly contains F.
- 2. The stabilizer of $\pi_{GM}(x) \in \mathcal{F}\ell_{\mu}(C)$ in $J(\mathbf{Q}_p)$ strictly contains F^{\times} .
- 3. The stabilizer of $\pi_{HT}(x) \in \mathcal{F}\ell'_{\mu}(C)$ in $\mathbf{G}(\mathbf{Q}_p)$ strictly contains F^{\times} .

Proof. As in Proposition 3.2.3, let $s: V \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_S} \xrightarrow{s} \mathcal{E}_S(H)$ be the modification corresponding to x.

Note that the condition (1) is equivalent to the existence of an invertible element $(\alpha, \alpha') \in A_x$ not contained in (the diagonally embedded) F. Also note that if one of α, α' lies in F, then so does the other, in which case they are equal.

Suppose $(\alpha, \alpha') \in A_x$ is invertible. The point $\pi_{GM}(x) \in \mathcal{F}\ell_{\mu}$ corresponds to the cokernel of the fiber of s at ∞ . Since $\alpha' \circ s = s \circ \alpha$, the cokernels of $\alpha' \circ s$ and s are the same, which means exactly that $\alpha' \in J(\mathbf{Q}_p)$ stabilizes $\pi_{GM}(x)$. Thus (1) implies (2). Conversely, if there exists $\alpha' \in J(\mathbf{Q}_p) \setminus F^{\times}$ which stabilizes $\pi_{GM}(x)$, it means that the $B \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_C}$ -linear maps s and $\alpha' \circ s$ have the same cokernel, and therefore there exists $\alpha \in \operatorname{End}_{B \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_C}} V \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_C} = D$ such that $s \circ \alpha = \alpha' \circ s$, and then $(\alpha, \alpha') \in A_x \setminus F^{\times}$. This shows that (2) implies (1).

The equivalence between (1) and (3) is proved similarly.

Definition 3.5.2. The special locus in $\mathscr{M}_{\mathcal{D},\infty}$ is the subset $\mathscr{M}_{\mathcal{D},\infty}^{\mathrm{sp}}$ defined by the condition $A_x \neq F$. The non-special locus $\mathscr{M}_{\mathcal{D},\infty}^{\mathrm{non-sp}}$ is the complement of the special locus.

The special locus is built out of "smaller" Rapoport-Zink spaces, in the following sense. Let A be a semisimple F-algebra, equipped with two F-embeddings $A \to D$ and $A \to D'$, so that $A \otimes_F B$ acts on V and H. Also assume that a cocharacter in the conjugacy class μ factors through a cocharacter $\mu_0: \mathbf{G}_m \to \operatorname{Aut}_{A\otimes_F B} V$. Let $\mathcal{D}_0 = (A \otimes_F B, V, H, \mu_0)$. Then there is an evident morphism $\mathscr{M}_{\mathcal{D}_0,\infty} \to \mathscr{M}_{\mathcal{D},\infty}$. The special locus $\mathscr{M}_{\mathcal{D},\infty}^{\operatorname{sp}}$ is the union of the images of all the $\mathscr{M}_{\mathcal{D}_0,\infty}$, as A ranges through all semisimple F-subalgebras of $D \times D'$ strictly containing F.

4 Cohomological smoothness

Let Perf be the category of perfectoid spaces in characteristic p, with its pro-étale topology [Sch17, Definition 8.1]. For a prime $\ell \neq p$, there is a notion of ℓ -cohomological smoothness [Sch17, Definition 23.8]. We only need the notion for morphisms $f: Y' \to Y$ between sheaves on Perf which are separated and representable in locally spatial diamonds. If such an f is ℓ -cohomologically smooth, and Λ is an ℓ -power torsion ring, then the relative dualizing complex $Rf^!\Lambda$ is an invertible object in $D_{\text{ét}}(Y',\Lambda)$ (thus, it is v-locally isomorphic to $\Lambda[n]$ for some $n \in \mathbb{Z}$), and the natural transformation $Rf^!\Lambda \otimes f^* \to Rf^!$ of functors $D_{\text{ét}}(Y,\Lambda) \to D_{\text{ét}}(Y',\Lambda)$ is an equivalence [Sch17, Proposition 23.12]. In particular, if f is projection onto a point, and $Rf^!\Lambda \cong \Lambda[n]$, one derives a statement of Poincaré duality for Y':

$$R \operatorname{Hom}(R\Gamma_c(Y',\Lambda),\Lambda) \cong R\Gamma(Y',\Lambda)[n].$$

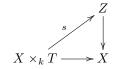
We will say that f is cohomologically smooth if it is ℓ -cohomologically smooth for all $\ell \neq p$. As an example, if $f: Y' \to Y$ is a separated smooth morphism of rigid-analytic spaces over \mathbf{Q}_p , then the associated

morphism of diamonds $f^{\diamond}: (Y')^{\diamond} \to Y^{\diamond}$ is cohomologically smooth [Sch17, Proposition 24.3]. There are other examples where f does not arise from a finite-type map of adic spaces. For instance, if $\tilde{B}_C = \text{Spa} C \langle T^{1/p^{\infty}} \rangle$ is the perfectoid closed ball over an algebraically closed perfectoid field C, then \tilde{B}_C is cohomologically smooth over C.

If Y is a perfectoid space over an algebraically closed perfectoid field C, it seems quite difficult to detect whether Y is cohomologically smooth over C. We will review in Section 4.2 a "Jacobian criterion" from [FS] which applies to certain kinds of Y. But first we give a classical analogue of this criterion in the context of schemes.

4.1 The Jacobian criterion: classical setting

Proposition 4.1.1. Let X be a smooth projective curve over an algebraically closed field k. Let $Z \to X$ be a smooth morphism. Define \mathscr{M}_Z to be the functor which inputs a k-scheme T and outputs the set of sections of $Z \to X$ over X_T , that is, the set of morphisms s making



commute, subject to the condition that, fiberwise on T, the vector bundle $s^* \operatorname{Tan}_{Z/X}$ has vanishing H^1 . Then $\mathscr{M}_Z \to \operatorname{Spec} k$ is formally smooth.

Here $\operatorname{Tan}_{Z/X}$ is the tangent bundle, equal to the \mathcal{O}_Z -linear dual of the sheaf of differentials $\Omega_{Z/X}$, which is locally free of finite rank. Let $\pi: X \times_k T \to T$ be the projection. For $t \in T$, let X_t be the fiber of π over t, and let $s_t: X_t \to Z$ be the restriction of s to X_t . By proper base change, the fiber of $R^1\pi_*s^*\operatorname{Tan}_{Z/X}$ at $t \in T$ is $H^1(X_t, s_t^*\operatorname{Tan}_{Z/X})$. The condition about the vanishing of H^1 in the proposition is equivalent to $H^1(X_t, s_t^*\operatorname{Tan}_{Z/X}) = 0$ for each $t \in T$. By Nakayama's lemma, this condition is equivalent to $R^1\pi_*s^*\operatorname{Tan}_{Z/X} = 0$.

Proof. Suppose we are given a commutative diagram

where $T_0 \to T$ is a first-order thickening of affine schemes; thus T_0 is the vanishing locus of a square-zero ideal sheaf $I \subset \mathcal{O}_T$. Note that I becomes an \mathcal{O}_{T_0} -module.

The morphism $T_0 \to \mathcal{M}_Z$ in (4.1.1) corresponds to a section of $Z \to X$ over T_0 . Thus there is a solid diagram

$$\begin{array}{cccc} X \times_k T_0 \xrightarrow{s_0} & Z \\ & & & \swarrow \\ & & & & \checkmark \\ & & & & & \checkmark \\ & & & & & \\ X \times_k T \longrightarrow X. \end{array} \tag{4.1.2}$$

We claim that there exists a dotted arrow making the diagram commute. Since $Z \to X$ is smooth, it is formally smooth, and therefore this arrow exists Zariski-locally on X. Let $\pi: X \times_k T \to T$ and $\pi_0: X \times_k T_0 \to T_0$ be the projections. Then $X \times_k T_0$ is the vanishing locus of the ideal sheaf $\pi^* I \subset \mathcal{O}_{X \times_k T}$. Note that sheaves of sets on $X \times_k T$ are equivalent to sheaves of sets on $X \times_k T_0$; under this equivalence, π^*I and π_0^*I correspond. By [Sta14, Remark 36.9.6], the set of such morphisms form a (Zariski) sheaf of sets on $X \times_k T$, which when viewed as a sheaf on $X \times_k T_0$ is a torsor for

$$\mathscr{H}_{\mathcal{O}_{X \times_k T_0}}(s_0^* \Omega_{Z/X}, \pi_0^* I) \cong s_0^* \operatorname{Tan}_{Z/X} \otimes \pi_0^* I$$

This torsor corresponds to class in

$$H^1(X \times_k T_0, s_0^* \operatorname{Tan}_{Z/X} \otimes \pi_0^* I).$$

This H^1 is the limit of a spectral sequence with terms

$$H^p(T_0, R^q \pi_{0*}(s_0^* \operatorname{Tan}_{Z/X} \otimes \pi_0^* I)).$$

But since T_0 is affine and $R^q \pi_{0*}(s_0^* \operatorname{Tan}_{Z/X} \otimes \pi_0^* I)$ is quasi-coherent, the above terms vanish for all p > 0, and therefore

$$H^{1}(X \times_{k} T_{0}, s_{0}^{*} \operatorname{Tan}_{Z/X} \otimes \pi_{0}^{*}I) \cong H^{0}(T_{0}, R^{1}\pi_{0*}(s_{0}^{*} \operatorname{Tan}_{Z/X} \otimes \pi_{0}^{*}I)).$$

Since $s_0^* \operatorname{Tan}_{Z/X}$ is locally free, we have $s_0^* \operatorname{Tan}_{Z/X} \otimes \pi_0^* I \cong s_0^* \operatorname{Tan}_{Z/X} \otimes^{\mathbf{L}} \pi_{0*} I$, and we may apply the projection formula [Sta14, Lemma 35.21.1] to obtain

$$R\pi_{0*}(s_0^* \operatorname{Tan}_{Z/X} \otimes \pi_0^* I) \cong R\pi_{0*} s_0^* \operatorname{Tan}_{Z/X} \otimes^{\mathbf{L}} I.$$

Now we apply the hypothesis about vanishing of H^1 , which implies that $R\pi_{0*}s_0^* \operatorname{Tan}_{Z/X}$ is quasi-isomorphic to the locally free sheaf $\pi_{0*}s_0^* \operatorname{Tan}_{Z/X}$ in degree 0. Therefore the complex displayed above has $H^1 = 0$.

Thus our torsor is trivial, and so a morphism $s: X \times_k T \to Z$ exists filling in (4.1.2). The final thing to check is that s corresponds to a morphism $T \to \mathcal{M}_Z$, i.e., that it satisfies the fiberwise $H^1 = 0$ condition. But this is automatic, since T_0 and T have the same schematic points.

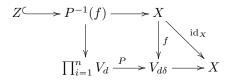
In the setup of Proposition 4.1.1, let $s: X \times_k \mathcal{M}_Z \to Z$ be the universal section. That is, the pullback of s along a morphism $T \to \mathcal{M}_Z$ is the section $X \times_k T \to Z$ to which this morphism corresponds. Let $\pi: X \times_k \mathcal{M}_Z \to \mathcal{M}_Z$ be the projection. By Proposition 4.1.1 $\mathcal{M}_Z \to \text{Spec } k$ is formally smooth. There is an isomorphism

$$\pi_* s^* \operatorname{Tan}_{Z/X} \cong \operatorname{Tan}_{\mathscr{M}_Z/\operatorname{Spec} k}$$

Indeed, the proof of Proposition 4.1.1 shows that $\pi_* s^* \operatorname{Tan}_{Z/X}$ has the same universal property with respect to first order deformations as $\operatorname{Tan}_{\mathscr{M}_Z/\operatorname{Spec} k}$.

The following example is of similar spirit as our main application of the perfectoid Jacobian criterion below.

Example 4.1.2. Let $X = \mathbf{P}^1$ over the algebraically closed field k. For $d \in \mathbf{Z}$, let $V_d = \underline{\operatorname{Spec}}_X \operatorname{Sym}_{\mathcal{O}_X}(\mathcal{O}(-d))$ be the geometric vector bundle over X whose global sections are $\Gamma(X, \mathcal{O}(d))$. Fix integers $n, d, \delta > 0$ and let P be a homogeneous polynomial over k of degree δ in n variables. Then P defines a morphism $P: \prod_{i=1}^n V_d \to V_{d\delta}$, by sending sections $(s_i)_{i=1}^n$ of V_d to the section $P(s_1, \ldots, s_n)$ of $V_{d\delta}$. Fix a global section $f: X \to V_{d\delta}$ to the projection morphism and consider the pull-back of P along f:



Moreover, let Z be the smooth locus of $P^{-1}(f)$ over X. It is an open subset. The derivatives $\frac{\partial P}{\partial x_i}$ of P are homogeneous polynomials of degree $\delta - 1$ in n variables, hence can be regarded as functions $\prod_{i=1}^{n} V_d \rightarrow V_{d(\delta-1)}$. A point $y \in P^{-1}(f)$ lies in Z if and only if $\frac{\partial P}{\partial x_i}(y)$, $i = 1, \ldots, n$ are not all zero. We wish to apply Proposition 4.1.1 to Z/X. Let \mathscr{M}'_Z denote the space of global sections of Z over X, that is for a k-scheme T, $\mathscr{M}'_Z(T)$ is the set of morphisms $s: X \times_k T \to Z$ as in the proposition (without any further conditions). A k-point $g \in \mathscr{M}'_Z(k)$ corresponds to a section $g: X \to \prod_{i=1}^n V_d$, satisfying $P \circ g = f$. In general, for a (geometric) vector bundle V on X with corresponding locally free \mathcal{O}_X -module \mathscr{E} , the pullback of the tangent space $\operatorname{Tan}_{V/X}$ along a section $s: X \to V$ is canonically isomorphic to \mathscr{E} . Hence in our situation (using that $Z \subseteq P^{-1}(f)$ is open) the tangent space $g^*\operatorname{Tan}_{Z/X}$ can be computed from the short exact sequence,

$$0 \to g^* \operatorname{Tan}_{Z/X} \to \bigoplus_{i=1}^n \mathcal{O}(d) \xrightarrow{D_g P} \mathcal{O}(d\delta) \to 0,$$

where $D_g P$ is the derivative of P at g. It is the \mathcal{O}_X -linear map given by $(t_i)_{i=1}^n \mapsto \sum_{i=1}^n \frac{\partial P}{\partial x_i}(g)t_i$ (note that $\frac{\partial P}{\partial x_i}(g)$ are global sections of $\mathcal{O}(d(\delta-1))$). Note that $D_g P$ is surjective: by Nakayama, it suffices to check this fiberwise, where it is true by the condition defining Z.

The space \mathscr{M}_Z is the subfunctor of \mathscr{M}'_Z consisting of all g such that (fiberwise) $g^*\operatorname{Tan}_{Z/X} = \ker(D_g P)$ has vanishing H^1 . Writing $\ker(D_g P) = \bigoplus_{i=1}^r \mathcal{O}(m_i)$ $(m_i \in \mathbb{Z})$, this is equivalent to $m_i \ge -1$. By the Proposition 4.1.1 we conclude that \mathscr{M}_Z is formally smooth over k.

Consider now a numerical example. Let n = 3, d = 1 and $\delta = 4$ and let $g \in \mathscr{M}'_Z(k)$. Then $D_g P \in \operatorname{Hom}_{\mathcal{O}_X}(\mathcal{O}(1)^{\oplus 3}, \mathcal{O}(4)) = \Gamma(X, \mathcal{O}(3)^{\oplus 3})$, a 12-dimensional k-vector space, and moreover, $D_g P$ lies in the open subspace of surjective maps. We have the short exact sequence of \mathcal{O}_X -modules

$$0 \to g^* \operatorname{Tan}_{Z/X} \to \mathcal{O}(1)^{\oplus 3} \xrightarrow{D_g P} \mathcal{O}(4) \to 0$$
(4.1.3)

This shows that $g^* \operatorname{Tan}_{Z/X}$ has rank 2 and degree -1. Moreover, being a subbundle of $\mathcal{O}(1)^{\oplus 3}$ it only can have slopes ≤ 1 . There are only two options, either $g^* \operatorname{Tan}_{Z/X} \cong \mathcal{O}(-1) \oplus \mathcal{O}$ or $g^* \operatorname{Tan}_{Z/X} \cong \mathcal{O}(-2) \oplus \mathcal{O}(1)$. The point g lies in \mathcal{M}_Z if and only if the first option occurs for g. Which option occurs can be seen from the long exact cohomology sequence associated to (4.1.3):

$$0 \to \Gamma(X, g^* \operatorname{Tan}_{Z/X}) \to \underbrace{\Gamma(X, \mathcal{O}(1))^{\oplus 3}}_{\text{6-dim'l}} \xrightarrow{\Gamma(D_g P)} \underbrace{\Gamma(X, \mathcal{O}(4))}_{\text{5-dim'l}} \to \operatorname{H}^1(X, g^* \operatorname{Tan}_{Z/X}) \to 0,$$

It is clear that $\Gamma(X, g^* \operatorname{Tan}_{Z/X})$ is 1-dimensional if and only if $g^* \operatorname{Tan}_{Z/X} \cong \mathcal{O}(-1) \oplus \mathcal{O}$ and 2-dimensional otherwise. The first option is generic, i.e., \mathcal{M}_Z is an open subscheme of \mathcal{M}'_Z .

4.2 The Jacobian criterion: perfectoid setting

We present here the perfectoid version of Proposition 4.1.1.

Theorem 4.2.1 (Fargues-Scholze [FS]). Let $S = \text{Spa}(R, R^+)$ be an affinoid perfectoid space in characteristic p. Let $Z \to X_S$ be a smooth morphism of schemes. Let $\mathcal{M}_Z^{>0}$ be the functor which inputs a perfectoid space $T \to S$ and outputs the set of sections of $Z \to X_S$ over T, that is, the set of morphisms s making

commute, subject to the condition that, fiberwise on T, all Harder-Narasimhan slopes of the vector bundle $s^* \operatorname{Tan}_{Z/X_S}$ are positive. Then $\mathscr{M}_Z^{>0} \to S$ is a cohomologically smooth morphism of locally spatial diamonds.

Example 4.2.2. Let $S = \eta = \operatorname{Spa}(C, \mathcal{O}_C)$, where C is an algebraically closed perfectoid field of characteristic 0, and let $Z = \mathbf{V}(\mathcal{E}_S(H)) \to X_S$ be the geometric vector bundle attached to $\mathcal{E}_S(H)$, where H is a p-divisible group over the residue field of C. Then $\mathcal{M}_Z = H^0(\mathcal{E}_S(H))$ is isomorphic to $\tilde{H}_{\eta}^{\mathrm{ad}}$ by Proposition 3.2.1. Let $s: X_{\mathcal{M}_Z} \to Z$ be the universal morphism; then $s^* \operatorname{Tan}_{Z/X_S}$ is the constant Banach-Colmez space associated to H (i.e., the pull-back of $\mathcal{E}_S(H)$ along $X_{\mathcal{M}_Z} \to X_S$). This has vanishing H^1 if and only if H has no étale part. This is true if and only if $\mathcal{M}_Z^{\geq 0}$ is isomorphic to a perfectoid open ball. The perfectoid open ball is cohomologically smooth, in accord with Theorem 4.2.1. In contrast, if the étale quotient $H^{\text{ét}}$ has height d > 0, then $\pi_0(\tilde{H}_{\eta}^{\mathrm{ad}}) \cong \mathbf{Q}_p^d$ implies that $\tilde{H}_{\eta}^{\mathrm{ad}}$ is not cohomologically smooth.

In the setup of Theorem 4.2.1, suppose that $x = \operatorname{Spa}(C, \mathcal{O}_C) \to S$ is a geometric point, and that $x \to \mathscr{M}_Z^{>0}$ is an S-morphism, corresponding to a section $s: X_C \to Z$. Then $s^* \operatorname{Tan}_{Z/X_S}$ is a vector bundle on X_C . In light of the discussion in the previous section, we are tempted to interpret $H^0(X_C, s^* \operatorname{Tan}_{Z/X_S})$ as the "tangent space of $\mathscr{M}_Z^{>0} \to S$ at x". At points x where $s^* \operatorname{Tan}_{Z/X_S}$ has only positive Harder-Narasimhan slopes, this tangent space is a perfectoid open ball.

5 Proof of the main theorem

5.1 Dilatations and modifications

As preparation for the proof of Theorem 1.0.1, we review the notion of a dilatation of a scheme at a locally closed subscheme [BLR90, §3.2].

Throughout this subsection, we fix some data. Let X be a curve, meaning that X is a scheme which is locally the spectrum of a Dedekind ring. Let $\infty \in X$ be a closed point with residue field C. Let i_{∞} : Spec $C \to X$ be the embedding, and let $\xi \in \mathcal{O}_{X,\infty}$ be a local uniformizer at ∞ .

Proposition 5.1.1. Let $V \to X$ be a morphism of finite type, and let $Y \subset V_{\infty}$ be a locally closed subscheme of the fiber of V at ∞ .

There exists a morphism of X-schemes $V' \to V$ which is universal for the following property: $V' \to X$ is flat at ∞ , and $V'_{\infty} \to V_{\infty}$ factors through $Y \subset V_{\infty}$.

The X-scheme V' is the *dilatation* of V at Y. We review here its construction.

First suppose that $Y \subset V_{\infty}$ is closed. Let $\mathscr{I} \subset \mathcal{O}_V$ be the ideal sheaf which cuts out Y. Let $B \to V$ be the blow-up of V along Y. Then $\mathscr{I} \cdot \mathcal{O}_B$ is a locally principal ideal sheaf. The dilatation V' of V at Y is the open subscheme of B obtained by imposing the condition that the ideal $(\mathscr{I} \cdot \mathcal{O}_B)_x \subset \mathcal{O}_{B,x}$ is generated by ξ at all $x \in B$ lying over ∞ .

We give here an explicit local description of the dilatation V'. Let Spec A be an affine neighborhood of ∞ , such that $\xi \in A$, and let Spec $R \subset V$ be an open subset lying over Spec A. Let $I = (f_1, \ldots, f_n)$ be the restriction of \mathscr{I} to Spec R, so that I cuts out $Y \cap$ Spec A. Then the restriction of $V' \to V$ to Spec R is Spec R', where

$$R' = R\left[\frac{f_1}{\xi}, \dots, \frac{f_n}{\xi}\right]/(\xi ext{-torsion}).$$

Now suppose $Y \subset V_{\infty}$ is only locally closed, so that Y is open in its closure \overline{Y} . Then the dilatation of V at Y is the dilatation of $V \setminus (\overline{Y} \setminus Y)$ at Y.

Note that a dilatation $V' \to V$ is an isomorphism away from ∞ , and that it is affine.

Example 5.1.2. Let

$$0 \to \mathcal{E}' \to \mathcal{E} \to i_{\infty *} W \to 0$$

be an exact sequence of \mathcal{O}_X -modules, where \mathcal{E} (and thus \mathcal{E}') is locally free, and W is a C-vector space. (This is an elementary modification of the vector bundle \mathcal{E} .) Let $K = \ker(\mathcal{E}_{\infty} \to W)$.

Let $\mathbf{V}(\mathcal{E}) \to X$ be the geometric vector bundle corresponding to \mathcal{E} . Similarly, we have $\mathbf{V}(\mathcal{E}') \to X$, and an X-morphism $\mathbf{V}(\mathcal{E}') \to \mathbf{V}(\mathcal{E})$. Let $\mathbf{V}(K) \subset \mathbf{V}(\mathcal{E})_{\infty}$ be the affine space associated to $K \subset \mathcal{E}_{\infty}$. We claim that $\mathbf{V}(\mathcal{E}')$ is isomorphic to the dilatation $\mathbf{V}(\mathcal{E})'$ of $\mathbf{V}(\mathcal{E})$ at $\mathbf{V}(K)$. Indeed, by the universal property of dilatations, there is a morphism $\mathbf{V}(\mathcal{E}') \to \mathbf{V}(\mathcal{E})'$, which is an isomorphism away from ∞ .

To see that $\mathbf{V}(\mathcal{E}') \to \mathbf{V}(\mathcal{E})'$ is an isomorphism, it suffices to work over $\mathcal{O}_{X,\infty}$. Over this base, we may give a basis f_1, \ldots, f_n of global sections of \mathcal{E} , with f_1, \ldots, f_k lifting a basis for $K \subset \mathcal{E}_{\infty}$. Then the localization of $\mathbf{V}(\mathcal{E})' \to \mathbf{V}(\mathcal{E})$ at ∞ is isomorphic to

$$\operatorname{Spec} \mathcal{O}_{X,\infty}\left[\frac{f_1}{\xi}, \dots, \frac{f_k}{\xi}, f_{k+1}, \cdots, f_n\right] \to \operatorname{Spec} \mathcal{O}_{X,\infty}[f_1, \dots, f_n].$$

This agrees with the localization of $\mathbf{V}(\mathcal{E}') \to \mathbf{V}(\mathcal{E})$ at ∞ .

Lemma 5.1.3. Let $V \to X$ be a smooth morphism, let $Y \subset V_{\infty}$ be a smooth locally closed subscheme, and let $\pi: V' \to V$ be the dilatation of V at Y. Then $V' \to X$ is smooth, and $\operatorname{Tan}_{V'/X}$ lies in an exact sequence of $\mathcal{O}_{V'}$ -modules

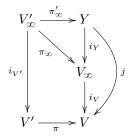
$$0 \to \operatorname{Tan}_{V'/X} \to \pi^* \operatorname{Tan}_{V/X} \to \pi^* j_* N_{Y/V_{\infty}} \to 0,$$
(5.1.1)

where $N_{Y/V_{\infty}}$ is the normal bundle of $Y \subset V_{\infty}$, and $j: Y \to V$ is the inclusion.

Finally, let $T \to X$ be a morphism which is flat at ∞ , and let $s: T \to V$ be a morphism of X-schemes, such that s_{∞} factors through Y. By the universal property of dilatations, s factors through a morphism $s': T \to V'$. Then we have an exact sequence of \mathcal{O}_V -modules

$$0 \to (s')^* \operatorname{Tan}_{V'/X} \to s^* \operatorname{Tan}_{V/X} \to i_{T_{\infty}*} s_{\infty}^* N_{Y/V_{\infty}} \to 0.$$
(5.1.2)

Proof. One reduces to the case that Y is closed in V_{∞} . The smoothness of $V' \to X$ is [BLR90, §3.2, Proposition 3]. We turn to the exact sequence (5.1.1). The morphism $\operatorname{Tan}_{V'/X} \to \pi^* \operatorname{Tan}_{V/X}$ comes from functoriality of the tangent bundle. To construct the morphism $\pi^* \operatorname{Tan}_{V/X} \to \pi^* j_* N_{Y/V_{\infty}}$, we consider the diagram



in which the outer rectangle is cartesian. For its part, the normal bundle $N_{Y/V_{\infty}}$ sits in an exact sequence of \mathcal{O}_Y -modules

$$0 \to \operatorname{Tan}_{Y/C} \to i_Y^* \operatorname{Tan}_{V_\infty/C} \to N_{Y/V_\infty} \to 0.$$

The composite

$$i_{V'}^* \operatorname{Tan}_{V/X} = \pi_{\infty}^* i_V^* \operatorname{Tan}_{V/X}$$
$$\cong \pi_{\infty}^* \operatorname{Tan}_{V_{\infty}/C}$$
$$= (\pi_{\infty}')^* i_Y^* \operatorname{Tan}_{V/C}$$
$$\to (\pi_{\infty}')^* N_{Y/V_{\infty}}$$

induces by adjunction a morphism

$$\pi^* \operatorname{Tan}_{V/X} \to i_{V'*}(\pi'_{\infty})^* N_{Y/V_{\infty}} \cong \pi^* j_* N_{Y/V_{\infty}},$$

where the last step is justified because j is a closed immersion.

We check that (5.1.1) is exact using our explicit description of V'. The sequence is clearly exact away from the preimage of Y in V', since on the complement of this locus, the morphism π is an isomorphism, and $\pi^* j_* = 0$. Therefore we let $y \in Y$ and check exactness after localization at y. Let $\mathcal{I} \subset \mathcal{O}_V$ be the ideal sheaf which cuts out Y, and let $I \subset \mathcal{O}_{V,y}$ be the localization of \mathcal{I} at y. Then $\mathcal{O}_{V_{\infty},y} = \mathcal{O}_{V,y}/\xi$. Since $Y \subset V_{\infty}$ are both smooth at y, we can find a system of local coordinates $\overline{f}_1, \ldots, \overline{f}_n \in \mathcal{O}_{V_{\infty},y}$ (meaning that the differentials $d\overline{f}_i$ form a basis for $\Omega^1_{V_{\infty}/C,y}$), such that $\overline{f}_{k+1}, \ldots, \overline{f}_n$ generate I/ξ . If $\partial/\partial \overline{f}_i$ are the dual basis, then the stalk of $N_{Y/V_{\infty}}$ at y is the free $\mathcal{O}_{Y,y}$ -module with basis $\partial/\partial \overline{f}_{k+1}, \ldots, \partial/\partial \overline{f}_n$.

Choose lifts $f_i \in \mathcal{O}_{V,y}$ of the $\overline{f_i}$. Then I is generated by ξ, f_k, \ldots, f_n . The localization of $V' \to V$ over y is Spec $\mathcal{O}_{V',y}$, where $\mathcal{O}_{V',y} = \mathcal{O}_{V,y}[g_{k+1}, \ldots, g_n]/(\xi$ -torsion), where $\xi g_i = f_i$ for $i = k + 1, \ldots, n$. Then the stalk of $\operatorname{Tan}_{V'/X}$ at y is the free $\mathcal{O}_{V',y}$ -module with basis $\partial/\partial f_1, \ldots, \partial/\partial f_k, \partial/\partial g_{k+1}, \ldots, \partial/\partial g_n$, whereas the stalk of $\pi^* \operatorname{Tan}_{V/X}$ at y is the free $\mathcal{O}_{V',y}$ -module with basis $\partial/\partial f_1, \ldots, \partial/\partial f_n$. The quotient between these stalks is evidently the free module over $\mathcal{O}_{V',y}/\xi$ with basis $\partial/\partial f_{k+1}, \ldots, \partial/\partial f_n$, and this agrees with the stalk of $\pi^* j_* N_{Y/V_\infty}$.

Given a morphism of X-schemes $s: T \to V$ as in the lemma, we apply $(s')^*$ to (5.1.1); this is exact because s' is flat. The term on the right is $s^*j_*N_{Y/V_{\infty}} \cong i_{T_{\infty}*}s^*_{\infty}N_{Y/V_{\infty}}$ (once again, this is valid because j is a closed immersion).

5.2 The space $\mathcal{M}_{H,\infty}$ as global sections of a scheme over X_C

We will prove Theorem 1.0.1 for the Rapoport-Zink spaces of the form $\mathcal{M}_{H,\infty}$ before proceeding to the general case. Let H be a p-divisible group of height n and dimension d over a perfect field k. In this context, $\check{E} = W(k)[1/p]$. Let $\mathcal{E} = \mathcal{E}_C(H)$. Throughout, we will be interpreting $\mathcal{M}_{H,\infty}$ as a functor on $\operatorname{Perf}_{\check{E}}$ as in Proposition 3.2.2.

We have a determinant morphism det: $\mathcal{M}_{H,\infty} \to \mathcal{M}_{\det H,\infty}$. Let $\tau \in \mathcal{M}_{\det H,\infty}(C)$ be a geometric point of $\mathcal{M}_{\det H,\infty}$. This point corresponds to a section τ of $\mathbf{V}(\det \mathcal{E}) \to X_C$, which we also call τ . Let $\mathcal{M}_{H,\infty}^{\tau}$ be the fiber of det over τ .

Our first order of business is to express $\mathscr{M}_{H,\infty}^{\tau}$ as the space of global sections of a smooth morphism $Z \to X_C$, defined as follows. We have the geometric vector bundle $\mathbf{V}(\mathcal{E}^n) \to X$, whose global sections parametrize morphisms $s: \mathcal{O}_{X_C}^n \to \mathcal{E}$. Let U_{n-d} be the locally closed subscheme of the fiber of $\mathbf{V}(\mathcal{E}^n)$ over ∞ , which parametrizes all morphisms of rank n-d. We consider the dilatation $\mathbf{V}(\mathcal{E}^n)^{\mathrm{rk}_{\infty}=n-d} \to \mathbf{V}(\mathcal{E}^n)$ of $\mathbf{V}(\mathcal{E}^n)$ along U_{n-d} . For any flat X_C -scheme T, $\mathbf{V}(\mathcal{E}^n)^{\mathrm{rk}_{\infty}=n-d}(T)$ is the set of all $s: \mathcal{O}_T^n \to \mathcal{E}_T$ such that

 $\operatorname{cok}(s) \otimes C$ is projective $\mathcal{O}_T \otimes C$ -module of rank d. Define Z as the Cartesian product:

Lemma 5.2.1. Let \mathscr{M}_Z be the functor which inputs a perfectoid space T/C and outputs the set of sections of $Z \to X_C$ over X_T . Then \mathscr{M}_Z is isomorphic to $\mathscr{M}_{H,\infty}^{\tau}$.

Proof. Let $T = \text{Spa}(R, R^+)$ be an affinoid perfectoid space over C. The morphism $X_T \to X_C$ is flat. (This can be checked locally: $B^+_{dR}(R)$ is torsion-free over the discrete valuation ring $B^+_{dR}(C)$, and so it is flat.) By the description in (5.2.1), an X_T -point of \mathcal{M}_Z corresponds to a morphism $\sigma \colon \mathcal{O}^n_{X_T} \to \mathcal{E}_T(H)$ which has the properties:

- (1) The cokernel of σ_{∞} is a projective *R*-module quotient of $\mathcal{E}_T(H)_{\infty}$ of rank *d*.
- (2) The determinant of σ equals τ .

On the other hand, by Proposition 3.2.2, $\mathscr{M}_{H,\infty}(T)$ is the set of morphisms $\sigma \colon \mathscr{O}^n_{X_{\mathcal{T}}} \to \mathscr{E}_T(H)$ satisfying

- (1') The cokernel of σ is $i_{\infty*}W$, for a projective *R*-module quotient *W* of $\mathcal{E}_T(H)_{\infty}$ of rank *d*.
- (2) The determinant of σ equals τ .

We claim the two sets of conditions are equivalent for a morphism $\sigma: \mathcal{O}_{X_T}^n \to \mathcal{E}_T(H)$. Clearly (1') implies (1), so that (1') and (2) together imply (1) and (2) together. Conversely, suppose (1) and (2) hold. Since τ represents a point of $\mathcal{M}_{\det H,\infty}$, it is an isomorphism outside of ∞ , and therefore so is σ . This means that $\operatorname{cok} \sigma$ is supported at ∞ . Thus $\operatorname{cok} \sigma$ is a $B_{\mathrm{dR}}^+(R)$ -module. For degree reasons, the length of $(\operatorname{cok} \sigma) \otimes_{B_{\mathrm{dR}}^+(R)} B_{\mathrm{dR}}^+(C')$ has length d for every geometric point $\operatorname{Spa}(C', (C')^+) \to T$. Whereas condition (1) says that $(\operatorname{cok} \sigma) \otimes_{B_{\mathrm{dR}}^+(R)} R$ is a projective R-module of rank d. This shows that $(\operatorname{cok} \sigma)$ is already a projective R-module of rank d, which is condition (1').

Lemma 5.2.2. The morphism $Z \to X_C$ is smooth.

Proof. Let $\infty' \in X_C$ be a closed point, with residue field C'. It suffices to show that the stalk of Z at ∞' is smooth over Spec $B^+_{dR}(C')$.

If $\infty' \neq \infty$, then this stalk is isomorphic to the variety $(\mathbf{A}^{n^2})^{\det=\tau}$ consisting of $n \times n$ matrices with fixed determinant τ . Since τ is invertible in $B^+_{dR}(C')$, this variety is smooth.

Now suppose $\infty' = \infty$. Let ξ be a generator for the kernel of $B^+_{dR}(C) \to C$. Then the stalk of Z at ∞ is isomorphic to the flat $B^+_{dR}(C)$ -scheme Y, whose T-points for a flat $B^+_{dR}(C)$ -scheme T are $n \times n$ matrices with coefficients in $\Gamma(T, \mathcal{O}_T)$, which are rank n - d modulo ξ , and which have fixed determinant τ (which must equal $u\xi^d$ for a unit $u \in B^+_{dR}(C)$). Consider the open subset $Y_0 \subset Y$ consisting of matrices M where the first (n - d) columns have rank (n - d). Then the final d columns of M are congruent modulo ξ to a linear combination of the first (n - d) columns. After row reduction operations only depending on those first (n - d) columns, M becomes

$$\left(\begin{array}{c|c} I_{n-d} & P \\ \hline 0 & \xi Q \end{array}\right),$$

with det Q = w for a unit $w \in B^+_{dR}(C)$ which only depends on the first (n - d) columns of M. We therefore have a fibration $Y_0 \to \mathbf{A}^{n(n-d)}$, namely projection onto the first (n - d) columns, whose fibers

are $\mathbf{A}^{d(n-d)} \times (\mathbf{A}^{d^2})^{\det=w}$, which is smooth. Therefore Y_0 is smooth. The variety Y is covered by opens isomorphic to Y_0 , and so it is smooth.

We intend to apply Theorem 4.2.1 to the morphism $Z \to X$, and so we need some preparations regarding the relative tangent space of $\mathbf{V}(\mathcal{E}^n)^{\mathrm{rk}_{\infty}=n-d} \to X_C$.

5.3 A linear algebra lemma

Let $f: V' \to V$ be a rank r linear map between n-dimensional vector spaces over a field C. Thus there is an exact sequence

$$0 \to W' \to V' \xrightarrow{f} V \xrightarrow{q} W \to 0.$$

with $\dim W = \dim W' = n - r$.

Consider the minor map $\Lambda: \operatorname{Hom}(V', V) \to \operatorname{Hom}(\bigwedge^{r+1} V', \bigwedge^{r+1} V)$ given by $\sigma \mapsto \bigwedge^{r+1} \sigma$. This is a polynomial map, whose derivative at f is a linear map

$$D_f \Lambda \colon \operatorname{Hom}(V', V) \to \operatorname{Hom}\left(\bigwedge^{r+1} V', \bigwedge^{r+1} V\right).$$

Explicitly, this map is

$$D_f \Lambda(\sigma)(v_1 \wedge \dots \wedge v_{r+1}) = \sum_{i=1}^{r+1} f(v_1) \wedge f(v_2) \wedge \dots \wedge \sigma(v_i) \wedge \dots \wedge f(v_{r+1}).$$

Lemma 5.3.1. Let

 $K = \ker \left(\operatorname{Hom}(V', V) \to \operatorname{Hom}(W', W) \right)$

be the kernel of the map $\sigma \mapsto q \circ (\sigma|_{W'})$. Then ker $D_f \Lambda = K$.

Proof. Suppose $\sigma \in K$. Since f has rank r, the exterior power $\bigwedge^{r+1} V'$ is spanned over C by elements of the form $v_1 \wedge \cdots \wedge v_{r+1}$, where $v_{r+1} \in \ker f = W'$. Since $f(v_{r+1}) = 0$, the sum in (5.3) reduces to

$$D_f \Lambda(\sigma)(v_1 \wedge \cdots \wedge v_{r+1}) = f(v_1) \wedge \cdots \wedge f(v_r) \wedge \sigma(v_{r+1}).$$

Since $\sigma \in K$ and $v_{r+1} \in W'$ we have $\sigma(v_{r+1}) \in \ker q = f(V')$, which means that $D_f \Lambda(\sigma)(v_1, \ldots, v_{r+1}) \in \bigwedge^{r+1} f(V') = 0$. Thus $\sigma \in \ker D_f \Lambda$.

Now suppose $\sigma \in \ker D_f \Lambda$. Let $w \in W'$. We wish to show that $\sigma(w) \in f(V')$. Let $v_1, \ldots, v_r \in V'$ be vectors for which $f(v_1), \cdots, f(v_r)$ is a basis for f(V'). Since $\sigma \in \ker D_f \Lambda$, we have $D_f \Lambda(\sigma)(v_1 \wedge \cdots \wedge v_r \wedge w) = 0$. On the other hand,

$$D_f \Lambda(\sigma)(v_1 \wedge \dots \wedge v_r \wedge w) = f(v_1) \wedge \dots \wedge f(v_r) \wedge \sigma(w)$$

because all other terms in the sum in (5.3) are 0, owing to f(w) = 0. Since the wedge product above is 0, and the $f(v_i)$ are a basis for f(V'), we must have $\sigma(w) \in f(V')$. Thus $\sigma \in K$.

We interpret Lemma 5.3.1 as the calculation of a certain normal bundle. Let $Y = \mathbf{V}(\operatorname{Hom}(V', V))$ be the affine space over C representing morphisms $V' \to V$ over a C-scheme, and let $j: Y^{\operatorname{rk}=r} \to Y$ be the locally closed subscheme representing morphisms which are everywhere of rank r. Thus, $Y^{\operatorname{rk}=r}$ is an open subset of the fiber over 0 of (the geometric version of) the minor map Λ . It is well known that $Y^{\operatorname{rk}=r}/C$ is smooth of codimension $(n-r)^2$ in Y/C, and so the normal bundle $N_{Y^{\operatorname{rk}=r}/Y}$ is locally free of this rank.

We have a universal morphism of $\mathcal{O}_{Y^{rk=r}}$ -modules $\sigma \colon \mathcal{O}_{Y^{rk=r}} \otimes_C V' \to \mathcal{O}_{Y^{rk=r}} \otimes_C V$. Let $\mathcal{W}' = \ker \sigma$ and $\mathcal{W} = \operatorname{cok} \sigma$, so that \mathcal{W}' and \mathcal{W} are locally free $\mathcal{O}_{Y^{rk=r}}$ -modules of rank n-r. We also have the $\mathcal{O}_{Y^{rk=r}}$ linear morphism $D\Lambda \colon \mathcal{O}_{Y^{rk=r}} \otimes_C \operatorname{Hom}(V', V) \to \mathcal{O}_{Y^{rk=r}} \otimes_C \operatorname{Hom}(\Lambda^{r+1}V', \Lambda^{r+1}V)$, whose kernel is precisely $\operatorname{Tan}_{Y^{rk=r}/C}$. The geometric interpretation of Lemma 5.3.1 is a commutative diagram with short exact rows:

5.4 Moduli of morphisms of vector bundles with fixed rank at ∞

We return to the setup of §5.1. We have a curve X and a closed point $\infty \in X$, with inclusion map i_{∞} and residue field C.

Let \mathcal{E} and \mathcal{E}' be rank *n* vector bundles over *X*, with fibers $V = \mathcal{E}_{\infty}$ and $V' = \mathcal{E}'_{\infty}$. We have the geometric vector bundle $\mathbf{V}(\mathscr{H}_{om}(\mathcal{E}', \mathcal{E})) \to X$. If $f: T \to X$ is a morphism, then *T*-points of $\mathbf{V}(\mathscr{H}_{om}(\mathcal{E}', \mathcal{E}))$ classify \mathcal{O}_T -linear maps $f^*\mathcal{E}' \to f^*\mathcal{E}$.

Let $\mathbf{V}(\mathscr{H}_{em}(\mathscr{E}', \mathscr{E}))^{\mathrm{rk}_{\infty}=r}$ be the dilatation of $\mathbf{V}(\mathscr{H}_{em}(\mathscr{E}', \mathscr{E}))$ at the locally closed subscheme $\mathbf{V}(\mathrm{Hom}(V', V))^{\mathrm{rk}=r}$ of the fiber $\mathbf{V}(\mathscr{H}_{em}(\mathscr{E}', \mathscr{E}))_{\infty} = \mathbf{V}(\mathrm{Hom}(V', V))$. This has the following property, for a flat morphism $f: T \to X$: the X-morphisms $s: T \to \mathbf{V}(\mathscr{H}_{em}(\mathscr{E}', \mathscr{E}))^{\mathrm{rk}_{\infty}=r}$ parametrize those \mathcal{O}_T -linear maps $\sigma: f^*\mathscr{E}' \to f^*\mathscr{E}$, for which the fiber $\sigma_{\infty}: f_{\infty}^*V' \to f_{\infty}^*V$ has rank r everywhere on T_{∞} .

Given a morphism s as above, corresponding to a morphism $\sigma: f^*\mathcal{E}' \to f^*\mathcal{E}$, we let \mathcal{W}' and \mathcal{W} denote the kernel and cokernel of σ_{∞} . Then \mathcal{W}' and \mathcal{W} are locally free $\mathcal{O}_{T_{\infty}}$ -modules of rank r. Let $i_{T_{\infty}}: T_{\infty} \to T$ denote the pullback of i_{∞} through f.

We intend to use Lemma 5.1.3 to compute $s^* \operatorname{Tan}_{\mathbf{V}(\mathscr{Hom}(\mathcal{E}',\mathcal{E}))^{\mathrm{rk}_{\infty}=r/X}}$. The tangent bundle $\operatorname{Tan}_{\mathbf{V}(\mathscr{Hom}(\mathcal{E}',\mathcal{E}))/X}$ is isomorphic to the pullback $f^* \mathscr{Hom}(\mathcal{E}',\mathcal{E})$. Also, we have identified the normal bundle $N_{\mathbf{V}(\operatorname{Hom}(V',V))^{\mathrm{rk}=r}/\mathbf{V}(\operatorname{Hom}(V',V))}$ in (5.3.1). So when we apply the lemma to this situation, we obtain an exact sequence of \mathcal{O}_T -modules

$$0 \to s^* \operatorname{Tan}_{\mathbf{V}(\mathscr{H}om(\mathcal{E}',\mathcal{E}))^{\operatorname{rk}_{\infty}=r}/X} \to f^* \mathscr{H}om(\mathcal{E}',\mathcal{E}) \to i_{T_{\infty}*} \mathscr{H}om(\mathcal{W}',\mathcal{W}) \to 0,$$
(5.4.1)

where the third arrow is adjoint to the map

$$i_{T_{\infty}}^{*}f^{*}\mathscr{H}om(\mathcal{E}',\mathcal{E}) = \operatorname{Hom}(f_{\infty}^{*}V',f_{\infty}^{*}V) \to \mathscr{H}om(\mathcal{W}',\mathcal{W}),$$

which sends $\sigma \in \mathscr{H}om(f_{\infty}^*V', f_{\infty}^*V)$ to the composite

$$\mathcal{W}' \to f^*_{\infty} V' \stackrel{\sigma_{\infty}}{\to} f^*_{\infty} V \to \mathcal{W}.$$

The short exact sequence in (5.4.1) identifies the \mathcal{O}_T -module $s^* \operatorname{Tan}_{\mathbf{V}(\mathscr{H}om(\mathcal{E}',\mathcal{E}))^{\operatorname{rk}_{\infty}=r/X}}$ as a modification of $f^* \mathscr{H}om(\mathcal{E}',\mathcal{E})$ at the divisor T_{∞} . We can say a little more in the case that σ itself is a modification. Let us assume that σ fits into an exact sequence

$$0 \to f^* \mathcal{E}' \xrightarrow{\sigma} f^* \mathcal{E} \xrightarrow{\alpha} i_{T_{\infty} *} \mathcal{W} \to 0.$$

Dualizing gives another exact sequence

$$0 \to f^*(\mathcal{E}^{\vee}) \xrightarrow{\sigma^{\vee}} f^*(\mathcal{E}')^{\vee} \xrightarrow{\alpha'} i_{T_{\infty}*}(\mathcal{W}')^{\vee} \to 0.$$

Then

$$s^* \operatorname{Tan}_{\mathbf{V}(\mathscr{H}om(\mathcal{E}',\mathcal{E}))^{\operatorname{rk}_{\infty}=r}/X} = \ker \left[f^* \mathscr{H}om(\mathcal{E}',\mathcal{E}) \to i_{T_{\infty}*} \mathscr{H}om(\mathcal{W}',\mathcal{W}) \right]$$
$$\cong \ker(\alpha \otimes \alpha')$$

The kernel of $\alpha \otimes \alpha'$ can be computed in terms of ker $\alpha = f^* \mathcal{E}'$ and ker $\alpha' = f^* (\mathcal{E}^{\vee})$, see Lemma 5.4.1 below. It sits in a diagram

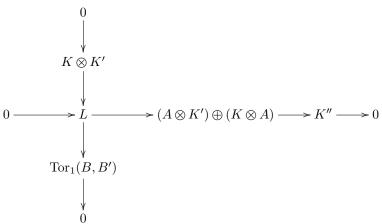
Lemma 5.4.1. Let \mathcal{A} be an abelian \otimes -category. Let

$$0 \to K \xrightarrow{i} A \xrightarrow{f} B \to 0$$
$$0 \to K' \xrightarrow{i'} A' \xrightarrow{f'} B' \to 0$$

be two exact sequences in A, with A, A', K, K' projective. The homology of the complex

$$K \otimes K' \xrightarrow{(i \otimes 1_{K'}, 1_K \otimes i')} (A \otimes K') \oplus (K \otimes A) \xrightarrow{1_A \otimes i' - i \otimes 1_{A'}} A \otimes A'$$

is given by $H_2 = 0$, $H_1 \cong \text{Tor}_1(B, B')$, and $H_0 \cong B \otimes B'$. Thus, $K'' = \text{ker}(f \otimes f' \colon A \otimes A' \to B \otimes B')$ appears in a diagram



where both sequences are exact.

Proof. Let C_{\bullet} be the complex $K \to A$, and let C'_{\bullet} be the complex $K' \to A'$. Since C'_{\bullet} is a projective resolution of B', we have a Tor spectral sequence [Sta14, Tag 061Z]

$$E_{i,j}^2$$
: Tor_j($H_i(C_{\bullet}), B'$) $\implies H_{i+j}(C_{\bullet} \otimes C'_{\bullet}).$

We have $E_{0,0}^2 = B \otimes B'$ and $E_{0,1}^2 = \operatorname{Tor}_1(B, B')$, and $E_{i,j}^2 = 0$ for all other (i, j). Therefore $H_0(C_{\bullet} \otimes C'_{\bullet}) \cong B \otimes B'$ and $H_1(C_{\bullet} \otimes C'_{\bullet}) \cong \operatorname{Tor}_1(B, B')$, which is the lemma.

5.5 A tangent space calculation

We return to the setup of §5.2. Thus we have fixed a *p*-divisible group *H* over a perfect field *k*, and an algebraically closed perfected field *C* containing W(k)[1/p]. But now we specialize to the case that *H* is isoclinic. Therefore $D = \operatorname{End} H$ (up to isogeny) is a central simple \mathbf{Q}_p -algebra. Let $\mathcal{E} = \mathcal{E}_C(H)$; we have $\mathscr{H}om(\mathcal{E},\mathcal{E}) \cong D \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_C}$.

Recall the scheme $Z \to X_C$, defined as a fiber product in (5.2.1). Let $s: X_C \to Z$ be a section. This corresponds to a morphism $\sigma: \mathcal{O}_{X_C}^n \to \mathcal{E}$. Let W' and W be the cokernel of σ_{∞} ; these are C-vector spaces.

We are interested in the vector bundle $s^* \operatorname{Tan}_{Z/X_C}$. This is the kernel of the derivative of the determinant map:

$$s^* \operatorname{Tan}_{Z/X_C} = \ker \left(D_s \det \colon s^* \operatorname{Tan}_{\mathbf{V}(\mathcal{E}^n)^{\operatorname{rk}_{\infty}=n-d}/X_C} \to \det \mathcal{E} \right)$$

We apply (5.4.2) to give a description of $s^* \operatorname{Tan}_{\mathbf{V}(\mathcal{E}^n)^{\mathrm{rk}_{\infty}=n-d}/X_C}$. We get a diagram of \mathcal{O}_{X_C} -modules

$$0 \xrightarrow{(\mathcal{E}^{\vee})^{n}} (M_{n}(\mathbf{Q}_{p}) \times D) \otimes \mathcal{O}_{X_{C}} \longrightarrow s^{*} \operatorname{Tan}_{\mathbf{V}(\mathcal{E}^{n})^{\mathrm{rk}_{\infty}=n-d/X_{C}}} \longrightarrow 0.$$

$$\operatorname{Tor}_{1}(i_{\infty}*W', i_{\infty}*W)$$

$$\downarrow$$

$$0 \xrightarrow{(\mathcal{E}^{\vee})^{n}} (M_{n}(\mathbf{Q}_{p}) \times D) \otimes \mathcal{O}_{X_{C}} \longrightarrow s^{*} \operatorname{Tan}_{\mathbf{V}(\mathcal{E}^{n})^{\mathrm{rk}_{\infty}=n-d/X_{C}}} \longrightarrow 0.$$

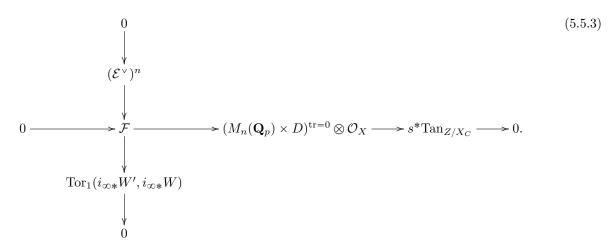
On the other hand, the horizontal exact sequence fits into a diagram

The arrow labeled tr is induced from the \mathbf{Q}_p -linear map $M_n(\mathbf{Q}_p) \times D \to \mathbf{Q}_p$ carrying (α', α) to $\operatorname{tr}(\alpha') - \operatorname{tr}(\alpha)$ (reduced trace on D). The commutativity of the lower right square boils down to the identity, valid

for sections $s_1, \ldots, s_n \in H^0(X_C, \mathcal{E})$ and $\alpha \in D$:

$$((\alpha s_1) \wedge s_2 \wedge \cdots \wedge s_n) + \cdots + (s_1 \wedge \cdots \wedge (\alpha s_n)) = (\operatorname{tr} \alpha)(s_1 \wedge \cdots \wedge s_n).$$

(There is a similar identity for $\alpha' \in M_n(\mathbf{Q}_p)$.) Because the arrow labeled τ is injective, we can combine (5.5.1) and (5.5.2) to arrive at a description of $s^* \operatorname{Tan}_{Z/X_C}$:



We pass to duals to obtain

The dotted arrow is induced from the map $(M_n(\mathbf{Q}_p) \times D) \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_C} \to \mathcal{E}^n$ sending $(\alpha', \alpha) \otimes 1$ to $\alpha \circ \sigma - \sigma \circ \alpha'$.

Theorem 5.5.1. If s is a section to $Z \to X_C$ corresponding, under the isomorphism of Lemma 5.2.1, to a point $x \in \mathcal{M}_{H,\infty}^{\tau}(C)$, then the following are equivalent:

- 1. The vector bundle $s^* \operatorname{Tan}_{Z/X_C}$ has a Harder-Narasimhan slope which is ≤ 0 .
- 2. The point x lies in the special locus $\mathscr{M}_{H,\infty}^{\tau,\mathrm{sp}}$.

Proof. Let $\sigma: \mathcal{O}_{X_C}^n \to \mathcal{E}$ denote the homomorphism corresponding to x. Condition (1) is true if and only if $H^0(X_C, s^* \operatorname{Tan}_{Z/X_C}^{\vee}) \neq 0$. We now take H^0 of (5.5.4), noting that $H^0(X_C, \mathcal{F}^{\vee}) \to H^0(X_C, \mathcal{E}^n)$ is injective.

We find that

$$H^{0}(X_{C}, s^{*} \operatorname{Tan}_{Z/X_{C}}^{\vee}) \cong \left\{ (\alpha', \alpha) \in M_{n}(\mathbf{Q}_{p}) \times D \mid \alpha \circ \sigma = \sigma \circ \alpha' \right\} / \mathbf{Q}_{p}.$$
$$= A_{x}/\mathbf{Q}_{p}.$$

This is nonzero exactly when x lies in the special locus.

Combining Theorem 5.5.1 with the criterion for cohomological smoothness in Theorem 4.2.1 proves Theorem 1.0.1 for the space $\mathcal{M}_{H,\infty}$.

Naturally we wonder whether it is possible to give a complete discription of $s^* \operatorname{Tan}_{Z/X_C}$, as this is the "tangent space" of $\mathscr{M}_{H,\infty}^{\tau}$ at the point x. Note that $s^* \operatorname{Tan}_{Z/X_C}$ can only have nonnegative slopes, since it is a quotient of a trivial bundle. Therefore Theorem 5.5.1 says that 0 appears as a slope of $s^* \operatorname{Tan}_{Z/X_C}$ if and only if s corresponds to a special point of $\mathscr{M}_{H,\infty}^{\tau}$.

Example 5.5.2. Consider the case that H has dimension 1 and height n, so that $\mathcal{M}_{H,\infty}$ is an infinite-level Lubin-Tate space. Suppose that $x \in \mathcal{M}_{H,\infty}(C)$ corresponds to a section $s: X_C \to Z$. Then $s^* \operatorname{Tan}_{Z/X_C}$ is a vector bundle of rank $n^2 - 1$ and degree n - 1, with slopes lying in [0, 1/n]; this already limits the possibilities for the slopes to a finite list.

If n = 2 there are only two possibilities for the slopes appearing in $s^* \operatorname{Tan}_{Z/X_C}$: {1/3} and {0, 1/2}. These correspond exactly to the nonspecial and special loci, respectively.

If n = 3, there are a priori five possibilities for the slopes appearing in $s^* \operatorname{Tan}_{Z/X_C}$: $\{1/4, 1/4\}, \{1/3, 1/5\}, \{1/3, 1/3, 0, 0\}, \{2/7, 0\}, \text{ and } \{1/3, 1/4, 0\}$. But in fact the final two cases cannot occur: if 0 appears as a slope, then x lies in the special locus, so that $A_x \neq \mathbf{Q}_p$. But as A_x is isomorphic to a subalgebra of End[°] H, the division algebra of invariant 1/3, it must be the case that $\dim_{\mathbf{Q}_p} A_x = 3$, which forces 0 to appear as a slope with multiplicity $\dim_{\mathbf{Q}_p} A_x/\mathbf{Q}_p = 2$. On the nonspecial locus, we suspect that the generic (semistable) case $\{1/4, 1/4\}$ always occurs, as otherwise there would be some unexpected stratification of $\mathscr{M}_{H,\infty}^{\circ,\operatorname{non-sp}}$. But currently we do not know how to rule out the case $\{1/3, 1/5\}$.

5.6 The general case

Let $\mathcal{D} = (B, V, H, \mu)$ be a rational EL datum over k, with reflex field E. Let F be the center of B. As in Section 3.5, let $D = \operatorname{End}_B V$ and $D' = \operatorname{End}_B H$, so that D and D' are both F-algebras.

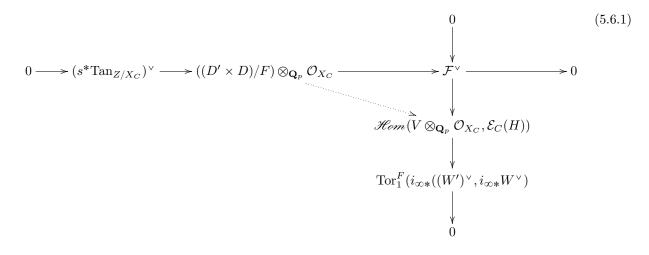
Let C be a perfectoid field containing \check{E} , and let $\tau \in \mathscr{M}_{\det \mathcal{D},\infty}(C)$. Let $\mathscr{M}_{\mathcal{D},\infty}^{\tau}$ be the fiber of the determinant map over τ . We will sketch the proof that $\mathscr{M}_{\mathcal{D},\infty}^{\tau} \to \operatorname{Spa} C$ is cohomologically smooth. It is along the same lines as the proof for $\mathscr{M}_{H,\infty}$, but with some extra linear algebra added.

The space $\mathscr{M}_{\mathcal{D},\infty}^{\tau}$ may be expressed as the space of global sections of a smooth morphism $Z \to X_C$, defined as follows. We have the geometric vector bundle $\mathbf{V}(\mathscr{H}_{em}_B(V \otimes_{\mathbf{Q}_p} \mathcal{O}_X, \mathcal{E}_C(H)))$. In its fiber over ∞ , we have the locally closed subscheme whose R-points for a C-algebra R are morphisms, whose cokernel is as a $B \otimes_{\mathbf{Q}_p} R$ -module isomorphic to $V_0 \otimes_{\check{E}} R$, where V_0 is the weight 0 subspace of $V \otimes_{\mathbf{Q}_p} \check{E}$ determined by μ . We then have the dilatation $\mathbf{V}(\mathscr{H}_{em}_B(V \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_C}, \mathcal{E}_C(H)))^{\mu}$ of $\mathbf{V}(\mathscr{H}_{em}_B(V \otimes_{\mathbf{Q}_p} \mathcal{O}_X, \mathcal{E}_C(H)))$ at this locally closed subscheme. Its points over $S = \operatorname{Spa}(R, R^+)$ parametrize B-linear morphisms $s \colon V \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_S} \to \mathcal{E}_S(H)$, such that (locally on S) the cokernel of the fiber s_{∞} is isomorphic as a $(B \otimes_{\mathbf{Q}_p} R)$ -module to $V_0 \otimes_{\check{E}} R$. Finally, the morphism $Z \to X_C$ is defined by the cartesian diagram

Let $x \in \mathscr{M}_{\mathcal{D},\infty}(C)$ correspond to a *B*-linear morphism $s: V \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_C} \to \mathcal{E}_C(H)$ and a section of $Z \to X_C$ which we also call s. Define $B \otimes_{\mathbf{Q}_p} C$ -modules W' and W by

$$0 \to W' \to V \otimes_{\mathbf{Q}_n} C \xrightarrow{s_\infty} \mathcal{E}_C(H)_\infty \to W \to 0.$$

The analogue of (5.5.4) is a diagram which computes the dual of $s^* \operatorname{Tan}_{Z/X_C}$:



This time, the dotted arrow is induced from the map $(D' \times D) \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_C} \to \mathscr{H}om(V \otimes_{\mathbf{Q}_p} \mathcal{O}_{X_C}, \mathcal{E}_C(H))$ sending $(\alpha', \alpha) \otimes 1$ to $\alpha \circ s - s \circ \alpha'$. Taking H^0 in (5.6.1) shows that $H^0(X_C, s^* \operatorname{Tan}_{Z/X_C}^{\vee}) = A_x/F$, and this is nonzero exactly when x lies in the special locus.

5.7 Proof of Corollary 1.0.2

We conclude with a discussion of the infinite-level modular curve $X(p^{\infty})$. Recall from [Sch15] the following facts about the Hodge-Tate period map $\pi_{HT}: X(p^{\infty}) \to \mathbf{P}^1$. The ordinary locus in $X(p^{\infty})$ is sent to $\mathbf{P}^1(\mathbf{Q}_p)$. The supersingular locus is isomorphic to finitely many copies of $\mathcal{M}_{H,\infty,C}$, where H is a connected p-divisible group of height 2 and dimension 1 over the residue field of C; the restriction of π_{HT} to this locus agrees with the π_{HT} we had already defined on each $\mathcal{M}_{H,\infty,C}$.

We claim that the following are equivalent for a C-point x of $X(p^{\infty})^{\circ}$:

- 1. The point x corresponds to an elliptic curve E/\mathcal{O}_C , such that the p-divisible group $E[p^{\infty}]$ has End $E[p^{\infty}] = \mathbf{Z}_p$.
- 2. The stabilizer of $\pi_{HT}(x)$ in PGL₂(\mathbf{Q}_p) is trivial.
- 3. There is a neighborhood of x in $X(p^{\infty})^{\circ}$ which is cohomologically smooth over C.

First we discuss the equivalence of (1) and (2). If E is ordinary, then $E[p^{\infty}] \cong \mathbf{Q}_p / \mathbf{Z}_p \times \mu_{p^{\infty}}$ certainly has endomorphism ring larger than \mathbf{Z}_p , so that (1) is false. Meanwhile, the stabilizer of $\pi_{HT}(x)$ in $\mathrm{PGL}_2(\mathbf{Q}_p)$ is a Borel subgroup, so that (2) is false as well. The equivalence between (1) and (2) in the supersingular case is a special case of the equivalence discussed in Section 3.5.

Theorem 1.0.1 tells us that $\mathscr{M}_{H,\infty}^{\circ,\text{non-sp}}$ is cohomologically smooth, which implies that shows that (2) implies (3). We therefore are left with showing that if (2) is false for a point $x \in X(p^{\infty})^{\circ}$, then no neighborhood of x is cohomologically smooth. First suppose that x lies in the ordinary locus. This locus is fibered over $\mathbf{P}^1(\mathbf{Q}_p)$. Suppose U is a sufficiently small neighborhood of x. Then U is contained in the ordinary locus, and so $\pi_0(U)$ is nondiscrete. This implies that $H^0(U, \mathbf{F}_{\ell})$ is infinite, and so U cannot be cohomologically smooth.

Now suppose that x lies in the supersingular locus, and that $\pi_{HT}(x)$ has nontrivial stabilizer in PGL₂(\mathbf{Q}_p). We can identify x with a point in $\mathscr{M}_{H,\infty}^{\circ,\mathrm{sp}}(C)$. We intend to show that every neighborhood of x in $\mathscr{M}_{H,\infty}^{\circ}$ fails to be cohomologically smooth.

Not knowing a direct method, we appeal to the calculations in [Wei16], which constructed semistable formal models for each $\mathscr{M}_{H,m}^{\circ}$. The main result we need is Theorem 5.1.2, which uses the term "CM points" for what we have called special points. There exists a decreasing basis of neighborhoods $Z_{x,0} \supset Z_{x,1} \supset \cdots$ of x in $\mathscr{M}_{H,\infty}^{\circ}$. For each affinoid $Z = \operatorname{Spa}(R, R^+)$, let $\overline{Z} = \operatorname{Spec} R^+ \otimes_{\mathcal{O}_C} \kappa$, where κ is the residue field of C. For each $m \ge 0$, there exists a nonconstant morphism $\overline{Z}_{x,m} \to C_{x,m}$, where $C_{x,m}$ is an explicit nonsingular affine curve over κ . This morphism is equivariant for the action of the stabilizer of $Z_{x,m}$ in $\operatorname{SL}_2(\mathbf{Q}_p)$. For infinitely many m, the completion $C_{x,m}^{cl}$ of $C_{x,m}$ is a projective curve with positive genus.

Let $U \subset \mathscr{M}_{H,\infty}^{\circ}$ be an affinoid neighborhood of x. Then there exists $N \ge 0$ such that $Z_{x,m} \subset U$ for all $m \ge N$. Let $K \subset \mathrm{SL}_2(\mathbf{Q}_p)$ be a compact open subgroup which stabilizes U, so that U/K is an affinoid subset of the rigid-analytic curve $\mathscr{M}_{H,\infty}^{\circ}/K$. For each $m \ge N$, let $K_m \subset K$ be the stabilizer of $Z_{x,m}$, so that K_m acts on $C_{x,m}$.

There exists an integral model of U/K whose special fiber contains as a component the completion of each $\overline{Z}_{x,m}/K_m$ which has positive genus. Since there is a nonconstant morphism $\overline{Z}_{x,m}/K_m \to C_{x,m}/K_m$, we must have

$$\dim_{\mathbf{F}_{\ell}} H^{1}(U/K, \mathbf{F}_{\ell}) \ge \sum_{m \ge N} \dim_{\mathbf{F}_{\ell}} H^{1}(C_{x, m}^{\mathrm{cl}}/K_{m}, \mathbf{F}_{\ell}).$$

Now we take a limit as K shrinks. Since $U \sim \varprojlim U/K$, we have $H^1(U, \mathbf{F}_{\ell}) \cong \varinjlim H^1(U/K, \mathbf{F}_{\ell})$. Also, for each m, the action of K_m on $C_{x,m}$ is trivial for all sufficiently small K. Therefore

$$\dim_{\mathbf{F}_{\ell}} H^{1}(U, \mathbf{F}_{\ell}) \geq \sum_{m \geq N} \dim_{\mathbf{F}_{\ell}} H^{1}(C_{x, m}^{\mathrm{cl}}, \mathbf{F}_{\ell}) = \infty.$$

This shows that U is not cohomologically smooth.

Acknowledgements. The authors want to thank Peter Scholze for his help and his interest in their work. Also they thank Andreas Mihatsch for pointing out a mistake in a previous version of the manuscript. The first named author was supported by Peter Scholze's Leibniz Preis. The second author was supported by NSF Grant No. DMS-1440140 while in residence at the Mathematical Sciences Research Institute in Berkeley, California.

References

- [BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990.
- [Che14] Miaofen Chen, Composantes connexes géométriques de la tour des espaces de modules de groupes p-divisibles, Ann. Sci. Éc. Norm. Supér. (4) 47 (2014), no. 4, 723–764.
- [FF] Laurent Fargues and Jean-Marc Fontaine, Courbes et fibrés vectoriels en theorie de Hodge p-adique, To appear in Astérisque.

- [FS] Laurent Fargues and Peter Scholze, *Geometrization of the local Langlands correspondence*, in preparation.
- [Kot85] Robert E. Kottwitz, *Isocrystals with additional structure*, Compositio Math. **56** (1985), no. 2, 201–220.
- [LB18] Arthur-César Le Bras, Espaces de Banach-Colmez et faisceaux cohérents sur la courbe de Fargues-Fontaine, Duke Math. J. 167 (2018), no. 18, 3455–3532.
- [Mes72] William Messing, The crystals associated to Barsotti-Tate groups: with applications to abelian schemes, Lecture Notes in Mathematics, Vol. 264, Springer-Verlag, Berlin-New York, 1972.
- [RZ96] Michael Rapoport and Thomas Zink, Period spaces for p-divisible groups, Annals of Mathematics Studies, vol. 141, Princeton University Press, Princeton, NJ, 1996.
- [Sch15] Peter Scholze, On torsion in the cohomology of locally symmetric varieties, Ann. of Math. (2) 182 (2015), no. 3, 945–1066.
- [Sch17] _____, The étale cohomology of diamonds, ARGOS Seminar in Bonn, 2017.
- [Sta14] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu, 2014.
- [SW13] Peter Scholze and Jared Weinstein, Moduli of p-divisible groups, Camb. J. Math. 1 (2013), no. 2, 145–237.
- [Wei16] Jared Weinstein, Semistable models for modular curves of arbitrary level, Invent. Math. 205 (2016), no. 2, 459–526.