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Abstract. The group GL2 over a local field with (residue) characteris-

tic 2 possesses much more smooth supercuspidal `-adic representations,

than over a local field of residue characteristic > 2. One way to construct

these representations is via the theory of types of Bushnell–Kutzko. We

construct many of them in the cohomology of certain extended affine

Deligne–Lusztig varieties attached to GL2 and wildly ramified maximal

tori in it. Then we compare our construction with the type-theoretic

one. The corresponding extended affine Deligne–Lusztig varieties were

introduced in a preceding article. Also in the present case they turn out

to be zero-dimensional.

1. Introduction

This note is a follow-up of the two previous papers [Iva16,Iva18] studying

extended affine Deligne–Lusztig varieties for GL2 over a local field (of equal

characteristic). Here we analyze representations of G = GL2 over a local

field F of characteristic 2 attached to a wildly ramified torus. Fix a wildly

ramified Galois extension E/F of degree 2 and relative discriminant dE/F =

pd+1
F , and an embedding ResE/F Gm ↪→ G. On F -points this induces an

embedding ι : E× ↪→ G(F ). Each maximal minisotropic wildly ramified

torus of G comes via such an embedding and each two embeddings attached

to the same extension E are conjugate byG(F ), so the various E parametrize

the G(F )-conjugacy classes of maximal minisotropic wildly ramified tori in

G.

We study the attached extended affine Deligne–Lusztig varieties as de-

fined in [Iva18]. They turn out to be zero-dimensional. Nevertheless, their

cohomology realizes interesting representations. Here is a simplified version

of our main result.

Theorem 1.1 (see Corollary 3.19). All (smooth, irreducible) supercuspidal

representations ρ of G(F ) of arbitrary deep normalized level `(ρ), attached to

ι(E×) ⊆ G(F ) through the theory of types of Bushnell–Kutzko (see [BH06]),

which

• are minimal, i.e., `(ρ) ≤ `(ρ⊗ (φ ◦ det)) for all characters φ of F×,

and

Key words and phrases. affine Deligne–Lusztig variety, automorphic induction, super-
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• satisfy 2`(ρ) ≥ 3d,

occur in the cohomology of extended affine Deligne–Lusztig varieties attached

to ι : E× ↪→ G(F ).

Note that any irreducible supercuspidal representation gets minimal af-

ter tensoring with some character of the form φ ◦ det as in the theorem.

The condition 2`(ρ) > 3d forces representations ρ as in the theorem to be

ordinary, i.e., they lie in the image of the imprimitive Langlands correspon-

dence [BH06, §44.1]. This simply means that the corresponding represen-

tation of the Weil group of F is induced from the Weil group of a degree

two (wildly ramified) extension. If 2`(ρ) = 3d, then ρ might happen to be

exceptional, i.e., not ordinary. In this case the cubic tamely ramified ex-

tension K/F such that the tame lifting ρK of ρ to a G(K)-representation

( [BH06, §46]) is ordinary, is unramified (exactly as in [BH06, §51.6]). It

is highly interesting whether the condition on the level 2`(ρ) ≥ 3d can be

dropped, i.e., whether (after varying the extension E/F ) the conclusion of

the theorem holds for all totally ramified minimal irreducible supercuspidal

representations of G(F ).

Now we explain in more detail, how G(F )-representations ρ from Theorem

1.1 appear in the cohomology of extended affine Deligne–Lusztig varieties.

Namely, such ρ in a fixed level m+d
2 (for an appropriate m ≥ 2d) will appear

as a family parametrized by generic characters of an abelian group Γ̃/Γ′,

which is a non-split extension

0→ E×/Um+1
E → Γ̃/Γ′ → OE/pdE → 0,

with elements of the form i(t, r̄), where t ∈ E×/Um+1
E , r̄ ∈ OE/pdE , and

the group law is given by i(t, r̄)i(t′, ū) = i(tt′(1 + πm−d+1r̄ū)), where π is a

uniformizer of E and Um+1
E are the (m+ 1)-units of E (see Section 2.5). A

character of Γ̃/Γ′ is generic if its restriction to the subgroup UmE /U
m+1
E of

E×/Um+1
E ⊆ Γ̃/Γ′ is non-trivial. That is we will construct a map (see (3.1))

{generic characters of Γ̃/Γ′} →

{
Isomorphism classes of smooth

irreducible admissible G(F )-representations

}
θ̃ 7→ R

θ̃
:= H0

c(X
m
ẇ (1),Q`)[θ̃].

where [θ̃] denotes the θ̃-isotypic component with respect to a natural Γ̃-

action on a certain extended affine Deligne–Lusztig variety Xm
ẇ (1).

An interesting fact to point out is that in (a slight reformulation of)

[BH06], the same representations are also parametrized by characters of an

abelian group, which easily can be extracted from the theory of types (see

Section 3.5, in particular Lemma 3.12). We denote this abelian group by Π.

The relation between the two parametrizations is given by a somewhat exotic

isomorphism β : Π
∼→ Γ̃/Γ′ (see Proposition 2.12 and Remark 2.13). For a

locally profinite group A, let A∨ denote the smooth Q×` -valued characters of
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A. The dual of β is an isomorphism β∨ : (Γ̃/Γ′)∨
∼→ Π∨. Here is a simplified

version of our second main result.

Theorem 1.2 (see Corollary 3.10 and Theorem 3.18). Let θ̃ be a generic

character of Γ̃/Γ′. The G(F )-representation R
θ̃

is admissible, irreducible,

minimal and supercuspidal. Moreover, if β∨(θ̃) ∈ Π∨ is the correspond-

ing character of Π, and BHβ∨(θ̃) denotes the corresponding representation

attached via the theory of types, one has

R
θ̃
∼= BHβ∨(θ̃).

To show the first part of the theorem, the second part, i.e., the comparison

with Bushnell–Kutzko types is not necessary. In the heart of the proofs of

both parts are certain trace computations on the geometric and the type-

theoretic side, see Section 3.8.

As the main results here and in [Iva18] indicate, the way how the extended

affine Deligne–Lusztig varieties from [Iva18] realize the “automorphic induc-

tion” of characters of F -points of maximal minisotropic ramified tori toG(F )

is quite near to the theory of Bushnell–Kutzko types. A nice consequence

of this is the fact that it gives a geometric realization of the theory of types

in (highly) ramified cases. A less clear consequence is that it seems to be

further away from the Galois side than one might hope, see Section 3.9.

However, it is still an open and interesting question, whether there is a twist

of the actions on the geometric objects in the style of [Wei09, Section 5],

which establishes a connection to the Galois side.

In Section 3.10 we discuss a slight simplification for the proof of the main

result in [Iva18], which is concerned with the similar construction for GL2

and a purely tamely ramified torus.

2. Automorphic induction from wild tori in GL2

In this section we assume that F has characteristic 2 and put G = GL2.

2.1. Notations and preliminaries. We need to fix more notation. For

a local non-archimedean field field L, denote by OL its integers, by pL its

maximal ideal, UL = O×L , by UmL the m-units of L, and by ordL its valuation,

normalized such that that it takes value 1 on an uniformizer. For integers

a < b, we introduce a shortcut notation:

(paL/p
b
L)∗ := (paL/p

b
L)r (pa+1

L /pbL).

2.1.1. Arithmetical data. We let F be a local non-archimedean field of char-

acteristic 2 with residue field k = Fq. We let E be a totally (wildly) ramified

extension of F of degree 2 and discriminant pd+1
F for some d > 0 odd. By

Artin–Schreier theory, we may choose uniformizers $ resp. π of F resp. E,

such that π satisfies the minimal equation over F ,

π2 + ∆π +$ = 0,
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for some ∆ ∈ F with ordF (∆) = d+1
2 . Concretely, we have F = k(($)),

OF = kJ$K, E = k((π)), OE = kJπK.
We denote by NE/F : E× → F× resp. by trE/F : E → F the norm resp.

the trace map of E/F . We denote the maps induced by trE/F on subquo-

tients of OE and OF again by trE/F . We let τ be the unique non-trivial

element of the Galois group of E/F . We have trE/F (π) = τ(π)+π = ∆ and

NE/F (π) = πτ(π) = $.

Set ε := τ(π)
π . Then ε ∈ UdE rUd+1

E . For convenience we will write

ε = 1 + πdε0 with ε0 ∈ UE . Clearly, ε0 = π−(d+1)∆.

2.1.2. Group-theoretical data. We set G = GL2 throughout this section. We

denote by Z the center of G, by T the (split) diagonal torus and by W the

Weyl group of G,T . Further, W̃ = X∗(T ) oW denotes the extended affine

Weyl group and Waff ⊆ W̃ the affine Weyl group. The latter is a Coxeter

group and we denote by `(·) the length function on it.

Consider the embedding of F -algebras

ι : E ↪→ Mat2×2(F ), π 7→
(

∆ 1

$ 0

)
We denote again by ι its restriction to the embedding ι : E× ↪→ G(F ). Its

image are the F -points of a maximal minisotropic torus of G, which is split

by E.

2.1.3. Properties of trace and norm. We will make use of the following well-

known facts:

Lemma 2.1. (i) [BH06, §41.2] Let k ∈ Z. We have trE/F (pkE) = p`F ,

where ` = bk+d+1
2 c

(ii) Let x ∈ E×. Then x−1τ(x) ∈ UdE. If x ∈ UkE with k ≥ 0, then

x−1τ(x) ∈ Uk+d
E .

Proof. (i): see [BH06, §41.2]. (ii): If k > 0 and x ∈ UkE , write x = 1 + πky

for some y ∈ OE . One computes

x−1τ(x) =
1 + πkεkτ(y)

1 + πky
= (1 + πkεkτ(y))

∞∑
i=0

(πky)i = 1 + (y + εkτ(y))
∞∑
i=1

πkiyi−1.

As ε ≡ 1 mod pdE , part (i) of the lemma shows that (y + εkτ(y)) ≡ 0

mod pdE . If k = 0, we may write x = x0(1 + πny) with x0 ∈ k and some

n > 0 and y ∈ OE , and then apply the already proven case k > 0. This

shows the second statement of (ii). If x ∈ E×, we may write x = πvx0

with x0 ∈ UE and v ∈ Z and thus x−1τ(x) = εvx−1
0 τ(x0). Now the first

statement of (ii) follows from the second. �

2.1.4. Bruhat–Tits buildings. For L = F or L = E, we denote by BL the

Bruhat–Tits building of G over L and by AL ⊆ BL the apartment of T .

There is a natural τ -action on BE . Moreover, there is a natural embedding

ι : BF ↪→ BE in the sense of [Rou77, Definition 2.5.1]. We identify BF
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and ι(BF ) as sets but regard ι(BF ) provided with the structure of a sub-

simplicial complex of BE . As E/F is ramified, each alcove of BF contains

exactly two alcoves of ι(BF ). In particular, we observe that there is a

bijection

(alcoves of BF )
1:1↔ (vertices of ι(BF ), which are not vertices of BF )

(2.1)

As the ramification of E/F is wild, we have ι(BF ) ( B
〈τ〉
E , due to the

occurrence of the so-called barbs.

We have AE = AF as sets, and each alcove of AF contains exactly two

alcoves of AE . Fix a base alcove a0 in AE and let IE ⊆ G(E) be its stabilizer.

It is an Iwahori subgroup of G(E). Further, we have the corresponding

Iwahori subgroup IF := IE ∩ G(F ) of G(F ). The alcove a0 has precisely

one vertex, which is also a vertex of an alcove of AF . This is a hyperspecial

vertex in BE and we specify the splitting W̃ = X∗(T )oW as being attached

to this point. We denote by P1/2 the vertex of a0, which is not a vertex of

BF .

2.1.5. Root subgroups. Let Φ = {+,−} be the set of roots of T in G, +

(resp. −) being the root contained in the upper (resp. lower) triangular

Borel subgroup. We may regard 0 as a root, with root subgroup T (∼= G2
m).

For ∗ ∈ Φ ∪ {0}, denote by

e∗ : U∗ → G

the embedding of the root subgroup. Thus for a ∈ E, we have e+(a) =(
1 a

0 1

)
, e0(c, d) =

(
c 0

0 d

)
, etc.

2.1.6. Level subgroups. For n ≥ 0 and L = F or L = E define the normal

subgroups

InL :=

 1 + p
bn+1

2
c

L p
bn
2
c

L

p
bn
2
c+1

L 1 + p
bn+1

2
c

L

 ⊆ ( O×L OL
pL O×L

)
= IL

(we choose a0 in Section 2.1.4 such that IE has this form). This coincides

with the notation in [BH06]. In particular, for m ≥ 0,

I2m+1
E =

(
1 + pm+1

E pmE
pm+1
E 1 + pm+1

E

)

2.1.7. Vertex of departure. Let C ⊆ BE be a connected non-empty subcom-

plex. Let C be an alcove of BE , which is not contained in C . There is a

unique gallery Γ = (C0, C1, . . . , Cd) of minimal length d, such that C0 = C

and Cd is not contained in C , but has a (unique) vertex contained in C .

This vertex is called the vertex of departure of C from C (as in [Reu02]).

We define the distance C from C to be the integer dist(C; C ) := d+ 1. For

C in C , we define the distance dist(C; C ) to be zero.
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2.1.8. Barbs in BE.

Proposition 2.2. The subcomplex B
〈τ〉
E is equal to the closure of the union

of all alcoves of BE with distance ≤ d to ι(BF ).

Proof. We have BF ⊆ BE . Let D be an alcove in BE , not contained in

BF . Let depart(D; ι(BF )) be the vertex of departure of D from ι(BF ).

We claim that the vertex depart(D; ι(BF )) of ι(BF ) is not a vertex of BF .

Indeed, let a vertex P of BF be given. The number of all alcoves of ι(BF )

having P as a vertex is exactly q+ 1 and the same is true for the number of

alcoves of BF , having P as a vertex. Thus any alcove of ι(BF ) which has

P as a vertex, is necessarily contained in an alcove of BF , which shows our

claim.

We have to show that an alcove D in BE , which does not lie in ι(BF ), lies

in B
〈τ〉
E if and only if its distance to ι(BF ) is ≤ d. Using (2.1), the transitive

action of G(F ) on alcoves of BF and the above claim, we may assume that

depart(D; ι(BF )) is P1/2. Let v ∈ Waff be such that D lies in the (open)

Schubert cell Cv attached to v. Fix a parametrization of Cv: A`(v)
k

∼→ Cv,

given by a =
∑`(v)

i=1 aiπ
i 7→ e−(a)vIE and let D correspond to a =

∑
i aiπ

i.

We compute

D ∈ B
〈τ〉
E ⇔ e−(a)vIE = e−(τ(a))vIE ⇔ v−1e−(τ(a)−a)v = e−(π−2b `(v)+1

2
c(τ(a)−a)) ∈ IE

The fact that D does not lie in ι(BF ) (or equivalently, in AE) is equivalent

to a1 6= 0. By Lemma 2.1, we have ordE(τ(a)− a) = d+ 1. Thus D ∈ B
〈τ〉
E

if and only if

(d+ 1)− 2b`(v) + 1

2
c ≥ 1.

Recalling that d is odd, we see that this is equivalent to `(v) ≤ d. Finally,

note that the distance from D to ι(BF ) is precisely `(v). This finishes the

proof. �

2.2. Extended affine Deligne–Lusztig varieties. Let Ĕ denote the com-

pletion of the maximal unramified extension of E, and let Σ ⊆ Gal(Ĕ/F )

be a finite set of generators of the Galois group, e.g. the set of all Frobenius

lifts. In [Iva18] an extended affine Deligne–Lusztig variety attached toG over

F and a minisotropic torus split over E was defined (in level J ⊆ G(Ĕ))

as a locally closed subset of G(Ĕ)/J cut out by Deligne–Lusztig-type con-

ditions, one for each generator γ ∈ Σ. For G = GL2 and E/F tamely

ramified quadratic extension, it turned out that one could equally define

them in G(E)/J ∩G(E) just by one Deligne–Lusztig condition attached to

the non-trivial element of Gal(E/F ) (see Remark 3.11(i) of [Iva18]) and we

conjecture that a similar fact is true whenever S is split over a totally ram-

ified Galois extension. At least in the present article we can and will omit

the passage to the maximal unramified extension Ĕ/E. More precisely, we

will work the following variant of [Iva18, Definition 2.1], which only makes

sense for totally ramified extensions.
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Definition 2.3. For J ⊆ IE , ẇ ∈ G(E), the corresponding extended affine

Deligne–Lusztig variety attached to b ∈ G(E) of level J is

XJ
ẇ(b) := {gJ ∈ G(E)/J : g−1bτ(g) ∈ JẇJ} ⊆ G(E)/J. (2.2)

Let Jb(F ) denote the τ -stabilizer of b in G(E). If J ⊆ IE is normal and

w ∈ W̃ , the group Z(E)IE/J act by τ -conjugation on {JẇJ : ẇ ∈ IEwIE}.
Let Γ̃ = Γ̃ẇ ⊆ Z(E)IE/J denote the σ-stabilizer of the double coset JẇJ (in

the general situation, the group Γ was introduced in [Iva18, Section 2.2.3]).

There is a natural action of Jb(F )× Γ̃ẇ on XJ
ẇ(b) by (g, t), xJ 7→ gxt−1J .

We will concentrate on the case b = 1 in this article. We will denote by

Xm
ẇ (1) the varieties in the level I2m+1

E and by Xw(1) the varieties in the

level IE .

2.3. Sketch of the situation. In the following we mainly will deal with

the Γ-torsor,

Xm
ẇ (1)

Γ−→ Xw(1),

where Γ = Γ̃ẇ∩IE/I2m+1
E is a finite group, acting by right multiplication on

Xm
w (1) (it is the analog of the group TFw for which Ẋẇ → Xw is a torsor in

the classical Deligne–Lusztig theory). The varieties Xm
ẇ (1) and Xw(1) turn

out to be discrete unions of k-rational points, but are not finite themselves.

Nevertheless, they will naturally decompose G(F )-eqiuvariantly as disjoint

unions:

Xm
ẇ (1) =

∐
g∈G(F )/IF

g.Xm
ẇ (1)P1/2

, Xw(1) =
∐

g∈G(F )/IF

g.Xw(1)P1/2
,

where Xm
ẇ (1)P1/2

and Xw(1)P1/2
will be finite subsets and moreover, the first

will be a Γ-torsor over the second:

Xm
ẇ (1)P1/2

Γ−→ Xw(1)P1/2
.

The natural Γ-action on Xm
ẇ (1) extends to an action of the bigger group Γ̃,

still commuting with the G(F )-action. The union X̃m
ẇ (1)P1/2

of Γ̃-translates

of Xm
ẇ (1)P1/2

, will be stable under the action of ι(E×)IF ⊆ G(F ), with ι as

in Section 2.1.2. To any Q`-representation θ̃ of Γ̃, there will correspond a

G(F )-representation

R
θ̃

= H0
c(X

m
ẇ (1),Q`)[θ̃] = c− Ind

G(F )
E×IF

H0
c(X̃

m
ẇ (1)P1/2

,Q`)[θ̃].

Denote the ι(E×)IF -representation H0
c(X̃

m
ẇ (1)P1/2

,Q`)[θ̃] by Ξθ̃. If R
θ̃

is

a supercuspidal representation, then Ξθ̃ is (together with implicitly deter-

mined chain order) a cuspidal type in the sense of [BH06, §15.8]. Further,

the restriction of Ξθ̃ to IF coincides with H0
c(X

m
ẇ (1)P1/2

)[θ̃|Γ].

The plan for the rest of Section 2 is as follows. We will determine the

varieties Xw(1) and Xm
ẇ (1) in Section 2.4. Then in Sections 2.5 and 2.6 we

study the group Γ̃ under some assumptions on w and m. Finally, in Section

2.9 we make a numerical consideration which suggests how to choose w and
7



m (relatively to each other) such that the representations R
θ̃

get irreducible.

In Section 3 we will study those irreducible R
θ̃
’s.

2.4. Structure of some extended affine Deligne–Lusztig varieties.

2.4.1. Iwahori level. Let w =

(
π−n

πn

)
∈Waff with `(w) = 2n−1. Let

v̇ =

(
π−(b d+1

2
c+bn+1

2
c)

πb
d+1
2
c+bn

2
c

)
and let v denote the image of v̇ in Waff . Then `(v) = n + d. Parametrize

Cv by An+d
k

∼→ Cv, a =
∑n+d

i=1 aiπ
i 7→ e−(a)v̇I. Note that the locus a1 6= 0

in Cv is independent from the parametrization: intrinsically it is given as

the set of alcoves in Cv, whose vertex of departure from ι(BF ) is P1/2. We

denote this locus by Cv(a1 6= 0).

Proposition 2.4. The Iwahori-level extended affine Deligne–Lusztig variety

is given by the following G(F )-equivariant isomorphism,

Xw(1) ∼=
∐

g∈G(F )/IF

g.Cv(a1 6= 0).

Proof. The proof is along the lines of [Iva18, Proposition 3.4], the only dif-

ference being that ι(BF ) ( B
〈τ〉
E . This difference is fully controlled by

Proposition 2.2 and is reflected in the different choice of v (in [Iva18] one

had `(v) = n, whereas here we have `(v) = n+ d). �

2.4.2. Higher levels. Let

ẇ =

(
π−n

πn

)(
εb

n
2
c

ε−b
n+1
2
c

)
(2.3)

be a lift of w to G(E). For m ≥ 0, let Cmv be the preimage of the Schubert

cell Cv under G(E)/I2m+1
E � G(E)/IE . A parametrization of Cmv is given

by

ψmv̇ : pE/p
n+d+m+1
E × (UE/U

m+1
E )2 × pE/p

m+1
E

∼−→ Cmv = IE v̇IE/I
2m+1
E

(a,C,D,B) 7→ e−(a)v̇e−(B)e0(C,D)I2m+1
E .(2.4)

The difference between this parametrization and the one in [Iva18, Section

3.1.7] is that the variable a here is equal to a + πn+d+1A from there. This

simplifies the computations. For the next proposition recall the notation

(paE/p
b
E)∗ from Section 2.1.1.

Proposition 2.5. Let m ≥ 0. There is a G(F )– and Γ–equivariant isomor-

phism

Xm
ẇ (1) ∼=

∐
G(F )/IF

g.Xm
ẇ (1)P1/2

,
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where Xm
ẇ (1)P1/2

⊆ Cmv is given in coordinates (2.4) by conditions

a ∈ (pE/p
n+d+m+1
E )∗

D = εb
d+1
2
cτ(C)R−1

B = πnR−1,

where

R := π−(d+1)(τ(a) + a)

is a well-defined element of UE/U
m+1
E . In particular, Xm

ẇ (1)P1/2
is just a

finite discrete set of k-rational points.

Proof. The same statement for a tamely ramified E/F and with respect to

another parametrization was shown in [Iva18, Theorem 3.8]. The proof re-

mains the same. For convenience, we sketch the proof, including the key

computation (which gets significantly easier with the parametrization used

here). The statement about the decomposition into a disjoint union is clear

from Proposition 2.4 and the fact that Xm
ẇ (1) lies over Xw(1). The well-

definedness of R follows from Lemma 2.1(i). We make an auxiliary compu-

tation,

v̇−1e−(a)e−(τ(a))τ(v̇) = e−(πnR−1)ẇe0(ε
d+1
2 R−1, ε−

d+1
2 R)e−(εn+d+1πnR−1).

Using it we compute for x ∈ Cmv with coordinates a,C,D,B,

x−1τ(x) ∼ e0(C−1, D−1)e−(B)v̇−1e−(a)e−(τ(a))τ(v̇)e−(τ(B))e0(τ(C), τ(D))

∼ e0(C−1, D−1)e−(B + πnR−1)ẇ . . .

. . . e0(ε
d+1
2 R−1, ε−

d+1
2 R)e−(τ(B + πnR−1))e0(τ(C), τ(D))

∼ e−(CD−1(B + πnR−1))ẇe0(ε
d+1
2 R−1D−1τ(C), ε−

d+1
2 RC−1τ(D)) . . .

. . . e−(τ(CD−1(B + πnR−1))),

where we write ∼ to indicate that two elements belong to the same I2m+1
E -

double coset. Thus the condition I2m+1
E x−1τ(x)I2m+1

E = I2m+1
E ẇI2m+1

E is

equivalent to the three conditions B + πnR−1 = 0, ε
d+1
2 R−1D−1τ(C) = 1

and ε−
d+1
2 RC−1τ(D) = 1. The proposition follows. �

Recall the embedding ι from Section 2.1.2.

Corollary 2.6. The smallest Γ̃–stable subscheme X̃m
ẇ (1)P1/2

of Xm
ẇ (1), con-

taining Xm
ẇ (1)P1/2

is ι(E)×IF -stable. There is a G(F )– and Γ̃–equivariant

isomorphism

Xm
ẇ (1) ∼=

∐
G(F )/ι(E×)IF

g.X̃m
ẇ (1)P1/2

,

Proof. As Xm
ẇ (1)P1/2

is IF -stable and the left and right actions commute, it

is clear that X̃m
ẇ (1)P1/2

is IF -stable. It is enough to show that X̃m
ẇ (1)P1/2

is
9



stable under the left multiplication with ι(π). This is a matter of a direct

computation (cf. Proposition 3.1(ii)) �

Remark 2.7. Let ẇ and w be as in (2.3). Let ẇ1 be a second lift of w to

G(E). If the cosets I2m+1
E ẇI2m+1

E , I2m+1
E ẇ1I

2m+1
E are not τ -conjugate by

IE/I
2m+1
E , Xm

ẇ1
(1) = ∅. If they are τ -conjugate, then a conjugating element

defines (by right multiplication) an isomorphism Xm
ẇ (1)

∼→ Xm
ẇ1

(1). Thus

the special choices ẇ as in (2.3) already cover all interesting cases.

2.5. The group acting on the right. Recall that Z denotes the center

of G. The group Γ̃ ⊆ Z(E)IE/I
2m+1
E is the stabilizer of the double coset

I2m+1
E ẇI2m+1

E for the action of Z(E)IE/I
2m+1
E on the set of all I2m+1

E -double

cosets lying in IEwIE , given by (i, I2m+1
E ẇI2m+1

E ) 7→ I2m+1
E i−1ẇτ(i)I2m+1

E .

This is well-defined as I2m+1
E is normal in IE . We also need the subgroup

Γ := Γ̃ ∩ IE/I2m+1
E . For t ∈ E×/Um+1

E and r ∈ OE/pmE , write

Pr := 1 + εnπ2nrτ(r) ∈ OE/pm+1
E (2.5)

i(t, r) :=

(
1 r

1

)(
1

εnπ2nτ(r)P−1
r 1

)(
t

τ(t)P−1
r

)
∈ IE/I2m+1

E(2.6)

Lemma 2.8. Let ẇ be as in (2.3). We have

Γ̃ = {i(t, r) : t ∈ E×/Um+1
E , r ∈ OE/pmE } ⊆ Z(E)IE/I

2m+1
E ,

and Γ is the subgroup given by the condition t ∈ UE.

Proof. The proof is a straightforward computation with 2× 2-matrices. �

Now we study Γ̃ under the assumptions m ≤ 2n+ d− 1 and 2n > d. The

first assumption is justified by considerations in Section 2.9. The second

assumption makes the structure of Γ̃ more simple. For x an element of a

subquotient of E, we denote the scalar 2 × 2-matrix with diagonal entries

equal x, again by x. For elements x, y of a group, we write [x, y] := xyx−1y−1

for their commutator.

Lemma 2.9. Assume m ≤ 2n + d − 1 and 2n > d. Let r, u ∈ OE/pmE ,

t ∈ E×/Um+1
E . Then

(i) We have P−1
r = τ(Pr) = Pr = 1 + εnπ2nr2 and PrPu = Pr+u.

(ii) We have

i(1, r) = Pr

(
1 r

εnπ2nr 1

)
, i(1, r)−1 =

(
1 r

εnπ2nr 1

)
.

(iii) The elements i(1, r), i(1, u) of Γ commute.

(iv) The commutator of i(t, 0) and i(1, r) is

[i(t, 0), i(1, r)] =

(
1 (1 + tτ(t)−1)r

0 1

)
.

Proof. (i): We have P 2
r = 1 because 4n ≥ m + 1 by assumptions, whence

P−1
r = Pr. Obviously, we also have τ(Pr) = Pr. Finally, Lemma 2.1(i)

10



gives r ≡ τ(r) mod pdE . Hence by assumption m ≤ 2n + d − 1, we have

Pr = 1 + εnπ2nr2. Now,

PrPu = (1 + εnπ2nr2)(1 + εnπ2nu2)

= 1 + εnπ2n(r2 + u2)

= 1 + εnπ2n(r + u)2 = Pr+u,

where we used once again that 4n ≥ m + 1. This shows (i). Part (ii) is an

immediate computation using (i).

(iii): We compute

[i(1, r), i(1, u)] = PrPu

(
1 + εnπ2nru r + u

εnπ2n(r + u) 1 + εnπ2nru

)2

= Pr+uPr+u

= 1.

where the first equation uses (ii), and the rest follows by applying (i) and

4n ≥ m+ 1.

(iv): Using the assumptions, the already proven parts of the lemma and

Lemma 2.1(ii), we compute

[i(t, 0), i(1, r)] = Pr

(
1 tτ(t)−1r

t−1τ(t)εnπ2nr 1

)(
1 r

εnπ2nr 1

)
= Pr

(
1 + εnπ2ntτ(t)−1r2 r(1 + tτ(t)−1)

εnπ2n(1 + t−1τ(t))r Pr

)
=

(
1 (1 + tτ(t)−1)r

0 1

)
. �

Let

Γ′ := {i(1, r) ∈ Γ: r ∈ pdE/p
m
E } ⊆ Γ.

Proposition 2.10. Assume m ≤ 2n+ d− 1 and 2n > d.

(i) The commutator subgroup of Γ̃ is Γ′. The elements of Γ̃/Γ′ are all

of the form

i(t, r̄) :=

(
1 r

1

)(
1

εnπ2nτ(r) 1

)(
t

τ(t)P−1
r̄

)
with t ∈ E×/Um+1

E , r̄ ∈ OE/pdE, where r is any lift of r̄ to OE/pmE
and Pr̄ := Pr is a well-defined element of OE/pmE .

Let

(Γ̃/Γ′)diag := {i(t, 0) : t ∈ E×/Um+1
E } ⊆ Γ̃/Γ′

denote the subgroup of the diagonal matrices.

(ii) There is an isomorphism (Γ̃/Γ′)diag ∼= E×/Um+1
E , given by i(t, 0) 7→

t.

(iii) For t, t′ ∈ E×/Um+1
E and r̄, ū ∈ OE/pdE one has

i(t, r̄)i(t′, ū) = i(tt′(1 + π2nru), r̄ + ū)
11



(iv) There is an exact sequence of abelian groups

0→ (Γ̃/Γ′)diag → Γ̃/Γ′ → OE/pdE → 0,

where the right map is given by i(t, r̄) 7→ r̄.

Note that the multiplication formula in part (iii) of the proposition in

fact agrees with the one given in the introduction, if one specializes to m =

2n+d−1 – we will do this in Section 3 when computing the representations

in the cohomology (see also Section 2.9).

Proof. Note that i(t, r) = i(1, r)i(t, 0). Hence Γ is generated by all elements

of the form i(t, 0) and i(1, r). Thus (i) follows from the commutator for-

mulae in Lemma 2.9 along with Lemma 2.1(ii) (and the obvious fact that

[i(t, 0), i(t′, 0)] = 1). Part (ii) of the lemma is immediate.

(iii): We compute in Γ̃/Γ′,

i(1, r̄)i(1, ū)i(1, r̄ + ū)−1 = PrPu

(
1 + π2nru r + u

π2n(r + u) 1 + π2nru

)(
1 r + u

π2n(r + u) 1

)
= Pr+u

(
1 + π2n(ru+ (r + u)2) π2nru(r + u)

0 1 + π2n(ru+ (r + u)2)

)
=

(
1 + π2nru π2nru(r + u)

0 1 + π2nru

)
=

(
1 + π2nru 0

0 1 + π2nru

)
= i(1 + π2nru, 0),

where we used several times that 2n ≥ d. We thus have

i(t, r̄)i(t′, ū) = i(1, r̄)i(t, 0)i(1, ū)i(t′, 0)

= i(1, r̄)i(1, ū)i(tt′, 0)

= i(1, r̄ + ū)i(tt′(1 + π2nru), 0)

= i(tt′(1 + π2nru), r̄ + ū),

where the second equality follows from commutativity of Γ̃/Γ′, which was

shown in part (i), and the third equality follows from the computation above.

This finishes the proof of (iii).

(iv): It is enough to check that the map α : Γ̃/Γ′ → OE/pdE given by

α(i(t, r̄)) = r̄ is a homomorphism. Indeed, α sends the neutral element

i(1, 0) ∈ Γ̃/Γ′ to the neutral element 0 ∈ OE/pdE , and by part (iii), α

respects the group laws. �

Recall that for a locally profinite group A, we denote by A∨ the smooth

Q×` -valued characters of A. Proposition 2.10 immediately implies:

Corollary 2.11. We have Γ̃∨ = (Γ̃/Γ′)∨. Further, there is an exact se-

quence

0→ (OE/pdE)∨ → (Γ̃/Γ′)∨ → (E×/Um+1
E )∨ → 0.

12



2.6. An “exotic” isomorphism. Let m ≤ 2n+d−1 and 2n > d. Consider

the push-out in the category of abelian groups,

Π := E×/Um+1
E ×pn+dE /pm+1

E
pnE/p

m+1
E , (2.7)

with respect to the natural inclusion pn+d
E /pm+1

E ↪→ pnE/p
m+1
E and the map

pn+d
E /pm+1

E ↪→ E×/Um+1
E given by x 7→ 1 + x. As pn+d

E /pm+1
E is 2-torsion,

Π is the quotient of E×/Um+1
E × pnE/p

m+1
E by the image of the diagonal

embedding of pn+d
E /pm+1

E (the sign can be ignored).

Denote by x 7→ x the natural projection OE/pn+d
E � OE/pdE .

Proposition 2.12. There is an isomorphism depending only on the choice

of the uniformizer π mod UdE,

Π
∼−→ Γ̃/Γ′,

β : (x, y) 7→
(
x(1 + y)−1, π−ny(1 + y)−1

)
,

where the last y is seen as an element of OE/pn+d
E via the natural map

pnE/p
m+1
E → OE/pn+d

E .

Proof. Straightforward computation. �

Remark 2.13. The isomorphism β from Proposition 2.12 is in some sense

an exotic one. Indeed, at least if n ≥ d, we have a natural isomorphism

Γ̃/Γ′ ∼= E×/Um+1
E ×Un+dE /Um+1

E
UnE/U

m+1
E ,

given by regarding Γ̃/Γ′ as the push-out of its subgroups E×/Um+1
E and

{i(t, r) : t ≡ 1 mod pn+d
E }. Now we have Un+d

E /Um+1
E

∼= pn+d
E /pm+1

E , simply

by 1 + x 7→ x. On the other side UnE/U
m+1
E is obviously non-isomorphic

to pnE/p
m+1
E if 2n < m + 1 (the second group is killed by 2, the first has

non-trivial 4-torsion).

The following lemma will be used in Section 3.4.

Lemma 2.14. Let m ≤ 2n+ d− 1 and 2n > d. The map

OE/pn+d
E → Γ/Γ′, x 7→ ix := i((1 + πnε

d+1
2 x)−1, x(1 + πnx)−1 mod pdE)

is a homomorphism.

Proof. For x ∈ OE/pn+d
E , let tx := (1 + πnε

d+1
2 x)−1, r̄x := x(1 + πnx)−1

mod pdE , such that ix = i(tx, r̄x). For x, y ∈ OE/pn+d
E we have (using Propo-

sition 2.10(iii))

ixiy = i(tx, r̄x)i(ty, r̄y) = i(txty(1 + π2nr̄xr̄y), r̄x + r̄y)

ix+y = i(tx+y, r̄x+y),

Using the assumptions (which in particular allow to kill ε in all terms con-

taining π2n) one easily computes,

txty(1 + π2nr̄xr̄y) = tx+y.
13



A further simple calculations involving the assumptions shows r̄x+r̄y = r̄x+y.

This finishes the proof of the lemma. �

2.7. A version of the trace formula. Before going on we record a slight

generalization of Boyarchenko’s version [Boy12, Lemma 2.12] of the trace

formula.

Lemma 2.15. Let X be a separated scheme of finite type over the field FQ
with Q elements, on which a finite group A acts on the right. Let g : X → X

be an automorphism of X, which commutes with the action of A. Let ρ be an

irreducible (finite-dimensional) Q`-valued representation of A. Assume that

Hi
c(X)[ρ] = 0 for i 6= i0 and FrobQ acts on Hi0

c (X)[ρ] by a scalar λ ∈ Q×` .

Then

tr(g∗,Hi0
c (X)[ρ]) =

(−1)i0 dim(ρ)

λ]A

∑
a∈A

(tr ρ)(a)]Sg,a,

where Sg,a = {x ∈ X(Fq) : g(FrobQ(x)) = x · a}.

Proof. The proof is literally the same as the proof of [Boy12, Lemma 2.12].

The only thing to notice is that in our general situation (where dim(ρ) > 1

is possible), the canonical projection Hi0
c (X) → Hi0

c (X)[ρ] is given by v 7→
dim(ρ)
]A

∑
a∈A tr(ρ)(v)a∗, where we regard a as the automorphism x 7→ xa of

X, and a∗ is the automorphism of the cohomology induced by functoriality.

�

We use this lemma in Section 2.9 and (quite extensively) in Section 3, but

in the latter Boyarchenko’s original statement (for dim(ρ) = 1) is sufficient.

2.8. Minimal characters. We use the following standard notation and ter-

minology from [BH06]. For a Q×` -valued character φ of F×, φE := φ ◦NE/F

the corresponding character of E× and by φG := φ ◦ det the corresponding

character of G(F ). The level `(χ) of a multiplicative character χ of E is the

smallest integer m ≥ 0, such that χ is trivial on Um+1
E . A character χ of

E× is called minimal, if `(χ) ≤ `(χφE) for all characters φ of F×. Similarly,

the (normalized) level `(ρ) is defined in [BH06, §12.6] for smooth irreducible

representations of G(F ), and such a representation is called minimal, if

`(ρ) ≤ `(ρφG) for all characters φ of F×.

Lemma 2.16. [BH06, §41.4] Let ξ be a character of E×.

(i) If ξ is minimal over F , then `(ξ) ≥ d.

(ii) Suppose `(ξ) ≥ d; then ξ is minimal over F if and only if `(ξ) 6≡ d (

mod 2).

By [BH06, §41.4 Proposition] the representation IndE/F ξ (the induction

to the Weil group of F from the Weil group of E of the character induced on

it by ξ via class field theory) is unramified if `(ξ) = d. As we want construct

ramified representations, and as d is always odd (as we are in the equal

characteristic case!) only those ξ for which `(ξ) > d is even are interesting

for us.
14



Let m > d be an even integer and let n > 0 be an integer such that the

assumptions of Proposition 2.10 are satisfied. We call a character θ̃ of the

group Γ̃/Γ′ (studied in Section 2.5) generic, if its restriction to UmE /U
m+1
E

is non-trivial. Using Corollary 2.11 we may restrict θ̃ to a character θ of

E×/Um+1
E , and then inflate it to a character of E× (again denoted by θ). It

is clear that θ̃ is generic if and only if θ is minimal.

2.9. A numerical consideration. The varieties Xm
ẇ (1) depend on two

parameters, the element ẇ and the level m. The essential part of the choice

of ẇ is given by the choice of its image w in W̃ . To guarantee that Xw(1) is

non-empty we should choose w ∈ Waff ⊆ W̃ with `(w) = 2n − 1 odd, with

some n ≥ 1 (or w = 1, which is the “boring” case, giving principal series

representations). Now w is essentially characterized by its length, hence by

the integer n, and we are left with the following question.

Question 2.17. How to choose m,n such that if w is of length `(w) = 2n−1,

the representation Rχ = H0
c(X

m
ẇ (1),Q`)[χ] is an irreducible supercuspidal

G(F )-representation for each generic character χ of Γ̃?

To prepare an answer to this question, we show the following lemma.

As Xw(1), Xm
ẇ (1) are disjoint unions of Fq-points, we simply write ]Xw(1),

]Xm
ẇ (1) for the number of these Fq-points.

Lemma 2.18. The Γ-representation H0
c(X

m
ẇ (1)P1/2

,Q`) is isomorphic to a

direct sum of ]Xw(1) copies of the regular representation of Γ.

Proof. We apply Lemma 2.15 to Q = q, X = Xm
ẇ (1)P1/2

, g = id and A =

Γ and any irreducible representation of A. As X is zero-dimensional by

Proposition 2.5, all assumptions are satisfied. From Propositions 2.5 and

3.1(ii) it is clear that Γ acts faithfully on X, thus Sid,γ = ∅ for all γ ∈
Γr {1}. Moreover Sid,1 = X and using also Proposition 2.4 we see that

]X = ]Xw(1)P1/2
· ]Γ. From this we deduce (as tr(ρ)(1) = dim(ρ)) that the

multiplicity of ρ in H0
c(X) is dim(ρ) · ]Xw(1). The result follows. �

Let now χ be a character of Γ̃. Then by Proposition 2.5 and Corollary 2.6,

Rχ = c− Ind
G(F )
E×IF

Ξχ where Ξχ = H0
c(X

m
ẇ (1)P1/2

)[χ|Γ] (this can be extended

to a E×IF -representation, but here we only need it as a IF -representation).

By Lemma 2.18 and Proposition 2.4

dim Ξχ = ]Xw(1) = (q − 1)qn+d−1.

On the other side χ factors through Γ̃/Γ′ and then restricts to a character

of E×/Um+1
E ⊆ Γ̃/Γ′. That is, it gives us a character θ of E× of level m.

For θ to be minimal, it is necessary and sufficient that m is even and m > d

(cf. Section 2.8). Now, Rχ = c− Ind
G(F )
E×IF

Ξχ in Question 2.17 is irreducible

supercuspidal, and we expect it to correspond under the Langlands corre-

spondence to the Galois representation IndWF
WE

θ′ (WF is the Weil group of

F ) for some character θ′ of W ab
E
∼= E× inflated to WE . Although the relation
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between θ′ and χ (and in particular, between θ and θ′) might be quite com-

plicate (it is expected to be given by some rectifying character), we expect

that the levels of θ′ and θ coincide: `(θ′) = `(θ) = m. Then [BH06, Lemma

27.6] gives us

dim Ξχ = (q − 1)q
m+d−1

2 .

A comparison of the two formulae for dim Ξχ gives the right answer to

Question 2.17: one should choose w such that m = 2n + d − 1. We will

apply it in Section 3. Finally we want to remark that the same considerations

apply also in the purely tamely ramified case (studied in [Iva18]) with d = 0,

m = 2n− 1, dim Ξχ = ]Xw(1) = (q − 1)qn−1.

3. Representations of GL2(F ) in the wildly ramified case

We continue to work with notation from Section 2. In particular, G = GL2

and F has characteristic 2. All characters and representations considered in

this section are smooth and have coefficients in Q`.

3.1. Definition of R
θ̃
. Let m > d be an even integer. Define n ≥ 1 by

m = 2n+ d− 1

(this is justified by Section 2.9). We will keep this notation throughout

Section 3 and moreover assume that 2n > d in the following (except for

Section 3.2, which results hold without this assumption). This restriction is

given by Section 2.5 and by the fact that it significantly simplifies the trace

computations below. For these given n and m, let ẇ be as in (2.3). We

then have the corresponding group Γ̃, studied in Section 2.5 and the variety

Xm
ẇ (1). Fix a character θ̃ of Γ̃. By Proposition 2.10(i) this is the same as a

character of Γ̃/Γ′. We define the smooth G(F )-representation R
θ̃

by

R
θ̃

:= H0
c(X

m
ẇ (1),Q`)[θ̃]. (3.1)

We will precisely describe which irreducible supercuspidalG(F )-representations

are realized by R
θ̃
, see Corollary 3.19 and Section 3.6. It is highly interesting

to perform the calculations below (possibly in some simplified way, which

makes the traces more accessible), to determine what happens beyond the

case 2n > d, and in particular, whether all minimal irreducible supercuspi-

dal totally ramified G(F )-representations are realized by the R
θ̃

(we believe

that this holds).

3.2. Group actions. In this section we drop the assumption 2n > d. For

g ∈ G(F ), we always write g =

(
g1 g2

g3 g4

)
. We fix a point x = x(a,C) ∈

Xm
ẇ (1)P1/2

with coordinates

a ∈ (pE/p
n+d+m+1
E )∗, C ∈ UE/Um+1

E

(cf. Proposition 2.5). We compute the action of IF and Γ on the coordinates

of x. Moreover, for h ∈ ι(E×)IF with ordF (det(h)) = r, we will see that
16



h.Xm
ẇ (1)P1/2

= Xm
ẇ (1)P1/2

.i(πr, 0)r; therefore,

βh : Xm
ẇ (1)P1/2

→ Xm
ẇ (1)P1/2

, yI2m+1
E 7→ hyι(π, 0)−rI2m+1

E

is an automorphism of Xm
ẇ (1)P1/2

. We will also determine βh in terms of

the coordinates.

Proposition 3.1. Let x = x(a,C) be a point on Xm
ẇ (1)P1/2

with coordinates

a ∈ (pE/p
n+d+m+1
E )∗ and C ∈ UE/Um+1

E (in particular, a 6≡ 0 mod p2
E).

(i) Let g ∈ IF . The action of g on the coordinates a,C of x is given by

g(a) =
g4a+ g3

g2a+ g1
∈ pE/p

n+d+m+1
E

g(C) =
det(g)C

g2a+ g1
∈ UE/Um+1

E .

(ii) Let i(t, r) ∈ Γ. The action of i(t, r) on the coordinates a,C of x is

given by

i(t, r)(a) = a+ πn+d+1ε−
d+1
2 Cτ(C)−1RH−1r ∈ pE/p

n+d+m+1
E

i(t, r)(C) = CH−1t ∈ UE/Um+1
E ,

where

H := 1 + πnε−
d+1
2 Cτ(C)−1r ∈ UE/Um+1

E . (3.2)

Write a = πa′ with a′ ∈ UE/Un+d+m
E .

(iii) Let g ∈ IF . The action of βgι(π) on the coordinates a,C of x is given

by

βgι(π)(a) =
g4επ + g3(a′ + 1 + ε)

g2επ + g1(a′ + 1 + ε)
∈ pE/p

n+d+m+1
E

βgι(π),a(C) =
det(g)εC

g2επ + g1(a′ + 1 + ε)
∈ UE/Um+1

E .

Proof. Up to a change of coordinates this is shown in [Iva18, Propositions

5.1 and 5.4].

Part (iii) follows by combining part (i) with Lemma 3.2. �

Lemma 3.2. The action of βι(π) on the coordinates a,C of x is given by

βι(π)(a) =
επ

a′ + 1 + ε
∈ pE/p

n+d+m+1
E

βι(π)(C) =
εC

a′ + 1 + ε
∈ UE/Um+1

E .

Proof. In the following computations, ∗ denotes irrelevant terms in an ex-

pression. An auxiliary computation shows:

ι(π)e−(a)e0(επ, π)−1 = e−

(
επ

a′ + 1 + ε

)
e0

(
a′ + 1 + ε

ε
,

ε

a′ + 1 + ε

)
e+(∗),
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Recall from Section 2.5 that i(π, 0) = e0(π, επ). Using the computation

above we compute:

βι(π)(x) = ι(π)e−(a)v̇e−(∗)e0(C, ∗)I2m+1
E i(π, 0)−1

= ι(π)e−(a)e0(επ, π)−1v̇e−(∗)e0(C, ∗)I2m+1
E

= e−

(
επ

a′ + 1 + ε

)
e0

(
a′ + 1 + ε

ε
,

ε

a′ + 1 + ε

)
e+(∗)v̇e−(∗)e0(C, ∗)I2m+1

E

= e−

(
επ

a′ + 1 + ε

)
e0

(
a′ + 1 + ε

ε
,

ε

a′ + 1 + ε

)
v̇e−(∗)e0(C, ∗)I2m+1

E

= e−

(
επ

a′ + 1 + ε

)
v̇e−(∗)e0

(
εC

a′ + 1 + ε
, ∗
)
I2m+1
E ,

whence the lemma. �

3.3. Applying a trace formula. From now on, we again assume 2n > d.

Fix a Q×` -valued character θ̃ of Γ̃. We regard it as a character of Γ̃/Γ′.

Recall the Γ̃-stable subset X̃m
ẇ (1)P1/2

⊆ Xm
ẇ (1) from Corollary 2.6. As

in [Iva16, Lemma 4.5] we have:

Lemma 3.3. The natural inclusion Xm
ẇ (1)P1/2

↪→ X̃m
ẇ (1)P1/2

induces an

isomorphism

H0
c(X̃

m
ẇ (1)P1/2

)[θ̃] ∼= H0
c(X

m
ẇ (1)P1/2

)[θ̃|Γ].

We need some notation. We write

V
θ̃

:= H0
c(X̃

m
ẇ (1)P1/2

)[θ̃]

Ξ
θ̃

:= the ι(E×)IF -representation in V
θ̃
.

Note that V
θ̃

is a finite-dimensional Q`-vector space.

Let g ∈ ι(E×)IF . Note that βg (introduced in Section 3.2) induces an

automorphism β∗g of V
θ̃
. We write

Ag := {a ∈ (pE/p
n+d+m+1
E )∗ : βg(a) ≡ a mod pn+d+1

E } (3.3)

For a ∈ Ag, we write

h(g, a) := π−(n+d+1)(βg(a)− a).

This is a well-defined element of OE/pm. Further, for a ∈ (pE/p
n+d+m+1
E )∗,

we write

β′g,a := C−1βg,a(C) ∈ UE/Um+1
E ,

which depends on g and a, but not on C.

Proposition 3.4. Let g ∈ ι(E×)IF . Then

tr(g; Ξ
θ̃
) =

1

qm
θ̃(i(π, 0))ordF (det(g)) ·

∑
a∈Ag

θ̃(i(ta, r̄a)),

where i(ta, r̄a) ∈ Γ/Γ′ is given by

r̄a := R−1h(g, a)(1 + πnh(g, a)R−1)−1 ∈ OE/pdE
ta := β′g,a(1 + πnh(g, a)R−1)−1 ∈ UE/Um+1

E ,
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with R as in Proposition 2.5.

Proof. As ι(π, 0) acts in V
θ̃

as multiplication by the scalar θ̃(i(π, 0)), we

deduce from Lemma 2.15 ( [Boy12, Lemma 2.12] suffices),

tr(g; Ξ
θ̃
) = θ̃(i(π, 0))ordF (det(g))tr(β∗g ;V

θ̃
)

=
1

]Γ
θ̃(i(π, 0))ordF (det(g)) ·

∑
i(t,r)∈Γ

]Sg,i(t,r)θ̃(i(t, r)),
(3.4)

where Sg,i(t,r) denote the set of all x ∈ Xm
ẇ (1)P1/2

, such that βg(x) = x.i(t, r).

According to Proposition 3.1(ii) the set Sg,i(t,r) is equal to the set of

all solutions in the variables a ∈ (pE/p
n+d+m+1
E )∗, C ∈ UE/U

m+1
E of the

equations

βg(a) ≡ a+ πn+d+1Cτ(C)−1RH−1r mod pn+d+m+1
E

β′g,a ≡ H−1t mod pm+1
E

(3.5)

Any solution must satisfy a ∈ Ag, so we may assume this. The first equation

may thus be rewritten as

r ≡ τ(C)C−1R−1h(g, a)H mod pmE . (3.6)

Inserting (3.6) and (3.2) alternatingly into (3.2) and iterating this process

(use that n > 0), we may rewrite (3.2) as

H−1 ≡ 1 + πnh(g, a)R−1 mod pm+1
E . (3.7)

Inserting this into (3.5) (we use (3.6) instead of the first equation of (3.5)),

we get rid of H, and our equations get equivalent to

r ≡ τ(C)C−1R−1h(g, a)(1 + πnh(g, a)R−1)−1 mod pmE

t ≡ β′g,a(1 + πnh(g, a)R−1)−1 mod pm+1
E

(3.8)

Now consider the equations

r̄ ≡ R−1h(g, a)(1 + πnh(g, a)R−1)−1 mod pdE

t ≡ β′g,a(1 + πnh(g, a)R−1)−1 mod pm+1
E ,

(3.9)

obtained from (3.8) by reducing the first equation modulo pdE (and using

Lemma 2.1(ii)). These equations are attached to an element i(t, r̄) ∈ Γ/Γ′.

The set of all solutions in a ∈ Ag, C ∈ UE/Um+1
E of (3.9) is equal to the

union of sets Sg,i(t,r) for i(t, r) varying over all preimages of i(t, r̄) in Γ. As

θ̃ factors through Γ/Γ′, and as (3.9) does not depend on C, we deduce

tr(g; Ξ
θ̃
) =

1

qm
θ̃(i(π, 0))ordF (det(g)) ·

∑
i(t,r̄)∈Γ/Γ′

]Sg,i(t,r̄)θ̃(i(t, r)),

where Si(t,r̄) is the set of solutions in the variable a ∈ Ag of the equations

(3.9) (the variable C being eliminated). Now the proposition follows, as

(by looking at equations (3.9)) each a ∈ Ag produces exactly one element

i(ta, r̄a), such that Si(ta,r̄a) = {a}. �
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Corollary 3.5. Let θ be the inflation to E× of the restriction of θ̃ to the

subgroup E×/Um+1
E ⊆ Γ̃/Γ′. The central character of R

θ̃
is θ|F×, Ξ

θ̃
is

trivial on Im+d+1
F and the space V

θ̃
has dimension (q − 1)qn+d−1.

Proof. The action of the central elements of G(F ) by left and right multipli-

cation coincide, and the subgroup of Γ̃ consisting of the diagonal matrices

with entries in F× acts in R
θ̃

via the character θ. For g ∈ Im+d+1
F , one easily

checks that h(g, a) ≡ 0 mod pn+d
E , and the statement follows by applying

Proposition 3.4. �

3.4. Properties of R
θ̃
. Let θ̃ be as in Section 3.3. For convenience, we

introduce the following notation

δ :=

⌊
n+ 1

2

⌋
−
⌊n

2

⌋
,

Proposition 3.6. Assume that θ̃ is generic (cf. Section 2.8). Let g =

e−(u) ∈ IF with u ∈ pF . Then

tr(g; Ξ
θ̃
) =


0 if ordF (u) < n+ d

−qn+d−1 if ordF (u) = n+ d

(q − 1)qn+d−1 if ordF (u) ≥ n+ d+ 1

Proof. We apply Proposition 3.4 and use the notations from there. First we

show the following simple lemma.

Lemma 3.7. Let g = e−(u) ∈ IF with u ∈ pF . Then the following are

equivalent

(i) Ag 6= ∅
(ii) Ag = (pE/p

n+d+m+1
E )∗

(iii) ordF (u) ≥ bn+1
2 c+ d+1

2 .

If these conditions hold and if we write u = $b
n+1
2
c+ d+1

2
+αu0 with u0 ∈ UF ,

then

h(g, a) = πδ+2αεb
n+1
2
c+ d+1

2
+αu0.

Proof. We have g.a = a + u, i.e. Ag 6= ∅ ⇔ u ≡ 0 mod pn+d+1
E ⇔ u ≡

0 mod p
bn+1

2
c+ d+1

2
F . If this holds, then Ag = (pE/p

n+d+m+1
E )∗. The last

statement is clear by definition of h(g, a). �

We continue with the proof of Proposition 3.6. If ordF (u) < bn+1
2 c+

d+1
2 ,

then Ag = ∅ by Lemma 3.7 and the statement is immediate. Thus we

may assume ordF (u) = bn+1
2 c + d+1

2 + α with α ≥ 0, and in particular,

Ag = (pE/p
n+d+m+1
E )∗.

Assume that α ≥ bn2 c + d+1
2 (i.e., ordF (u) ≥ n + d + 1). Then δ +

2α ≥ n + d + 1, and applying Lemma 3.7 shows that for each a ∈ Ag,

ta = 1 ∈ UE/Um+1
E and r̄a = 0 ∈ OE/pd, which shows that a 7→ i(ta, r̄a) is

the constant map sending all of Ag to the neutral element i(1, 0) ∈ Γ/Γ′. As

]Ag = (q − 1)qn+d+m−1, the statement follows also in this case.
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It remains to deal with the case 0 ≤ α ≤ bn2 c+ d+1
2 − 1. Set

Bα :=
{
x ∈ pδ+2α

E /pn+d
E : τ(x) = ε−nx

}
B∗α := Bα ∩

(
pδ+2α
E /pn+d

E

)∗
.

Lemma 3.8. The assignment a 7→ h(g, a)R−1 induces a map

(pE/p
n+d+m+1
E )∗ � B∗α,

with all fibers of cardinality qn+d+m−bn+d+1
2
c+α.

Proof. Applying Lemma 2.1(i) several times shows that the trace of E/F

composed with multiplication by $−
d+1
2 induces a surjective map

$−
d+1
2 TrE/F :

(
pE/p

n+d+m+1
E

)∗
�

(
OF /p

bn+d+1
2
c

F

)∗
= UF /U

bn+d+1
2
c

F ,

which is the restriction of a homomorphism on the same spaces without ∗’s.
In particular, all fibers have the same cardinality, equal to qn+d+m−bn+d+1

2
c.

Multiplying the map $−
d+1
2 TrE/F by the invertible factor ε

d+1
2 and then

inverting, we obtain the map (induced by) a 7→ R−1 = (π−(d+1)(a+τ(a)))−1.

More precisely, we have OF /p
bn+d+1

2
c

F ⊆ OE/pn+d
E and a 7→ R−1 induces(

pE/p
n+d+m+1
E

)∗
� ε−

d+1
2

(
OF /p

bn+d+1
2
c

F

)∗
⊆ ε−

d+1
2

(
OF /p

bn+d+1
2
c

F

)
⊆ OE/pn+d

E ,

with (non-empty) fibers still of cardinality qn+d+m−bn+d+1
2
c. (Note that the

map a 7→ R−1 is neither additive, nor multiplicative). Observe that

ε−
d+1
2

(
OF /p

bn+d+1
2
c

F

)
=
{
x ∈ OE/pn+d

E : τ(x) = ε
d+1
2 x
}
⊆ OE/pn+d

E .

Multiplication by εb
n+1
2
c+ d+1

2
+αu0 maps this subgroup isomorphically onto

εb
n+1
2
c+α

(
OF /p

bn+d+1
2
c

F

)
=
{
x ∈ OE/pn+d

E : τ(x) = ε−2bn+1
2
c−2αx

}
⊆ OE/pn+d

E

(as u0 ∈ OF ), preserving the ∗-subsets. Now, multiplication by πδ+2α maps

this surjectively onto

Bα ⊆ pδ+2α
E /pn+d

E ,

preserving the ∗-subspaces. Moreover, the fibers all have cardinality qα (be-

ing equal to the cardinality of the multiplication-by-πδ+2α mapOF /pb
n+d+1

2
c →

pδ+2α
E /pn+d

E ). Putting all this together, we see that a 7→ R−1h(g, a) in fact

induces a map (
pE/p

n+d+m+1
E

)∗
� B∗α,

whose fibers all have the same cardinality, equal to qn+d+m−bn+d+1
2
c+α. This

finishes the proof of the lemma. �
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Using Lemma 3.8 we may replace a in the formulae in Proposition 3.4 by

x := R−1h(g, a). More precisely, we have

tr(g; Ξχ) = qn+d−bn+d+1
2
c+α ·

∑
x∈B∗α

θ̃(i(tx, r̄x)),

where i(tx, r̄x) ∈ Γ/Γ′ is given by

r̄x := x(1 + πnx)−1 ∈ OE/pdE

tx := (1 + πnε−
d+1
2 x)−1 ∈ UE/Um+1

E ,

Define θ̃′ on Bα by setting θ̃′(x) := θ̃(i(tx, r̄x)). By Lemma 2.14, θ̃′ is a char-

acter of Bα. Moreover, θ̃′ is non-trivial: indeed, Bα contains Bbn
2
c+ d+1

2
−1 =

pn+d−1
E /pn+d

E (the condition τ(x) = ε−nx gets empty here) and when x =

πn+d−1x0 runs through Bbn
2
c+ d+1

2
−1, i(tx, r̄x) = i((1+πmx0), 0) runs through

UmE /U
m+1
E ⊆ E×/Um+1

E = (Γ̃/Γ′)diag, and by assumption, θ̃ is non-trivial

there.

We thus have

tr(g; Ξχ) = qn+d−bn+d+1
2
c+α ·

∑
x∈B∗α

θ̃′(x),

Observing that B∗α = BαrBα+1, we deduce tr(g; Ξα) = 0 for 0 ≤ α <

bn2 c+ d+1
2 − 1. For α = bn2 c+ d+1

2 − 1, we have

tr(g; Ξα) = qn+d−bn+d+1
2
c+(bn

2
c+ d+1

2
−1) ·

∑
x∈B∗

bn2 c+
d+1
2 −1

θ̃(x) = −qn+d−1. �

For α ≥ 1, let Nα be the subgroup of IF consisting of all lower triangu-

lar matrices with 1’s on the main diagonal, such that the lower entry has

valuation ≥ α. Let B be the Borel subgroup of lower triangular matrices of

G.

Corollary 3.9. Assume that θ̃ is generic. As N1-representation, Ξ
θ̃

is the

direct sum over all characters of N1, which are trivial on Nn+d+1 and non-

trivial on Nn+d. Moreover, Ξ
θ̃

is an irreducible B(F ) ∩ IF representation.

Proof. The first statement immediately follows from Proposition 3.6. The

second follows from the first as in [Iva16, Corollary 4.12]. �

Corollary 3.10. Assume that θ̃ is generic. The representation R
θ̃

is irre-

ducible, supercuspidal and admissible. It contains a ramified simple stratum

and is, in particular, ramified. Its level is `(R
θ̃
) = m+d

2 . For any character

φ of F×, one has 0 < `(R
θ̃
) ≤ `(φR

θ̃
).

Proof. This follows from Corollary 3.9 and [Iva18, Proposition 4.24]. �

3.5. Wild cuspidal types. Here we briefly recall the method of [BH06] to

produce smooth irreducible supercuspidal Q`-representations of G(F ) from

certain characters of open subgroups of G(F ), which are compact modulo
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center. For definitions and general results on cuspidal types (for G = GL2)

we refer to [BH06]. We concentrate on the special case when the residue

characteristic of F is 2. Let IF be the OF -subalgebra of M := Mat2×2(F )

with filtration by IrF (r ≥ 0) given by

IrF := ι(π)rIF =

 p
b r+1

2
c

F p
b r
2
c

F

p
b r
2
c+1

F p
b r+1

2
c

F

 ⊆ IF :=

(
OF OF
pF OF

)
For r < 0, we also put JrF := ι(π)rJF . Then I×F = IF and IrF = 1 + IrF for

r ≥ 1.

Fix once for all a Q×` -valued character ψ of F of level 1 (i.e., trivial on pF ,

non-trivial on OF ). Let ψM := ψ ◦ trM, where trM is the trace. Analogously,

put ψE := ψ ◦ trE/F . Note that for integers k ≤ r, ι : E ↪→ M induces an

inclusion pkE/p
r
E ↪→ IkF /I

r
F .

Lemma 3.11. (i) [BH06, 12.5 Proposition] Let 0 ≤ k < r ≤ 2k+ 1 be

integers. There is an isomorphism

J−rF /J−kF
∼−→ (Ik+1

F /Ir+1
F )∨, a+ J−kF 7→ ψM,a|Uk+1

J

where ψM,a denotes the function x 7→ ψM(a(x− 1)).

(ii) Let 0 ≤ k < r ≤ 2k + 1 be integers. There is an isomorphism

p
−(r+d)
E /p

−(k+d)
E

∼−→ (Uk+1
E /U r+1

E )∨, a+$−kJ 7→ ψE,a|Uk+1
J

where ψE,a denotes the function x 7→ ψE(a(x− 1)).

(iii) Let k, r be positive integers satisfying k + d < r ≤ 2k + d+ 1. Then

there is a commutative diagram

p
−(r+d)
E /p

−(k+d)
E

// //
� _

��

p
−(r+d)
E /p

−(k+2d)
E

∼ // (Uk+d+1
E /U r+1

E )∨
� _

��

J
−(r+d)
F /J

−(k+d)
F

∼ // (Ik+d+1
F /Ir+d+1

F )∨ // // (Uk+d+1
E /U r+d+1

E )∨

where the two horizontal isomorphisms are from parts (i) and (ii)

of the lemma and all other maps are either induced by ι or by the

natural projections.

Proof. Part (ii) is immediate (the shift by d coming from the discriminant

of E/F ). Part (iii) is immediate from (i) and (ii) and trE/F = trM ◦ ι. �

We abuse the notation ψE,α, by using it for both, the (additive) character

of a subquotient of OE and the (multiplicative) character of a subquotient

of UE . It will be always clear from the context, which character is meant.

Let θ be a minimal character of E× of level m. The following construction

uses Lemma 3.11(iii) with r = m and k = n − 1. To give a cuspidal type

(JF , ι(E
×)In+d

F ,Λ), such that Λ is trivial on Im+d+1
F = I

2(n+d)
F , and such

that the restriction of Λ to ι(E×) is the character θ ◦ ι−1, is the same as

to give an element α ∈
(
p
−(m+d)
E /p

−(n+d−1)
E

)∗
, such that the restriction of
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ψM,ι(α) to Un+d
E /Um+d+1

E , which factors through Un+d
E /Um+1

E (by Lemma

3.11(iii)) is equal to the restriction of θ to this subgroup, that is

ψE,α(x) = θ(1 + x) for all x ∈ pn+d
E /pm+1

E . (3.10)

The following lemma is immediate.

Lemma 3.12. Let θ, ψ, α be as above, satisfying (3.10). There is a unique

character of the group Π from (2.7), whose restriction to E×/Um+1
E (resp.

pnE/p
m+1
E ) is θ (resp. ψE,α).

Definition 3.13. We set

• Λθ,ψ,α := the character of ι(E×)In+d
F corresponding to ψ, α and θ

as above,

• BHθ,ψ,α := c− Ind
G(F )

ι(E×)In+dF

Λθ,ψ,α.

• (θ, ψE,α) := the character of Π attached to θ, ψ, α by Lemma 3.12.

Theorem 3.14. [BH06, 15.5 Corollary] The map

(A, J,Λ) 7→ c− Ind
G(F )
J Λ

induces a bijection between the set of conjugacy classes of all (i.e., not neces-

sarily those considered above) cuspidal types in G(F ) and equivalence classes

of irreducible supercuspidal representations of G(F ).

Corollary 3.15. (cf. [BH06, 15.3 Theorem] ) The representation BHθ,ψ,α

is irreducible and supercuspidal.

Below we will need the following lemma.

Lemma 3.16. The representation BHθ,ψ,α is minimal, its central character

is θ|F×, and its level is m+d
2 .

Proof. The character Λθ,ψ,α restricted to the center F× ∼= Z(F ) ⊆ ι(E×)In+d
F ⊆

G(F ) is θ|F× . As Z(F ) ⊆ G(F ) is central, BHθ,ψ,α restricted to Z(F ) is a

multiple of θ|F× (by Mackey’s formula), i.e., the central character is θ|F× .

Moreover, BHθ,ψ,α contains the ramified simple stratum (JF ,m+d, ι(α)) (cf.

[BH06, 13.4 and 13.5]). Thus by [BH06, §12.9 Theorem], `(BHθ,ψ,α) = m+d
2 .

Further, if an essentially scalar stratum would be contained in BHθ,ψ,α, then

by [BH06, §12.9] it would have to intertwine with (JF ,m+d, ι(α)), which is

impossible by [BH06, 13.2 Proposition]. Thus no essentially scalar stratum

is contained in BHθ,ψ,α and [BH06, 13.3 Theorem] shows that BHθ,ψ,α is

minimal. �

3.6. Ordinary and exceptional representations. Recall from [BH06,

§44.1 Definition] that an irreducible supercuspidal G(F )-representation is

either ordinary or exceptional. In the first case, the corresponding Galois

representation is imprimitive, that is of the form IndE/F χ (as after Lemma

2.16); in the second case, the corresponding Galois representation is primi-

tive, i.e., is not an induction of a character. If ρ is an exceptional representa-

tion of G(F ), there exists a cubic tamely ramified extension K/F such that
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the tame lifting of ρ to K becomes ordinary [BH06, §46.5 Corollary]. For

the procedure of tame lifting (which we will not use in detail here) we refer

to [BH06, §46]. The non-ordinary case in the following proposition coincides

precisely with the special case in [BH06, §51.6 Proposition].

Let m = 2n + d − 1, 2n > d. As in Section 3.5, let θ be a minimal

character of E× of level m, ψ an additive character of E of level 1, and

α ∈
(
p
−(m+d)
E /p

−(n+d−1)
E

)∗
. Lift α to an element in p

−(m+d)
E , and denote the

lift again by α. We investigate when the representation BHθ,ψ,α is ordinary

resp. exceptional.

Proposition 3.17.

(i) If 2n > d+ 1, then BHθ,ψ,α is ordinary.

(ii) Assume 2n = d + 1. We can write α = $−
3d+1

2 (πA + $B) with

A ∈ O×F , B ∈ OF . Then BHθ,ψ,α is ordinary if and only if the

polynomial

cα(Y ) = Y 3 − ε̄0ĀY 2 + Ā ∈ Fq[X]

has a root in Fq, where x̄ denotes the image of x ∈ OE in Fq, and

ε0 = π−(d+1)∆ ∈ OE. Otherwise, BHθ,ψ,α is exceptional and the

cubic extension K/F , such that the tame lifting of BHθ,ψ,α becomes

ordinary, is unramified.

Proof. Note that BHθ,ψ,α contains the ramified simple stratum (IF ,m +

d, α). We apply [BH06, §45.2 Theorem] to determine, when this stratum is

ordinary: Note that F [α] = E. If 2n > d+1, then m+d = 2n+d−1+d > 3d.

Thus (IF ,m+d, α) is ordinary. Now assume 2n = d+1. Then (IF ,m+d, α)

is ordinary if and only if the polynomial

Cα(X) = X3 − trE/F (α)X2 + NE/F (α) ∈ F [X]

has a root in F . (Here we use the compatibility of trace resp. norm of E/F

with trace resp. determinant on M.) A small computation with the explicit

form of α, along with the change of variables X = $−dY gives

Cα(Y ) = Y 3 − (ε−
d+1
2 ε0A)Y 2 + (A+ ∆B +$B2) ∈ OF [Y ].

By Hensel’s lemma, this has a root in OF if and only if its reduction modulo

pF , which is precisely cα(Y ), has a root in the residue field Fq. Thus (IF ,m+

d, α) is ordinary if and only if the condition in (ii) is satisfied. By [BH06,

§44.3 Theorem], (IF ,m+d, α) is ordinary if and only if BHθ,ψ,α is ordinary.

We have thus shown all statements except for the last claim in (ii). But it

follows since the splitting field of Cα(Y ) is unramified over F . �

3.7. Relation between geometric and type-theoretical constructions.

Let θ be a character of E× of level m (hence minimal). By Lemma 3.11(iii)

there are precisely qd elements α ∈
(
p
−(m+d)
E /p

−(n+d−1)
E

)∗
satisfying (3.10),

each giving rise to the cuspidal inducing datum (JF , Ind
ι(E×)IF

ι(E×)In+dF

Λθ,ψ,α),
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which is, in a sense, attached to θ. On the geometric side there are pre-

cisely qd lifts θ̃ of θ to a character of Γ̃/Γ′, each giving rise to the cuspidal

inducing datum (JF ,Ξθ̃). Our main result is the following theorem, which

states that the relation between the two families of corresponding G(F )-

representations, R
θ̃

and BHθ,ψ,α, is naturally encoded in the dual β∨ of the

isomorphism β : Π
∼→ Γ̃/Γ′ from Proposition 2.12.

Theorem 3.18. Let θ̃ be a generic character of Γ̃/Γ′ with restriction θ to

E×/Um+1
E . Let ψ, α be such that β∨(θ̃) = (θ, ψE,α). Then

R
θ̃
∼= BHθ,ψ,α.

Proof. We have R
θ̃
∼= c− Ind

G(F )
ι(E×)IF

Ξ
θ̃
, so it suffices to show that

Ξ
θ̃
∼= c− Ind

ι(E×)IF

ι(E×)In+dF

Λθ,ψ,α. (3.11)

From Corollaries 3.5, 3.10 and Lemma 3.16 it follows that both sides are

cuspidal inducing data sharing and

• same underlying subgroup ι(E×)IF ,

• same central character θ|F× ,

• same level m+d
2 ,

• the property that their levels are minimal among the levels of all

possible twists by characters F×.

We observe that when [BH06, 27.8 Proposition] is applied to two cuspidal

inducing data Ξ1,Ξ2 sharing the same underlying subgroup J = ι(E×)IF ,

then instead of assumption (c) there, it suffices to assume that tr(g; Ξ1) =

tr(g; Ξ2) holds only for all F -minimal elements g ∈ J with valuation of

determinant equal to −2`(Ξ1). Indeed, the proof goes through verbatim.

Now (3.11) follows from [BH06, 27.8 Proposition] and Proposition 3.20. �

We finally can describe which representations are realized in the cohomol-

ogy of the varieties Xm
ẇ (1). For a finite separable extension L/F let d(L) de-

note the integer such that the relative discriminant of L/F is dL/F = p
d(L)+1
F .

An irreducible supercuspidal G(F )-representation is totally ramified, if it is

not unramified (cf. [BH06, §20]). This is equivalent to not contain a cuspidal

inducing datum of the form (M,Ξ).

Corollary 3.19. For varying wildly ramified quadratic separable extensions

E/F , and varying m = 2n + d(E) − 1 with 2n > d(E), the cohomology

of the family of varieties Xm
ẇ (1) realizes (at least) all minimal irreducible

supercuspidal totally ramified representations ρ of G(F ), satisfying the fol-

lowing condition: if (JF , r, α) with r > 0 odd and α ∈ J−rF is a ramified

simple stratum contained in ρ, then F [α]/F is (wildly) ramified quadratic

extension and r ≥ 3d(F [α]). Such representations are either

• ordinary (this is in particular the case if r > 3d(F [α])), or

• exceptional, with the property that the cubic extension K/F , such

that the tame lifting of ρ to K gets ordinary, is unramified.
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Proof. By Theorem 3.18 it suffices to show that all representations ρ men-

tioned in the corollary are of the form BHθ,ψ,α for appropriate ι : E ↪→
Mat2×2(F ), θ, ψ, α. As ρ is totally ramified, `(ρ) > 0. As ρ is irreducible

and supercuspidal, it is of the form c− Ind
G(F )
J Λ for some cuspidal type

(A, J,Λ) [BH06, §15.5]. Moreover, as ρ is minimal, `(ρ) > 0 and ρ is totally

ramified, there is (after a possible conjugation) a ramified simple stratum

(JF , r, α) with r > 0 odd, α ∈ J−rF , such that A = JF , J = F [α]×I
r+1
2

F

and Λ ∈ C(ψα, JF ), where ψ is any fixed additive character of F of level 1,

ψα := ψM,α (as in Section 3.5) and C(ψα, JF ) is (as in [BH06, 15.3 Defini-

tion]) the set of equivalence classes of irreducible representations of the group

F [α]×I
r+1
2

F , whose restriction to I
r+1
2

F is a multiple of ψα. By [BH06, 15.6

Proposition 1], Λ has dimension 1. Take E := F [α] and put d = d(E).

By [BH06, 13.4 Proposition], E/F is quadratic (automatically wildly) ram-

ified extension. By our considerations in Section 3.5, to give such a cus-

pidal type (JF , E
×I

r+1
2

F ,Λ) is equivalent to give a minimal character θ of

E× of level m := r − d satisfying the compatibility condition (3.10). Thus

ρ ∼= BHθ,ψ,α, and we have to show that if n is such that m = 2n + d − 1,

then 2n > d. But the condition posed on ρ forces r ≥ 3d, or equivalently

2n−1 ≥ d. The last claim about ordinary resp. exceptional representations

follows from Proposition 3.17. �

3.8. Traces of some minimal elements. Let the notation be as in The-

orem 3.18. To complete the proof of Theorem 3.18 we have to show the

following proposition.

Proposition 3.20. Assume that β∨(θ̃) = (θ, ψE,α). For any g ∈ ι(E×)In+d
F

with ordF (det(g)) odd, one has

tr(g; Ξθ̃) = tr

(
g; c− Ind

ι(E×)IF

ι(E×)In+dF

Λθ,ψ,α

)
.

The rest of Section 3.8 is devoted to a proof of Proposition 3.20. Central

characters on both sides being equal, we may multiply g by an appropri-

ate central element and hence assume that ordF (det(g)) = 1. Note that

I
2(n+d)
F = Im+d+1

F acts trivial on both sides, hence we always may regard g

(and its constituents) modulo I
2(n+d)
F . Again, multiplying with an appro-

priate central element, we may assume that

g = g′ι(π) = uι(1 + πx)ι(π), with x ∈ OF and u ∈ In+d
F

Recall the notation δ from Section 3.4. We may write

u = 1 +

(
u1 u2

u3 u4

)
= 1 +

(
$

n+d+1−δ
2 u′1 $

n+d−1+δ
2 u′2

$
n+d+1+δ

2 u′3 $
n+d+1−δ

2 u′4

)
with some u′i ∈ OF . We also have(
g1 g2

g3 g4

)
:= g′ = uι(1+πx) =

(
(1 + ∆x) + u1(1 + ∆x) + u2$x x+ u1x+ u2

$x+ u3(1 + ∆x) + u4$x 1 + u3x+ u4

)
.
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Let also

j := g2επ + g1(a′ + 1 + ε).

We use these notations until the end of Section 3.8.

3.8.1. Traces on the geometric side. We use Proposition 3.4 and notation

from there. We introduce also the notation

` :=

⌊
n+ d+ 1

2

⌋
=
n+ d+ 1− δ

2
and δ` :=

{
0 if ` even,

1 if ` odd.

For a ∈ (p/pn+d+m+1)∗ we write a = a′π with a′ ∈ UE/Un+d+m
E .

Lemma 3.21. The set Ag from equation (3.3) consists of exactly such a =

a′π ∈ (pE/p
n+d+m+1
E )∗, for which

(a′ + 1)(a′ + ε) ≡ 0 mod pn+d
E .

holds. Thus,

Ag =

{
{a : a′ ≡ 1 mod pnE}∪̇{a : a′ ≡ ε mod pnE} if n > d,{
a : a′ ≡ 1 mod p`E

}
if n ≤ d.

Proof. �

Below we will compute explicit formulas for ta, ra. We will see that they

and hence also the trace tr(g; Ξθ̃) only depend on b mod pdE (if n < d, it is

even true that they only depend on b mod p`−1+δ
E ). Note that characteristic

2 is used for that, in particular to deal with the monomials occurring in ta
and containing b2). Thus letting

A′g =

{
{π(1 + πnb) : b ∈ OE/pdE} ∪ {π(ε+ πnb) : b ∈ OE/pdE} if n > d,

{π(1 + π`b) : b ∈ OE/p...E} if n ≤ d,

(3.12)

and regarding b as an element in OE/pdE , the multiplicity qm cancels with

the term 1
qm in the trace formula in Proposition 3.4, and we see that

tr(g; Ξθ̃) = θ(π)
∑
a∈A′g

θ̃(i(ta, ra))

where ta is given by the formulas (3.14), (3.15) and (3.17) and ra is given

by (3.16) and 3.23.

To compute ta, ra explicitly, we will consider two cases: n ≥ d and n < d.

Note that in contrast to what Lemma 3.21 let one guess, the case n = d

shows behavior similar to n > d. Lemma 3.25 below might be seen as an

explanation for this fact.

Case n ≥ d. Let a = πa′ ∈ Ag. By Lemma 3.21 we may assume that a′ ≡ 1

mod pnE or a′ ≡ ε mod pnE . We only handle the first case, the second being

completely analogous. By Lemma 3.21 we may write
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a′ = 1 + πnb with b ∈ OE/pm+d+1
E , and

b = πδA+ π1−δB, with A ∈ OF /p
d+1
2
−δ+m

2
F and B ∈ OF /p

d−1
2

+δ+m
2

F .

Lemma 3.22. We have

j = ε+ πxε2 + (1 + ∆x)πnb+ [u1(ε+ πxε2 + (1 + ∆x)πnb) + u2(επ +$x(ε+ πnb))]

≡ ε(1 + πxε)

(
1 +

(1 + ∆x)πnb

ε(1 + πxε)
+ u1 + πu2

)
mod pm+1

E

h(g, a) ≡ 1 + ∆x

ε(1 + πεx)
(ε0b+ πn−db2)

(
1 +

πnb

1 + πx

)
+ . . .

+ π1−δε
n+d+1−δ

2 (1 + πnb)(u′1 + u′4) + πδε
n+d−1+δ

2 (u′2 + εu′3) mod pn+d
E

R ≡ ε0(1 +$
n+δ
2 A) mod pn+d

E .

Proof. The first formula for j is straightforward, the second follows using

m+ 1 = 2n+ d. From it we deduce

j ≡ ε+ πxε2 + πnb mod pn+d
E ,

and hence

j−1 ≡ ε−1(1 + πεx)−1

(
1 +

πnb

1 + πx

)
mod pn+d

E . (3.13)

Further,

g4επ+g3(a′+1+ε) = επ+$xε+$xπnb+[u3(ε+πxε2+(1+∆x)πnb)+u4(επ+$x(ε+πnb))]

By definition, πn+d+1h(g, a)j = g4επ + g3(a′ + 1 + ε)− jπ(1 + πnb). Using

∆ = π + επ we deduce

πn+d+1h(g, a)j = ∆πnb(1 + ∆x) + π(1 + ∆x)π2nb2 + . . .

+ u1π(1 + πnb)(ε+ πxε2 + (1 + ∆x)πnb) + u2π
2ε(1 + πnb)(1 + πx(ε+ πnb)) + . . .

+ u3(ε+ πxε2 + (1 + ∆x)πnb) + u4πε(1 + πx(ε+ πnb))

Recall that ε0 = π−(d+1)∆. We deduce

h(g, a)j = (1 + ∆x)(ε0b+ πn−db2) + . . .

+ π1−δε
n+d+1−δ

2 u′1(1 + πnb)(ε+ πxε2 + (1 + ∆x)πnb) + . . .

+ πδε
n+d+1+δ

2 u′2(1 + πnb)(1 + πx(ε+ πnb)) + . . .

+ πδε
n+d+1+δ

2 u′3(ε+ πxε2 + (1 + ∆x)πnb) + . . .

+ π1−δε
n+d+1−δ

2
+1u′4(1 + πx(ε+ πnb))
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Finally, we compute modulo pn+d
E (using (3.13)),

h(g, a) ≡ 1 + ∆x

ε(1 + πεx)
(ε0b+ πn−db2)

(
1 +

πnb

1 + πx

)
+ . . .

+ π1−δε
n+d+1−δ

2 u′1(1 + πnb) + . . .

+ πδε
n+d−1+δ

2 u′2+

+ πδε
n+d+1+δ

2 u′3 + . . .

+ π1−δε
n+d+1−δ

2 u′4(1 + πnb).

This is exactly the claimed formula for h(g, a). The computation of R is

straightforward, by using a′ = 1 +$
n+δ
2 A+ π$

n−δ
2 B. �

As by definition β′g,a = det(uι(1+πx))
j , we see that ta ∈ UE/U

m+1
E from

Proposition 3.4 is determined by a by the following formula,

ta =
ε det(u · ι(1 + πx))

j(1 + πnh(g, a)R−1)
=

det(u)(1 + πx)
j

ε(1+πεx)(1 + πnR−1h)
. (3.14)

A straightforward computation utilizing Lemma 3.22 shows that its denom-

inator is

j

ε(1 + πεx)
(1+πnR−1h) = 1+πnε−1

0

1 + ∆x

ε(1 + πεx)
(πn+δε0Ab+π

n−db2+π2n−d+δAb2)+U,

(3.15)

where

U = πn+d+1−δε
n+d+1−δ

2 u′1 + πn+d+δε
n+d−1+δ

2 u′2 + πnε−1
0

(
1 + πn+δA+

πnb

1 + πx

)
· . . .

· · · ·
(
π1−δε

n+d+1−δ
2 (1 + πnb)(u′1 + π′4) + πδε

n+d−1+δ
2 (u′2 + επ′3)

)
is the part depending on u. Further, Lemma 3.22 also implies that

ra = R−1h(g, a) =
1

ε0(1 + πx)
(ε0b+π

n−db2)+ε−1
0 π1−δ(u′1+u′4)+ε−1

0 πδ(u′2+u′3) ∈ OE/pdE .

(3.16)

Case n < d. Let a = πa′ ∈ Ag. By Lemma 3.21 we may write

a′ = 1 + π`b with b ∈ OE/pn+m+d+1−`
E , and

b = πδ`A+ π1−δ`B, with A,B elements of appropriate subquotients of OF .

30



Lemma 3.23. We have

j = ε+ πxε2 + (1 + ∆x)π`b+ [u1(ε+ πxε2 + (1 + ∆x)π`b) + u2(επ +$x(ε+ π`b))]

≡ ε(1 + πxε)

(
1 +

(1 + ∆x)π`b

ε(1 + πxε)
+ u1 + πu2

)
mod pm+1

E

h(g, a) ≡ 1 + ∆x

ε(1 + πεx)
(π1−δb2 + π`−nε0b)

(
1 +

π`b

1 + πx

)
+ . . .

+ π1−δε
n+d+1−δ

2 (1 + π`b)(u′1 + u′4) + πδε
n+d−1+δ

2 (u′2 + εu′3) mod pn+d
E

R ≡ ε0(1 + π`+δ`A) mod pn+d
E .

Proof. Straightforward computation, similar to the one in the proof of Lemma

3.22. �

As in the case n ≥ d, the element ta ∈ UE/Um+1
E from Proposition 3.4 is

given by the formula (3.14), but now the denominator is

j

ε(1 + πεx)
(1+πnR−1h) = 1+πnε−1

0

1 + ∆x

ε(1 + πεx)
(π1−δb2+π`·(πδ`A)·(π1−δb2)+π2`−nε0(πδ`A)b)+U,

(3.17)

where

U = u1 + πu2 + πnε−1
0

(
1 + π`(πδ`A) +

π`b

1 + πx

)
· . . .

· · · ·
(
π1−δε

n+d+1−δ
2 (1 + π`b)(u′1 + π′4) + πδε

n+d−1+δ
2 (u′2 + επ′3)

)
is the part depending on u. Lemma 3.23 also show that

ra = R−1h(1 + πnR−1h) ∈ OE/pdE
with

R−1h =
π1−δb2

ε0(1 + πx)
+

π`−nb

1 + πx
+

π`+1−δ

ε0(1 + πx)2
((1 + πx) · (πδ`A) · b2 + b3) + . . .

+ ε−1
0 (1 + π`(π1−δ`B))(u′1 + u′4) + ε−1

0 πδ(1 + π`(πδ`A))(u′2 + u′3)

1 + πnR−1h = 1 + πnε−1
0

(
1

1 + πx
(π1−δb2 + π`−nε0b) + π1−δ(u′1 + u′4) + πδ(u′2 + u′3)

)
.

3.8.2. Traces on the induced side. Mackey formula gives:

tr

(
g; Ind

ι(E×)IF

ι(E×)In+dF

Λ

)
=
∑
y,λ

Λ
(
ry,λgr

−1
y,λ

)
,

where the sum is taken only over such y, λ, for which ry,λgr
−1
y,λ ∈ ι(E

×)In+d
F .

The following lemma is true also for the wildly ramified E/F :

Lemma 3.24. [Iva18, Lemma 5.15] The elements

ry,λ :=

(
1 0

0 y

)(
1 λ

0 1

)
with y ∈ UF /U

n+d+1−δ
2

F , λ ∈ OF /p
n+d−1+δ

2
F

(where y, λ are chosen to be fixed preimages in UF resp. OF ) form a set of

coset representatives in IF for ι(E)IF /ι(E)In+d
F = IF /ι(UE)In+d

F .
31



We compute:

ry,λgr
−1
y,λι(π)−1 = (ry,λur

−1
y,λ)ry,λι(1 + πx)ι(π)r−1

y,λι(π)−1,

with

ry,λι(1 + πx)ι(π)r−1
y,λι(π)−1 =(

y−1(1 + ∆x)(1 + λ∆ + λ2$) x+ (1 + ∆x)($−1∆ + λ+ y−1$−1∆(1 + λ∆ + λ2$))

$(x+ λ(1 + ∆x)) ∆x+ (1 + ∆x)(y + ∆λ)

)
(3.18)

and

Du,y,λ := ry,λur
−1
y,λ =

(
1 + u1 + λu3 y−1(u2 + λ(u1 + u4) + λ2u3)

yu3 1 + u4 + λu3

)
.

(3.19)

We investigate the contribution of ry,λgr
−1
y,λ to the trace on the induced

side. Unless ry,λgr
−1
y,λ ∈ ι(E×)In+d

F , this contribution is zero, so we may

assume this.

Lemma 3.25. One has

ry,λgr
−1
y,λ ∈ ι(E

×)In+d
F ⇔

y ≡ 1 mod p
n+δ
2

F and λ ≡ 0 or $−1∆ mod p
n−δ
2

F if n ≥ d,

y ≡ 1 mod p
`+δ`

2
F and λ ≡ 0 mod p

`−δ`
2

F if n < d.

Proof. By normality of In+d
F in IF , ry,λgr

−1
y,λ ∈ ι(E

×)In+d
F is equivalent to

ry,λι(1 + πx)ι(π)r−1
y,λ ∈ ι(UE)In+d

F . This last is equivalent to the existence

of c0, c1 ∈ OF with

ry,λι(1+πx)ι(π)r−1
y,λι(π)−1 ≡

(
c0 + ∆c1 c1

$c1 c0

)
mod In+d

F =

 1 + p
n+d+1−δ

2
F p

n+d−1+δ
2

F

p
n+d+1+δ

2
F 1 + p

n+d+1−δ
2

F


Utilizing (3.18) and comparing the lower rows, we in particular must have

c0 ≡ ∆x+ (1 + ∆x)(y + ∆λ) mod p
n+d+1−δ

2
F

c1 ≡ x+ λ(1 + ∆x) mod p
n+d−1+δ

2
F

Comparing with the upper rows and simplifying we deduce the equations

y ≡ 1 + λ∆ +$λ2 mod p
n+δ
2

F

y2 ≡ 1 + λ∆ +$λ2 mod p
n+d+1−δ

2
F .

Now assume n ≥ d. Taking the sum of the two equations above we

deduce that y ≡ 1 mod p
n+δ
2

F . Putting this into the second equation,

we deduce ∆λ + $λ2 ≡ 0 mod p
n+d+1−δ

2
F . Note that this implies λ ≡ 0

mod p
d−1
2

F (assuming the contrary easily leads to a contradiction). Thus we

may write λ = $
d−1
2 λ0 and the second equation is seen to be equivalent to

λ2
0 + ε−

d+1
2 ε0λ0 ≡ 0 mod p

n−d+1−δ
2

F , from which the claim follows (note that

$−1∆ = $
d−1
2 ε−

d−1
2 ε0).
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The case n < d is done similarly. �

We can find a (non-canonical) decomposition

ry,λgr
−1
y,λ = D · ι(Cx,y,λ)ι(π),

with D ∈ In+d
F , Cx,y,λ ∈ UE . As seen from the explicit computation in

Lemma 3.25, we may take

Cx,y,λ := c0 + πc1 (3.20)

with

c0 := ∆x+ (1 + ∆x)(y + ∆λ) = 1 + (1 + ∆x)(1 + y + ∆λ)

c1 := x+ λ(1 + ∆x).

In particular, we have c0 + ∆c1 = y(1 + ∆x). We compute

NE/F (Cx,y,λ) = c0(c0 + ∆c1) +$c2
1

≡ 1 + ∆x+$x2 + (1 + ∆x)($(1 + ∆x)λ2

+ (1 + ∆x)(1 + y)2 + ∆x(1 + y) + ∆λ(1 + ∆x) + ∆λ(1 + y)) mod p
2(n+d)
E .

We can decompose further, D = Du,y,λDx,y,λ with Du,y,λ as in (3.19) and

Dx,y,λ = ry,λι(1 + πx)ι(π)r−1
y,λι(π)−1ι(C)−1

=

(
D1NE/F (C)−1 D2NE/F (C)−1

0 1

)
with

D1

NE/F (Cx,y,λ)
− 1 ≡ 1 + ∆x

(1 + πx)(1 + πεx)

(
$(1 + ∆x)λ2 + (1 + ∆x)(1 + y)2 + ∆x(1 + y)

+ ∆(1 + ∆x)λ+ ∆λ(1 + y)) mod p
2(n+d)
E .

D2

NE/F (Cx,y,λ)
≡ y−1(1 + ∆x)

(1 + πx)(1 + πεx)

(
(1 + y)2x+ (1 + y)2λ+ (1 + y)2 ∆

$
+$xλ2 +$λ3 + ∆xλ

+
∆

$
(1 + ∆x)(1 + y + ∆λ)

)
mod p

2(n+d)
E .

The following lemma is immediate.

Lemma 3.26. Let z = z0 + πεz1 ∈ pnE/p
m+1
E with z0, z1 ∈ F . We have

ψE,α(z) = ψ(∆(α1z0 + α0z1)).
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Using Lemma 3.26, we compute the contribution of Dx,y,λ,

ψM,ι(α)(Dx,y,λ) = ψM(ι(α)(Dx,y,λ − 1))

= ψM

((
α0 + ∆α1 α1

$α1 α0

)(
NE/F (C)−1D1 − 1 NE/F (C)−1D2

0 0

))
= ψ

(
α0

(
D1

NE/F (Cx,y,λ)
− 1

)
+ α1

(
∆

(
D1

NE/F (Cx,y,λ)
− 1

)
+$

D2

NE/F (Cx,y,λ)

))
= ψE,α

((
D1

NE/F (Cx,y,λ)
− 1

)
+
$

∆

D2

NE/F (Cx,y,λ)
+
πε

∆

(
D1

NE/F (Cx,y,λ)
− 1

))

= ψE,α

 π

∆

(
D1

NE/F (Cx,y,λ)
− 1

)
+
$

∆

D2

NE/F (Cx,y,λ)︸ ︷︷ ︸
=:zx,y,λ

 ,

and analogously the contribution of Du,y,λ,

ψM,ι(α)(Du,y,λ) = ψE,α

u1 + λu3 + ∆−1yu3 +
$

∆
y−1(u2 + λ(u1 + u4) + λ2u3) +

πε

∆
(u1 + u4)︸ ︷︷ ︸

=:zu,y,λ

 .

Thus we compute

Λθ,ψ,α(ry,λgr
−1
y,λ) = Λ(Du,y,λDx,y,λι(Cx,y,λ)ι(π))

= ψM,ι(α)(Du,y,λ)ψM,ι(α)(Dx,y,λ)θ(Cx,y,λ)θ(π)

= ψE,α(zx,y,λ + zu,y,λ)θ(Cx,y,λ)θ(π)

= (θ, ψE,α)(Cx,y,λ, zx,y,λ + zu,y,λ)θ(π)

= θ̃(β(Cx,y,λ, zx,y,λ + zu,y,λ))θ(π),

Here, β is the isomorphism from Proposition 2.12. The fourth equation is

by definition of the character (θ, ψE,α) of Π, and the fifth equation is by the

assumption in Proposition 3.20. Thus to show Proposition 3.20 it suffices

to show that there is a bijection of sets,

γ :
{
y, λ : ry,λgr

−1
y,λ ∈ ι(E

×)In+d
F

}
∼−→ A′g, (3.21)

with A′g as in (3.12), such that

β(Cx,y,λ, zx,y,λ + zu,y,λ) = i(tγ(y,λ), rγ(y,λ)). (3.22)

where ta, ra are as in Section 3.8.1. Using Lemma 3.25 we may write

y =

{
1 + πny1 if n ≥ d and y ≡ 1 mod pnE ,

1 + π`y1 if n < d,

λ =

{
πn−1ε−1λ1 if n ≥ d,

π`−1ε−1λ1 if n < d,.
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for appropriate y1 and λ1. Now the appropriate bijection γ is given as

follows.

• Let n ≥ d. We set γ(y, λ) := π(1 +πn(y1 +λ1)). Thus b corresponds

to y1 + λ1, πδA corresponds to y1, and π1−δB corresponds to λ1.

Analogously γ can be defined for y ≡ ε mod pnE .

• Let n < d. We set γ(y, λ) := 1 + π`(y1 + λ1). Thus b corresponds to

y1 + λ1, πδ`A corresponds to y1, and π1−δ`B corresponds to λ1.

Now a completely straightforward (but quite lengthy) computation shows

that (3.22) indeed holds with respect to this γ. This finishes the proof of

Proposition 3.20.

3.9. Discussion of the relation to the Galois side. It is more than

natural to ask, what the image of R
θ̃

for a generic character θ̃ under the

Langlands correspondence is. Unfortunately, it is not clear how to charac-

terize it in terms of θ̃ and the geometry of Xm
ẇ (1).

At least in the tame case, for any character χ of E×, there is a charac-

ter ∆χ, the rectifier of χ, which controls the difference between the local

Langlands correspondence and the two natural parametrizations

BHχ ←[ χ 7→ IndE/F χ

of the Galois and of the automorphic side by characters various degree 2-

extensions E/F , where BHχ denotes the representation attached to χ via

theory of types, and IndE/F χ denotes the induction to the Weil group of

F from the Weil group of E of the character associated to χ by the local

reciprocity isomorphism. The rectifier ∆χ is then uniquely determined by

LLC: BH∆χχ ↔ IndE/F χ

under the local Langlands correspondence. For GL2 and unramified E/F ,

the rectifier is trivial on the units UE , and equal to (−1) on an uniformizer (in

particular, it does not depend on χ). This (−1) shows up in the cohomology

of the Deligne–Lusztig constructions attached to unramified tori as a q-

power multiple of the Frobenius eigenvalue in the cohomology [BW16,Cha16,

Iva16]. But in the totally tamely ramified case, it is quite involved (cf. [BH06,

§34.4]). In [Wei09], Weinstein had the very nice idea to recover the rectifier

in the geometry by some twists of the action on the geometric structures

(see [Wei09, Section 5]). It is not clear how one can achieve a similar twist

of the geometric actions for the extended affine Deligne–Lusztig varieties

considered in [Iva18] and here.

3.10. Remark on the tame case. First we remark that the parametriza-

tion (2.4) used in the proof of Proposition 2.5 is better adapted (than

parametrization (3.2) in [Iva18]) also in the case of a totally tamely ramified

torus (i.e., if charF > 2) – the formulae get considerably easier. More-

over, the proof of [Iva18, Theorem 4.2] can be simplified – [Iva18, Theorem

4.18] is in fact not necessary. Indeed, to prove it, it is (exactly as in the
35



proof of Theorem 3.18 in the present article) sufficient to just compare the

traces of the elements lying in ι(E×), which have E-valuation 1. Neverthe-

less, [Iva18, Theorem 4.18] is also interesting in its own right, as it describes

completely the restriction of the cuspidal inducing datum Ξχ to the torus

ι(E×).
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