ON LOOP DELIGNE-LUSZTIG VARIETIES OF COXETER-TYPE FOR
INNER FORMS OF GL,

CHARLOTTE CHAN AND ALEXANDER B. IVANOV

ABsTRACT. For a reductive group G over a local non-archimedean field K one can mimic
the construction from the classical Deligne-Lusztig theory by using the loop space functor.
We study this construction in the special case that G is an inner form of GL,, and the loop
Deligne-Lusztig variety is of Coxeter type. After simplifying the proof of its representabil-
ity, our main result is that its ¢-adic cohomology realizes many irreducible supercuspidal
representations of GG, notably almost all among those whose L-parameter factors through
an unramified elliptic maximal torus of GG. This gives a purely local, purely geometric
and — in a sense — quite explicit way to realize special cases of the local Langlands and
Jacquet—Langlands correspondences.

1. INTRODUCTION

Let G be an inner form of GL,, (n > 2) over a local non-archimedean field K and let
G = G(K) be the group of its K-points. Let T C G be a maximal elliptic unramified torus.
Then T is uniquely determined up to G-conjugation and T'= T(K) = L* where L/K is the
unramified extension of degree n. In [CI18] we constructed a scheme X over F, with an action
by G x T, which can be seen as an analog over K of a Deligne-Lusztig variety attached to
T C G. As in the classical Deligne-Lusztig theory [DL76], this allows to attach to a smooth
character 60: T — @; the #-isotypic component R%(G) of the f-adic Euler characteristic of X,
which is a smooth virtual G-representation. If § is primitive (i.e., the Howe decomposition of
has at most one member), we showed that R% (6) is irreducible supercuspidal and isomorphic
to the representation attached to (L/K,#) by Howe [How77], and hence provides a geometric
and purely local realization of the local Langlands and Jacquet—Langlands correspondences.

These results indicate that X and more generally, another schemes obtained by similar
Deligne-Lusztig-type constructions for other reductive groups over K allow a quite explicit,
purely local and purely geometric way to realize the local Langlands correspondence and/or
some instances of automorphic induction for at least those irreducible representations of G,
whose L-parameter factors through an unramified torus. This is highly desirable, as the
existing local proofs of the local Langlands correspondence are purely algebraic (e.g. via
Bushnell-Kutzko types), and the existing geometric proofs tend to be very inexplicit and/or
use global arguments (except for [BW16|, which — similar to |[CI18| — only deals with primitive
). Moreover, an exact analog of the classical Deligne-Lusztig theory over non-archimedean
local fields is highly interesting in its own right.

The first goal of the present article is to give a more satisfactory definition of X and
simplify the proof of its representability. The second goal is to show that Rg (0) is irreducible
supercuspidal and realizes the local Langlands and Jacquet—Langlands correspondences for a
much wider class of irreducible supercuspidal representations of G (almost all among those,
whose L-parameter factors through 7' C G), thus going far beyond the corresponding results
of [BW16]| and [CI18]|. As the methods from [CI18| for primitive # do not apply anymore,
our main concern here will be to develop new geometric methods to study the cohomology

of Deligne-Lusztig constructions of Coxeter type over local fields, in particular generalizing
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results of |Lus04] away from the case when 6 is regular, and providing nice description for
the quotient of (subschemes of) X by unipotent radicals of rational parabolic subgroups of
G, which generalizes (in the special case for G,T) to the situation over K particular results
of [Lus76|. Some of these methods immediately work for all reductive groups, and some rely
on G being an inner form of GL,,.

To describe our result, we need more notation. First of all there is an unique integer x €
{0,1,...,n—1}, such that if n’ = ged(n, k), n = n'ng, K = n'ko, we have G = GLy Dy, /n, ),
where Dy, /n, denotes the central division algebra over K with Hasse-invariant ko /no.

Let € be any character of K* with ker(e) = Nz g (L*), the image of the norm map of
L/K. Denote by

o 2 the set of smooth characters of L™ with trivial stabilizer in Gal(L/K),

e 7 (n) the set of isomorphism classes of smooth n-dimensional representations o of
the Weil group Wy of K satisfying 0 = o ® (¢ orecy),

e o/ (n, k) the set of smooth irreducible supercuspidal representations 7 of G (= G(K)
with G corresponding to x) such that 7 = 7 ® (¢ o Nrdg).

There are natural bijections

2 ) Gal(L/K) ——— 95(n) ——— &/2(n,0) JL A (n, k)
0 —— 0y +——— LL(0p) =: 7'('9GLn — JL(WEL“) =: Tp.

The latter two maps are the local Langlands and the Jacquet—Langlands correspondences
respectively. Here oy := Indwi< (0 - ) is the induction to Wk of the character Wy —

Wj-jb reez px 4 @Z, where  is the rectifier, i.e. the unramified character of L* defined by
w(w) = (—=1)""1 (here @ uniformizer of L).
Our main result is the following theorem.

Theorem A. Assume that p > n. Let 0: T = L* — @Z be a smooth character such that
9|Ui has trivial stabilizer in Gal(L/K). Then +R%(0) is a genuine G-representation and

+RS(6) = 7.

In particular, :I:Rg(@) is irreducible supercuspidal and oy < :I:Rg(G) is a realization of the
local Langlands and Jacquet—Langlands correspondences.

For 6 trivial on U} and with trivial Gal(L/K)-stabilizer, as well as for 6 primitive, Theorem
[A]is shown in [CI18| for all p, n. When G is the group of units of a central division algebra over
K, Theorem [A] gets easier and essentially follows (for all p,n and all 6 with trivial Gal(L/K)-
stabilizer) from Lusztig’s original work |[Lus79] along with a result of Henniart [Hen92, 3.1
Théoreme|, see [Chal9]. The (also relatively easier) case G = GLg was first done in |Ival6).
For G = GL3 and ramified elliptic tori a similar result was shown in [Ival8Ival9|.

In the rest of this introduction we explain the strategy of the proof of Theorem [A] and
discuss the geometric methods used in it. To begin with, G has a (unique up to conjugacy)
smooth affine model Gp over the integers Ox of K, whose Og-points are the maximal
compact subgroup Gp = GLn/(ODkO/nO), where ODko/no is the ring of integers of Dy /p,.
Moreover, Gp can be chosen compatibly with T so that Tp := T NGp =2 Uy, is the maximal
compact subgroup of T'. As is shown in |CI18| (see also Proposition below), X admits a
scheme-theoretically disjoint decomposition,

X = ]_[ g.Xo, where Xo = lim X, (1.1)
9€G/Go h
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is a subscheme equal to an inverse limit of affine perfect schemes X, perfectly finitely pre-
sented over Fq. Here X carries an action of Gp X Tp and X}, inherits an action of a certain
finite (Moy—Prasad) quotient Gp, x Tj, of it. Then X7 is (the perfection of) a classical Deligne—
Lusztig variety attached to the reductive quotient of the special fiber of Go (isomorphic to
RGSFan /F, GLy), and the deeper-level varieties X}, coincide with the (perfections of) varieties
considered in [Lus04| when Go ®0, F, is reductive (i.e., kK = 0), resp. with those in [CI19a]
in the general case.

Let Z be the center of G. Then T = ZTp. For a character 0 of T = L* trivial on
the h-units UP, plus the fact that the fibers of X}/ ker(T), — Tj—1) — Xp,—1 are affine
spaces of a fixed dimension, gives R%(0) = cIndgG(9 R?: (0), where R(T;: (0) is the 0|y, -isotypic
component of the ¢-adic Euler characteristic of X} (extended to a ZGp-representation by
letting z € Z = K* act by 0(z)).

The proof of Theorem [A] consists of five steps:

(1) Show that iR%f(G) is an irreducible Gj-representation. See Section

(2) By similar methods as in (1), show for a certain closed G}, x Tj-stable perfect sub-
scheme X}, ,,» € Xp,, that H! (X} ,v)e is irreducible and j:R%f‘ (0) = £H(Xnn)o-
See Section

(3) Show (using (1)) that the induction £R%(9) = cIndgGO(iR%‘(ﬁ)) is admissible
(equivalently, a finite direct sum of irreducible supercuspidals). See Section [

(4) Use |CI19b| to compute the degree deg H(X}, 7)o of the (finite-dimensional) repre-
sentation +=H (X} ), which is then by (2) also equal to deg R%f(&) See Section
and [CI19b].

(5) Using (3) together with the traces of R%(0) [CI18, Theorem 11.2] and of my on very
regular elements (cf. Section for a definition) in 7" C G, conclude by using an
argument due to Henniart [Hen92| using linear independence of characters, along with
matching deg R%f‘ (0) from (4) with the explicitly known formal degree of mg [CMS90].
See Section

Let us briefly comment on steps (1)-(4) here. Step (1) relies on a precise analysis of
the quotient Gp\ (X} x X}) by methods generalizing those from [Lus04] in the special case
that T C G is (unramified) elliptic. Even more specifically, in the case G is an inner form of
GL,, and culminates in showing the following particular Mackey formula for “Deligne—Lusztig
induced” Gp-representations.

Theorem B (see Theorem , Corollary . Let 0,0 be two characters of Ty,. Then
(REMO).REN)) = #{we WE: 0/ = boadw)},
h

where Weo is the Weyl group of the special fiber of Go and F is the Frobenius of G acting
on it. Moreover, if the stabilizer of 0|Ui in Gal(L/K)[n'], the unique subgroup of Gal(L/K)

of order n', is trivial, then :I:R%f(@) is an irreducible Gp-representation and the map
{characters 0: Ty, — Q, in general position} /W, — {irreducible Gy-representations}
Gh
0 — £R7"(0)
18 injective.
The theorem looks like a special case (for given Gy, T},) of the results of [Lus04|, but the
assumption “# regular” (equivalently, primitive) which is crucial to [Lus04] is removed. One

can hope that similar methods as used in the proof of Theorem [B| could lead to a general
Mackey formula for all elliptic unramified tori in reductive K-groups.
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Step (2) is a technically more elaborated version of the same idea implemented in step
(1). It is (among other things) responsible for the assumptions that p > n and that 9|Ui has
trivial stabilizer in Gal(L/K). See Remark [4.3]

Step (3) relies on the study of the quotient N\ X}, where N, C G}, is a subgroup corre-
sponding to the unipotent radical of a proper parabolic subgroup of G. Once this quotient
is described (Lemma [5.8)), (3) is easy to show. The main technical role in this description is
played by classical minor identities, dating back to 1909 results of Turnbull [Tur09].

Step (4), mainly performed in [CI19b| is based on the determination of the action of
Frobenius (over Fy») in the cohomology of X /. This determination is strongly related to
the amazing fact that X,/ is a maximal variety over Fyn, i. e., #X}, r(Fgn) attains its Weil-
Deligne bound, prescribed by the Lefschetz fix point formula and the dimensions of the single
f-adic cohomology groups.

1.1. Notation. For a non-archimedean local field M we denote by Oar, par, Uy = Oy, resp.
U, =1+ ph, (with h > 1) its integers, maximal ideal, units resp. h-units.

Throughout the article we fix a non-archimedean local field K with uniformizer w and
residue field IF, of characteristic p with g elements. We denote by K the completion of a fixed
maximal unramified extension of K, and by O the integers of K. The residue field F, of K
is an algebraic closure of IF;, and @ is still a uniformizer of K. We write o for the Frobenius
automorphisms of K/K and of F,/F,.

Fix an integer n > 2. We denote by K C L C K the unique subextension of degree
n. Moreover, for any positive divisor r of n we denote by K C K, C K,, = L the unique
subextension of degree r over K.

Fix another integer 0 < x < n and write n = n'ng, K = n’ko, where n’ = ged(n, k). Then
no, ko are coprime.

Fix a prime £ # p and let Q, be a fixed algebraic closure of Q,. All cohomology groups of
(perfections of) quasi-projective schemes of finite type over Fq will be compactly supported
étale cohomology groups with coefficients in @Q,. For such a scheme Y (and more gener-
ally, whenever the cohomology groups are defined), we write H}(Y) := >, HL(Y, Q) (the
coefficients always will be Qy, so there is no ambiguity).

Unless otherwise stated, all representations of locally compact groups appearing in this
article will be smooth with coefficients in Q,.

Acknowledgements. We would like to thank Guy Henniart, Tasho Kaletha, and Peter
Scholze for helpful advice, and Andreas Mihatsch and Johannes Anschiitz for several useful
discussions on the subject of this article. The first author was partially supported by the
DFG via the Leibniz Prize of Peter Scholze and an NSF Postdoctoral Research Fellowship,
Award No. 1802905. The second author was supported by the DFG via the Leibniz Preis of
Peter Scholze.

2. COXETER-TYPE LOOP DELIGNE-LUSZTIG SCHEME IN TYPE A,_;

Let n = n'ng > 2 and x = n'ky with ged(ko,ng) = 1 be as in Section [L.1] This notation
remains fixed throughout the article.

In this section we review some constructions and results concerning loop Deligne-Lusztig
schemes of Coxeter type for inner forms of GL,, from [CI18|, and we simplify the proof of
representability (Proposition [2.6)).
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2.1. Inner forms of GL, and elliptic tori. Inside the group GL, over K we fix a split
maximal torus Ty and the unipotent radicals Ug, Uy of two opposite K-rational Borel sub-
groups containing Ty. Let the roots of Ty in Ug be the positive roots, determining a set Sy
of simple roots. Conjugating if necessary, we may assume that Ty is the diagonal torus and
Uy is the group of upper triangular unipotent matrices.

2.1.1. Forms of GL,,. The Kottwitz map [Kot85|
kgL, = valodet: B(GLy,)pasic — Z

¥

for GL,, defines a bijection between the set of basic o-conjugacy classes in GL,,(K) and Z.

v

Fix a basic element b € GL,,(K) with kgL, (b) = k. Let G be the K-group defined by
G(R) = {9 € GL,(R®x K): g~ 'bo(g) = b}

(this is the group Jj, from [RZ96, 1.12]). Then G is an inner form of GL,, and we may identify
G(K) = GL,(K). The Frobenius on G(K) is Fy: g — bo(g)b~". The K-points of G are

G .= G(K) = GLH'(Dk’o/no)

We may identify the adjoint Bruhat-Tits building of G over K with that of GL,,. Denote
both of them by %,. The adjoint Bruhat-Tits building of G over K is the subcomplex
B = ‘@?' Let x, € Pk be a vertex. Bruhat-Tits theory [BT84, 5.2.6] attaches to x; a
(maximal) parahoric Og-model Gp of G, whose Og-points

Go = Go(Ok) = GLy(Op

'@o/no)7

form a maximal compact subgroup of G.

Remark 2.1. The groups G,Gp,G,Go depend on the choice of b, but if & = h~lbo(h)
(h € GL,(K)) is another choice inside the same basic o-conjugacy class, with corresponding
groups G’, G/, then conjugation with h defines an isomorphism of G, G and G/, G’, and if x,
is mapped by h to x;, then conjugation by h maps Go, G, to Go,G(,. As at the end we
are interested in isomorphism classes of representations of G (or Go), which are not affected
by these isomorphisms, we leave the choice of b unspecified as long as possible. When we
need concrete realizations of G, Gp, G, Gp (in Sections and we will exploit the
freedom of choosing different b’s inside the same basic o-conjugacy class).

2.1.2. Forms of Tg. Let W = W(Ty, GL,) be the Weyl group of Ty in GL,,, then (W, S))
form a Coxeter system. Let w; = (1n0_1 (1)) € W. It is a Coxeter element of (W,Sy). Let
W1 € Nar, (To)(K) be alift of wy. Then Ad(wr) induces an automorphism of the apartment
OQ%TOVR C #; of To. Tt has precisely one fixed point x,, as wy is Coxeter. Let G be the
parahoric Og-model of GL,, attached to this fixed point. Let 7 be the schematic closure of
Ty in G. Let T denote the (outer) form of Ty, which splits over K, and is endowed with
the Frobenius Fy, : t ~ wio(t)w; " (independent of the lift 1), and similarly let T be the
(outer) form of 7, which splits over O, and is endowed with the same Frobenius. We get
the group
T:=T(K)=L* andits subgroup Tp:=Tp(Op) =0},

where L/K is unramified of degree n. In fact, T = {diag(z,o(z),...,0" (x)): x € L*}
(recall that Ty is diagonal), and the isomorphism with L* is determined up to composition
with an element in Gal(L/K).

2.1.3. Case b = w;. In the special case b = w; and xp = X4,, we have only one Frobenius
F:=F =F,;, Gois a form of G, and T is an elliptic maximal torus of G, and Tp is a
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maximal torus of Gp. There are unique (closed, reduced) subgroups U, U™ of G, such that
U(K) = Uy(K), U (K) = Uy (K) inside G(K) = GL,(K). Inside Go we will need the
schematic closures Up and U, of U and U™.

The Frobenius F' acts on the roots of T in G, so that there is a unique subgroup F U C G,
satisfying (F U)(K) = F(U(K)), and similarly for U™, Up, U,,. Identifying W with the
Weyl group of T in G, F acts on W. Moreover, W = (w;) = Z/nZ is the subgroup
generated by wi. It acts on T and the chosen isomorphism 7' 2 L* induces an isomorphism
WF =~ Gal(L/K), sending w, to the image of o in Gal(L/K).

The maximal torus in the reductive quotient of the special fiber To ®o,F; C (Go ®oy
Fq)red is elliptic. Explicitly, these groups are isomorphic to Resg ./, Gm C Requno /Fq GLn@]Fan .
Let Wo be the Weyl group of To ®p,F, in (Go ®@0, Fq)red. It is naturally a subgroup of
W, F acts on Wy and Wg , which is generated by wi?, is isomorphically mapped onto
Gal(L/Kp,) under the above isomorphism W% = Gal(L/K).

2.2. Perfect schemes. Let k be a perfect field of characteristic p and let X be a k-scheme.
Let ¢ = ¢x: X — X be the absolute Frobenius morphism of X, that is ¢ is the identity
on the underlying topological space and is given by x — P on Ox. The scheme X is
called perfect if ¢ is an isomorphism. Let Alg;, denote the category of all k-algebras, and
let Perf; be the full subcategory of perfect k-algebras. Then the restriction functor which
sends a perfect k-scheme, regarded as a functor on Alg,, to a functor on Perfy is fully
faithful [Zhul7, A.12|. Thus we equally may regard a perfect scheme as a functor on Perfy,
which has an open covering by representable functors in the usual sense. Every k-scheme X
admits a perfection, namely X orf . — limy X, which is a perfect scheme. For example, the
perfection of Spec k[T is Spec k[T'/P”], where k[T'/P™] = |, k[T? ]

Except stated otherwise, throughout this article we will work with perfect schemes over
k =T, (or k =TF,). So, to simplify notation we write A™ = A resp. G, resp. Gy, for
the perfection of the m-dimensional affine space resp. the additive resp. the multiplicative
group over k. A morphism f: Spec A — Spec B of affine perfect schemes is perfectly finitely
presented, if there is a A = (Ap)pert for a finitely presented B-algebra Ao [BS17, 3.10,3.11].
For further results on perfect schemes we refer to [Zhul7, Appendix A.1] and [BS17, §3|. Here
we only mention the following lemmas.

Lemma 2.2. Let X C A]" be a closed perfect subscheme of the m-dimensional perfect affine
space. Then X — Speck is perfectly finite presented.

Proof. Let T' = (T4,T>,...,T,,) be some coordinates on A}". Let a be the ideal of X in

the coordinate ring k[TP ~] of A7*. Then it is easy to check that X is the perfection of
Xo = Speck[T]/(an k[T]), which is (reduced and) finitely presented over k. O

Lemma 2.3. Let f: X — Y be a morphism of perfect k-schemes with X separated. The
following are equivalent:

(i) f is a monomorphism (of fpqc- or étale sheaves on Perfy)
(ii) for every algebraically closed field K/k, f(K): X(K) — Y (K) is injective.

Proof. Assume (ii). To deduce (i) it is enough to show that for any R € Perfy, f(R): X(R) —
Y (R) is injective. Let x,y: Spec R — X be two elements of X (R), such that fo = fy €
Y (R). For each point p € Spec R, choose a morphism i,: Spec K;, — Spec R with image p,
and with K, an algebraically closed field. Then fxi, = fyi, € Y (K)) for each p, and from
(ii) we deduce zi, = yip. As X is separated, the equalizer of x,y is a closed subscheme of
Spec R, say equal to Spec R/I for some ideal I C R. Now, zi, = yi, for all field valued
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points of Spec R implies that I C ﬂpespecRp =rad(0) = 0, as R perfect and hence reduced.
The other direction is clear. O

2.3. Witt vectors and loop groups. If K has positive characteristic, we denote by W
the ring scheme over F,;, where for any Fj,-algebra R, W(R) = R[w]. If K has mixed
characteristic, we denote by W the K-ramified Witt ring scheme over F, so that W(F,) =
Ok and W(F,) = Op (see e.g. [FF18, 1.2]). Let W, = W/V"W be the truncated ring
scheme, where V: W — W is the multiplication by w (if char K > 0) resp. the Verschiebung
morphism (if charK = 0). We regard Wy, as a functor on Perfy , where it is represented
by qu. We denote by W the perfect group scheme of invertible elements of W and for

1 < a < h, we denote by W;’a = ker(W;* — W) the kernel of the natural projection.
If Xisa Iv(—scheme, the loop space L X of X is the functor on Perqu,

R — LX(R) = X(W(R)[=™1]).

If X is an affine K-scheme of finite type, L X is represented by an ind-(perfect scheme) [Zhul7,
Proposition 1.1]. If X' is a O -scheme, the spaces of (truncated) positive loops of X" are the
functors on Perqu,

R~ LTX(R)=X(W(R)) resp. R~ LI X(R)=X(Wy(R)).

(h > 1). If X is an affine O-scheme of finite type, LTX, LZX are represented by affine
perfect Fq—schemes, and L;X are perfectly finitely presented (by Lemma . The same
holds with Fq replaced by Fj.

Remark 2.4. We could evaluate W, W, and LTX, LZX onall R € Algﬁq and therefore work

with schemes LZX of finite type over F,, instead of perfect schemes.

Still, one must take care when working with the functors L, L™ in the mixed characteristic
setting—see for example [BS17, Remark 9.3], [Zhul7, end of Section 1.1.1] for some warnings.
But even in the equal characteristic case, when working with L X, we are really forced to
work in the category of perfect schemes; indeed, as we use an argument on geometric points
in the proof of Proposition we can only make our final conclusion when there is no
non-reduced structure (which is the case after perfection). Therefore, for the entirety of this
paper, we pass to perfect schemes everywhere. As passing to the perfection is a universal
homeomorphism, this does not affect étale cohomology.

2.4. The perfect ﬁq—space XgL(b). By a perfect Fq—space we mean an fpgc-sheaf on Perqu.

Let b be any basic element with kgr, (b) = . Let @) € Ngr, (To)(K) be any lift of w;. Let
XglL(b) denote the fpgc-sheafification of the presheaf on Perfﬁq,

R— {9 € LGL,(R)/LUy(R): g 'bo(g) € L Uy(R)uwLUy(R)}.
If G, T are as in Section , the group G x T acts on XgL(b) by g,t: x — gxt.

Lemma 2.5. Let b be basic with kgL, (b) = k and let w1 be any lift of w;.

(i) If ¥ = h='bo(h) for some h € GLy(K), and if G' = G/(K) is the group attached to V'
as in Section then Ady,: G — G', g — h™'gh is an isomorphism. Moreover, left
multiplication by h induces an isomorphism of F-spaces XglL(b) = XglL(b’), which
is equivariant with respect to the isomorphism (Adp,id): G x T — G' x T.

(ii) Let @ be a second lift of wy to GL,(K). Assume that kgr, (1) = kaw, (@)). Then
there exists a T € To(K) with 0}, = 7~ ino (7). Let T' = T'(K) be the group attached
to W) as in Section , Then Ad,: T — T', t — 7747 is an isomorphism. Moreover,
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right multiplication by T induces an isomorphism of F,-spaces XglL(b) = va),lL(b),
which is equivariant with respect to the isomorphism (id,Ad;): G xT — G x T".
(iii) XglL(b) = &, unless kgL, (1) = K.
Proof. (i): This is an easy computation. (ii): The fiber over w; in GL,(K) is a principal
homogeneous space under T(Iv(), and it is easy to see that as w; is Coxeter, the map t —
Ad(wy)(t) o (t) from T(K) to {r € T(K): kgL, (r) = 0} is surjective. The rest is an
easy computation. (iii): As XglL(b) is an inverse limit of perfectly finitely presented perfect
F,-schemes, it suffices to show that XglL(b)(Fq) = @. This holds as kgL, (g 'bo(g)) =

KGL, () = k and kg, (LU(F,)) = 0. O

2.5. Representability. We simplify the proof of representability of XleL(b) from [CI18].
Let b = w; be basic with kgL, (b) = £. Then we are in the setup of Section Write
F: LG — LG for the Fy-morphism of ind-(perfect schemes) corresponding to F': G(K) —
G(Iv(), g+ bo(g)b~1. Define the fpqe-sheafification X’ of the presheaf on Perfﬁq,

R~ {zx € LG(R): 2 'F(x) € F(LU)}/L(U N FU).

The group G x T acts on X’ by g,t: x — gxt. Define X as the fpqc-sheafification of the
presheaf on Perqu7

Xo: R {z € LTGo(R): 27 'F(z) € LT (FUoNU,)(R)}.

Being the preimage of LT (F Up NU,) under the Lang-morphism Langr: LTGo — L1 Go,
g g 'F(g), Xo is representable by a perfect F,-scheme. Further, the group Go x Tp acts
on Xo by (g,t): x — gat. As T is generated by Tp and the central element w € T C G, the
obvious action of G X Tp on ]_[G/GO g.X o extends to an action of G x T by letting (1, w) act
in the same way as (w, 1).

Proposition 2.6 ( [CI18]). Let b = w1 € Ngy, (To)(K) be basic with kg, (b) = &, and
mapping to w1 € W. There are G x T-equivariant isomorphisms of perfect F,-spaces

xProy=x'= I gXo (2.1)
9€G/Go

In particular, XIPL(b), X' are representable by perfect Fq—schemes.

Proof. The same computation as at the end of |[CIL8] §3] shows that G x T-equivariantly
XPE(b) 2 X' as Fy-spaces. As the right hand side of is representable, it suffices to
show the second isomorphism in (2.I). Consider the fpgc-sheafification X” of the presheaf
on Perfﬁq,
R—{g€ LG(R): g 'F(g9) € LIFUNU)(R)}.
As w is Coxeter, the map
L(FUNU) x L(FUNU") — L(FU), (h,g) — h™'gF(h)

is an isomorphism of fpqc-sheaves (this follows by a concrete calculation — similar to the part
of the proof of [CI18, Lemma 2.12] showing equation (7.7) of loc. cit. — which can be performed
on R-points for any R € Perfg . Compare also [HL12]), so that X’ = X”. But X" is the pull-
back of the closed sub-(ind-scheme) L(FU NU™) under the Lang map Langr: LG — LG,
g + g 'F(g), which is a morphism of ind-schemes, hence X" is representable by an ind-
(perfect scheme).

For 7 € T(K), x + 7~ 'z defines an equivariant isomorphism between X” and the analog
of X”, where b is replaced by 77'br. Thus we may take b = (1n0_1 a(’)m) e with e € T(Op).
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Fix R € Perfy . Let g € LG(R) = G(W(R)[w™1]) with g7 F(g) =: a € LIFUNU")(R).
For 1 <i <n-—1,let a; € LG,(R) denote the (i + 1,1)-th entry of the matrix a. Then
the matrix g is determined by its first column, denoted v (for 1 < i < n the i-th column is
then equal to (bo)"~!(v)). Moreover v has to satisfy (bo)"(v) = @"(v + Y1 ai(bo)'(v)),
an equation which takes place in LG,(R)™. Assume R is an algebraically closed field. The
valuations of the coefficients of the characteristic polynomial of a o-linear endomorphism lie
over its Newton polygon, which in our case coincide with the Newton polygon of the isocrystal
attached to bo, and is just the straight line segment connecting the origin and the point (n, )
in the plane (cf. [CI18, Lemma 6.1] for the precise statement). This shows val(a;) > —&
for 1 < i < n — 1. But after explicitly determining the affine root subgroups contained in
Go(Oy) (this is a similar computation like in |[CI18, Example 8.8]), this translates to the
statement that a € LT (FUpNU,)(R). As X" is a ind-(perfect scheme), this implies that
X" is equal to the fpqc-sheafification of

R—{ge LG(R): g 'F(g9) € LT (FUoNUp,)(R)}.

Consider the projection 7: LG — LG/LTGp. If g € X"(R) C LG(R), then F(g) €
gLT(FUpNUQL)(R) C gLTGp(R). Thus X” maps under 7 to the discrete subset

(LG/LTGp)f = G/Go. Hence X" is isomorphic to the right hand side of (2.1, and we are
done. g

Corollary 2.7. Letb € GLn(Iu() be basic, Wy a lift of w1 such that kgL, (b) = keL, (W1) = k.
Then XglL(b) i HG/G@ gXo is representable by a perfect Ez—scheme.

Proof. This follows from Lemma [2.5] and Proposition [2.6] O

2.6. Representations R (0) and R%h(ﬁ). Let a basic b and a lift w; be as in Section
with kgL, (b) = kgL, (W1) = k be fixed. In Section we attached to b, the locally
pro-finite groups G,T and their maximal compact subgroups Go,Tp. In [CI18, 7.2] we
defined families (indexed by h > 1) of perfectly finitely presented perfect group schemes over
Fy, with Fg-points Gy, T}, such that Go = @h Gy and Tp = th Ty, and showed that
G x T-equivariantly,

X5E(@b) = ]_[ g9-Xo, with Xo=limX,
G/Go h

such that X is acted on by G X T, each X, is a perfectly finitely presented perfect F,-
scheme acted on by G}, x Ty, and all morphisms are compatible with all actions. Moreover,
X}, is the perfection of a smooth affine F,-scheme of finite type. We identify XglL(b) with
e /Go g-X o via this isomorphism. The groups G, and T}, are certain Moy—Prasad quotients
of Gp and Ty, and hence essentially independent of the choice of b, x; and w;. An explicit
presentation of Gy, Ty, X}, is reviewed in Section below.

We review the definition of certain étale cohomology groups with compact support of
XglL (b) and X (which are not perfectly finitely presented over F,). First, for h > 1 and a

character x: Ty, — @Z , the x-isotypic components H:(X, 1)y of the f-adic cohomology groups
with compact support are deﬁnedl?]7 as Xp is the perfection of smooth scheme of finite type
over F,. Second, for h > 1, the fibers of X} /ker(T}, — Th—1) — Xp—1 are isomorphic to
A1 |CI18, Proposition 7.6]. Let x: To — @Z be a smooth character. Then there exists an
h > 1, such that y is trivial on ker(To — T},) for some h > 1. Let i/ > h and denote the

INote that T is generated by To and a central element of G, when G, T are both regarded as subgroups of
GL,(K), so that [T, 9.-Xo admits also a natural right T-action.

Recall from Section that we omit the constant coefficients Q, from the notation.
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characters induced by x on T}, and T} again by x. Then H}(Xp)y = H}(Xp )y, where H is
the alternating sum of the cohomology. Thus we can define H}(Xo), as H} (X} ), for any
R’ > h and this is independent of hﬁ. So, if x is a character of T of level h, we have the
Gj-representation
REP (x) 1= H; (Xo)y = H (Xn)y-
and we denote the Gp-representation obtained by inflation via Gp — G}, again by R%f (x)-
Let Z C G be the center and let Xo := Ugezao 9-Xo be the union in XglL(b) of all

Z G p-translates of X». Then )Nfo is acted on by ZGp x T and is a disjoint union of copies of
Xp. Exactly as above for X, for a smooth character : T" — @Z we may define the smooth
ZGp-representation H} (Xp)g.

Lemma 2.8. Let 0: T — @Z be a smooth character of level h. As Go-representations,
H!(Xo)s = R%h(ﬁ). As a ZGop-representation, HY(Xo)p is just the Go-representation
R%f (0), with action extended to Z by letting w € Z = K> act by the scalar 6(w).

Proof. This is immediate (see e.g. [Ival6, Lemma 4.5]). O

Justified by this lemma we write R%f(&) for the ZGo-representation H}(Xp)g. For
schemes Y; such that H(Y;) are defined, put H}([[;c;Y:) := @P,cr Hi(Y:). We get our
main object of study, the smooth G-representation

R§(0) == H;(XBE(b))g = cIndg,, RS (6)
(cf. [CI18] Theorem 11.2]).

iel

Remark 2.9. By construction and by Lemmal[2.5] the isomorphism class of the G-representation
Rg (0) is independent of the choices of representatives b,w;. A similar independence holds
for the ZGp-representation R%i‘ ().

2.7. Norms and characters. The following definitions do not depend on the choice of an
isomorphism 7" 2 L* (as in Section [2.1.2)).

Definition 2.10. We say that a smooth character §: T" = L* — @ZX is of level h if it is
trivial on ker(Tp — Tp,) = Uﬁ, but non-trivial on ker(Tp — Tj,—1) = Uf_l.

Recall the subextensions L O K, O K (Section . Whenever 7, s are positive divisors of
n such that s divides r, we denote by N,./,: K* — K the norm map for the field extension
K,/K. For any h > h/ > 1, it induces maps
Uk, /Ul — Uy, /U, and  Up /UL —UY JUR

which are surjective (see e.g. [Ser95, Chap. V,§2]), and which we again denote by N, .

Definition 2.11. (i) A character : T = L* — Q, resp. 0: To = Uy, — Q, is in
general position, if the stabilizer of 6 in Gal(L/K) is trivial. We say H\U% is in general
position, if the stabilizer of 9|Ui in Gal(L/K) is trivial.

(ii) Let h > 1. A character 0: T), & U,/U} — Q, (resp. 9’T,1:U,§/Ug> is in general
position if its inflation to Ty (resp. to ker(Tp — T1)) is in general position.

Note that 0: T = L* — @Z is in general position if and only if 8|7, is.
3Note that the single cohomology groups H:(Xo), are not defined, due to a degree shift: HZI(X}/)y

H{72%(X}), for an appropriate d > 0. One can remedy this by introducing homology groups H;(Y) :
HZ2™Y) 7 y) (dim(Y)) as in [Lus79], which removes precisely this shift in degree.
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Lemma 2.12. Let0: T = L* — @Z be a character. Let s € Z. Then
oo’ =60 <« 0 factors through Ny

ged(n,s) ”

The analogous claim holds for G‘Ui' In particular, 0 is in general position if and only if 0
does not factor through any of the maps Ny, /. with r < n, and G‘Ui is in general position if
and only if H‘Ui does not factor through any of the maps Ny, ;. with r < n.

Proof. 6 o 0° = 6 is equivalent to 6 being trivial on the image of the map L* — L*,
x — 27 1o%(z). By Hilbert’s Theorem 90, this image is equal to the kernel of the norm map
of L over the field stable by 0%, which is Kyeqen,s)- O

3. A MACKEY FORMULA

In this section we prove the following Mackey-type formula for the representations R%i‘ (9).
Theorem 3.1. Let 0,0": T}, — @ZX be two characters. Then
<R%il(9),R§:(0’)>G = #{weWh: 0 =0oadw)}.
h

Remark 3.2. The theorem shows that in the setting considered in this paper and in [CI1§],
the assumption in [Lus04}, Corollary 2.4(b)] resp. [CI119a), Corollary 4.7(ii)| that € is regular is
obsolete. We also note that because part of this proof requires an explicit computation using
our choice of Coxeter element w;, Theorem does not allow us to conclude the analogue
of the independence-of-choice statements [Lus04, Corollary 2.4(a)|, [CI19a, Corollary 4.7(i)].

Corollary 3.3. Let 0: T, — Q, be a character, whose stabilizer in Gal(L/K)[n'], the unique
subgroup of Gal(L/K) of order n', is trivial. Then j:R%h (0) is irreducible Gp,-representation.

In particular, Frgn acts in :tR%i’ (0) by multiplication with a scalar. Moreover, the map

{chamcters 0: Ty, — @Z n general posz’tion}/Wg — {irreducible Gh—representations}
Gh
0 — iRTh (9)
18 1njective.
Proof. This follows from the description of W(g in Section and Theorem u O

We prove Theorem [3.1]in four steps (Sections -- After general preparations in Section
.7 we show in Sectlon that several of the perfect schemes 3, (as in [Lus04, 1.9]) are

empty in our case; then in Sectlons We generahze Lusztig’s argument from [Lus04, 1.9,
proof of claim (b)] with the extension of action on 3, in two different ways to cover the
remaining f]w. The first generalization uses our concrete situation, whereas the second is
quite general.

3.1. General preparations. In contrast to [CI18] where we worked with Coxeter-type and
special representatives for [b] (see [CI18, §5.1]), here it is most convenient to work with a
third type of representatives. We put

b =1 = byt € GL,(K) (3.1)
where
diag(1,...,1,w,...,w) if (k,n) =1,
—— ——
_( 0 1 ._ nr M
by 1= , and tim =
1,1 O ’

diag(trymos - - - > thono) otherwise.
—_——
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are as in [CI18] §5.2.1]. In particular, we work in the setup of Section [2.1.3]

Recall the (unique) fixed point x; of F' in the apartment Jz%Tj( of T in %, and the
corresponding maximal parahoric Og-model G of G. We have the stabilizer Gy, o =
Go(Op) of x4 in G(K) = GL,(K) and its Moy-Prasad filtration [MP94| given by subgroups
éxb’r (r > 0). Similarly as in |CI18|, §5.3], consider the affine perfect group scheme G over
[F, defined by

G(FQ) = éxb,ﬂv G(FQ) = éf:b,() = Go.
and for h € Z>1, the affine perfectly finitely presented perfect group scheme Gy, over F, such
that
Gp(Fy) = be,O/GXb,(h—l)'i" Gp = Gp(Fy) = Gib,O/Gplzb,(h—l)—i-'
We denote the Frobenii on G, Gj, again by F'. The groups G, Gj, possess an explicit description
in terms of matrices similar to [CI18, §5.3].

Remark 3.4. In [CI18, Section 7], we worked instead with the Coxeter representatives b’ =
by "ty as in [CLL8, §5.2.1]; but if v is as in |CI18, §7.6], then b = 'y, i.e., b is integrally
o-conjugate to v'. In fact, the groups G, Gy, used here are equal to yGy~!,4G,y~! with the
latter G, Gy, as in |CI1§].

As (perfect) Fg-groups, Gy = Requno /F, GLn. The above-mentioned description iden-
tifies G; with a closed Fg-subgroup of GL,F,. In fact, Gqu is the closed subgroup of
GLn,Fq consisting of those n x n-matrices g = (gij)ijez/mz € GLn,ﬁq for which X;; = 0,
unless 1 = 7 mod ng; if we now equip GLqu with the Fg-structure given by the Frobenius
Fo: g — boo(g)by 1 and denote the resulting Fg-group simply by GL,,, then this defines an
F,-embedding G — GL,.

We regard the symmetric group on n letters S, as the group of set automorphisms of Z/nZ,
and for an element ¢ € Z/nZ let [i] be the unique integer between 1 and n having residue
i modulo n. We also identify S,, with the Weyl group of the diagonal torus in GL,, (either
over F, or K ) by sending a permutation v € S,, to the permutation matrix (again denoted
v) whose non-zero entries are (v(i),4) for 1 <i < n.

As Gq is naturally isomorphic to the reductive quotient of the special fiber of Gg, the
group Wy is simply the Weyl group of T in G;. Thus, using the above identifications, Wp
is the subgroup of .S,,, isomorphic to S, X - -+ x S/ (ng times), of those permutations which
preserve the residue modulo nyg.

Applying L; to the inclusions Tp, Up, U, C Go gives closed subgroups Ty, Uy, U, C Gy,
with T}, defined over Fy and Uy, U, defined over Fgn (cf. [CI19a, 2.6]). For a closed subgroup
Hj, € Gy and 1 < a < h—1, we write H? := Hj Nker(Gy, — G,). If Hy, is defined over Fy,
we write H := H(F,) and H} := H}(F,).

Then we have (by a slight modification — or conjugation with v from Remark [3.4]- of [CI18]
Section 7], in particular, Propositions 7.10,7.11) as perfect F,-spaces

Xp =2 {g€Gy: g 'F(g) €U, NFUL} = S),/(U, N FUy), (3.2)
where
Sp={g€Gy: g7 'F(g) € FULI]
and the action of Uy N FU, on Sy is by right multiplication (here and in the following: all

presheaves have to be sheafified). Moreover, (3.2) is Gp, x Tp-equivariant with respect to the
G, x Tp-action on the right hand side given by (¢',t): g — ¢'gt.

4note that X, S, are indeed perfect schemes as the tensor product of perfect rings over a perfect ring is again
perfect (by [BS17, 3.16])
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The fibers of the projection S, — X} are isomorphic to affine spaces of fixed dimension,

so that RE"(0) = H}(Sh)o. As in [Lus04, 1.9], if
Y ={(z,2,y) € FU, x FUy, x Gp,: 2F (y) = yz'}
with the T}, x Tj-action given by (t,t'): (z,2',y) — (twt=!,¢'2't'"~1 tyt'~1), then the map
Gh\(Xh X Xh) — Z, (33)

induced by (g,9") — (97 F(9),d' 'F(g"),97¢') is an T, x T-equivariant isomorphism (the
quotient of the left side is taken with respect to the diagonal action).

The group G is reductive and ker(Gy, — Gq) is unipotent. Thus the Bruhat decomposition
G = HweW@ U;T1wU; of Gy lifts to a decomposition G;, = HwEW@ Ghw, with Gy, =
U, TpwK} Uy, Ki = (U, ) Nw™! (U, )'w [CI18, Lemma 8.6]. We then have the locally closed

decomposition X =[] Yw, where

weWeo
Y = {(z,2',y) € FU, x FUp, X G xF(y) = ya'}.

is Ty, x Ty-stable. Further, let

S = {(z,2', 91,7, 2,42) € FUp x FU, x Uy, x Ty, x K}, x Up: xF(y1m2y2) = y1mibzyox’}.

where w € Gy, is an (arbitrary but from now on fixed) lift of w. It has a T}, x Ty-action by
(t,t): (z, 2, y1, 7, 2,y2) = (bt 2/t byt trit ™t 2t T et Y. (3.4)

Then the map Sy, — Xy given by (x, 2" 91,7, 2,y2) — (2,2, y172y2) is a Ty X Th-equivariant

Zariski-locally trivial fibration. All in all, as in [Lus04], using it is enough to show that

1 ifwe W and ¢ = 0 o ad(w)

(3.5)
0 otherwise.

Z(—l)l dlm@é Hg(§w>9—179/ = {

i

So far we were essentially following [Lus04, 1.9], but now we have to deviate.

3.2. Emptyness of certain f)w. Let w € Wp. As in [Lus04, 1.9], make the change the
variables F(y1) = z, 2'F(y2) ! +— 2/. We thus may rewrite

Sw ={(@, 91,7, 2,y2) € FU x Up x T, x K} x Up: 2F(11i2) € y1ribzy2 FUL} (3.6)
with the T, x Th-action still given by (3.4).

Lemma 3.5. Assume that there exists some 2 < i <n such that [w(i)] > [w(i —1)+1] > 1.
Then >, = @.

Proof. We may assume h = 1, and hence we may ignore z € K}L whose image in Gy is 1.
We use the identification of G; with the closed subgroup of GL,, from Section Write
Yi = YiaYi2 with y1.1,922 € U N FU;p and y19,921 € Uy N FUT . Replacing z by y; 2 and
putting y92 2 into the FU; on the right hand side, we are reduced to show that there are no
($,y172,y271,7> € FU; x ([Ul N FUI) X (Ul N FUl_) x T with

wilryl_éxF(Tu')) € y2,1 F(Uy).

Replacing everything by appropriate conjugates resp. inverses, it suffices to show that there
are no (x,y,y21,7) € FU; x (U N FUT) x (U N FUT) x Ty satisfying

W tyx F (i) € T'yo1 FU;.
For a n x n-matrix X, let X; ; denote its (¢, j)th entry. Consider the closed subset

M={XeG:X,,€G,V2<i<nand X;; =0Vn>i>j>1}
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of G1. We have
UyNFU] ={X €Gy: X;; =1Viand X;; =0V (4,5) with j # 1 or i # j}
One easily checks that Ty - (Uy N FU;) - FU; € M. Thus it suffices to check that
W MF()NM = @.

For X € Gy (and even more generally for X € GL,, and F replaced by Fj as in Section [3.1]),
one has the formula
(b XF(W))ij = Xy, fuw(—1)+1]- (3.7)
Let 2 < i < n be such that [w(i)] > [w(i—1)+1] > 1. Then for X € M, the (4,7)th diagonal
entry of w !X F(w) is
(b XF())ii = Xop(i) fw(i-1)+1) = 0,
by definition of M. This shows that X ¢ M and we are done. O

As mentioned in Section W& = (w]°). Clearly, no element from WJ satisfies the
condition in Lemma Thus Lemma implies (3.5) for all w satisfying the condition in

the lemma.

3.3. An extension of action. It remains to show (3.5) for all w € Wy C S, for which
there is no 2 < i < n satisfying [w(i)] > [w(i — 1) + 1] > 1. Consider the closed subgroup

Hy = {(t,t") € T, x Tp: w™ "t F(t)w = "' F(¢) centralizes Kj, = U, N~ Uy w }

of Ty, x Ty. It contains Tj, x Ty. It is easy to check that the action of T}, x T} on X, extends
to an action of H,, given by the formula

(t,t): (z,y1,7, 2, 42) = (F®)zF @), F@)y F () trit o™ 2t F( )y F(E) 7).

Lemma 3.6. Let 1 # w € Wo. Assume that there is no 2 < i < n with [w(i)] > [w(i —1) +
1] > 1. Then there is a proper Levi subgroup L of G containing T such that if Ly, denotes
the corresponding subgroup of Gy, then Ky C Ly,

Proof. First we prove the following claim: there is an s € Z>; and a sequence 0 =: 39 < 1 <
11 < --- <ig—1 < ig := n of integers such that for each 1 < j < s, and for each 7;_1+1 <7 <4
(if j > 1) resp. for each 1 <4 <4y (if j = 1), one has w(i) =n —i;_1 — (i; — ). Indeed, find
the 1 < ¢; < n such that w(i;) = n. It follows from the condition on w that w(i; —1) =n—1,
e, w(1) =n — (i1 — 1). The maximal value which w has on {i; +1,...,n} is n — i;. Find
the i1 + 1 < i9 < n such that w(iz) = n —i;. It follows from the condition on w that
w(ig—1)=n—1i1—1, ..., w(iy +1) =n—i2+ 1. Then, proceed inductively until i; = n is
reached. The claim is proven.

Note that i1 < n, as i1 = n would imply w = 1, whereas w # 1 is assumed in the
lemma. Let L be the (proper) Levi subgroup of GLnj( = G containing T of type

(1,92 —1i1,...,45 —1s—1). From the claim it easily follows that K; = U}’ ﬂw‘lU}:w CL, 0O

For ¢ = 1,2 we have the composed maps
ﬂiZngThXTh—)Th%Tl,

where the middle map is the projection to the ¢-th component, and the last map is the natural
projection. For 1 <4 # j < n, let o;; denote the root of GL,, corresponding to (i, j)th
matrix entry. Recall from Section that Ty € G1 € GL,F, and that T; is the diagonal
(and in fact elliptic with respect to the Frobenius Fp) torus of GL,r,. Let ;; be the roots
of Ty in GL, , corresponding to (i, j)th entry.
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Lemma 3.7. Let §: Z/nZ — {0,1} be a non-zero function, and let x: G, — T1 be the
cocharacter X + diag(X°W ... X)) Then S, := {t € Ty: t7'F(t) € im(x)} 4s a
one-dimensional subgroup of T1. Let 1 < j < i < n. If§ does not factor as Z/nZ —
Z/ged(n,i — j)Z — {0,1}, then the connected component Sy of Sy is not contained in the
subtorus ker(c; ;) of Tr.

In particular, if for any divisor d > 1, § does not factor as Z/nZ — Z/dZ — {0, 1}, then

Sy, is a not contained in any of the subtori ker(c; ;) (1 <i#j <n) of Ty.

Proof. Assume that ¢ does not factor through Z/nZ — Z/gcd(n,i — j)Z. As dim S, =1, it
suffices to show that Sy Nker(c; ;) is finite. We write an element in T; as an n-tuple (t3)}_,
corresponding to the diagonal matrix with entries t1, .. ., t,. We have im(y) = {(a7®)r_, €
T1i: a € Gp}. Thus (t)P_, € Ty lies in S, if and only if ¢; 1t} = a =W ;1] = a0 ..
toltd = a=%™)_ Thus Sy is isomorphic to the one-dimensional subscheme of G2,

n—1 =
{t1,a € G2 177" = P+ " F (k)Y (3.8)

k— —
which is embedded into Ty by sending (¢1, a) to the tuple (¢;)7_; with t;, = t{ O ETLRIOV
Thus the intersection Sy, N ker(a; ;) is the closed subscheme of (3.8) given by the equation
t; = tj, i.e.,

tt{iflqufl — @ Thea @RS (k) =iy 'R (R)

Taking this to (¢" — 1)-th power, taking the equation in (3.8) to the power ¢"~! — ¢/~ and
equalizing the left hand sides, we deduce that on S, Nker(c; ;) we must have
Q@ =T+ " FS(R) (4" 1) (e @RS (R) =320y a7 RO (R))
Thus it suffices to show that
n i J
(@ = HEW) + D TFER) £ (¢ -1 q (k) = Rk
k=2 k=2 k=2
or equivalently, that
n—1 n—1 i—2 j—2
o dfdn—k+i)— > dFo(n—k+j)# =) "5 —k)+) d"5(i - k)
k=i—1 k=j—1 k=0 k=0

or that
qu (i—k)—8(j — k) #0.

Assume this is wrong, and thls sum is 0. All terms §(i — k) — d(j — k) lie in the set {—1,0,1}
and hence ¢"~! is bigger than the sum of the absolute values of the remaining summands.
It follows that we must have §(i —n+ 1) —d(j —n+ 1) = 0. Then we may continue in the
same way with ¢"~2 instead of ¢" !, etc. All in all we deduce that §(i — k) = 6(j — k) for all
k € Z/nZ. Or equivalently, that §(k) = §(k+ (i — 7)) for all k € Z/nZ. But this is equivalent
to saying that 0 factors through Z/nZ — Z/gcd(n,i— j)Z, contradicting our assumption. [

Now let 1 # w € W, such that there is no 2 < i < n with [w(i)] > [w(i—1)+1] > 1. Let
Ly, be as in Lemmaand let 1 <41 < m be the size of its first block (cf. the proof of Lemma
B.6). Let 6: Z/nZ — {0,1}, i — 1 if i < iy and i — 0 otherwise. Let x = (1;,,0,—;,) be the
corresponding cocharacter. We have (again, cf. the proof of Lemma [3.6), (wd)(i) = 6(i + \)
for an appropriate A\ € Z/nZ. It follows from Lemma and the definition of H,, that
71 (Hy) 2 Swy and ma(H,y,) 2 Sy. Hence also

m(HS) 2S5, and  ma(HS) D S, (3.9)
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From this together with Lemma it follows that for i = 1,2, m;(H,,

o) is not contained in
any of the ker(a; j: Ty — Gy,) (1 < i # j < n). Hence it also holds for m;(H;, _4), where

w red

H® d is the reductive part of H;, (it is a torus). As in |Lus04| we now have H} (Ew)9—179/ =

w,re

H (Zw“””ed)g_179/ and because m;(H?

wred) 15 Dot contained in any of the ker(a; ), we have

~H°
S0 C{(1,1,7,1,1): 7 € Tp, Frib) = 7},
and (3.5 for S, easily follows (cf. [Lus04, 1.9, proof of claim (e)]).

3.4. Another extension of action. It remains to deal with the case w = 1. We first
prove a more general result, again generalizing Lusztig’s method. The proof does not depend
on special properties of GL,, and can be carried out for any group, so we put ourselves —
until the end of Section only — in the general setup of |[CI19a]. Let G be a reductive
group over K, which is spht over K and let T, T/ be two maximal K-rational, K -split tori
in G. There is a natural inclusion of the reduced Bruhat—Tits building Bk of G over K
into the reduced Bruhat-Tits building % of G over K. Assume there is a point y in the
intersection of Ay and the apartments of T and T’ inside ;. We have then the parahoric
Ok-model Py of G attached to y. Tts Op-points Py (O;.) form the parahoric subgroup of
G(K) attached to y, which is the stabilizer of y. On P y(O}) we have the descending Moy—
Prasad filtration given by certain subgroups Py(O)" (h > 0). Using the truncated loop
group construction [CI19a), 2.6], for any h > 1 one can defined an affine perfectly finitely
presented perfect Fg-group Gy, satisfying

Gi(Fq) = Py(Og)/Py(0j)"DF

We denote by F' the (geometric) Frobenius on (thq and its closed subgroups. To a closed
subgroup H C G one can naturally attach a closed subgroup Hj C Gy, by first taking the
schematic closure of H in P, and then applying LZ. We write Hj := ker(H);, — H,.) for the
kernel of the natural projection. We also write G}, := G (FF,) and Hy, = Hy(F,) (the latter
only if Hy, is defined over Fy). For more details we refer to [CI19a 2.6].

Let U,U™ resp. U, U~ be the unipotent radicals of a pair of opposite Borel subgroups
containing T resp. T” and let Uy, U, resp. U’h,U; be the corresponding subgroups of Gy,.
We have the closed perfect subscheme of Gy,

Srun =149 €Gp: g 'F(g) € FU,}

with a G, x T-action by (v,t): g — ygt. Similarly we have the perfect subscheme Sz 1/ 5, C
Gy As already above, Lusztig’s scheme ¥ = {(z,2’,y) € FUp, x FU}, x Gy: 2F (y) = ya'}
is very useful to compute the inner product between the virtual Gj,-representations obtained
from Sty and Sy 7. More precisely, for @Z -valued characters 0 resp. ' of T}, resp. T},
we have
(HZ(STun)e, H (ST v7n)er ), = dimg, HZ (Z)p-1 ¢

To study H}(X) Lusztig in [Lus04] (and many authors in follow-up articles) used a locally
closed decomposition ¥ = [[,ew, (7. 1) Zw, where Wy (1",T) = {Tyv: v 1Tyv = T} is the
transporter from T} to T; in G; (= reductive quotient of the special fiber of Py) conjugating
T} to Ty. Now, we generalize this construction in a substantial way.

Let V resp. V' be the unipotent radical of a second Borel subgroup containing T resp.
T’. We have the corresponding subgroups Vj, V) of G,. For v € Wy (T',T) we have the
corresponding preimage VhTth%/y,,hV% (with Ky yr . := V;l_ ﬂv*IV,:v) of the Schubert cell

5The fact that we are working with perfect schemes here does not affect the argument.
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in G attached to v. We consider the following generalizations of f]w, Yy from [Lus04)
Sy, = {(x,2',y) € FU, x FU)}, x Vh’]I‘hi)K%/’V,’hV;L: zF(y) = y2'},
iV,V',v = {(x, 2,9, 7,2,y") € FU, x FU}, x V}, x T}, X K%/,Vﬁh X Vi,
oF(y'mizy") = 'm0z 2},
which have the same alternating sum of cohomology. The action of T}, x T} on iV,V’,v is

t?’ —_ —_ —_— . —_ . — — —
(2,9 7, 2,9") (»—t>) (tot™ L 2t/ ot T o Ty . (3.10)

and by a similar formula for Xyy/,. There is an element vy = vo(V, V') € Wy (1", T), such
that the (generalized) Bruhat cell VT vgV] is generic in Gy, i.e., valvhvo = V’}:. For this
vy we have Ky v, = 1. We can write ¢/ € Vj, and y” € V) as

v = yivh where ¢y € Uy, NVy, yp € Uy NV,
v =ylyl where yf € U, NV}, vy € U, NV,
where (t,t') € Ty, x T}, acts on y;, y5 resp. y7,y5 by conjugation with ¢ resp. with ¢/. Changing
the variables xF(y}) v z, 2’/ F(y4) ™!
{(@, 91,92, 791, y2) € FUp x (Up N'V3) x (U, NV3) x T x (U), N V3) x (U, NV):
xF(yyoyy) € yhoriyiyy FUL}.

! .
— x’ we can rewrite Xy v, as

Let
H,, ={(t,t") € TpxTy: F)t ! =it F(t') iy centralizes U, NV, and o(FU; NV},)i5 "}
Define an action of Hy, on EV,V/,UO by

@, v 7 0o ) B (PP )™, Pty F (1)~ st troot " tog Lyt T Yyt ).

It extends the action of Tj x T;. We have to show that it is well-defined, i.e., that if
(@, Y1, Y5, T, U1, Y) € vy a,, then the same holds for (¢,¢).(z, y1, 5, 7,47, y5). This reduces
to show that

e F (y5) F(T)F (00) F(yY) € 1 F () tyarioy ys FULE ™ F (1)
Writing y” = y{yy € V), as y’ =: y§yy with y§ € V N FU, and yj € V' N FU,, it suffices
to check that F(t)t~' commutes with v, € U, NVj and that #~LF(¢') = o5 ' F ()t oo
commutes with y§ € V' N FU, . This holds by definition of H,. We thus have proven the
following lemma.

Lemma 3.8. The action of T}, x Ty on ﬁV,V',vo extends to an action of the algebraic group
H,  given by the above formula.

Now returning to the proof Theorem we apply Lemma to our G (= inner form of
GL,), the point y = x;, the diagonal (elliptic unramified) torus T = T of G, the subgroup
U = U’ of unipotent upper triangular matrices and to V.= U, V/ = U, vy = 1, in which
case U, NVy, =1 and 9o(FU, N V;l)ijo_l is contained in Ly for some proper Levi subgroup L
of G, and hence the reductive part H fred of the connected component of Hj is big enough
in the sense of Lemma . Note finally that X1 = Xy,p,1 is a closed subscheme of X 17— 4, (in
fact, on Xy ;- 1, y varies in T, U, U, and ¥ is given by the closed condition y € ']ThUhU;’l).
Let 1 denote the pullback of 3; along iU,U*,l — Xyu-,1- It has the same alternating sum
of cohomology as X, and it is clearly stable under the action of Hj. Thus the argument

~ o~ ~ ~H/O
from [Lus04} 1.9] applies to X1 and we obtain H}(X1) = H}(X1) = H (31) = HF (2] ")
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(and the same for #~! ® @'-isotypic parts), hence verifying (3.5)) in the only remaining case
w = 1. This completes the proof of Theorem [3.1]

4. A VARIATION OF THE MACKEY FORMULA

We work with exactly the same setup and notation as in Section 3| (and in particular
Section [3.1). Recall the presentation (3.2)) of Xj,. Then

Xpw =1{9 €Gy: gL F(g) €U, N FULY,

is a closed perfect subscheme of X}, stable under the action of Gy, x Tj,. In fact, X has a
stratification in locally-closed pieces |CI19b| indexed by divisors r of n/, and Xy, ,,s is precisely
the closed stratum.

Theorem 4.1. Let 0: T, — @@X be a character. Assume that p > n, and that GIT& has trivial
stabilizer in Wg Then

(R O), B (Xa)o), =1 (a)

h
and

(HE (X, B (Xndo) = 1. (b)

h

We prove Theorem [.1]in Sections From Theorems and we deduce:

Corollary 4.2. Under the assumptions of Theorem H}(Xpn)o is up to sign an irre-
ducible representation of G, and H} (X ) = R%?(G)

Remark 4.3. There are two general principles used in the proofs of Theorems [3.1] and

(1) If X is a reasonably nice (perfect) scheme over a field with an action of an algebraic
group H, then the induced action of H in H!(X, Q) is trivial (Vi > 0).
(2) If moreover X is (the perfection of a) quasi-projective scheme over a finite field, H is
a torus, and a: X — X is a finite order automorphism commuting with the H-action,
then tr(a, H(X,Qp)) = tr(a, HX (X, Qy)).
For our purposes, (2) is stronger than (1), which for example does not allow quantitative
results in Section Theorem is less general than Theorem because in its proof we
have to use both (2) and (1), whereas in the proof of Theorem we manage to work with
(2) only.

4.1. Proof Theorem @: multiplicative extension. Parts of the proof follows along
the same lines as the proof of Theorem [3.1] thus we will be slightly sketchy below. Similar
as in [CI18, Lemma 7.12] we have an isomorphism

(U, N FU;) x (U;’l NFU}) — FU,  (g,2) — g 'zF(g).
Thus we have G}, X Th-equivariantly Xj, , = Sh, r/ (U}l NnF [U,ll), where
Sha = {9 € Gr: g7 F(g) € FUL}
and Gy, x Ty, acts on Sp v by g,t: @ — gat, and (U} N FU}) by right multiplication. Hence
H} (X )o =2 Hi(Shw)e- Using Lang’s theorem, we have a T}, x Tj,-equivariant isomorphism
Gr\(Sh X Sp) = Sim) = {(x,2',y) € FU} x FU}L x Gp: zF(y) = ya'}

where Ty, x Tj, acts on Xy, by (,t): (z,2',y) — (tat™ 1 ¢t~ tyt'™1). For w € Wo
let ¥1 )0 = {(x,2",y) € Bany: v € Grut (it is an T}, x Tj-stable locally closed perfect
subscheme) and putting K; = Uy N u')_ltUgw, we let

Sy = L@ 91,7 2,y2) € FU, x U, x Ty, x Ky x Up: 2F(y172ys) € yimvzyeFUL}
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be the Zariski-locally trivial covering of 31 ;) , With T} X Th-action given by the same formula

asin (3.4). Asin Section , we have <R%f (0), HX(Xnn)o)Gn = Dwew, dim Hg(i(l,n),w)%lﬂ'
We claim that
. S 1 ifw=1,
dim Hc (E(l,n),w)e—l,e = . (41)
0 otherwise,

which implies the first formula of Theorem First assume w satisfies the condition in
Lemma . Then ¥ ;) € Xy = & and we are done. Now assume that w = 1. Then

Gh,l =Up - Ty - U;’l, S0
i(l )1 = {(z,2',y1,7,2) € FU, x FU}, x Up, x T}, x Uf’lz rF(y172) € y1722'}

is another a Zariski- locally trivial covering of ¥(1 ,y; (with obvious 7 x Tj-action), so
that H} (Z( n),1)0-1,0) = (2(1 n),1)0-1,0); and we can replace Z(l n),1 by Z(l ny,1- We can
uniquely write z = 2129 with 21 € Uh’l N FUh and z9 € Uh’ N F[Uh and make the change
of variables F(y1) — , 222’ — 2’ (note that the latter works because zo € FU}!), so that
2 (1,n),1 18 isomorphic to

{(z,y1,7,21,22) € FUp xUp, x T}, X (U;’l ﬂFU}_L’l) X (U;’l ﬂFU}l): xF(12129) € lele[U}L}.
The T}, x Tp-action on i(l,n),l is given by

(t,t): (z,y1, T, 21, 22) = (bt L byttt =t gt gt Y.

Let
={(t,t) €Ty x Ty: t 'F(t) =t F(t') centralizes Uy N FU; }.

As in Sections and one can check that H; acts on i(l,n),l by
(t,t): (z,y1, 7, 21, 22) = (F()zF ()Y, F(t)y  F(t) "L trt! =t ot =t 2pt’™1)

(and this action extends the action of T}, x T},). Since U, N FU, is contained in the subgroup
of Gy attached to a proper rational Levi subgroup L C G, it follows that the connected
component HY _, of the reductive part of H is big enough (in the sense of Lemma ,

so that we deduce dim H:(iu’n),l)gflﬁ = 1, and hence (4.1) for w = 1 (this is the same
argument as at the end of Section [3.4).

4.2. Proof Theorem [4.1fa): additive extension. It remains to show (4.1)) for 1 # w €
Wo not satisfying the condition from Lemma [3.5] Assume w is such an element. Let

HL .= {(t,t) € T} x T}: w 't F(t)w = ' " F (') centralizes K} }.
In i(l,n),w make the change of variables zF'(y;) — x, so that
i(l,n),w ={(z,y1,7,2,y2) € FU, x Uy, x T, x K}l x Up: xF(Twz) € leu')zygF([U,llygl)}
with T, x Tp-action given by the same formula as in (3.4). Now
(t,t): (2, 91,7, 2, 42) = (F(O)2F @) F@)y F ()~ trit ™ o™t 2™ F( )y F(E) ™)

defines an action of H] on i(l’n),w. In order to check this we have to show that if (¢,#') € H}
and (x,y1,7,2,y2) € i(l,n),w, then also (¢,t').(z,y1,7,2,92) € i(l,n),w. After elementary
cancellations this reduces to show that

e F (it 1) € y F(t) izt F(t)yyo F() ' F(ULF( )y, "F ()71
But as t' € T}, we have U} F(t')y, ' F(#)~! = Uly, ', so this reduces to show that
rF(riz) € y F(t) izt " F(t )y F (1 U}y, ).
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Again, using ¢’ € T}, we deduce that ¢/~ 'Ulyy 't = Utys ', so (t,').(z, 31,7, 2,y2) € HL.
Via the isomorphism 7}, — UL/Uﬁ mapping a diagonal matrix ¢ = (¢;)_; to its upper left
entry t1, we identify T}, with Uy, /U and T} with Ul/Ur. By Lemma (and the discussion
in Section , the condition that H‘Tﬁ has trivial stabilizer in W5 = (w]°) translates to
the condition that the restriction of 6 to Uj/U" does not factor through any of the norm
maps Ny /s ULjur — U}(nOS/UIh(nOS, where 1 < s < n’ goes through all divisors of n’. Let

Hyy° be the connected component of H} .

Lemma 4.4. If (t,t') varies through (T} x T}) N H.°, then t7't) varies (at least) through
all elements of ker(N,, /,,s) for some divisor 1 < s < n’ of n' (s depends on w).

Before proving this lemma, we use it to finish the proof of Theorem @ Indeed, by
assumption on 6 for each divisor s < n' of n’ there is an element z = x5 € ker N, /, s € Uiljuh
such that 6(zs) # 1. By Lemma we can find a divisor s < n’ of n/ and an element
(t,t') € (T} x T,})HH&;O such that ¢, 't] = x5, and hence (] 't}) # 1. Seeing 0 as a character
of T}l again, this simply means that 6(t) # 6(t'), and it follows that the T}, x T)-character
6~! ® 0 is non-trivial on (T} x T}H) N Hy°. But the induced action of a connected algebraic
group in the cohomology of a separated scheme of finite type over I, is trivial [DL76, Corollary
6.5] and the same holds after perfection, hence for each i > 0 we have Hé(i(lml)’w)g—l,g =0,
which shows claim for all remaining elements w, and hence also Theorem @

Remark 4.5. The basic idea in the above arguments is the same as in [DL76, Lemma 6.7].
This gives hope to generalize them to a far more general setup (e.g. all unramified maximal
tori in all reductive groups).

Towards the proof of Lemma [4.4] for positive integers s, r such that s divides r, we define
morphisms of perfect Fy-schemes

1
Nm,./: W;’l — W;’l r = Nm, / (z) = H o®(z).
=0

Proof of Lemma[{.4] By assumption, w does not satisfy the condition of Lemma Thus
by Lemma there is a proper Levi subgroup L C G, containing T, such that if Ly is
the corresponding subgroup of Gy, we have K;, C L. We may assume L is maximal, so that
there is an 1 < m < n — 1, such that L = GL_ ;~ xGL__  » (upper left and lower right
diagonal blocks). More precisely, we may (and do)’ choose that m to be the 11 from the proof
of Lemma . In fact, by our explicit description of Wep = [, S,y in Section , we see
that as w € W, our choice m = w~!(n) must be an integer dividing ng. Let x = (1, 0—m)
be a cocharacter of T ;. From the explicit form of w determined in Lemma we see that
wX = (Op—m, Ln). Let Yp, € T}, denote the subgroup of T}, corresponding to the subgroup
im(x) of T (thus Yj, = W)). As im(x) centralizes L, Y}, centralizes Lj, and hence also
Kh. Thus
Hy 2 Hy o ={(t,t) €T x Ty i~ "t F(t)w =t F(t') € Y}, },

and the same inclusion holds if we take connected components on both sides. Thus we may
replace Hy, by Hy, . Let (t,t') € T} x T;. Write ¢ = diag(t;)7_; and ¢ = diag(t;)7_, with
ti, 1) € W;’l. Let x be a W;’l—“coordinate” on Yflux (it is an (h — 1)-tuple of Al-coordinates).
We can eliminate all “coordinates” t; (i # n) and t; (i # m) by expressing them through x
and t,,, t),. More precisely,

Hy o =A@t 1)) € WOt x WOl x WOt o™ ()t = Ny, (2) = o™ (8, )t '}
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We see that on Htlvw
finitely many values. On H&f;{ we must in particular have ¢, =t/ . or equivalently (using the

expression of t1, t| through ¢,, t/ ) we have

oM (t) =t (4.2)

the equation o(t; 't/ ) = ¢, 't/ holds, so that t; 't/ can take only

on HyS. Furthermore, Hy5 is contained in the perfect scheme (isomorphic to)

{(@,tn) € W Withe o™ (tn)t;, " = Ningy ()}
Nowlet 1 < g = ged(m,n) < n. Aso™(t,)t,! = Nmn/l(a(tn)tgl) = Nmg; (Nmy, /4 (o (tn)t, 1)),
and Nmm/l(x) = ng/l(Nmm/g(x)), we have ng/l(Nmn/g(a(tn)t;I) Nmm/g(x)_l) =1on

this scheme, and hence Nm,, /;(o(t5)t;, ) Nmy, /o (z) ! is discrete on it. Hence HyS, is con-
tained in the perfect scheme (isomorphic to)

{(z,tn) € W}fJ x W;J: Nmn/g(g(tn)t;l) = Nmm/g(x)}'

After replacing o by ¢9, Lemma shows that this last perfect F,-scheme is connected, so
that it is equal to H,}}c;( On Hy, ., t1 = o(ty), so that (after replacing o(x) by = which is
harmless here), we have

HYS = {(z,t1) € WoN x W)l Nmy, o (o(t1)t7") = Nm,, ()}
Now Hq}uic N (T x T}) is the locus in Hq}uic defined by z = 1. Thus we deduce

HyS O (Ty x Tp) ={(t,¢)) € Ty x Ty t = 0" ™ (t1) and Nm,, (o (t1)t; ") =1}

(recall that in T}, ¢ is determined by its first entry ¢1). Note that Nmn/g(a(tl)tfl) =1
simply means that Nm,, /(t1) is o-stable. As m is divisible by ng, Tj; = W;’l(ﬂ?qn) =Ut/Uk

and the restriction of Nm,, /, to T} = Ui/Ug is N;, /4, the lemma now follows from Lemma

(4.6l O
Lemma 4.6. Suppose (n,p) =1. Let 1 <m <n—1 and put g = ged(n,m). Let

a: {y € Up/UL: Nyyly) € U /Uiy = UL/UE,  y = 0" (y)y ™
Then im(a) = ker(N,,/,: UL /U — U[l(q/U[}éq).

Proof. For arbitrary a € Z we have

Nojg() € Uk /Upe = Ny g (0“()y™") = 0Ny g (1)) Ny () ™ = 1= 0% (y)y ™" € ker(N,, ).

Hence im(a) C ker(N,,/4). Let y € ker(a). Then N, /,(y) is rational and 0"~ (y) = y and
0"(y) = y. Thelast two equalities together are equivalent to 09 (y) = y. Hence N,, /4 (y) = %y,
and hence y is rational (as N,,/4(y) is, and (n,p) = 1). Conversely, if y is rational, then
surely y € ker(a). Thus ker(a) = UL /URL. Now the source of « is the preimage under the
(surjective) map N, /,: Up /U — U}(Q/U[}ég of Uk /UL, hence the size of the source of « is
#ker(N, /o) - #(Uk /UL). Thus #im(a) = #source of o) _ #ker(N,, /). As we already know

# ker(a)
that im(a) C ker(N,,/4) and both sets are finite, we are done. O

For positive integer s define the Fy-morphism
s—1 ]
trs1: Go = Ga, T+ trg)(2) = qul.
i=0

Lemma 4.7. Letr > s > 1 be coprime integers. Suppose p > s. The closed perfect subscheme
Ry = {(y,2) € W,;"' x Wy s Nm, 1 (0(y)y ") = Nmy 1 (2)}
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OfW;’l ><Y\7V;’1 s connected. More precisely, for h > 2 the fibers of Ry, — Rp_1 are isomorphic
to Al (note that Ry is a point).

Proof. Tt suffices to prove that the fibers of Ry, — Rj_1 are isomorphic to Al. The fibers of
Ry, — Ryj,_1 are isomorphic to closed sub-(perfect schemes) of G2 (with coordinates X,Y)
given by the equation
C: tr, ) (Y =Y) = trg )1 (X) + const.

where const is a constant term depending on the point in Rp,_1. As tr, 1 (Y?-Y) = Y -V,
one can eliminate this constant term by changing the variable Y 4 ¢ — Y (for an appropriate
c € F,). So we assume const = 0. We may assume s > 1, as otherwise we obviously have C' &
Al Put rg :=r, 71 := s and define 7; € Z>q (i > 2), v € Z=o (i > 1) by ri = Yig17it1 + Tit2
and 749 < 141 for @ > 0. Say this stops at i = «a, that is rq41 = ged(r,s) = 1, 7442 = 0.

Via the change of variables X + Y7 "

Cr: trrl/l(X) = tl"m/l(yq -Y).

—Y — X, C is isomorphic to the curve

Now trm/l(Yq —Y) =Y9? Y, so that we can successively make a series of changes of

variables of the form Y + X% Y for appropriate 8 € Z>o, to eliminate all powers of X
with exponent greater than ¢"2. This shows that C is isomorphic to the curve

Cy: trrg/l(X) + 72 trrg/l(X) = trrz/l(Yq - Y)

Now we successively apply the perfection of Lemma to (2 and the initial tuple of in-
tegers (a1,b1,c1,d1) = (1,72,73,72). Consider the operation (a,b,c,d) — (b,a + by,r,c)
on quadruples of integers (satisfying 0 < ¢ < d) where 0 < r < d and v > 0 are de-
fined by d = ~vc+ r. First of all, if a,b > 0, then also b,a + by > 0. Moreover, the
operation leaves invariant the sum of products of 1st and 3rd and of 2nd and 4th entries:
ac+bd = br+(a+by)e. Thusif (a;, b;, ¢, d;) is the tuple after (i —1)th iteration step, we have
a;C; +bid; = r3+yre =11 = s < p. Also we have ¢; = rjy9, d; = rj11, and hence 0 < ¢; < d;
as long as i < a — 1. All this implies that 0 < a;,b;,¢;,d; < p and 0 < ¢; < d; for each
i=1,2,...,a—1, so that Lemma [4.§|indeed applies in each step, as long as i < a. The last
application (for i = a—1) produces a quadruple (aq, by, Ca, da) = (ba—1, aa—1+ba—1da—1,0,1)
and (Y is thus isomorphic to the curve

bo X = Y9,

and by the same preservation property of the sum ac+ bd we have that still 0 < b, < p holds.
Thus this curve is isomorphic to A% , and we are done. ([
q

The following lemma works for schemes of finite type over F,, so we denote (in this lemma
only) by A, the usual affine space over [F,.

Lemma 4.8. Let a,b,c,d be positive integers with a,b < p and ¢ < d. Write d = yc+ r with
0 <r <c¢. Then the curve in A]QFP given by the equation

Cy i atrey(w) +btrg(z) = trgn (y? —y)
15 Fp-isomorphic to the curve in A]ZFP given by the equation
Ca: btry )i (z) + (a +by) tre)i () = tre (y? — y)-

Proof. Make the change of variables z+b~!(y? —y) +— z (by assumption b < p, as 0 < ¢ < d).
Thus €' is isomorphic to the curve

Cy:atrey(z) + ab™! tre,1(y? —y) + btrg/ (v) = 0.
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Via the change of variables —a~lby ~ y, C] gets isomorphic to
O atrep(x) + btrg/ (z) = trep (y? —y).

We have trq, (y? —y) = yqd —y. Thus we may successively make the changes of variables
of the form y + 29" (for appropriate a € Z>), to eliminate all powers of z with exponent
greater than ¢°. This does not affect the first summand a tr./; (z) and after all these changes
O gets isomorphic to the curve

Ci// : atrc/l(x) + b(wtrc/l(x) + trr/l(x» = tI‘c/l<yq - y),

which is the same as Cs. O

4.3. Proof Theorem @ Again, we work in the setup of Section For w € Wp put
f)(nm)’w = {(z,y1,7,2,9y2) € F[U}LXFIU}LXUthth}Lth: zF(y11wz) € leu')zygF([U}LyQ_l)},
and

f](n’n)’l = {(x,2",y1,7,2) € FIU,I1 X FU}Z x Uy, x T}, x U;’l: xF(y172) = y1722'}

with natural Tj, x Tp-actions (like in Section . Similar as in the beginning of Section
it suffices to check that

HE (S (nmyw)o19=0 for1#we Wo, and
dim H} (S 0,1)0-1,0 = 1.
First consider the case w # 1. As z € F[U}l and y; varies in Uy, we can not make the change
of variables zF(y1) — x as in the proof of Theorem {.1{[a)). However we can define an action

of H&) on i(n,n),w by

t,t): (@,y1,7,2,92)
(F(t)zF(y))F@) ' F(F)y; "F() ™), FOy F ()~ trit ™ ¢zt~ P )y F(E) ™)

Note that F(t)zF(y1)F(t)" *F(F(t)y; 'F(t)~') € FU} (on the one side it is contained in
FUy, as x, F(y1) € FUp; on the other side it must lie in G} as t,z € G}). The proof that this
indeed is an action goes exactly the same way as in Section The rest of the argument
for i(l,n),w goes then through exactly as for i(l,n),w in Sectio.

Now let w = 1. As z,2/,2z € G}L, the equation defining i(n,n)’l modulo (G,ll reduces to
F(y17) = y17. From this it easily follows that y; € G}. Hence y; € U}. Hence the change
of variables zF (y;) — x makes sense (such that the new variable x again lives in FU} ), and

the rest of the argument for X, ,,) 1 goes exactly the same way as for ¥y )1 in Section .

5. CUSPIDALITY

We go back to the setup of Section . Let 6 be a smooth character of T = L™ of level
h > 1 in general position. Recall that the induced character of T}, is again denoted by 0,
and that it is also in general position. By Corollary , R%h(e) is up to sign an irreducible
Go-representation, hence in particular R(T; (f) is up to sign a genuine representation. We
write ]R%? (0)| resp. |R$(0)] for the genuine representation among iR%f”(G) resp. +RSG(6).

Theorem 5.1. Let 6 be a smooth character of T = L* in general position. Then |R%(0)] is
a finite direct sum of irreducible supercuspidal representations of G.
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Proof. There are many (essentially equivalent) ways to deduce this theorem from Proposi-
tion By [Bus90, Theorem 1] it suffices to prove that =y := Ind%’éO |R:CF": (0)| is admis-
sible. Let K C G be a compact open subgroup. We have to show that (Z¢)X is finite-
dimensional. Conjugating K into Gp and making it smaller if necessary, we may assume
that K = ker(Gp — G,) for some r > 0. Frobenius reciprocity gives

E)= D RGP
geGoZ\G/K
Thus we have to show that there are only finitely many non-vanishing summands on the right.
If S denotes a maximal split torus of G whose apartment in Zx(G) = %’? contains the
vertex stabilized by G, then by the rational Iwahori-Bruhat decomposition, ZGp\G/Go =
X«(S/Z)gom- Hence any element of ZG»\G/K has a representative of the form g = wz with
€ Go, it € X«(S)dom. Now K is normal in Gp, so gKg~*
Moreover, any coset ZGow*G o contains only finitely many cosets from ZGp\G/K. Thus it
suffices to show that for all but finitely many p € X.(70/Z)dom, |R%f(6)\ZG@mw“Kw7” = 0.
It is easy to see that for all but finitely many such p, there is a proper K-rational parabolic
subgroup G with unipotent radical N, such that if N = N(K), then NN Gp C wlKw *.
Thus it is enough to show that for each such N we have |R%f(9)\NmG@ = 0. As by Corollary
, |R%f 0)| = iR%f(G) is a genuine representation, it suffices to show that R%f ()NNGo —
0 (we have the natural map of Grothendieck groups of smooth representations with Q-
coefficients r: Ko(Go) — Ko(N N Gp) induced by restriction, and R%’f (9)N"Go = 0 means

<1,T(R%:L(9))> = 0, where 1 is the trivial representation). This follows from Proposition

b.2 O

= wlKw™" only depends on u.

Proposition 5.2. Let N be the unipotent radical of a proper K-rational parabolic subgroup
of G. Then
G NNG
Ry (6)M1%0 = 0.

We prove Proposition in Section in the case k = 0, and in Section in general.
The proof in the general case is more technical, but follows exactly the same idea as in the
special case k = 0. For reasons of clarity we explain the special case first.

The explicit description in Lemma used in the proof of Proposition is — to the
author’s knowledge — already new for classical Deligne—Lusztig varieties, i.e., when h = 1
(and k = 0). In particular, for the Coxeter-type variety for GL,, r, it gives an alternative and
much more direct proof of the cuspidality result for Coxeter-type varieties [DL76, Theorem
8.3], which is the last statement of the following corollary to Proposition .

Corollary 5.3. Let n > 1, and let X be a Deligne—Lusztig variety of Cozeter type at-
tached to GL,r,. Let 0 be an arbitrary character of Ty = F;n, the corresponding GLy,(Fy)-
representation R(0) realized in the cohomology of X, satisfies R(0)NFa) =0, for any unipo-
tent radical N of a proper rational parabolic subgroup of GL,. In particular, if 0 is in general
position, the genuine GL,,(IF,)-representation |R(0)| is irreducible cuspidal.

Remark 5.4. The proof of Proposition is based on the key lemmas [5.6] where the
quotient Nj\X}, is determined. If X, denotes the quotient of X, by the Tj-action, then
(the cohomology of) Nj,\ X}, can probably be computed in big generality by same methods
as in [Lus76, (2.10)] (where Coxeter-type Deligne-Lusztig varieties in the flag manifold for
a reductive group G over F, are studied, in particular h = 1). Proofs of Lemmas ,
suggest that the quotients Nj,\ X} are harder to understand than Nj\ Xp,.
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For h =1 and G arbitrary reductive group over Fy, a quotient similar to N,\ X}, appears
in [BRO6, Section 3.2, [Dud13| and a couple of related articles. The methods used in [BRO6|
are indirect in the sense that the structure of the tame fundamental group of the multiplicative
group Gqu is used. In our situation these methods would only apply in the case h = 1,

because for h > 1 the natural covering X, — X, is wildly ramified.

5.1. Proof of Proposition for k = 0. For N to have a convenient form, we take
b = 1. We also take w; to be the element by as in . Then literally G = GL,(K),
Go = GL,(0Ok) and Gy = GL,(Ok/(w")). Let Nj denote the image of N N Gp in Gy,
We can assume that N is the unipotent radical of a mazimal proper parabolic subgroup.
Moreover, conjugating N if necessary, we may assume that there is an 1 < ig <n — 1, such
that IV consists of matrices u = (Uij)lgi,jgn with u; = 1V1 <7 <n, and u;; = 0 unless 1 = j
or (1<i<ipandn—ip<j<n). As the actions of G and T}, on X} commute, we have
Ry (6)h = HE(Xp)y" = HZ (Ni\Xp)s.

We introduce some convenient notation. For > 1, and an r x r-matrix g, let |g| := det g.
For z = (z;)7_; € Wj(R)", write g,(z) for the r x r-matrix whose ith column is o*~*(z).
Also we put

Yo = {o € W |go(a)| € W),
This is a functor on Perfp , which is represented by an affine perfectly finitely presented

perfect F,-scheme. The description of X} in [CI18| 7.2| says precisely that X; C Y}, } is a
closed subset defined by the condition o(|g,(z)]) = (—1)" Y gn(z)].

Lemma 5.5. The quotient Np\ X}, exists as a perfect scheme, and X;, — Np\Xj is finite
étale.

Proof. X}, is affine and Nj, finite, so the quotient exists. As the action has no fixed points
the last claim also follows. O

Lemma 5.6. There is an isomorphism of perfect schemes

o Nh\Xh — (m,iL’l) S 1/1'07}1 X Yn—io,h: ‘gio (m)J071 - € W; (Fq) ,
[ () [== 7
induced by x = ()7, — ((my(x))1,, (Ti)f—iy11), where m;(z) is the (n—ip+1) x (n—ig+1)-
minor of gn(x) given by

x; olz;)) ... o0 (x)

Tig+1 O(Tigr1) - 0" (Tig41)

mi(z) == |Tig+2  0(Tigr2) ... 0" (Tig42)
Tn, olxn) ... o0 (xy)

Proof. 1t is clear that the assignment in the lemma defines an Nj-equivariant morphism
X — (Wp) x (Wp)"% (with trivial Nj-action on the right). Thus it induces a map
Nh\Xh — (Wh)io X (Whyl*io.

A standard argument shows that for z = (z;)!; € X,(R) with corresponding 2’ =
(7i)i—jyr1 and m = (mi(x))™ |, one has that g,_;,(z') € W, (R) (see e.g. [CI18, Lemma
6.13]). This combined with Lemma below, shows that we also have |g;,(m)| € W} (R).
Thus (using Lemma again), we see that « is well-defined.

To prove the lemma, it now suffices to check that « is an isomorphism of étale sheaves on
Perqu. First we check that as a map of étale sheaves, « is surjective. Let R € Perfﬁq. Let
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Z denote the target of a, and let m = (m;)2, 2’ = (2})i—;,+1 be a element of Z(R). We
construct a preimage = (z;)7_; € X, (R’) for some étale R-algebra R'. Take z; = z for
ip +1 < i < n. Now, we can find an (finite) étale R-algebra R’, and for each 1 < i < i, an

i = Y120 [xij]w? € Wy (R) such that

n—ig
my =mi@) = > (=1)F 0" (@) - [gn—io ik (2)]; (5.1)
k=0
holds in Wy, (R'), where g, x(z") denotes the (n —ip) x (n — ip)-matrix whose columns are
' o(x),.. .,af(:r\’), ...,0" (") (here ~ means that the vector - is omitted). Indeed, note
that for £ = n — ig and for £ = 0, we have

’gn—io,n—io (‘T/)| = ‘gn—io,o(x/)‘ = ‘gn—io ($/)| € W}T (FQ) (52)

Thus, fixing an ¢, and proceeding successively for j = 0,1,...,h—1, we can take modulo
@’ T and resolve it for z; j, noting that each time to find a solution we need a (finite) étale
extension of R. Thus « is an epimorphism of étale sheaves.

By Lemma it remains to show that a(R): (Np\Xp)(R) — Z(R) is injective whenever
R is an algebraically closed field. With notation as above, for a fixed 1 < ¢ < 4y and
Ti05 i1, -+ -5 Tij—1, Equation gives an equation for x;; of degree precisely q" " (by
(5-2)), which is separable (by again). Doing this for each 1 < i < ipand 0 < j < h,
we obtain precisely ¢ (") pogsible values for z = (i), € Wy(R)™ which map to the
given point (m,z’) € Z(R). By Lemma all those z automatically lie in X, (R). This
shows that each fiber of the composition of Xp,(R) — (Np\Xn)(R) with a(R) has precisely
gio(n—io)h — LN, points, i.e., that a(R) is injective. The lemma is proven. O

Lemma 5.7. Letn > 2,1 < iy <n—1. For an Fy-algebra R and x = (x;)]1 € Y, n(R), let
m = (mi(z))iLy € Yipn(R), 2" = (xi)iliy 11 € Yaion(R). Then

1910 ()] = [9n(2)] - [gn—ig (/) [Z21 (5.3)

Proof. For v = (v;)j_; € Y, p(R), and 1 <4 < r, let o) = (vj)j=1,j2i € Yr—1,n(R) denote
the vector v with i-th coordinate omitted. The claim is tautological for ig = 1 (in particular,
we may assume 1 > 2). We use induction on ig. Expanding along the first column and using
the induction hypothesis (for n — 1,39 — 1), we get

) 0 i0—2

gio(m)| = > (=1 mio (Igio-1m)1) = S (=1 mior | lgn-1 @)~ T o7 (1gn-ia(a"))
j=1

i=1 i=1
To show that this equals the right hand side of (5.3)) it suffices to show that
10

S0 mio (Jgn1 (D)) = lon@) - o (1ga-io()) (54)

i=1
This follows from a classical minor identity of Turnbull [Tur09]. We use the more modern
source [Lec93|. Let us first recall some notation from |[Lec93|. Let S be a ring (commutative,
with 1). For 1 < ¢ < n, let a;,b; € S™. Then the 2 x n-tableau

7|00 . an| g
b1 by ... b,

is the product of the determinants of the two n x n-matrices A and B, where the i-th column
of A resp. B is a; resp. b;. Similarly one defines an s x n-tableau for each positive integer
s. The entries of the tableau are the elements a;, b;. More generally we need tableaux with
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boxes containing some of the entries. Let T be a s x n-tableau, let A be a subset of elements
of T. For a permutation o of elements of A, let o(7T") denote the tableau obtained from T,
where the elements of A were permuted by o. Then the tableau 7 = (T with boxes around
entries in A) is defined as the alternating sum ) _sgn(o)o(7'), where the sum is taken over
the cosets of the symmetric group on A, modulo the subgroup, which leaves unchanged the
rows of T. We give an example for n =4, s = 2:

a2 az a4 | _ | a1 G2 a3 a4 b3 as as ag by as as ag
bl b2 bl b2 b3 b4 bl bg aj b4 b1 bQ bg ay

To continue with our proof, we take S = Wy(R). For 1 < i <n, let i = (0;—1,1,0,—;) €
Wr(R)™ denote the i-th coordinate vector. An easy computation shows that

10

190()] - (19— ()]) = Y= mio (Jga-1(2)]) = = - bd o) .. " (e
i=1 o(z) e o™ (x)

With other words, to show ([5.4)) it suffices to show that the tableau on the right side vanishes.
Towards this we have
n—1i n—1i
o fio) () ... o™ (x) | _ |[] - fiol lo(z)] ... o™ (2)]| _
o(x) e o H(x) @ o(x) e o (z)

5]

Here the first equality is immediate from the definition of a tableau with boxes and the fact
that the entries o(x),...,0" % (x) appear in the second row, and the second equality is an
application of Turnbull’s identity [Tur09| (see [Lec93| Proposition 1.2.2(i)]), which claims that
if the number k of boxed entries satisfies k£ > n, then the tableau vanishes. Indeed, viewed as
a function on the boxed entries the tableau is a linear alternating (not only skew-symmetric
as stated in the proof of [Lec93, Proposition 1.2.2(i)|) form on S™ in k variables, which must
therefore vanish, as AgM = 0 for any finitely generated S-module M which can be generated
by n elements (in loc. cit. the proof is only formulated when S is a field, but it generalizes
to all rings). O

We continue with the proof of Proposition for k = 0. The group anﬁq acts on
Yvig,h X Ynfio,h by
(t1,72): (y,2) — (T1y, T22). (5.5)
(here Ty = (lei)éozl means entry-wise multiplication, and similarly for z). This action
restricts to an action of the closed subgroup

Ziofl ; [ io—1 2t o’
Hy:={ (11,72) € G2,: 77777° < H O’Z<Tg)> =1
=0

on ao(Np\Xp), where ag is as in Lemma By Lemma ap induces an isomorphism
on étale cohomology. Now H is 1-dimensional, hence its connected component H® is a 1-
dimensional torus. Therefore the projection of H® to at least one of the G,,-factors of the
ambient group G2, is non-constant, hence surjective. Hence ag(Ny\Xp,)H" = @.

The action of Tp, = W/ (F4n) on X} induces an action on Nj\Xj, which under o is
compatible with the Tj-action on ag(Ny\X}p) given by t: (m,z') — (m - ]_[20;01 ol (t),x' - t)
(both products mean scalar multiplication). This action of T}, commutes with the above action
of Hy on a(Np\X}p). The explicit description in Lemma also shows that ag(Ny\Xp) is
affine. Thus the Tj-equivariant version of the well-known result [DM91], 10.15 Proposition]
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gives
dimg, HZ (Np\Xp)o = dimg H*(ao(Nh\Xh) “)o =0.
This finishes the proof of Proposition [5.2]in the case k = 0.

5.2. Proof of Proposition for arbitrary k. Let k be arbitrary. Let ¢ := (171271 %)ko,
and for r > 1 let b, := €D, c be the block-diagonal nor x nor-matrix with blocks equal to
c. Let b = b, (it is the special representative corresponding to x,n as in [CI18, §5.2.2]).
Let w = boty,, be as in . We have then the corresponding groups G, Gp, T, Gy, ...
as in Section 2.I] A maximal rational parabolic subgroup of G is determined by an integer
1 <1y < n'—1. Its unipotent radical N consists of matrices (A;;)1<; j<n’ Where each A;j is a
no X no-matrix, and A;; = 1y, Aij = 0, unless i = j or (1 <7 <ijpand n'—ip+1 < j <n). Let
I denote an integer which modulo ng is the multiplicative inverse of ky. Moreover, for a € Z
define [a],, € Z by the requirement that 1 < [a],, < ng and [a],, = a mod ng. The subgroup
Np, of G}, corresponding to IN (see Section consists of n X n-matrices of the same shape,
where now each of the ng x ng-blocks A;; with 1 <7 <'ig and n' —i9+1 < j < nis of the form

St e [ Jc>‘ diag(ay, om0 (ay), om0 (ay), . .., om0~ Dlno (ay)) with ag € Wy, (Fyno ) and
ax € Wy_1(Fyno) for A > 0. In particular, #Nj, = gro(rtmo=1)(h=1))io(n"~i0)

Let r > landlet Zy, ,p = {(2:);2]: @ € W, if i =1 mod ng and x; € Wj_; otherwise}.
This is a affine, perfectly finitely presented perfect IF,-scheme. For a perfect F;-algebra R and

-1k .
& € Zpyrn(R)let gnyr(z) denote the norxngr-matrix whose i-th column is _— * (byo) ()
(the entries of g, () are either in Wy (R) or in W;,_;(R) or in wWj,_1(R) € Wy(R)). The
determinant |gn, ()| of gngyr(z) is a well-defined element of Wy, (R). Let

Ynoﬂ",h - {JZ S Znomh: ‘gnoﬂ"(x)‘ € W;;}

The description of X}, in [CI18| 7.2| says precisely that X;, C Y}, . 4 is the subset defined by
the closed condition that o(|gny . (2)]) = (=1)" " gng.n ().

To simplify notation we write s := ngig from now on. For z € X, and 1 <1 < s, let m;(z)
denote the (n —s+1) x (n — s+ 1)-minor obtained from g, »/(x) by removing all rows except
for the i-th and s + 1,s + 2,...,n-th and all but the first n — s + 1 columns. Then m;(x)
makes sense as an element of Wy, resp. of Wy_1 if i =1 mod ng resp. if ¢ Z 1 mod ny.
Thus (m;(x));_y € Zng.ig,h- The analog of Lemmafor Np\ X}, holds with the same proof.
We have the following generalization of Lemma

Lemma 5.8. The assignment x = (x;)j_; € Xp, = m = (my(x))i_,, 2" = (i), induces
an isomorphism of perfect schemes,

o (m
o Np\Xp — {(m,az’) € Yogigh X Yng,n/—ig sk 2)j|5.1 o < Wy (Fq)} :
| g —io (@) ==

Proof. Using the description of Nj given above, one checks that m;(x) is stable under the
Np-action on X;. Now the proof proceeds in a completely analogous fashion to the proof of
Lemma [5.6| (with Lemma [5.7| replaced by its generalization Lemma [5.9)). O

Lemma 5.9. Let n > 2, 1 < iyp < n— 1. For a perfect Fy-algebra R and x = (x;)]", €
Yoo h(R), we have m = (m;(x))i_y € Yoy ign(R), z’ = (:Ui)?:ingl € Yngn/—io,h(R) and

io=1 _j
|gno,io (m)‘ = ‘gno,n’ (J,‘)‘ ’ |gn0,n’—io ($/)|Zj:1 ’ (56)

Proof. 1t is known that for z € Y, v 1(R), we have 2’ € Y,,; v—i; n(R) (see [CI18, Lemma
6.13]). Thus the similar claim for m follows, once (5.6)) is shown. To show (5.6) we first
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notice that all entries of gp,,(m) (and not only those in the first column) are in fact (n —
s+ 1) x (n — s+ 1)-minors of g, (). More precisely, for 1 < 4,5 < s the (4, )-th entry
of Gng,io(m) is the minor of gy, ,/(x) obtained by removing all columns except those with
numbers 7,5+ 1,...,7+n — s, and all rows except those with numbers ¢,s,s+1,...,n. Let
X; denote the i-th row of g, ,v(2). Let also a denote the a-th standard basis vector of a free
rank n module (over an arbitrary ring). Using the formalism of tableaux with boxes (as in
the proof of Lemma [5.7), but now for the rows of g, (), we can express [gn,,i,(m)| as the
s x n-tableau with boxes:

(X1 Xo41 Xoyo ... X, n—-s+2n—-s+3 n
1 Xs+1 Xs2 ... Xpo1 X, mn—s+2n-s+3 n
1 2 X1 X1 X, n-s+2n-s+3 ... n
1 2 s—2 X5,1 X5+1 XS+2 Xn,1 Xn n
1 2 s—1 X5+1 Xn,1 Xn
As each of the entries X1, Xs19,..., X, appears in each row of this tableau, it is equal to
XS“ Xsyo ... X, n—s+2n—-s+3 n
1 Xsy1 Xsyo ... Xpa Xn n-s+2n—-s+3 n
1 2 Xe11 Xn_1 X, n-s+2n-s+3 ... n
1 2 e s—2 Xs—l Xs—i—l X5+2 e Xn—l Xn n
1 2 s—1 Xs—i—l Xn—l

Apply (second) Turnbull’s identity [Lec93, Proposition 1.2.2(ii)] to the last row of this tableau,
deducing that it is equal to

1] Xei1 Xeg2 ... X, n—s+2n—-s+3 n
1 Xor1 Xsyo .. Xpa Xn n-s+2n—s+3 n
1 2 Xot1 Xn_1 X5 n-s+2n-s+3 ... n
1 2 s—2[s—1 Xs+1 X5+2 Xn—l Xn n
X1 Xo X1 X, Xst1 Xn1 Xy

Here all boxes can be removed without changing the value of the tableau, as any non-trivial
permutation produces a zero s X n-tableau (as at least one row will contain two equal entries
and hence be equal to 0). The resulting tableau (without boxes) is precisely the right hand

side of (5.6). O

Remark 5.10. In the proof of Lemma , the fact that the entries of gy, i,(m) are certain
minors of gn, () can be shown by a somewhat tedious but straightforward calculation,
which we omit here. To illustrate the principle, we give an example. Let n = 9, Kk = 6, so
that n’ =3, ng = 3, kg = 2. Let iy = 2. We have the two minors of g, (),

o wogxgg 025:(“)) UzEwQ; wogxgg wozgzgg J:Exlg woigajgg

| z7 wo(z8) wo?(wg) o (z7 . | wo(zs) wo?(xg) o°(z7) wo(zs
ma = xg wo(rg) o?(z7) o(xs) and M= wo(xg) o%(w7) o3(ws) wol(zg)
zo o(z7) o2(zs) o3(x9) o(er) o*(xs) o*(zg) ot(x7)

the first corresponding to rows 2,7,8,9 and columuns 1,2, 3,4, and the second corresponding
to rows 1,7,8,9 and 2,3,4,5. The first of these minors is by definition the (2,1)-entry of



30 CHARLOTTE CHAN AND ALEXANDER B. IVANOV

Gno,io(m), and the fact mentioned above claims that the second minor is equal to the (1,2)-
entry of gn,.i,(m), that is, to wo(ms) € wWp_1 C W),. First, M makes sense as an element
of wWy_1. To compute it, we may lift its entries to elements in W, where we can multiply
rows and columns by powers of w, to see that

’WO'ELUQ; wzazgacg; waié:mi woigxgg UELL’Q; WUZE$3; crzg:m; aigacg;

2| wo(xs) w?0?(x9) wod(x7) wot(xs) | o(xg) wo?(xg) o3(x7) o*(zs)|

M =@ o(ag) wo2(er) wo(en) wod(an) | = T | o(wo) oP(@r) oi(as) od(as) |~ TOM2)
o(z7) wo?(xg) wo3(zg) o*(x7) o(x7) wo?(zs) wod(zg) ot (x7)

(after reducing modulo w"W), as claimed.

We continue with the proof of Proposition|5.2l The group (anﬁq acts on Yy, o h X Yo n—io,h
by the same formula as in (5.5)). This action restricts to an action of the closed subgroup

s—1 O'j

s—1 n—s—1 A Zj:l
H,:={ (1, ™) €G3, : lejzog ( H a’(m)) =1
i=0
on Np\Xp = ax(Np\X}), where «, is as Lemma . Now H is 1-dimensional, hence its
connected component H® is a 1-dimensional torus. The rest of the argument is exactly as at
the end of Section [5.1] Proposition is now proven.

6. REVIEW OF SOME REPRESENTATION THEORY

We fix an isomorphism Q, = C and use it to identify the isomorphism classes of smooth
complex with smooth Q-representations of all involved groups. For a finite dimensional
(complex or Q,-) representation p of a group, we denote by deg(p) the degree of p.

6.1. Square-integrable representations. We recall some well-known results about square-
integrable representations of p-adic reductive groups due to Harish-Chandra. For a detailed
treatment we refer to [HC70| (see also |[Car79]).

In this section let G be an arbitrary reductive group over K and G = G(K). Let Z be the
(K-valued points of) the maximal split torus contained in the center of G. Let ¢: Z — @Z
be a unitary character of Z. We fix now an invariant Haar measure on G/Z (recall that G
is unimodular). We work with complex-valued representations of G. Let & (G, ) denote
the set of equivalence classes of irreducible unitary representations (m, V') of G, which have
central character 1) and satisfy

/ |(u, Tr(g)v)|2d§ < 400 (6.1)
G/z

where (-,-) denotes the scalar product in the Hilbert space V' (the integral makes sense as
1 is unitary). These are the square-integrable representations with central character x. All
irreducible supercuspidal representations with unitary central character are square-integrable
[HCT70, §3].

For a given 7 € &5(G, 1), the integral is equal to d(, dg)|u|?|v|?, where the constant
d(m,dg) > 0 is independent of u,v (and thus only depends on 7 and the chosen measure
dg). The constant d(m,dg) is called the formal degree of m (with respect to dg). Let H
be a compact open subgroup of G. If dg,dg’ are two invariant Haar measures on G, then
d(m,dg)vol(HZ/Z,dg) = d(w,dg')vol(HZ/Z,dg'). Moreover, if m € &(G, ) is of the form
7 = cInd$; 7 for an (automatically finite-dimensional) representation 7 on which Z acts by
the character 1, then d(m,dg)vol(HZ/Z,dg) = deg T (cf. [Car79, 1.6]).
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For any m € &(G, 1) and a smooth irreducible representation p of H, let (7 : p) denote
the multiplicity of p in the restriction of m to H. We need the following estimate due to
Harish-Chandra.

Theorem 6.1 (see [HC70, p.6]). Given H, p as above, let m € &(G, ). Then

" d(w,dg)vol(HZ/Z,dg)(r : p) < degp. (6.2)
TES (G )

6.2. Traces on elliptic elements. For the moment keep the assumptions of Section
(in particular, G is arbitrary reductive). Let H(G) denote the convolution algebra of locally
constant compactly supported functions on G. Fix a Haar measure dg on G. For any
smooth G-representation (m,V), #(G) acts in V by w(f)v = [, f(g9)7(g)vdg for all v € V,
f € H(G). If 7 is admissible, then 7(f) has finite dimensional range, and hence a trace.
Let G"*%*° denote the set of regular semi-simple elements of G. It is open dense in G. The
following result due to Harish-Chandra and Lemaire ensures the existence of a trace of a
finite length G-representation on regular semisimple elements of G.

Theorem 6.2 (see [Hen06, Theorem 1|). Let w be a finite length (hence admissible) smooth
representation of G. Then there is a unique (hence invariant under conjugation) locally
constant function tr(m,-) on G** of G, locally integrable on G, such that for oll f € H(G),

one has trw(f) = [, tr(m, g)f(g)dg.

Now assume again, that G = G(K) for an inner form G of GL,. For g € G, let P(g)
denote the reduced characteristic polynomial of g. Two elements of g1,g2 € G are
conjugate in G if and only if P(g1) = P(g2). All said above applies to GL,(K) as a special
case. Moreover, for an elements g € G there is a unique up to conjugation element
g € GL,(K)™&* such that P(g;) = P(g2). This has a partial converse. Let Gl C Gre&s
denote the (open) subset of elliptic elements. For any ¢’ € GL,, (K)®! there is a unique up to
conjugation g € G with the same (reduced) characteristic polynomial. The local Jacquet—
Langlands correspondence is then the following result, which in its most general form is due
to Deligne-Kazhdan—Vigneras [DKV84| and Badulescu [Bad02].

Theorem 6.3 (see [Hen06, Theorem 2]). There is a unique bijection ' <» m = JL(n") between
the sets of 2?(G) and @/*(GL,(K)) of smooth irreducible square-integrable representations
of GL,(K) and G, such that tr(w, g) = (=1)" " tr(«’, ¢') whenever g € GV, ¢ € GL,,(K)"
with P(g) = P(¢).

Now we recall a result from [CI18]. An (elliptic) element x € T = L* is called very
regular, if € OF and the image of « in the residue field Op/py = F4» has trivial stabilizer
in Gal(L/K). This definition does not depend on the choice of the isomorphism 7" = L* as
in Section . Write 67 := @ oy for v € Gal(L/K), §: L* = Q, .

Proposition 6.4 (Theorem 11.2 of [CI18]). Let 0: T — Q, be smooth and x € T wvery
reqular. Then tr(R$(0),z) = + > vecar/k) 07 (@)

6.3. Special cases of local Langlands and Jacquet—Langlands correspondences. As
in the introduction, to a character 0: L™ — @Z one can attach the n-dimensional represen-
tation oy = Indevf (0 - ) of the Weil group of K, where we recall that u is the rectifying
character of L, given by u|y, = 1 and u(w) = (—1)""1. The representation oy is irreducible
if and only if 8 is in general position. In this case, the local Langlands correspondence at-
taches to oy the irreducible supercuspidal GL,, (K )-representation WSL" := LL(0g). Moreover,
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the local Jacquet-Langlands correspondence attaches to 7rg’ L the irreducible supercuspidal
G-representation mp := JL(7 GL")

Moreover, 6 is in general position if and only if it is admissible in the sense of [How77],
and the construction of Howe [How77| attaches to it an irreducible supercuspidal GL,,(K)-
representation, which is (equivalent to) WSL". With other words, with notation as in the

introduction, the diagram

%/GalL/K

9>—>0’9l WC

e (n) —LE— e (n,0) X o (n, k)

commutes.

7. REALIZATION OF LL AND JL IN THE COHOMOLOGY OF XPZ(b) IN SOME CASES

We now will prove Theorem |A|from the introduction. Let 6: T'= L* — @EX be a smooth
character in general position. Let mg = JL(LL(0y)) € Ak (n, ) be as in Section

7.1. Degree of R%(#) and formal degree of 7. First we check that the degree of R%?(H)
matches with the formal degree of my (see Section [6.1)). Here we use results from [CI19b].
Fix a Howe decomposition for 6: there is a unique tower of fields L = Ly 2 Ly 2 --- 2
Ly 2 Ly = K and characters x, ¢1,...,¢; of K*, L', ..., L respectively, such that § =
(xoNr/g)(@1oNL/1,) ... (¢). Denote by hi, ..., h the levels of ¢y, ..., ¢ respectively and
put di = [L : Lg], in particular, dg = n, d; = 1. Also, 9|Ui is in general position if and only

Lemma 7.1. Assume p > n. Assume H‘Ui is in general position. Then

deg ’R%ﬁl )] = q%"[n(hl—l)—(ht—l)—zz_:ﬁ di (hr—hi41)] nnl(qno(n'—i) —1). (7.1)
i=1

Proof. As R$(0- (Y oNy/k)) = RE(0) @ (1 o det) |CI18, Lemma 8.4], we may assume x = 1,
i.e., h = hy. The assumptions along with Theorem imply that R%f (0) = HX(Xpn)o
We may assume that b is a Coxeter-type representative (as in |CI18] 5.2.1|). For ¢t € T}, put
Sip = {x € X F*(z) = at}. As in [CI18, Lemma 9.3] we see that S1; = &, unless
t =1 (in loc. cit. we worked with the special representative for b and this explains the sign
(—1)",*1 appearing there). Further, one has S;; = G}, [CI19b], and so

h—1 n'—1 n'—1
#Sl 1= <H #Gerl) #Gl _ qn2(h—1)_ H (qnon/_qnoi) _ an(h—l)Jr%n(n/,l)_ H (qno(n/,i)_l)’

i=1 i=0 =0
as G = (RGSFan JFy GLin/ F ng )(Fq) and as #G! ; = ¢" * for each i > 1. Boyarchenko’s trace

formula [Boyl2, Lemma 2.12] and the determination |CI19b, Theorem 6.1.1] of the scalar by
which F™ acts in the non-vanishing cohomology group H}? (X} ) gives

. . " —1)"e
aim | R (6)] = dim |HZ (X )ol = —— 00— 6.1
(=1)eq72 #T)
The lemma now follows by an easy calculation, as #7), = (¢" — 1)¢™* D, and as ry =

(n’—n)+ht—|—(n—2)h+zz—:11 di(tx —tg+1) by [CI19b, Corollary 6.1.2]. (Technically speaking,
one has to check that the choices (of U, b, w) made here and in [CI19b, §4| are coherent and
give rise to isomorphic Xp’s. This follows from a simple calcuation with matrices.) O
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On the other side we use the computation of the formal degree of WEL" from |CMS90|.

Lemma 7.2. Assume that 9|Ui s in general position. For any left invariant Haar measure
dg on G/Z, d(mg,dg)vol(ZH/Z,dg) is equal to the right hand side of (7.1)). In particular, we
have

d(m, dg)vol(GoZ/Z, dg) = deg| RG" (0)|.

Proof. The product on the left hand side in the lemma is independent of dg, so it is enough
to show the lemma for a fixed (left invariant) Haar measure. Let dZ be the Haar measure
on G/Z, normalised such that the Steinberg representation St of G satisfies d(Stq, dz) = 1.
Then by Macdonald’s formula [SZ96, §3.7| (see also [Karl3, Proposition 5.4]), we have
1S
-\ not
vol(GoZ/Z, di) = — 1;[1 (g™ —1). (7.2)
The normalized formal degree d(m, dg) is stable under the Jacquet—Langlands correspondence
[DKV84,BHL10], so we deduce by using (7.2),
=
d(m,dz)vol(ZH/Z,dz) = d(mg"",dz") - = T] (™" - 1),
i=1

3

where dzG1 is the measure dZ in the special case n’ = n. Now the normalized formal degree
of WEL” is determined in [CMS90, Theorem 2.2.8] and coincides with the right hand side of

D). 0

7.2. Comparison. We now prove Theorem Assume p > n and assume that 9]% is in
general position. Let Z = K* be the center of G. For a smooth character ¢ of K* we have
RE(9- (poNp/k)) = R%(0) @ (¢odet) [CI18, Lemma 8.4]. An analogous formula holds for .
Hence we may twist both sides of the equality claimed in the theorem by a smooth character
¢ of K*. Thus we are reduced to the case that 0|, is unitary. Fix an invariant Haar measure
dg on G/Z.

By Theorem [5.1] there exists a finite set I and an irreducible supercuspidal representation
m; of G for each i € I such that |[R$(0)| = @;_, m. It is easy to see (e.g. using [Boyl2,
Lemma 2.12]) that the central character of R¥(0) is 0]z. From this and the fact that all
supercuspidal representations are square-integrable it follows that m; € &(G,0|z) for all i.
As by assumption (p,n) = 1, each 7; is attached to a pair (E;/ K, x;) with F;/K is a separable
degree n extension and y; is an admissible character of E in the sense of [How77| (indeed,
Howe’s construction also works for inner forms of GL,,, so that there is no need to pass to
the more general constructions of Yu [Yu0l| and Kaletha [Kall9|). Let I,, C I denote the
subset of those i € I, for which E;/K is unramified, i.e., E; & L. For each i € I, m; has
a well-defined trace on regular elliptic elements of G, and in particular on the very regular
elements of T2 L*. If i € I \ I, then m; & cInd%Ei 7i, where H C G is certain (explicitly
determined) compact open subgroup, which is not maximal compact, and E;* is appropriately
embedded as a subgroup of G(K) normalizing H. In particular, for i € I \ I,;,, no conjugate
of a very regular element x € T lies in HE.* (in fact,  has precisely one fixed point on A,
which has to be a vertex, so it is contained in no stabilizer of a facet of %k of dimension
> 1). By |[BH96, (A.14) Theorem]|, tr(m;, z) = 0 for ¢ & I,,,, and hence for any very regular
element z € T'= L™, we have

LY o@=u(REOL) =Y ume) =Y a Y K@)

'yEGal(L/K) 1€1ny, 1€ln, ’yEGal(L/K)
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where ¢; € {£1}, the first equality is Proposition and the last follows from [Hen92, 3.1
Théoréme| (in fact, it shows the claim only for GL,, but this along with trace relations
defining the Jacquet-Langlands correspondence give also the other cases). We now use the
argument from |[Hen92, 2.8]: if z € Uy, is very regular and y € U}, then xy € Uy is again
very regular. Thus letting = be a fixed very regular element of U, and varying y € U} we
obtain an equality of finite linear combinations of smooth characters of the group Uj. We
may find an integer h’ such that 6 and all y;’s are trivial on U }j/, and replace Ui by its finite
quotient U} /U . As G‘Ui is in general position, the coefficient of G‘Ui on the left hand side is
0(x) # 0. By linear independence of characters of a finite group there is at least one ig € I,
with Xig |1 = 0[y1 -
Frobenius reciprocity for the compact induction shows that

(mi: [REMO)) > 1 foriel (7.3)

with notation as in Section Fix a Haar measure dg on G/Z. By Lemma [7.2| we have
d(miy, dg)vol(GoZ/Z,dg) = deg\R%f(G)], so that Theorem dimplies (T4 - |R:(9)\) =1
and (7: |R%f’(«9)|) = 0 for all 7 € &(G,0|kx), T # m,. Combining this with we see
that I = {ip}. It remains to show that x;, = 6. Either one can apply [CI18, Theorem 11.3]
(as we now know that R$ () = m;, is irreducible), or alternatively use that we already know
Xi, = 0 on K*U}, and then apply the same argument as in [Hen93) 5.3]. Theorem [Al is
proven.
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