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Abstract. For a reductive group G over a local non-archimedean �eld K one can mimic

the construction from the classical Deligne�Lusztig theory by using the loop space functor.

We study this construction in the special case that G is an inner form of GLn and the loop

Deligne�Lusztig variety is of Coxeter type. After simplifying the proof of its representabil-

ity, our main result is that its `-adic cohomology realizes many irreducible supercuspidal

representations of G, notably almost all among those whose L-parameter factors through

an unrami�ed elliptic maximal torus of G. This gives a purely local, purely geometric

and � in a sense � quite explicit way to realize special cases of the local Langlands and

Jacquet�Langlands correspondences.

1. Introduction

Let G be an inner form of GLn (n ≥ 2) over a local non-archimedean �eld K and let

G = G(K) be the group of its K-points. Let T ⊆ G be a maximal elliptic unrami�ed torus.

Then T is uniquely determined up to G-conjugation and T = T(K) ∼= L× where L/K is the

unrami�ed extension of degree n. In [CI18] we constructed a scheme X over Fq with an action

by G × T , which can be seen as an analog over K of a Deligne�Lusztig variety attached to

T ⊆ G. As in the classical Deligne�Lusztig theory [DL76], this allows to attach to a smooth

character θ : T → Q×` the θ-isotypic component RGT (θ) of the `-adic Euler characteristic of X,

which is a smooth virtual G-representation. If θ is primitive (i.e., the Howe decomposition of θ

has at most one member), we showed that RGT (θ) is irreducible supercuspidal and isomorphic

to the representation attached to (L/K, θ) by Howe [How77], and hence provides a geometric

and purely local realization of the local Langlands and Jacquet�Langlands correspondences.

These results indicate that X and more generally, another schemes obtained by similar

Deligne�Lusztig-type constructions for other reductive groups over K allow a quite explicit,

purely local and purely geometric way to realize the local Langlands correspondence and/or

some instances of automorphic induction for at least those irreducible representations of G,

whose L-parameter factors through an unrami�ed torus. This is highly desirable, as the

existing local proofs of the local Langlands correspondence are purely algebraic (e.g. via

Bushnell�Kutzko types), and the existing geometric proofs tend to be very inexplicit and/or

use global arguments (except for [BW16], which � similar to [CI18] � only deals with primitive

θ). Moreover, an exact analog of the classical Deligne�Lusztig theory over non-archimedean

local �elds is highly interesting in its own right.

The �rst goal of the present article is to give a more satisfactory de�nition of X and

simplify the proof of its representability. The second goal is to show that RGT (θ) is irreducible

supercuspidal and realizes the local Langlands and Jacquet�Langlands correspondences for a

much wider class of irreducible supercuspidal representations of G (almost all among those,

whose L-parameter factors through T ⊆ G), thus going far beyond the corresponding results

of [BW16] and [CI18]. As the methods from [CI18] for primitive θ do not apply anymore,

our main concern here will be to develop new geometric methods to study the cohomology

of Deligne�Lusztig constructions of Coxeter type over local �elds, in particular generalizing
1
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results of [Lus04] away from the case when θ is regular, and providing nice description for

the quotient of (subschemes of) X by unipotent radicals of rational parabolic subgroups of

G, which generalizes (in the special case for G,T) to the situation over K particular results

of [Lus76]. Some of these methods immediately work for all reductive groups, and some rely

on G being an inner form of GLn.

To describe our result, we need more notation. First of all there is an unique integer κ ∈
{0, 1, . . . , n−1}, such that if n′ = gcd(n, κ), n = n′n0, κ = n′k0, we have G ∼= GLn′(Dk0/n0

),

where Dk0/n0
denotes the central division algebra over K with Hasse-invariant k0/n0.

Let ε be any character of K× with ker(ε) = NL/K(L×), the image of the norm map of

L/K. Denote by

• X the set of smooth characters of L× with trivial stabilizer in Gal(L/K),

• G ε
K(n) the set of isomorphism classes of smooth n-dimensional representations σ of

the Weil group WK of K satisfying σ ∼= σ ⊗ (ε ◦ recK),

• A ε
K(n, κ) the set of smooth irreducible supercuspidal representations π of G (= G(K)

with G corresponding to κ) such that π ∼= π ⊗ (ε ◦NrdG).

There are natural bijections

X /Gal(L/K) G ε
K(n) A ε

K(n, 0) A ε
K(n, κ)

θ σθ LL(σθ) =: πGLn
θ JL(πGLn

θ ) =: πθ.

LL JL

The latter two maps are the local Langlands and the Jacquet�Langlands correspondences

respectively. Here σθ := IndWK
WL

(θ · µ) is the induction to WK of the character WL →

Wab
L

recL→ L×
θ·µ→ Q×` , where µ is the recti�er, i.e. the unrami�ed character of L× de�ned by

µ($) = (−1)n−1 (here $ uniformizer of L).

Our main result is the following theorem.

Theorem A. Assume that p > n. Let θ : T ∼= L× → Q×` be a smooth character such that

θ|U1
L
has trivial stabilizer in Gal(L/K). Then ±RGT (θ) is a genuine G-representation and

±RGT (θ) ∼= πθ.

In particular, ±RGT (θ) is irreducible supercuspidal and σθ ↔ ±RGT (θ) is a realization of the

local Langlands and Jacquet�Langlands correspondences.

For θ trivial on U1
L and with trivial Gal(L/K)-stabilizer, as well as for θ primitive, Theorem

A is shown in [CI18] for all p, n. When G is the group of units of a central division algebra over

K, Theorem A gets easier and essentially follows (for all p, n and all θ with trivial Gal(L/K)-

stabilizer) from Lusztig's original work [Lus79] along with a result of Henniart [Hen92, 3.1

Théorème], see [Cha19]. The (also relatively easier) case G = GL2 was �rst done in [Iva16].

For G = GL2 and rami�ed elliptic tori a similar result was shown in [Iva18, Iva19].

In the rest of this introduction we explain the strategy of the proof of Theorem A and

discuss the geometric methods used in it. To begin with, G has a (unique up to conjugacy)

smooth a�ne model GO over the integers OK of K, whose OK-points are the maximal

compact subgroup GO ∼= GLn′(ODk0/n0 ), where ODk0/n0 is the ring of integers of Dk0/n0
.

Moreover, GO can be chosen compatibly with T so that TO := T ∩GO ∼= UL is the maximal

compact subgroup of T . As is shown in [CI18] (see also Proposition 2.6 below), X admits a

scheme-theoretically disjoint decomposition,

X =
∐

g∈G/GO

g.XO, where XO = lim←−
h

Xh (1.1)
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is a subscheme equal to an inverse limit of a�ne perfect schemes Xh perfectly �nitely pre-

sented over Fq. Here XO carries an action of GO ×TO and Xh inherits an action of a certain

�nite (Moy�Prasad) quotient Gh×Th of it. Then X1 is (the perfection of) a classical Deligne�

Lusztig variety attached to the reductive quotient of the special �ber of GO (isomorphic to

ResFqn0 /Fq GLn′), and the deeper-level varieties Xh coincide with the (perfections of) varieties

considered in [Lus04] when GO ⊗OK Fq is reductive (i.e., κ = 0), resp. with those in [CI19a]

in the general case.

Let Z be the center of G. Then T = ZTO. For a character θ of T ∼= L× trivial on

the h-units UhL, (1.1) plus the fact that the �bers of Xh/ ker(Th → Th−1)→ Xh−1 are a�ne

spaces of a �xed dimension, gives RGT (θ) = cIndGZGO R
Gh
Th

(θ), where RGhTh (θ) is the θ|UL-isotypic
component of the `-adic Euler characteristic of Xh (extended to a ZGO-representation by

letting z ∈ Z ∼= K× act by θ(z)).

The proof of Theorem A consists of �ve steps:

(1) Show that ±RGhTh (θ) is an irreducible Gh-representation. See Section 3.

(2) By similar methods as in (1), show for a certain closed Gh × Th-stable perfect sub-

scheme Xh,n′ ⊆ Xh, that ±H∗c (Xh,n′)θ is irreducible and ±RGhTh (θ) ∼= ±H∗c (Xh,n′)θ.

See Section 4.

(3) Show (using (1)) that the induction ±RGT (θ) = cIndGZGO(±RGhTh (θ)) is admissible

(equivalently, a �nite direct sum of irreducible supercuspidals). See Section 5.

(4) Use [CI19b] to compute the degree degH∗c (Xh,n′)θ of the (�nite-dimensional) repre-

sentation ±H∗c (Xh,n′)θ, which is then by (2) also equal to degRGhTh (θ). See Section

7.1 and [CI19b].

(5) Using (3) together with the traces of RGT (θ) [CI18, Theorem 11.2] and of πθ on very

regular elements (cf. Section 6.2 for a de�nition) in T ⊆ G, conclude by using an

argument due to Henniart [Hen92] using linear independence of characters, along with

matching degRGhTh (θ) from (4) with the explicitly known formal degree of πθ [CMS90].

See Section 7.2.

Let us brie�y comment on steps (1)-(4) here. Step (1) relies on a precise analysis of

the quotient Gh\(Xh ×Xh) by methods generalizing those from [Lus04] in the special case

that T ⊆ G is (unrami�ed) elliptic. Even more speci�cally, in the case G is an inner form of

GLn and culminates in showing the following particular Mackey formula for �Deligne�Lusztig

induced� Gh-representations.

Theorem B (see Theorem 3.1, Corollary 3.3). Let θ, θ′ be two characters of Th. Then〈
RGhTh (θ), RGhTh (θ′)

〉
Gh

= #
{
w ∈WF

O : θ′ = θ ◦ ad(w)
}
,

where WO is the Weyl group of the special �ber of GO and F is the Frobenius of G acting

on it. Moreover, if the stabilizer of θ|U1
L
in Gal(L/K)[n′], the unique subgroup of Gal(L/K)

of order n′, is trivial, then ±RGhTh (θ) is an irreducible Gh-representation and the map

{characters θ : Th → Q×` in general position}/WF
O → {irreducible Gh-representations}

θ 7→ ±RGhTh (θ)

is injective.

The theorem looks like a special case (for given Gh, Th) of the results of [Lus04], but the

assumption �θ regular� (equivalently, primitive) which is crucial to [Lus04] is removed. One

can hope that similar methods as used in the proof of Theorem B could lead to a general

Mackey formula for all elliptic unrami�ed tori in reductive K-groups.
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Step (2) is a technically more elaborated version of the same idea implemented in step

(1). It is (among other things) responsible for the assumptions that p > n and that θ|U1
L
has

trivial stabilizer in Gal(L/K). See Remark 4.3.

Step (3) relies on the study of the quotient Nh\Xh where Nh ⊆ Gh is a subgroup corre-

sponding to the unipotent radical of a proper parabolic subgroup of G. Once this quotient

is described (Lemma 5.8), (3) is easy to show. The main technical role in this description is

played by classical minor identities, dating back to 1909 results of Turnbull [Tur09].

Step (4), mainly performed in [CI19b] is based on the determination of the action of

Frobenius (over Fqn) in the cohomology of Xh,n′ . This determination is strongly related to

the amazing fact that Xh,n′ is a maximal variety over Fqn , i. e., #Xh,n′(Fqn) attains its Weil�

Deligne bound, prescribed by the Lefschetz �x point formula and the dimensions of the single

`-adic cohomology groups.

1.1. Notation. For a non-archimedean local �eld M we denote by OM , pM , UM = O×M resp.

UhM = 1 + phM (with h ≥ 1) its integers, maximal ideal, units resp. h-units.

Throughout the article we �x a non-archimedean local �eld K with uniformizer $ and

residue �eld Fq of characteristic p with q elements. We denote by K̆ the completion of a �xed

maximal unrami�ed extension of K, and by OK̆ the integers of K̆. The residue �eld Fq of K̆
is an algebraic closure of Fq, and $ is still a uniformizer of K̆. We write σ for the Frobenius

automorphisms of K̆/K and of Fq/Fq.
Fix an integer n ≥ 2. We denote by K ⊆ L ⊆ K̆ the unique subextension of degree

n. Moreover, for any positive divisor r of n we denote by K ⊆ Kr ⊆ Kn = L the unique

subextension of degree r over K.

Fix another integer 0 ≤ κ < n and write n = n′n0, κ = n′k0, where n
′ = gcd(n, κ). Then

n0, k0 are coprime.

Fix a prime ` 6= p and let Q` be a �xed algebraic closure of Q`. All cohomology groups of

(perfections of) quasi-projective schemes of �nite type over Fq will be compactly supported

étale cohomology groups with coe�cients in Q`. For such a scheme Y (and more gener-

ally, whenever the cohomology groups are de�ned), we write H∗c (Y ) :=
∑

i∈ZH
i
c(Y,Q`) (the

coe�cients always will be Q`, so there is no ambiguity).

Unless otherwise stated, all representations of locally compact groups appearing in this

article will be smooth with coe�cients in Q`.

Acknowledgements. We would like to thank Guy Henniart, Tasho Kaletha, and Peter

Scholze for helpful advice, and Andreas Mihatsch and Johannes Anschütz for several useful

discussions on the subject of this article. The �rst author was partially supported by the

DFG via the Leibniz Prize of Peter Scholze and an NSF Postdoctoral Research Fellowship,

Award No. 1802905. The second author was supported by the DFG via the Leibniz Preis of

Peter Scholze.

2. Coxeter-type loop Deligne�Lusztig scheme in type Ãn−1

Let n = n′n0 ≥ 2 and κ = n′k0 with gcd(k0, n0) = 1 be as in Section 1.1. This notation

remains �xed throughout the article.

In this section we review some constructions and results concerning loop Deligne�Lusztig

schemes of Coxeter type for inner forms of GLn from [CI18], and we simplify the proof of

representability (Proposition 2.6).
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2.1. Inner forms of GLn and elliptic tori. Inside the group GLn over K we �x a split

maximal torus T0 and the unipotent radicals U0,U
−
0 of two opposite K-rational Borel sub-

groups containing T0. Let the roots of T0 in U0 be the positive roots, determining a set S0

of simple roots. Conjugating if necessary, we may assume that T0 is the diagonal torus and

U0 is the group of upper triangular unipotent matrices.

2.1.1. Forms of GLn. The Kottwitz map [Kot85]

κGLn = val ◦ det : B(GLn)basic → Z

for GLn de�nes a bijection between the set of basic σ-conjugacy classes in GLn(K̆) and Z.
Fix a basic element b ∈ GLn(K̆) with κGLn(b) = κ. Let G be the K-group de�ned by

G(R) = {g ∈ GLn(R⊗K K̆) : g−1bσ(g) = b}

(this is the group Jb from [RZ96, 1.12]). Then G is an inner form of GLn and we may identify

G(K̆) = GLn(K̆). The Frobenius on G(K̆) is Fb : g 7→ bσ(g)b−1. The K-points of G are

G := G(K) ∼= GLn′(Dk0/n0
).

We may identify the adjoint Bruhat�Tits building of G over K̆ with that of GLn. Denote

both of them by BK̆ . The adjoint Bruhat�Tits building of G over K is the subcomplex

BK = BFb
K̆
. Let xb ∈ BK be a vertex. Bruhat�Tits theory [BT84, 5.2.6] attaches to xb a

(maximal) parahoric OK-model GO of G, whose OK-points

GO := GO(OK) ∼= GLn′(ODκ0/n0 ),

form a maximal compact subgroup of G.

Remark 2.1. The groups G,GO, G,GO depend on the choice of b, but if b′ = h−1bσ(h)

(h ∈ GLn(K̆)) is another choice inside the same basic σ-conjugacy class, with corresponding

groups G′, G′, then conjugation with h de�nes an isomorphism of G, G and G′, G′, and if xb
is mapped by h to xb′ , then conjugation by h maps GO, G

′
O to GO, G

′
O. As at the end we

are interested in isomorphism classes of representations of G (or GO), which are not a�ected

by these isomorphisms, we leave the choice of b unspeci�ed as long as possible. When we

need concrete realizations of G,GO, G,GO (in Sections 3.1, 5.1 and 5.2) we will exploit the

freedom of choosing di�erent b's inside the same basic σ-conjugacy class).

2.1.2. Forms of T0. Let W = W (T0,GLn) be the Weyl group of T0 in GLn, then (W,S0)

form a Coxeter system. Let w1 =
(

0 1
1n−1 0

)
∈ W . It is a Coxeter element of (W,S0). Let

ẇ1 ∈ NGLn(T0)(K̆) be a lift of w1. Then Ad(ẇ1) induces an automorphism of the apartment

AT0,K̆
⊆ BK̆ of T0. It has precisely one �xed point xẇ1 as w1 is Coxeter. Let G be the

parahoric OK-model of GLn attached to this �xed point. Let T be the schematic closure of

T0 in G. Let T denote the (outer) form of T0, which splits over K̆, and is endowed with

the Frobenius Fẇ1 : t 7→ ẇ1σ(t)ẇ−1
1 (independent of the lift ẇ1), and similarly let TO be the

(outer) form of T , which splits over OK̆ , and is endowed with the same Frobenius. We get

the group

T := T(K) ∼= L× and its subgroup TO := TO(OK̆) ∼= O×L ,
where L/K is unrami�ed of degree n. In fact, T = {diag(x, σ(x), . . . , σn−1(x)) : x ∈ L×}
(recall that T0 is diagonal), and the isomorphism with L× is determined up to composition

with an element in Gal(L/K).

2.1.3. Case b = ẇ1. In the special case b = ẇ1 and xb = xẇ1 , we have only one Frobenius

F := Fb = Fẇ1 , GO is a form of G, and T is an elliptic maximal torus of G, and TO is a
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maximal torus of GO. There are unique (closed, reduced) subgroups U,U
− of G, such that

U(K̆) = U0(K̆), U−(K̆) = U−0 (K̆) inside G(K̆) = GLn(K̆). Inside GO we will need the

schematic closures UO and U−O of U and U−.

The Frobenius F acts on the roots of T in G, so that there is a unique subgroup F U ⊆ G,

satisfying (F U)(K̆) = F (U(K̆)), and similarly for U−,UO,U
−
O. Identifying W with the

Weyl group of T in G, F acts on W . Moreover, WF = 〈w1〉 ∼= Z/nZ is the subgroup

generated by w1. It acts on T and the chosen isomorphism T ∼= L× induces an isomorphism

WF ∼= Gal(L/K), sending w1 to the image of σ in Gal(L/K).

The maximal torus in the reductive quotient of the special �ber TO ⊗OKFq ⊆ (GO ⊗OK
Fq)red is elliptic. Explicitly, these groups are isomorphic to ResFqn/FqGm ⊆ ResFqn0 /Fq GLn′,Fqn0 .

Let WO be the Weyl group of TO ⊗OKFq in (GO ⊗OK Fq)red. It is naturally a subgroup of

W , F acts on WO and WF
O , which is generated by wn0

1 , is isomorphically mapped onto

Gal(L/Kn0) under the above isomorphism WF ∼= Gal(L/K).

2.2. Perfect schemes. Let k be a perfect �eld of characteristic p and let X be a k-scheme.

Let φ = φX : X → X be the absolute Frobenius morphism of X, that is φ is the identity

on the underlying topological space and is given by x 7→ xp on OX . The scheme X is

called perfect if φ is an isomorphism. Let Algk denote the category of all k-algebras, and

let Perfk be the full subcategory of perfect k-algebras. Then the restriction functor which

sends a perfect k-scheme, regarded as a functor on Algk, to a functor on Perfk is fully

faithful [Zhu17, A.12]. Thus we equally may regard a perfect scheme as a functor on Perfk,

which has an open covering by representable functors in the usual sense. Every k-scheme X0

admits a perfection, namely Xperf
0 := limφX0, which is a perfect scheme. For example, the

perfection of Spec k[T ] is Spec k[T 1/p∞ ], where k[T 1/p∞ ] =
⋃
r≥0 k[T p

−r
].

Except stated otherwise, throughout this article we will work with perfect schemes over

k = Fq (or k = Fq). So, to simplify notation we write Am = Amk resp. Ga resp. Gm for

the perfection of the m-dimensional a�ne space resp. the additive resp. the multiplicative

group over k. A morphism f : SpecA→ SpecB of a�ne perfect schemes is perfectly �nitely

presented, if there is a A = (A0)perf for a �nitely presented B-algebra A0 [BS17, 3.10,3.11].

For further results on perfect schemes we refer to [Zhu17, Appendix A.1] and [BS17, �3]. Here

we only mention the following lemmas.

Lemma 2.2. Let X ⊆ Amk be a closed perfect subscheme of the m-dimensional perfect a�ne

space. Then X → Spec k is perfectly �nite presented.

Proof. Let T = (T1, T2, . . . , Tm) be some coordinates on Amk . Let a be the ideal of X in

the coordinate ring k[T p
−∞

] of Amk . Then it is easy to check that X is the perfection of

X0 = Spec k[T ]/(a ∩ k[T ]), which is (reduced and) �nitely presented over k. �

Lemma 2.3. Let f : X → Y be a morphism of perfect k-schemes with X separated. The

following are equivalent:

(i) f is a monomorphism (of fpqc- or étale sheaves on Perfk)

(ii) for every algebraically closed �eld K/k, f(K) : X(K)→ Y (K) is injective.

Proof. Assume (ii). To deduce (i) it is enough to show that for any R ∈ Perfk, f(R) : X(R)→
Y (R) is injective. Let x, y : SpecR → X be two elements of X(R), such that fx = fy ∈
Y (R). For each point p ∈ SpecR, choose a morphism ip : SpecKp → SpecR with image p,

and with Kp an algebraically closed �eld. Then fxip = fyip ∈ Y (Kp) for each p, and from

(ii) we deduce xip = yip. As X is separated, the equalizer of x, y is a closed subscheme of

SpecR, say equal to SpecR/I for some ideal I ⊆ R. Now, xip = yip for all �eld valued
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points of SpecR implies that I ⊆
⋂

p∈SpecR p = rad(0) = 0, as R perfect and hence reduced.

The other direction is clear. �

2.3. Witt vectors and loop groups. If K has positive characteristic, we denote by W
the ring scheme over Fq, where for any Fq-algebra R, W(R) = R[[$]]. If K has mixed

characteristic, we denote by W the K-rami�ed Witt ring scheme over Fq so that W(Fq) =

OK and W(Fq) = OK̆ (see e.g. [FF18, 1.2]). Let Wh = W/V hW be the truncated ring

scheme, where V : W→W is the multiplication by $ (if charK > 0) resp. the Verschiebung

morphism (if charK = 0). We regard Wh as a functor on PerfFq , where it is represented

by AhFq . We denote by W×h the perfect group scheme of invertible elements of W and for

1 ≤ a < h, we denote by W×,ah = ker(W×h →W×a ) the kernel of the natural projection.

If X is a K̆-scheme, the loop space LX of X is the functor on PerfFq ,

R 7→ LX(R) = X(W(R)[$−1]).

IfX is an a�ne K̆-scheme of �nite type, LX is represented by an ind-(perfect scheme) [Zhu17,

Proposition 1.1]. If X is a OK̆-scheme, the spaces of (truncated) positive loops of X are the

functors on PerfFq ,

R 7→ L+X (R) = X (W(R)) resp. R 7→ L+
hX (R) = X (Wh(R)).

(h ≥ 1). If X is an a�ne OK̆-scheme of �nite type, L+X , L+
hX are represented by a�ne

perfect Fq-schemes, and L+
hX are perfectly �nitely presented (by Lemma 2.2). The same

holds with Fq replaced by Fq.

Remark 2.4. We could evaluate W, Wh and L
+X , L+

hX on all R ∈ AlgFq and therefore work

with schemes L+
hX of �nite type over Fq, instead of perfect schemes.

Still, one must take care when working with the functors L,L+ in the mixed characteristic

setting�see for example [BS17, Remark 9.3], [Zhu17, end of Section 1.1.1] for some warnings.

But even in the equal characteristic case, when working with LX, we are really forced to

work in the category of perfect schemes; indeed, as we use an argument on geometric points

in the proof of Proposition 2.6, we can only make our �nal conclusion when there is no

non-reduced structure (which is the case after perfection). Therefore, for the entirety of this

paper, we pass to perfect schemes everywhere. As passing to the perfection is a universal

homeomorphism, this does not a�ect étale cohomology.

2.4. The perfect Fq-space XDL
ẇ (b). By a perfect Fq-space we mean an fpqc-sheaf on PerfFq .

Let b be any basic element with κGLn(b) = κ. Let ẇ1 ∈ NGLn(T0)(K̆) be any lift of w1. Let

ẊDL
ẇ1

(b) denote the fpqc-shea��cation of the presheaf on PerfFq ,

R 7→ {g ∈ LGLn(R)/LU0(R) : g−1bσ(g) ∈ LU0(R)ẇ1LU0(R)}.

If G,T are as in Section 2.1, the group G× T acts on ẊDL
ẇ (b) by g, t : x 7→ gxt.

Lemma 2.5. Let b be basic with κGLn(b) = κ and let ẇ1 be any lift of w1.

(i) If b′ = h−1bσ(h) for some h ∈ GLn(K̆), and if G′ = G′(K) is the group attached to b′

as in Section 2.1, then Adh : G→ G′, g 7→ h−1gh is an isomorphism. Moreover, left

multiplication by h induces an isomorphism of Fq-spaces ẊDL
ẇ1

(b) ∼= ẊDL
ẇ1

(b′), which

is equivariant with respect to the isomorphism (Adh, id) : G× T → G′ × T .
(ii) Let ẇ′1 be a second lift of w1 to GLn(K̆). Assume that κGLn(ẇ1) = κGLn(ẇ′1). Then

there exists a τ ∈ T0(K̆) with ẇ′1 = τ−1ẇ1σ(τ). Let T ′ = T′(K) be the group attached

to ẇ′1 as in Section 2.1. Then Adτ : T → T ′, t 7→ τ−1tτ is an isomorphism. Moreover,
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right multiplication by τ induces an isomorphism of Fq-spaces ẊDL
ẇ1

(b) ∼= ẊDL
ẇ′1

(b),

which is equivariant with respect to the isomorphism (id,Adτ ) : G× T → G× T ′.
(iii) ẊDL

ẇ1
(b) = ∅, unless κGLn(ẇ1) = κ.

Proof. (i): This is an easy computation. (ii): The �ber over w1 in GLn(K̆) is a principal

homogeneous space under T(K̆), and it is easy to see that as w1 is Coxeter, the map t 7→
Ad(w1)(t)−1σ(t) from T(K̆) to {τ ∈ T(K̆) : κGLn(τ) = 0} is surjective. The rest is an

easy computation. (iii): As ẊDL
ẇ1

(b) is an inverse limit of perfectly �nitely presented perfect

Fq-schemes, it su�ces to show that ẊDL
ẇ1

(b)(Fq) = ∅. This holds as κGLn(g−1bσ(g)) =

κGLn(b) = κ and κGLn(LU(Fq)) = 0. �

2.5. Representability. We simplify the proof of representability of XDL
ẇ1

(b) from [CI18].

Let b = ẇ1 be basic with κGLn(b) = κ. Then we are in the setup of Section 2.1.3. Write

F : LG → LG for the Fq-morphism of ind-(perfect schemes) corresponding to F : G(K̆) →
G(K̆), g 7→ bσ(g)b−1. De�ne the fpqc-shea��cation X ′ of the presheaf on PerfFq ,

R 7→ {x ∈ LG(R) : x−1F (x) ∈ F (LU)}/L(U ∩ FU).

The group G × T acts on X ′ by g, t : x 7→ gxt. De�ne XO as the fpqc-shea��cation of the

presheaf on PerfFq ,

XO : R 7→ {x ∈ L+GO(R) : x−1F (x) ∈ L+(F UO ∩U−O)(R)}.

Being the preimage of L+(F UO ∩U−O) under the Lang-morphism LangF : L+GO → L+GO,

g 7→ g−1F (g), XO is representable by a perfect Fq-scheme. Further, the group GO × TO acts

on XO by (g, t) : x 7→ gxt. As T is generated by TO and the central element $ ∈ T ⊆ G, the
obvious action of G×TO on

∐
G/GO

g.XO extends to an action of G×T by letting (1, $) act

in the same way as ($, 1).

Proposition 2.6 ( [CI18]). Let b = ẇ1 ∈ NGLn(T0)(K̆) be basic with κGLn(b) = κ, and

mapping to w1 ∈W . There are G× T -equivariant isomorphisms of perfect Fq-spaces

XDL
b (b) ∼= X ′ ∼=

∐
g∈G/GO

g.XO. (2.1)

In particular, XDL
b (b), X ′ are representable by perfect Fq-schemes.

Proof. The same computation as at the end of [CI18, �3] shows that G × T -equivariantly
XDL
b (b) ∼= X ′ as Fq-spaces. As the right hand side of (2.1) is representable, it su�ces to

show the second isomorphism in (2.1). Consider the fpqc-shea��cation X ′′ of the presheaf

on PerfFq ,

R 7→ {g ∈ LG(R) : g−1F (g) ∈ L(FU ∩U−)(R)}.
As w is Coxeter, the map

L(FU ∩U)× L(FU ∩U−)→ L(FU), (h, g) 7→ h−1gF (h)

is an isomorphism of fpqc-sheaves (this follows by a concrete calculation � similar to the part

of the proof of [CI18, Lemma 2.12] showing equation (7.7) of loc. cit. � which can be performed

on R-points for any R ∈ PerfFq . Compare also [HL12]), so that X ′ ∼= X ′′. But X ′′ is the pull-

back of the closed sub-(ind-scheme) L(FU ∩U−) under the Lang map LangF : LG → LG,

g 7→ g−1F (g), which is a morphism of ind-schemes, hence X ′′ is representable by an ind-

(perfect scheme).

For τ ∈ T(K), x 7→ τ−1xτ de�nes an equivariant isomorphism between X ′′ and the analog

of X ′′, where b is replaced by τ−1bτ . Thus we may take b =
(

0 $κ
1n−1 0

)
· ε with ε ∈ T(OK̆).
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Fix R ∈ PerfFq . Let g ∈ LG(R) = G(W(R)[$−1]) with g−1F (g) =: a ∈ L(FU ∩U−)(R).

For 1 ≤ i ≤ n − 1, let ai ∈ LGa(R) denote the (i + 1, 1)-th entry of the matrix a. Then

the matrix g is determined by its �rst column, denoted v (for 1 ≤ i ≤ n the i-th column is

then equal to (bσ)i−1(v)). Moreover v has to satisfy (bσ)n(v) = $κ(v +
∑n−1

i=1 ai(bσ)i(v)),

an equation which takes place in LGa(R)n. Assume R is an algebraically closed �eld. The

valuations of the coe�cients of the characteristic polynomial of a σ-linear endomorphism lie

over its Newton polygon, which in our case coincide with the Newton polygon of the isocrystal

attached to bσ, and is just the straight line segment connecting the origin and the point (n, κ)

in the plane (cf. [CI18, Lemma 6.1] for the precise statement). This shows val(ai) ≥ − iκ
n

for 1 ≤ i ≤ n − 1. But after explicitly determining the a�ne root subgroups contained in

GO(OK̆) (this is a similar computation like in [CI18, Example 8.8]), this translates to the

statement that a ∈ L+(F UO ∩U−O)(R). As X ′′ is a ind-(perfect scheme), this implies that

X ′′ is equal to the fpqc-shea��cation of

R 7→ {g ∈ LG(R) : g−1F (g) ∈ L+(F UO ∩U−O)(R)}.

Consider the projection π : LG → LG/L+GO. If g ∈ X ′′(R) ⊆ LG(R), then F (g) ∈
gL+(F UO ∩U−O)(R) ⊆ gL+GO(R). Thus X ′′ maps under π to the discrete subset

(LG/L+GO)F = G/GO. Hence X
′′ is isomorphic to the right hand side of (2.1), and we are

done. �

Corollary 2.7. Let b ∈ GLn(K̆) be basic, ẇ1 a lift of w1 such that κGLn(b) = κGLn(ẇ1) = κ.

Then XDL
ẇ1

(b) ∼=
∐
G/GO

gXO is representable by a perfect Fq-scheme.

Proof. This follows from Lemma 2.5 and Proposition 2.6. �

2.6. Representations RGT (θ) and RGhTh (θ). Let a basic b and a lift ẇ1 be as in Section 2.1

with κGLn(b) = κGLn(ẇ1) = κ be �xed. In Section 2.1 we attached to b, ẇ1 the locally

pro-�nite groups G,T and their maximal compact subgroups GO, TO. In [CI18, 7.2] we

de�ned families (indexed by h ≥ 1) of perfectly �nitely presented perfect group schemes over

Fq, with Fq-points Gh, Th such that GO = lim←−hGh and TO = lim←−h Th, and showed that

G× T -equivariantly,

XDL
ẇ1

(b) ∼=
∐
G/GO

g.XO, with XO ∼= lim←−
h

Xh

such that XO is acted on by GO × TO1, each Xh is a perfectly �nitely presented perfect Fq-
scheme acted on by Gh × Th, and all morphisms are compatible with all actions. Moreover,

Xh is the perfection of a smooth a�ne Fq-scheme of �nite type. We identify XDL
ẇ1

(b) with∐
G/GO

g.XO via this isomorphism. The groups Gh and Th are certain Moy�Prasad quotients

of GO and TO, and hence essentially independent of the choice of b, xb and ẇ1. An explicit

presentation of Gh, Th, Xh is reviewed in Section 3.1 below.

We review the de�nition of certain étale cohomology groups with compact support of

XDL
ẇ1

(b) and XO (which are not perfectly �nitely presented over Fq). First, for h ≥ 1 and a

character χ : Th → Q×` , the χ-isotypic components H i
c(Xh)χ of the `-adic cohomology groups

with compact support are de�ned2, as Xh is the perfection of smooth scheme of �nite type

over Fq. Second, for h ≥ 1, the �bers of Xh/ker(Th → Th−1) → Xh−1 are isomorphic to

An−1 [CI18, Proposition 7.6]. Let χ : TO → Q×` be a smooth character. Then there exists an

h ≥ 1, such that χ is trivial on ker(TO → Th) for some h ≥ 1. Let h′ ≥ h and denote the

1Note that T is generated by TO and a central element of G, when G,T are both regarded as subgroups of
GLn(K̆), so that

∐
G/GO

g.XO admits also a natural right T -action.
2Recall from Section 1.1 that we omit the constant coe�cients Q` from the notation.
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characters induced by χ on Th and Th′ again by χ. Then H∗c (Xh)χ = H∗c (Xh′)χ, where H
∗
c is

the alternating sum of the cohomology. Thus we can de�ne H∗c (XO)χ as H∗c (Xh′)χ for any

h′ ≥ h and this is independent of h′3. So, if χ is a character of TO of level h, we have the

Gh-representation

RGhTh (χ) := H∗c (XO)χ = H∗c (Xh)χ.

and we denote the GO-representation obtained by in�ation via GO � Gh again by RGhTh (χ).

Let Z ⊆ G be the center and let X̃O :=
⋃
g∈ZGO g.XO be the union in XDL

ẇ1
(b) of all

ZGO-translates of XO. Then X̃O is acted on by ZGO×T and is a disjoint union of copies of

XO. Exactly as above for XO, for a smooth character θ : T → Q×` we may de�ne the smooth

ZGO-representation H
∗
c (X̃O)θ.

Lemma 2.8. Let θ : T → Q×` be a smooth character of level h. As GO-representations,

H∗c (X̃O)θ ∼= RGhTh (θ). As a ZGO-representation, H
∗
c (X̃O)θ is just the GO-representation

RGhTh (θ), with action extended to Z by letting $ ∈ Z ∼= K× act by the scalar θ($).

Proof. This is immediate (see e.g. [Iva16, Lemma 4.5]). �

Justi�ed by this lemma we write RGhTh (θ) for the ZGO-representation H∗c (X̃O)θ. For

schemes Yi such that H∗c (Yi) are de�ned, put H∗c (
∐
i∈I Yi) :=

⊕
i∈I H

∗
c (Yi). We get our

main object of study, the smooth G-representation

RGT (θ) := H∗c (XDL
ẇ1

(b))θ = cIndGZGO R
Gh
Th

(θ)

(cf. [CI18, Theorem 11.2]).

Remark 2.9. By construction and by Lemma 2.5, the isomorphism class of theG-representation

RGT (θ) is independent of the choices of representatives b, ẇ1. A similar independence holds

for the ZGO-representation R
Gh
Th

(θ).

2.7. Norms and characters. The following de�nitions do not depend on the choice of an

isomorphism T ∼= L× (as in Section 2.1.2).

De�nition 2.10. We say that a smooth character θ : T ∼= L× → Q×` is of level h if it is

trivial on ker(TO → Th) ∼= UhL, but non-trivial on ker(TO → Th−1) ∼= Uh−1
L .

Recall the subextensions L ⊇ Kr ⊇ K (Section 1.1). Whenever r, s are positive divisors of

n such that s divides r, we denote by Nr/s : K×r → K×s the norm map for the �eld extension

Kr/Ks. For any h ≥ h′ ≥ 1, it induces maps

UKr/U
h
Kr → UKs/U

h
Ks and Uh

′
Kr/U

h
Kr → Uh

′
Ks/U

h
Ks

which are surjective (see e.g. [Ser95, Chap. V,�2]), and which we again denote by Nr/s.

De�nition 2.11. (i) A character θ : T ∼= L× → Q×` resp. θ : TO ∼= UL → Q×` is in

general position, if the stabilizer of θ in Gal(L/K) is trivial. We say θ|U1
L
is in general

position, if the stabilizer of θ|U1
L
in Gal(L/K) is trivial.

(ii) Let h ≥ 1. A character θ : Th ∼= UL/U
h
L → Q×` (resp. θ|T 1

h=U1
h/U

h
L
) is in general

position if its in�ation to TO (resp. to ker(TO → T1)) is in general position.

Note that θ : T ∼= L× → Q×` is in general position if and only if θ|TO is.

3Note that the single cohomology groups Hi
c(XO)χ are not de�ned, due to a degree shift: Hi

c(Xh′)χ =
Hi−2d
c (Xh)χ for an appropriate d ≥ 0. One can remedy this by introducing homology groups Hi(Y ) :=

H
2dim(Y )−i
c (Y )(dim(Y )) as in [Lus79], which removes precisely this shift in degree.
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Lemma 2.12. Let θ : T ∼= L× → Q×` be a character. Let s ∈ Z. Then

θ ◦ σs = θ ⇔ θ factors through NL/Kgcd(n,s)
.

The analogous claim holds for θ|U1
L
. In particular, θ is in general position if and only if θ

does not factor through any of the maps Nn/r with r < n, and θ|U1
L
is in general position if

and only if θ|U1
L
does not factor through any of the maps Nn/r with r < n.

Proof. θ ◦ σs = θ is equivalent to θ being trivial on the image of the map L× → L×,

x 7→ x−1σs(x). By Hilbert's Theorem 90, this image is equal to the kernel of the norm map

of L over the �eld stable by σs, which is Kgcd(n,s). �

3. A Mackey formula

In this section we prove the following Mackey-type formula for the representations RGhTh (θ).

Theorem 3.1. Let θ, θ′ : Th → Q×` be two characters. Then〈
RGhTh (θ), RGhTh (θ′)

〉
Gh

= #
{
w ∈WF

O : θ′ = θ ◦ ad(w)
}
.

Remark 3.2. The theorem shows that in the setting considered in this paper and in [CI18],

the assumption in [Lus04, Corollary 2.4(b)] resp. [CI19a, Corollary 4.7(ii)] that θ is regular is

obsolete. We also note that because part of this proof requires an explicit computation using

our choice of Coxeter element w1, Theorem 3.1 does not allow us to conclude the analogue

of the independence-of-choice statements [Lus04, Corollary 2.4(a)], [CI19a, Corollary 4.7(i)].

Corollary 3.3. Let θ : Th → Q×` be a character, whose stabilizer in Gal(L/K)[n′], the unique

subgroup of Gal(L/K) of order n′, is trivial. Then ±RGhTh (θ) is irreducible Gh-representation.

In particular, Frqn acts in ±RGhTh (θ) by multiplication with a scalar. Moreover, the map{
characters θ : Th → Q×` in general position

}
/WF
O →

{
irreducible Gh-representations

}
θ 7→ ±RGhTh (θ)

is injective.

Proof. This follows from the description of WF
O in Section 2.1.3 and Theorem 3.1. �

We prove Theorem 3.1 in four steps (Sections 3.1-3.4). After general preparations in Section

3.1, we show in Section 3.2 that several of the perfect schemes Σ̂w (as in [Lus04, 1.9]) are

empty in our case; then in Sections 3.3,3.4 we generalize Lusztig's argument from [Lus04, 1.9,

proof of claim (b)] with the extension of action on Σ̂
′′
w in two di�erent ways to cover the

remaining Σ̂w. The �rst generalization uses our concrete situation, whereas the second is

quite general.

3.1. General preparations. In contrast to [CI18] where we worked with Coxeter-type and

special representatives for [b] (see [CI18, �5.1]), here it is most convenient to work with a

third type of representatives. We put

b = ẇ1 = b0tκ,n ∈ GLn(K̆) (3.1)

where

b0 :=

(
0 1

1n−1 0

)
, and tκ,n :=


diag(1, . . . , 1︸ ︷︷ ︸

n−κ

, $, . . . ,$︸ ︷︷ ︸
κ

) if (κ, n) = 1,

diag(tk0,n0 , . . . , tk0,n0︸ ︷︷ ︸
n′

) otherwise.
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are as in [CI18, �5.2.1]. In particular, we work in the setup of Section 2.1.3.

Recall the (unique) �xed point xb of F in the apartment AT,K̆ of T in BK̆ , and the

corresponding maximal parahoric OK-model GO of G. We have the stabilizer Ğxb,0 =

GO(OK̆) of xb inG(K̆) = GLn(K̆) and its Moy�Prasad �ltration [MP94] given by subgroups

Ğxb,r (r ≥ 0). Similarly as in [CI18, �5.3], consider the a�ne perfect group scheme G over

Fq de�ned by

G(Fq) = Ğxb,0, G(Fq) = ĞFxb,0 = GO.

and for h ∈ Z≥1, the a�ne perfectly �nitely presented perfect group scheme Gh over Fq such
that

Gh(Fq) = Ğxb,0/Ğxb,(h−1)+, Gh := Gh(Fq) = ĞFxb,0/Ğ
F
xb,(h−1)+.

We denote the Frobenii on G,Gh again by F . The groups G,Gh possess an explicit description

in terms of matrices similar to [CI18, �5.3].

Remark 3.4. In [CI18, Section 7], we worked instead with the Coxeter representatives b′ =

b
eκ,n
0 tκ,n as in [CI18, �5.2.1]; but if γ is as in [CI18, �7.6], then b = γb′γ−1, i.e., b is integrally

σ-conjugate to b′. In fact, the groups G,Gh used here are equal to γGγ−1, γGhγ
−1 with the

latter G,Gh as in [CI18].

As (perfect) Fq-groups, G1
∼= ResFqn0 /Fq GLn′ . The above-mentioned description iden-

ti�es G1 with a closed Fq-subgroup of GLn,Fq . In fact, G1,Fq is the closed subgroup of

GLn,Fq consisting of those n × n-matrices g = (gij)i,j∈Z/nZ ∈ GLn,Fq for which Xij = 0,

unless i ≡ j mod n0; if we now equip GLn,Fq with the Fq-structure given by the Frobenius

F0 : g 7→ b0σ(g)b−1
0 and denote the resulting Fq-group simply by GLn, then this de�nes an

Fq-embedding G1 → GLn.

We regard the symmetric group on n letters Sn as the group of set automorphisms of Z/nZ,
and for an element i ∈ Z/nZ let [i] be the unique integer between 1 and n having residue

i modulo n. We also identify Sn with the Weyl group of the diagonal torus in GLn (either

over Fq or K̆) by sending a permutation v ∈ Sn to the permutation matrix (again denoted

v) whose non-zero entries are (v(i), i) for 1 ≤ i ≤ n.
As G1 is naturally isomorphic to the reductive quotient of the special �ber of GO, the

group WO is simply the Weyl group of T1 in G1. Thus, using the above identi�cations, WO
is the subgroup of Sn, isomorphic to Sn′ × · · · × Sn′ (n0 times), of those permutations which

preserve the residue modulo n0.

Applying L+
h to the inclusionsTO,UO,U

−
O ⊆ GO gives closed subgroups Th,Uh,U−h ⊆ Gh,

with Th de�ned over Fq and Uh,U−h de�ned over Fqn (cf. [CI19a, 2.6]). For a closed subgroup

Hh ⊆ Gh and 1 ≤ a ≤ h − 1, we write Ha
h := Hh ∩ ker(Gh → Ga). If Hh is de�ned over Fq,

we write H := H(Fq) and Ha
h := Ha

h(Fq).
Then we have (by a slight modi�cation � or conjugation with γ from Remark 3.4 � of [CI18,

Section 7], in particular, Propositions 7.10,7.11) as perfect Fq-spaces

Xh
∼= {g ∈ Gh : g−1F (g) ∈ U−h ∩ FUh} ∼= Sh/(Uh ∩ FUh), (3.2)

where

Sh = {g ∈ Gh : g−1F (g) ∈ FUh}4,
and the action of Uh ∩ FUh on Sh is by right multiplication (here and in the following: all

presheaves have to be shea��ed). Moreover, (3.2) is Gh × Th-equivariant with respect to the

Gh × Th-action on the right hand side given by (g′, t) : g 7→ g′gt.

4note that Xh, Sh are indeed perfect schemes as the tensor product of perfect rings over a perfect ring is again
perfect (by [BS17, 3.16])
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The �bers of the projection Sh → Xh are isomorphic to a�ne spaces of �xed dimension,

so that RGhTh (θ) = H∗c (Sh)θ. As in [Lus04, 1.9], if

Σ = {(x, x′, y) ∈ FUh × FUh ×Gh : xF (y) = yx′}

with the Th × Th-action given by (t, t′) : (x, x′, y) 7→ (txt−1, t′x′t′−1, tyt′−1), then the map

Gh\(Xh ×Xh)→ Σ, (3.3)

induced by (g, g′) 7→ (g−1F (g), g′−1F (g′), g−1g′) is an Th × Th-equivariant isomorphism (the

quotient of the left side is taken with respect to the diagonal action).

The group G1 is reductive and ker(Gh → G1) is unipotent. Thus the Bruhat decomposition

G1 =
∐
w∈WO U1T1ẇU1 of G1 lifts to a decomposition Gh =

∐
w∈WO Gh,w, with Gh,w =

UhThẇK1
hUh, K1

h = (U−h )1 ∩w−1(U−h )1w [CI18, Lemma 8.6]. We then have the locally closed

decomposition Σ =
∐
w∈WO Σw, where

Σw = {(x, x′, y) ∈ FUh × FUh ×Gh,w : xF (y) = yx′}.

is Th × Th-stable. Further, let

Σ̂w = {(x, x′, y1, τ, z, y2) ∈ FUh × FUh × Uh × Th ×K1
h × Uh : xF (y1τẇzy2) = y1τẇzy2x

′}.

where ẇ ∈ Gh is an (arbitrary but from now on �xed) lift of w. It has a Th × Th-action by

(t, t′) : (x, x′, y1, τ, z, y2) 7→ (txt−1, t′x′t′−1, ty1t
−1, tτ ẇt′−1ẇ−1, t′zt′−1, t′y2t

′−1). (3.4)

Then the map Σ̂w → Σw given by (x, x′, y1, τ, z, y2) 7→ (x, x′, y1τzy2) is a Th×Th-equivariant
Zariski-locally trivial �bration. All in all, as in [Lus04], using (3.3) it is enough to show that∑

i

(−1)i dimQ`
H i
c(Σ̂w)θ−1,θ′ =

{
1 if w ∈WF

O and θ′ = θ ◦ ad(w)

0 otherwise.
(3.5)

So far we were essentially following [Lus04, 1.9], but now we have to deviate.

3.2. Emptyness of certain Σ̂w. Let w ∈ WO. As in [Lus04, 1.9], make the change the

variables xF (y1) 7→ x, x′F (y2)−1 7→ x′. We thus may rewrite

Σ̂w = {(x, y1, τ, z, y2) ∈ FUh × Uh × Th ×K1
h × Uh : xF (τẇz) ∈ y1τẇzy2FUh} (3.6)

with the Th × Th-action still given by (3.4).

Lemma 3.5. Assume that there exists some 2 ≤ i ≤ n such that [w(i)] > [w(i− 1) + 1] > 1.

Then Σ̂w = ∅.

Proof. We may assume h = 1, and hence we may ignore z ∈ K1
h whose image in G1 is 1.

We use the identi�cation of G1 with the closed subgroup of GLn from Section 3.1. Write

yi = yi,1yi,2 with y1,1, y2,2 ∈ U1 ∩ FU1 and y1,2, y2,1 ∈ U1 ∩ FU−1 . Replacing x by y−1
1,1x and

putting y2,2 into the FU1 on the right hand side, we are reduced to show that there are no

(x, y1,2, y2,1, τ) ∈ FU1 × (U1 ∩ FU−1 )× (U1 ∩ FU−1 )× T1 with

ẇ−1τy−1
1,2xF (τẇ) ∈ y2,1F (U1).

Replacing everything by appropriate conjugates resp. inverses, it su�ces to show that there

are no (x, y, y2,1, τ
′) ∈ FU1 × (U1 ∩ FU−1 )× (U1 ∩ FU−1 )× T1 satisfying

ẇ−1yxF (ẇ) ∈ τ ′y2,1FU1.

For a n× n-matrix X, let Xi,j denote its (i, j)th entry. Consider the closed subset

M = {X ∈ G1 : Xi,i ∈ Gm ∀ 2 ≤ i ≤ n and Xi,j = 0∀n ≥ i > j > 1}
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of G1. We have

U1 ∩ FU−1 = {X ∈ G1 : Xi,i = 1∀i and Xi,j = 0∀ (i, j) with j 6= 1 or i 6= j}

One easily checks that T1 · (U1 ∩ FU−1 ) · FU1 ⊆M . Thus it su�ces to check that

ẇ−1MF (ẇ) ∩M = ∅.

For X ∈ G1 (and even more generally for X ∈ GLn and F replaced by F0 as in Section 3.1),

one has the formula

(ẇ−1XF (ẇ))i,j = Xw(i),[w(j−1)+1]. (3.7)

Let 2 ≤ i ≤ n be such that [w(i)] > [w(i− 1) + 1] > 1. Then for X ∈M , the (i, i)th diagonal

entry of ẇ−1XF (ẇ) is

(ẇ−1XF (ẇ))i,i = Xw(i),[w(i−1)+1] = 0,

by de�nition of M . This shows that X 6∈M and we are done. �

As mentioned in Section 2.1.3, WF
O = 〈wn0

1 〉. Clearly, no element from WF
O satis�es the

condition in Lemma 3.5. Thus Lemma 3.5 implies (3.5) for all w satisfying the condition in

the lemma.

3.3. An extension of action. It remains to show (3.5) for all w ∈ WO ⊆ Sn for which

there is no 2 ≤ i ≤ n satisfying [w(i)] > [w(i− 1) + 1] > 1. Consider the closed subgroup

Hw = {(t, t′) ∈ Th × Th : ẇ−1t−1F (t)ẇ = t′−1F (t′) centralizes Kh = U−h ∩ ẇ
−1U−h ẇ }

of Th×Th. It contains Th× Th. It is easy to check that the action of Th× Th on Σw extends

to an action of Hw given by the formula

(t, t′) : (x, y1, τ, z, y2) 7→ (F (t)xF (t)−1, F (t)y1F (t)−1, tτ ẇt′−1ẇ−1, t′zt′−1, F (t′)y2F (t′)−1).

Lemma 3.6. Let 1 6= w ∈WO. Assume that there is no 2 ≤ i ≤ n with [w(i)] > [w(i− 1) +

1] > 1. Then there is a proper Levi subgroup L of GK̆ containing TK̆ such that if Lh denotes

the corresponding subgroup of Gh, then Kh ⊆ Lh.

Proof. First we prove the following claim: there is an s ∈ Z≥1 and a sequence 0 =: i0 < 1 ≤
i1 < · · · < is−1 < is := n of integers such that for each 1 ≤ j ≤ s, and for each ij−1+1 ≤ i ≤ ij
(if j > 1) resp. for each 1 ≤ i ≤ i1 (if j = 1), one has w(i) = n− ij−1 − (ij − i). Indeed, �nd
the 1 ≤ i1 ≤ n such that w(i1) = n. It follows from the condition on w that w(i1−1) = n−1,

..., w(1) = n − (i1 − 1). The maximal value which w has on {i1 + 1, . . . , n} is n − i1. Find
the i1 + 1 ≤ i2 ≤ n such that w(i2) = n − i1. It follows from the condition on w that

w(i2 − 1) = n− i1 − 1, . . . , w(i1 + 1) = n− i2 + 1. Then, proceed inductively until is = n is

reached. The claim is proven.

Note that i1 < n, as i1 = n would imply w = 1, whereas w 6= 1 is assumed in the

lemma. Let L be the (proper) Levi subgroup of GLn,K̆ = GK̆ containing TK̆ of type

(i1, i2− i1, . . . , is− is−1). From the claim it easily follows that Kh = U−h ∩w
−1U−hw ⊆ Lh. �

For i = 1, 2 we have the composed maps

πi : Hw ⊆ Th × Th → Th → T1,

where the middle map is the projection to the i-th component, and the last map is the natural

projection. For 1 ≤ i 6= j ≤ n, let αi,j denote the root of GLn,Fq corresponding to (i, j)th

matrix entry. Recall from Section 3.1 that T1 ⊆ G1 ⊆ GLn,Fq and that T1 is the diagonal

(and in fact elliptic with respect to the Frobenius F0) torus of GLn,Fq . Let αi,j be the roots

of T1 in GLn,Fq corresponding to (i, j)th entry.



ON LOOP DELIGNE�LUSZTIG VARIETIES 15

Lemma 3.7. Let δ : Z/nZ → {0, 1} be a non-zero function, and let χ : Gm → T1 be the

cocharacter X 7→ diag(Xδ(1), . . . , Xδ(n)). Then Sχ := {t ∈ T1 : t−1F (t) ∈ im(χ)} is a

one-dimensional subgroup of T1. Let 1 ≤ j < i ≤ n. If δ does not factor as Z/nZ →
Z/gcd(n, i − j)Z → {0, 1}, then the connected component S◦χ of Sχ is not contained in the

subtorus ker(αi,j) of T1.

In particular, if for any divisor d > 1, δ does not factor as Z/nZ → Z/dZ → {0, 1}, then
S◦χ is a not contained in any of the subtori ker(αi,j) (1 ≤ i 6= j ≤ n) of T1.

Proof. Assume that δ does not factor through Z/nZ→ Z/gcd(n, i− j)Z. As dimSχ = 1, it

su�ces to show that Sχ ∩ ker(αi,j) is �nite. We write an element in T1 as an n-tuple (tk)
n
k=1

corresponding to the diagonal matrix with entries t1, . . . , tn. We have im(χ) = {(a−δ(k))nk=1 ∈
T1 : a ∈ Gm}. Thus (tk)

n
k=1 ∈ T1 lies in Sχ if and only if t−1

1 tqn = a−δ(1), t−1
2 tq1 = a−δ(2), . . . ,

t−1
n tqn−1 = a−δ(n). Thus Sχ is isomorphic to the one-dimensional subscheme of G2

m,

{t1, a ∈ G2
m : t1−q

n

1 = aδ(1)+
∑n
k=2 q

n−k+1δ(k)}, (3.8)

which is embedded into T1 by sending (t1, a) to the tuple (tk)
n
k=1 with tk = tq

k−1

1 a
∑k
λ=2 q

k−λδ(λ).

Thus the intersection Sχ ∩ ker(αi,j) is the closed subscheme of (3.8) given by the equation

ti = tj , i.e.,

tq
i−1−qj−1

1 = a
∑j
k=2 q

j−kδ(k)−
∑i
k=2 q

i−kδ(k)

Taking this to (qn − 1)-th power, taking the equation in (3.8) to the power qi−1 − qj−1, and

equalizing the left hand sides, we deduce that on Sχ ∩ ker(αi,j) we must have

a(qi−1−qj−1)(δ(1)+
∑n
k=2 q

n−k+1δ(k)) = a(qn−1)(
∑i
k=2 q

i−kδ(k)−
∑j
k=2 q

j−kδ(k)).

Thus it su�ces to show that

(qi−1 − qj−1)(δ(1) +
n∑
k=2

qn−k+1δ(k)) 6= (qn − 1)(
i∑

k=2

qi−kδ(k)−
j∑

k=2

qj−kδ(k)),

or equivalently, that

n−1∑
k=i−1

qkδ(n− k + i)−
n−1∑
k=j−1

qkδ(n− k + j) 6= −
i−2∑
k=0

qkδ(i− k) +

j−2∑
k=0

qkδ(j − k),

or that
n−1∑
k=0

qk(δ(i− k)− δ(j − k)) 6= 0.

Assume this is wrong, and this sum is 0. All terms δ(i− k)− δ(j− k) lie in the set {−1, 0, 1}
and hence qn−1 is bigger than the sum of the absolute values of the remaining summands.

It follows that we must have δ(i − n + 1) − δ(j − n + 1) = 0. Then we may continue in the

same way with qn−2 instead of qn−1, etc. All in all we deduce that δ(i− k) = δ(j − k) for all

k ∈ Z/nZ. Or equivalently, that δ(k) = δ(k+ (i− j)) for all k ∈ Z/nZ. But this is equivalent
to saying that δ factors through Z/nZ→ Z/gcd(n, i−j)Z, contradicting our assumption. �

Now let 1 6= w ∈WO, such that there is no 2 ≤ i ≤ n with [w(i)] > [w(i− 1) + 1] > 1. Let

Lh be as in Lemma 3.6 and let 1 ≤ i1 < n be the size of its �rst block (cf. the proof of Lemma

3.6). Let δ : Z/nZ→ {0, 1}, i 7→ 1 if i ≤ i1 and i 7→ 0 otherwise. Let χ = (1i1 , 0n−i1) be the

corresponding cocharacter. We have (again, cf. the proof of Lemma 3.6), (wδ)(i) = δ(i+ λ)

for an appropriate λ ∈ Z/nZ. It follows from Lemma 3.6 and the de�nition of Hw that

π1(Hw) ⊇ Swχ and π2(Hw) ⊇ Sχ. Hence also

π1(H◦w) ⊇ S◦wχ and π2(H◦w) ⊇ S◦χ. (3.9)
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From this together with Lemma 3.7 it follows that for i = 1, 2, πi(H
◦
w) is not contained in

any of the ker(αi,j : T1 → Gm) (1 ≤ i 6= j ≤ n). Hence it also holds for πi(H
◦
w,red), where

H◦w,red is the reductive part of H◦w (it is a torus). As in [Lus04] we now have H∗c (Σ̂w)θ−1,θ′ =

H∗c (Σ̂
H◦w,red
w )θ−1,θ′ ,

5 and because πi(H
◦
w,red) is not contained in any of the ker(αi,j), we have

Σ̂
H◦w,red
w ⊆ {(1, 1, τ, 1, 1) : τ ∈ Th, F (τẇ) = τẇ},

and (3.5) for Σ̂w easily follows (cf. [Lus04, 1.9, proof of claim (e)]).

3.4. Another extension of action. It remains to deal with the case w = 1. We �rst

prove a more general result, again generalizing Lusztig's method. The proof does not depend

on special properties of GLn and can be carried out for any group, so we put ourselves �

until the end of Section 3.4 only � in the general setup of [CI19a]. Let G be a reductive

group over K, which is split over K̆, and let T, T′ be two maximal K-rational, K̆-split tori

in G. There is a natural inclusion of the reduced Bruhat�Tits building BK of G over K

into the reduced Bruhat�Tits building BK̆ of G over K̆. Assume there is a point y in the

intersection of BK and the apartments of T and T′ inside BK̆ . We have then the parahoric

OK-model Py of G attached to y. Its OK̆-points Py(OK̆) form the parahoric subgroup of

G(K̆) attached to y, which is the stabilizer of y. On Py(OK̆) we have the descending Moy�

Prasad �ltration given by certain subgroups Py(OK̆)h (h ≥ 0). Using the truncated loop

group construction [CI19a, 2.6], for any h ≥ 1 one can de�ned an a�ne perfectly �nitely

presented perfect Fq-group Gh satisfying

Gh(Fq) = Py(OK̆)/Py(OK̆)(h−1)+

We denote by F the (geometric) Frobenius on Gh,Fq and its closed subgroups. To a closed

subgroup H ⊆ GK̆ one can naturally attach a closed subgroup Hh ⊆ Gh, by �rst taking the

schematic closure of H in Py and then applying L+
h . We write Hr

h := ker(Hh → Hr) for the

kernel of the natural projection. We also write Gh := Gh(Fq) and Hh := Hh(Fq) (the latter
only if Hh is de�ned over Fq). For more details we refer to [CI19a, 2.6].

Let U,U− resp. U′,U′− be the unipotent radicals of a pair of opposite Borel subgroups

containing T resp. T′ and let Uh,U−h resp. U′h,U
′−
h be the corresponding subgroups of Gh.

We have the closed perfect subscheme of Gh,

ST,U,h = {g ∈ Gh : g−1F (g) ∈ FUh}

with a Gh×Th-action by (γ, t) : g 7→ γgt. Similarly we have the perfect subscheme ST ′,U ′,h ⊆
Gh. As already above, Lusztig's scheme Σ = {(x, x′, y) ∈ FUh × FU′h × Gh : xF (y) = yx′}
is very useful to compute the inner product between the virtual Gh-representations obtained

from ST,U,h and ST ′,U ′,h. More precisely, for Q×` -valued characters θ resp. θ′ of Th resp. T ′h
we have 〈

H∗c (ST,U,h)θ, H
∗
c (ST ′,U ′,h)θ′

〉
Gh

= dimQ`
H∗c (Σ)θ−1,θ′

To study H∗c (Σ) Lusztig in [Lus04] (and many authors in follow-up articles) used a locally

closed decomposition Σ =
∐
w∈Wy(T ′,T ) Σw, where Wy(T ′, T ) = {T1v : v−1T1v = T′1} is the

transporter from T′1 to T1 in G1 (= reductive quotient of the special �ber of Py) conjugating

T′1 to T1. Now, we generalize this construction in a substantial way.

Let V resp. V′ be the unipotent radical of a second Borel subgroup containing T resp.

T′. We have the corresponding subgroups Vh, V′h of Gh. For v ∈ Wy(T ′, T ) we have the

corresponding preimage VhThvK1
V,V ′,hV

′
h (with KV,V ′,r := V′−h ∩v

−1V−h v) of the Schubert cell

5The fact that we are working with perfect schemes here does not a�ect the argument.
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in G1 attached to v. We consider the following generalizations of Σ̂w, Σw from [Lus04]

ΣV,V ′,v := {(x, x′, y) ∈ FUh × FU′h × VhThv̇K1
V,V ′,hV

′
h : xF (y) = yx′},

Σ̂V,V ′,v := {(x, x′, y′, τ, z, y′′) ∈ FUh × FU′h × Vh × Th ×K1
V,V ′,h × V′h :

xF (y′τ v̇zy′′) = y′τ v̇zy′′x′},

which have the same alternating sum of cohomology. The action of Th × T ′h on Σ̂V,V ′,v is

(x, x′, y′, τ, z, y′′)
(t,t′)7→ (txt−1, t′x′t′−1, ty′t−1, tτ v̇t′−1v̇−1, t′zt′−1, t′y′′t′−1). (3.10)

and by a similar formula for ΣV,V ′,v. There is an element v0 = v0(V, V ′) ∈ Wy(T ′, T ), such

that the (generalized) Bruhat cell V1T1v0V′1 is generic in G1, i.e., v
−1
0 Vhv0 = V′−h . For this

v0 we have KV,V ′,h = 1. We can write y′ ∈ Vh and y′′ ∈ V′h as

y′ = y′1y
′
2 where y′1 ∈ Uh ∩ Vh, y′2 ∈ U−h ∩ Vh,

y′′ = y′′1y
′′
2 where y′′1 ∈ U′−h ∩ V′h, y′′2 ∈ U′h ∩ V′h.

where (t, t′) ∈ Th×T′h acts on y′1, y′2 resp. y′′1 , y′′2 by conjugation with t resp. with t′. Changing

the variables xF (y′1) 7→ x, x′F (y′′2)−1 7→ x′ we can rewrite Σ̂V,V ′,v0 as

{(x, y′1, y′2, τ, y′′1 , y′′2) ∈ FUh × (Uh ∩ Vh)× (U−h ∩ Vh)× Th × (U′−h ∩ V′h)× (U′h ∩ V′h) :

xF (y′2τ v̇y
′′
1) ∈ y′1y′2τ v̇y′′1y′′2FU′h}.

Let

H ′v0 = {(t, t′) ∈ Th×T′h : F (t)t−1 = v̇0t
′F (t′)−1v̇−1

0 centralizes U−h ∩ Vh and v̇0(FU′−h ∩ V′h)v̇−1
0 }.

De�ne an action of H ′v0 on Σ̂V,V ′,v0 by

(x, y′1, y
′
2, τ, y

′′
1 , y
′′
2)

(t,t′)7→ (F (t)xF (t)−1, F (t)y′1F (t)−1, ty′2t
−1, tτ v̇0t

′−1v̇−1
0 , t′y′′1 t

′−1, t′y′′2 t
′−1).

It extends the action of Th × T ′h. We have to show that it is well-de�ned, i.e., that if

(x, y′1, y
′
2, τ, y

′′
1 , y
′′
2) ∈ Σ̂V,V ′,v0 , then the same holds for (t, t′).(x, y′1, y

′
2, τ, y

′′
1 , y
′′
2). This reduces

to show that

xF (y′2)F (τ)F (v̇0)F (y′′1) ∈ y′1F (t)−1ty′2τ v̇0y
′′
1y
′′
2FU′ht′−1F (t′)

Writing y′′ = y′′1y
′′
2 ∈ V′h as y′′ =: y′′3y

′′
4 with y′′3 ∈ V′ ∩ FU′−h and y′′4 ∈ V′ ∩ FU′h, it su�ces

to check that F (t)t−1 commutes with y′2 ∈ U−h ∩ Vh and that t′−1F (t′) = v̇−1
0 F (t)t−1v̇0

commutes with y′′3 ∈ V′ ∩ FU′−h . This holds by de�nition of H ′v0 . We thus have proven the

following lemma.

Lemma 3.8. The action of Th × T ′h on Σ̂V,V ′,v0 extends to an action of the algebraic group

H ′v0 given by the above formula.

Now returning to the proof Theorem 3.1, we apply Lemma 3.8 to our G (= inner form of

GLn), the point y = xb, the diagonal (elliptic unrami�ed) torus T = T′ of G, the subgroup

U = U′ of unipotent upper triangular matrices and to V = U, V′ = U−, v0 = 1, in which

case U−h ∩Vh = 1 and v̇0(FU−h ∩V
′
h)v̇−1

0 is contained in Lh for some proper Levi subgroup L

of GK̆ , and hence the reductive part H ′◦1,red of the connected component of H ′1 is big enough

in the sense of Lemma 3.7. Note �nally that Σ1 = ΣU,U,1 is a closed subscheme of ΣU,U−,1, (in

fact, on ΣU,U−,1, y varies in ThUhU−h and Σ1 is given by the closed condition y ∈ ThUhU−,1h ).

Let Σ̃1 denote the pullback of Σ1 along Σ̂U,U−,1 → ΣU,U−,1. It has the same alternating sum

of cohomology as Σ1, and it is clearly stable under the action of H ′1. Thus the argument

from [Lus04, 1.9] applies to Σ̃1 and we obtain H∗c (Σ̂1) = H∗c (Σ1) = H∗c (Σ̃1) = H∗c (Σ̃
H′◦1,red
1 )
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(and the same for θ−1 ⊗ θ′-isotypic parts), hence verifying (3.5) in the only remaining case

w = 1. This completes the proof of Theorem 3.1.

4. A variation of the Mackey formula

We work with exactly the same setup and notation as in Section 3 (and in particular

Section 3.1). Recall the presentation (3.2) of Xh. Then

Xh,n′ = {g ∈ Gh : g−1F (g) ∈ U−,1h ∩ FU1
h},

is a closed perfect subscheme of Xh, stable under the action of Gh × Th. In fact, Xh has a

strati�cation in locally-closed pieces [CI19b] indexed by divisors r of n′, and Xh,n′ is precisely

the closed stratum.

Theorem 4.1. Let θ : Th → Q×` be a character. Assume that p > n, and that θ|T 1
h
has trivial

stabilizer in WF
O . Then 〈

RGhTh (θ), H∗c (Xh,n′)θ

〉
Gh

= 1 (a)

and 〈
H∗c (Xh,n′)θ, H

∗
c (Xh,n′)θ

〉
Gh

= 1. (b)

We prove Theorem 4.1 in Sections 4.1-4.3. From Theorems 3.1 and 4.1 we deduce:

Corollary 4.2. Under the assumptions of Theorem 4.1, H∗c (Xh,n′)θ is up to sign an irre-

ducible representation of Gh, and H
∗
c (Xh,n′)θ ∼= RGhTh (θ).

Remark 4.3. There are two general principles used in the proofs of Theorems 3.1 and 4.1:

(1) If X is a reasonably nice (perfect) scheme over a �eld with an action of an algebraic

group H, then the induced action of H in H i
c(X,Q`) is trivial (∀i ≥ 0).

(2) If moreover X is (the perfection of a) quasi-projective scheme over a �nite �eld, H is

a torus, and α : X → X is a �nite order automorphism commuting with the H-action,

then tr(α,H∗c (X,Q`)) = tr(α,H∗c (XH ,Q`)).

For our purposes, (2) is stronger than (1), which for example does not allow quantitative

results in Section 4.2. Theorem 4.1 is less general than Theorem 3.1 because in its proof we

have to use both (2) and (1), whereas in the proof of Theorem 3.1 we manage to work with

(2) only.

4.1. Proof Theorem 4.1(a): multiplicative extension. Parts of the proof follows along

the same lines as the proof of Theorem 3.1, thus we will be slightly sketchy below. Similar

as in [CI18, Lemma 7.12] we have an isomorphism

(U1
h ∩ FU1

h)× (U−,1h ∩ FU1
h)→ FU1

h, (g, x) 7→ g−1xF (g).

Thus we have Gh × Th-equivariantly Xh,n′
∼= Sh,n′/(U1

h ∩ FU1
h), where

Sh,n′ = {g ∈ Gh : g−1F (g) ∈ FU1
h}

and Gh × Th acts on Sh,n′ by g, t : x 7→ gxt, and (U1
h ∩ FU1

h) by right multiplication. Hence

H∗c (Xh,n′)θ ∼= H∗c (Sh,n′)θ. Using Lang's theorem, we have a Th×Th-equivariant isomorphism

Gh\(Sh × Sh,n′)
∼→ Σ(1,n) := {(x, x′, y) ∈ FUh × FU1

h ×Gh : xF (y) = yx′}

where Th × Th acts on Σ(1,n) by (t, t′) : (x, x′, y) 7→ (txt−1, t′x′t′−1, tyt′−1). For w ∈ WO
let Σ(1,n),w = {(x, x′, y) ∈ Σ(1,n) : y ∈ Gh,w} (it is an Th × Th-stable locally closed perfect

subscheme) and putting Kh = Uh ∩ ẇ−1U−h ẇ, we let

Σ̂(1,n),w = {(x, y1, τ, z, y2) ∈ FUh × Uh × Th ×K1
h × Uh : xF (y1τẇzy2) ∈ y1τẇzy2FU1

h}
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be the Zariski-locally trivial covering of Σ(1,n),w with Th×Th-action given by the same formula

as in (3.4). As in Section 3.1, we have 〈RGhTh (θ), H∗c (Xh,n′)θ〉Gh =
∑

w∈WO dimH∗c (Σ̂(1,n),w)θ−1,θ.

We claim that

dimH∗c (Σ̂(1,n),w)θ−1,θ =

{
1 if w = 1,

0 otherwise,
(4.1)

which implies the �rst formula of Theorem 4.1. First assume w satis�es the condition in

Lemma 3.5. Then Σ̂(1,n),w ⊆ Σ̂w = ∅ and we are done. Now assume that w = 1. Then

Gh,1 = Uh · Th · U−,1h , so

Σ̃(1,n),1 = {(x, x′, y1, τ, z) ∈ FUh × FU1
h × Uh × Th × U−,1h : xF (y1τz) ∈ y1τzx

′}

is another a Zariski-locally trivial covering of Σ(1,n),1 (with obvious Th × Th-action), so

that H∗c (Σ̂(1,n),1)θ−1,θ) = H∗c (Σ̃(1,n),1)θ−1,θ), and we can replace Σ̂(1,n),1 by Σ̃(1,n),1. We can

uniquely write z = z1z2 with z1 ∈ U−,1h ∩ FU−,1h and z2 ∈ U−,1h ∩ FU1
h and make the change

of variables xF (y1) 7→ x, z2x
′ 7→ x′ (note that the latter works because z2 ∈ FU1

h!), so that

Σ̃(1,n),1 is isomorphic to

{(x, y1, τ, z1, z2) ∈ FUh×Uh×Th×(U−,1h ∩FU
−,1
h )×(U−,1h ∩FU

1
h) : xF (τz1z2) ∈ y1τz1FU1

h}.

The Th × Th-action on Σ̃(1,n),1 is given by

(t, t′) : (x, y1, τ, z1, z2) 7→ (txt−1, ty1t
−1, tτ t′−1, t′z1t

′−1, t′z2t
′−1).

Let

H1 := {(t, t′) ∈ Th × Th : t−1F (t) = t′−1F (t′) centralizes Uh ∩ FU−h }.
As in Sections 3.3 and 3.4, one can check that H1 acts on Σ̃(1,n),1 by

(t, t′) : (x, y1, τ, z1, z2) 7→ (F (t)xF (t)−1, F (t)y1F (t)−1, tτ t′−1, t′z1t
′−1, t′z2t

′−1)

(and this action extends the action of Th×Th). Since Uh∩FU−h is contained in the subgroup

of Gh attached to a proper rational Levi subgroup L ⊆ GK̆ , it follows that the connected

component H◦1,red of the reductive part of H is big enough (in the sense of Lemma 3.7),

so that we deduce dimH∗c (Σ̃(1,n),1)θ−1,θ = 1, and hence (4.1) for w = 1 (this is the same

argument as at the end of Section 3.4).

4.2. Proof Theorem 4.1(a): additive extension. It remains to show (4.1) for 1 6= w ∈
WO not satisfying the condition from Lemma 3.5. Assume w is such an element. Let

H1
w := {(t, t′) ∈ T1

h × T1
h : ẇ−1t−1F (t)ẇ = t′−1F (t′) centralizes K1

h}.

In Σ̂(1,n),w make the change of variables xF (y1) 7→ x, so that

Σ̂(1,n),w = {(x, y1, τ, z, y2) ∈ FUh × Uh × Th ×K1
h × Uh : xF (τẇz) ∈ y1τẇzy2F (U1

hy
−1
2 )}

with Th × Th-action given by the same formula as in (3.4). Now

(t, t′) : (x, y1, τ, z, y2) 7→ (F (t)xF (t)−1, F (t)y1F (t)−1, tτ ẇt′−1ẇ−1, t′zt′−1, F (t′)y2F (t′)−1)

de�nes an action of H1
w on Σ̂(1,n),w. In order to check this we have to show that if (t, t′) ∈ H1

w

and (x, y1, τ, z, y2) ∈ Σ̂(1,n),w, then also (t, t′).(x, y1, τ, z, y2) ∈ Σ̂(1,n),w. After elementary

cancellations this reduces to show that

xF (τẇzt′−1) ∈ y1F (t)−1tτẇzt′−1F (t′)y2F (t′)−1F (U1
hF (t′)y−1

2 F (t′)−1)

But as t′ ∈ T1
h, we have U1

hF (t′)y−1
2 F (t′)−1 = U1

hy
−1
2 , so this reduces to show that

xF (τẇz) ∈ y1F (t)−1tτẇzt′−1F (t′)y2F (t′−1U1
hy
−1
2 t′).
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Again, using t′ ∈ T1
h, we deduce that t

′−1U1
hy
−1
2 t′ = U1

hy
−1
2 , so (t, t′).(x, y1, τ, z, y2) ∈ H1

w.

Via the isomorphism Th
∼→ UL/U

h
L mapping a diagonal matrix t = (ti)

n
i=1 to its upper left

entry t1, we identify Th with UL/U
h
L and T 1

h with U1
L/U

h
L. By Lemma 2.12 (and the discussion

in Section 2.1.3), the condition that θ|T 1
h
has trivial stabilizer in WF

O = 〈wn0
1 〉 translates to

the condition that the restriction of θ to U1
L/U

h
L does not factor through any of the norm

maps Nn/n0s : U1
L/U

h
L � U1

Kn0s
/UhKn0s

, where 1 ≤ s < n′ goes through all divisors of n′. Let

H1,◦
w be the connected component of H1

w.

Lemma 4.4. If (t, t′) varies through (T 1
h × T 1

h ) ∩H1,◦
w , then t−1

1 t′1 varies (at least) through

all elements of ker(Nn/n0s) for some divisor 1 ≤ s < n′ of n′ (s depends on w).

Before proving this lemma, we use it to �nish the proof of Theorem 4.1(a). Indeed, by

assumption on θ for each divisor s < n′ of n′ there is an element x = xs ∈ ker Nn/n0s ⊆ U1
L/U

h
L

such that θ(xs) 6= 1. By Lemma 4.4 we can �nd a divisor s < n′ of n′ and an element

(t, t′) ∈ (T 1
h×T 1

h )∩H1,◦
w such that t−1

1 t′1 = xs, and hence θ(t−1
1 t′1) 6= 1. Seeing θ as a character

of T 1
h again, this simply means that θ(t) 6= θ(t′), and it follows that the Th × Th-character

θ−1 ⊗ θ is non-trivial on (T 1
h × T 1

h ) ∩H1,◦
w . But the induced action of a connected algebraic

group in the cohomology of a separated scheme of �nite type over Fq is trivial [DL76, Corollary
6.5] and the same holds after perfection, hence for each i ≥ 0 we have H i

c(Σ̂(1,n),w)θ−1,θ = 0,

which shows claim (4.1) for all remaining elements w, and hence also Theorem 4.1(a).

Remark 4.5. The basic idea in the above arguments is the same as in [DL76, Lemma 6.7].

This gives hope to generalize them to a far more general setup (e.g. all unrami�ed maximal

tori in all reductive groups).

Towards the proof of Lemma 4.4, for positive integers s, r such that s divides r, we de�ne

morphisms of perfect Fq-schemes

Nmr/s : W×,1h →W×,1h x 7→ Nmr/s(x) :=

r
s
−1∏
i=0

σs(x).

Proof of Lemma 4.4. By assumption, w does not satisfy the condition of Lemma 3.5. Thus

by Lemma 3.6 there is a proper Levi subgroup L ⊆ GK̆ containing TK̆ , such that if Lh is

the corresponding subgroup of Gh, we have Kh ⊆ Lh. We may assume L is maximal, so that

there is an 1 ≤ m ≤ n − 1, such that L = GLm,K̆ ×GLn−m,K̆ (upper left and lower right

diagonal blocks). More precisely, we may (and do) choose that m to be the i1 from the proof

of Lemma 3.6. In fact, by our explicit description of WO ∼=
∏n0
i=1 Sn′ in Section 3.1, we see

that as w ∈WO, our choice m = w−1(n) must be an integer dividing n0. Let χ = (1m, 0n−m)

be a cocharacter of TK̆ . From the explicit form of w determined in Lemma 3.6, we see that

wχ = (0n−m, 1m). Let Yh,χ ⊆ Th denote the subgroup of Th corresponding to the subgroup

im(χ) of TK̆ (thus Yh,χ ∼= W×h ). As im(χ) centralizes L, Yh,χ centralizes Lh and hence also

Kh. Thus

H1
w ⊇ H1

w,χ := {(t, t′) ∈ T1
h × T1

h : ẇ−1t−1F (t)ẇ = t′−1F (t′) ∈ Y1
h,χ},

and the same inclusion holds if we take connected components on both sides. Thus we may

replace H1
w by H1

w,χ. Let (t, t′) ∈ T1
h × T1

h. Write t = diag(ti)
n
i=1 and t′ = diag(t′i)

n
i=1 with

ti, t
′
i ∈W×,1h . Let x be a W×,1h -�coordinate� on Y1

h,χ (it is an (h−1)-tuple of A1-coordinates).

We can eliminate all �coordinates� ti (i 6= n) and t′i (i 6= m) by expressing them through x

and tm, t
′
n. More precisely,

H1
w,χ
∼= {(x, tm, t′n) ∈W×,1h ×W×,1h ×W×,1h : σn(tn)t−1

n = Nmm/1(x) = σn(t′m)t′−1
m }.
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We see that on H1
w,χ, the equation σ(t−1

n t′m) = t−1
n t′m holds, so that t−1

n t′m can take only

�nitely many values. On H1,◦
w,χ we must in particular have tn = t′m, or equivalently (using the

expression of t1, t
′
1 through tn, t

′
m) we have

σn−m(t1) = t′1 (4.2)

on H1,◦
w,χ. Furthermore, H1,◦

w,χ is contained in the perfect scheme (isomorphic to)

{(x, tn) ∈W×,1h ×W×,1h : σn(tn)t−1
n = Nmm/1(x)}

Now let 1 ≤ g = gcd(m,n) < n. As σn(tn)t−1
n = Nmn/1(σ(tn)t−1

n ) = Nmg/1(Nmn/g(σ(tn)t−1
n )),

and Nmm/1(x) = Nmg/1(Nmm/g(x)), we have Nmg/1(Nmn/g(σ(tn)t−1
n ) Nmm/g(x)−1) = 1 on

this scheme, and hence Nmn/g(σ(tn)t−1
n ) Nmm/g(x)−1 is discrete on it. Hence H1,◦

w,χ is con-

tained in the perfect scheme (isomorphic to)

{(x, tn) ∈W×,1h ×W×,1h : Nmn/g(σ(tn)t−1
n ) = Nmm/g(x)}.

After replacing σ by σg, Lemma 4.7 shows that this last perfect Fq-scheme is connected, so

that it is equal to H1,◦
w,χ. On H1

w,χ, t1 = σ(tn), so that (after replacing σ(x) by x which is

harmless here), we have

H1,◦
w,χ
∼= {(x, t1) ∈W×,1h ×W×,1h : Nmn/g(σ(t1)t−1

1 ) = Nmm/g(x)}

Now H1,◦
w,χ ∩ (T 1

h × T 1
h ) is the locus in H1,◦

w,χ de�ned by x = 1. Thus we deduce

H1,◦
w,χ ∩ (T 1

h × T 1
h ) = {(t, t′) ∈ T 1

h × T 1
h : t′1 = σn−m(t1) and Nmn/g(σ(t1)t−1

1 ) = 1}

(recall that in T 1
h , t is determined by its �rst entry t1). Note that Nmn/g(σ(t1)t−1

1 ) = 1

simply means that Nmn/g(t1) is σ-stable. As m is divisible by n0, T
1
h = W×,1h (Fqn) = U1

L/U
h
L

and the restriction of Nmn/g to T 1
h
∼= U1

L/U
h
L is Nn/g, the lemma now follows from Lemma

4.6. �

Lemma 4.6. Suppose (n, p) = 1. Let 1 ≤ m ≤ n− 1 and put g = gcd(n,m). Let

α : {y ∈ U1
L/U

h
L : Nn/g(y) ∈ U1

K/U
h
K} → U1

L/U
h
L, y 7→ σn−m(y)y−1.

Then im(α) = ker(Nn/g : U1
L/U

h
L → U1

Kg
/UhKg).

Proof. For arbitrary a ∈ Z we have

Nn/g(y) ∈ U1
K/U

h
K ⇒ Nn/g(σ

a(y)y−1) = σa(Nn/g(y)) Nn/g(y)−1 = 1⇒ σa(y)y−1 ∈ ker(Nn/g).

Hence im(α) ⊆ ker(Nn/g). Let y ∈ ker(α). Then Nn/g(y) is rational and σn−m(y) = y and

σn(y) = y. The last two equalities together are equivalent to σg(y) = y. Hence Nn/g(y) = n
g y,

and hence y is rational (as Nn/g(y) is, and (n, p) = 1). Conversely, if y is rational, then

surely y ∈ ker(α). Thus ker(α) = U1
K/U

h
K . Now the source of α is the preimage under the

(surjective) map Nn/g : U1
L/U

h
L → U1

Kg
/UhKg of U1

K/U
h
K , hence the size of the source of α is

# ker(Nn/g) ·#(U1
K/U

h
K). Thus # im(α) = #(source of α)

# ker(α) = # ker(Nn/g). As we already know

that im(α) ⊆ ker(Nn/g) and both sets are �nite, we are done. �

For positive integer s de�ne the Fq-morphism

trs/1 : Ga → Ga, x 7→ trs/1(x) :=
s−1∑
i=0

xq
i
.

Lemma 4.7. Let r > s ≥ 1 be coprime integers. Suppose p > s. The closed perfect subscheme

Rh = {(y, x) ∈W×,1h ×W×,1h : Nmr/1(σ(y)y−1) = Nms/1(x)}
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ofW×,1h ×W
×,1
h is connected. More precisely, for h ≥ 2 the �bers of Rh → Rh−1 are isomorphic

to A1 (note that R1 is a point).

Proof. It su�ces to prove that the �bers of Rh → Rh−1 are isomorphic to A1. The �bers of

Rh → Rh−1 are isomorphic to closed sub-(perfect schemes) of G2
a (with coordinates X,Y )

given by the equation

C : trr/1(Y q − Y ) = trs/1(X) + const.

where const is a constant term depending on the point in Rh−1. As trr/1(Y q−Y ) = Y qr−Y ,
one can eliminate this constant term by changing the variable Y + c 7→ Y (for an appropriate

c ∈ Fq). So we assume const = 0. We may assume s > 1, as otherwise we obviously have C ∼=
A1. Put r0 := r, r1 := s and de�ne ri ∈ Z≥0 (i ≥ 2), γi ∈ Z>0 (i ≥ 1) by ri = γi+1ri+1 + ri+2

and ri+2 < ri+1 for i ≥ 0. Say this stops at i = α, that is rα+1 = gcd(r, s) = 1, rα+2 = 0.

Via the change of variables X + Y qr−s+1 − Y 7→ X, C is isomorphic to the curve

C1 : trr1/1(X) = trr2/1(Y q − Y ).

Now trr2/1(Y q − Y ) = Y qr2 − Y , so that we can successively make a series of changes of

variables of the form Y + Xqβ 7→ Y for appropriate β ∈ Z≥0, to eliminate all powers of X

with exponent greater than qr2 . This shows that C1 is isomorphic to the curve

C2 : trr3/1(X) + γ2 trr2/1(X) = trr2/1(Y q − Y ).

Now we successively apply the perfection of Lemma 4.8 to C2 and the initial tuple of in-

tegers (a1, b1, c1, d1) = (1, γ2, r3, r2). Consider the operation (a, b, c, d) 7→ (b, a + bγ, r, c)

on quadruples of integers (satisfying 0 < c < d) where 0 ≤ r < d and γ > 0 are de-

�ned by d = γc + r. First of all, if a, b > 0, then also b, a + bγ > 0. Moreover, the

operation leaves invariant the sum of products of 1st and 3rd and of 2nd and 4th entries:

ac+bd = br+(a+bγ)c. Thus if (ai, bi, ci, di) is the tuple after (i−1)th iteration step, we have

aici+ bidi = r3 +γ2r2 = r1 = s < p. Also we have ci = ri+2, di = ri+1, and hence 0 < ci < di
as long as i ≤ α − 1. All this implies that 0 < ai, bi, ci, di < p and 0 < ci < di for each

i = 1, 2, . . . , α− 1, so that Lemma 4.8 indeed applies in each step, as long as i < α. The last

application (for i = α−1) produces a quadruple (aα, bα, cα, dα) = (bα−1, aα−1+bα−1dα−1, 0, 1)

and C2 is thus isomorphic to the curve

bαX = Y q − Y,

and by the same preservation property of the sum ac+bd we have that still 0 < bα < p holds.

Thus this curve is isomorphic to A1
Fq
, and we are done. �

The following lemma works for schemes of �nite type over Fp, so we denote (in this lemma

only) by AFp the usual a�ne space over Fp.

Lemma 4.8. Let a, b, c, d be positive integers with a, b < p and c < d. Write d = γc+ r with

0 ≤ r < c. Then the curve in A2
Fp given by the equation

C1 : a trc/1(x) + b trd/1(x) = trd/1(yq − y)

is Fp-isomorphic to the curve in A2
Fp given by the equation

C2 : b trr/1(x) + (a+ bγ) trc/1(x) = trc/1(yq − y).

Proof. Make the change of variables x+b−1(yq−y) 7→ x (by assumption b < p, as 0 < c < d).

Thus C1 is isomorphic to the curve

C ′1 : a trc/1(x) + ab−1 trc/1(yq − y) + b trd/1(x) = 0.
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Via the change of variables −a−1by 7→ y, C ′1 gets isomorphic to

C ′′1 : a trc/1(x) + b trd/1(x) = trc/1(yq − y).

We have trd/1(yq − y) = yq
d − y. Thus we may successively make the changes of variables

of the form y + xq
α
(for appropriate α ∈ Z≥0), to eliminate all powers of x with exponent

greater than qc. This does not a�ect the �rst summand a trc/1(x) and after all these changes

C ′′1 gets isomorphic to the curve

C ′′′1 : a trc/1(x) + b(γ trc/1(x) + trr/1(x)) = trc/1(yq − y),

which is the same as C2. �

4.3. Proof Theorem 4.1(b). Again, we work in the setup of Section 3.1. For w ∈WO put

Σ̂(n,n),w := {(x, y1, τ, z, y2) ∈ FU1
h×FU1

h×Uh×Th×K1
h×Uh : xF (y1τẇz) ∈ y1τẇzy2F (U1

hy
−1
2 )},

and

Σ̃(n,n),1 := {(x, x′, y1, τ, z) ∈ FU1
h × FU1

h × Uh × Th × U−,1h : xF (y1τz) = y1τzx
′}

with natural Th × Th-actions (like in Section 4.1). Similar as in the beginning of Section 4.1

it su�ces to check that

H∗c (Σ̂(n,n),w)θ−1,θ = 0 for 1 6= w ∈WO, and

dimH∗c (Σ̃(n,n),1)θ−1,θ = 1.

First consider the case w 6= 1. As x ∈ FU1
h and y1 varies in Uh, we can not make the change

of variables xF (y1) 7→ x as in the proof of Theorem 4.1(a). However we can de�ne an action

of H1
w on Σ̂(n,n),w by

(t, t′) : (x, y1, τ, z, y2) 7→

(F (t)xF (y1)F (t)−1F (F (t)y−1
1 F (t)−1), F (t)y1F (t)−1, tτ ẇt′−1ẇ−1, t′zt′−1, F (t′)y2F (t′)−1)

Note that F (t)xF (y1)F (t)−1F (F (t)y−1
1 F (t)−1) ∈ FU1

h (on the one side it is contained in

FUh as x, F (y1) ∈ FUh; on the other side it must lie in G1
h as t, x ∈ G1

h). The proof that this

indeed is an action goes exactly the same way as in Section 4.2. The rest of the argument

for Σ̂(1,n),w goes then through exactly as for Σ̂(1,n),w in Section 4.2.

Now let w = 1. As x, x′, z ∈ G1
h, the equation de�ning Σ̃(n,n),1 modulo G1

h reduces to

F (y1τ) = y1τ . From this it easily follows that y1 ∈ G1
h. Hence y1 ∈ U1

h. Hence the change

of variables xF (y1) 7→ x makes sense (such that the new variable x again lives in FU1
h), and

the rest of the argument for Σ̃(n,n),1 goes exactly the same way as for Σ̃(1,n),1 in Section 4.1.

5. Cuspidality

We go back to the setup of Section 2.6. Let θ be a smooth character of T = L× of level

h ≥ 1 in general position. Recall that the induced character of Th is again denoted by θ,

and that it is also in general position. By Corollary 3.3, RGhTh (θ) is up to sign an irreducible

GO-representation, hence in particular RGT (θ) is up to sign a genuine representation. We

write |RGhTh (θ)| resp. |RGT (θ)| for the genuine representation among ±RGhTh (θ) resp. ±RGT (θ).

Theorem 5.1. Let θ be a smooth character of T = L× in general position. Then |RGT (θ)| is
a �nite direct sum of irreducible supercuspidal representations of G.
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Proof. There are many (essentially equivalent) ways to deduce this theorem from Proposi-

tion 5.2. By [Bus90, Theorem 1] it su�ces to prove that Ξθ := IndGZGO |R
Gh
Th

(θ)| is admis-

sible. Let K ⊆ G be a compact open subgroup. We have to show that (Ξθ)
K is �nite-

dimensional. Conjugating K into GO and making it smaller if necessary, we may assume

that K = ker(GO → Gr) for some r > 0. Frobenius reciprocity gives

(Ξθ)
K =

⊕
g∈GOZ\G/K

|RGhTh (θ)|ZGO∩gKg−1
.

Thus we have to show that there are only �nitely many non-vanishing summands on the right.

If S denotes a maximal split torus of G whose apartment in BK(G) = BFb
K̆

contains the

vertex stabilized by GO, then by the rational Iwahori-Bruhat decomposition, ZGO\G/GO ∼=
X∗(S/Z)dom. Hence any element of ZGO\G/K has a representative of the form g = $µx with

x ∈ GO, µ ∈ X∗(S)dom. Now K is normal in GO, so gKg
−1 = $µK$−µ only depends on µ.

Moreover, any coset ZGO$
µGO contains only �nitely many cosets from ZGO\G/K. Thus it

su�ces to show that for all but �nitely many µ ∈ X∗(T0/Z)dom, |RGhTh (θ)|ZGO∩$µK$−µ = 0.

It is easy to see that for all but �nitely many such µ, there is a proper K-rational parabolic

subgroup G with unipotent radical N, such that if N = N(K), then N ∩ GO ⊆ $µK$−µ.

Thus it is enough to show that for each such N we have |RGhTh (θ)|N∩GO = 0. As by Corollary

3.3, |RGhTh (θ)| = ±RGhTh (θ) is a genuine representation, it su�ces to show that RGhTh (θ)N∩GO =

0 (we have the natural map of Grothendieck groups of smooth representations with Q`-

coe�cients r : K0(GO) → K0(N ∩ GO) induced by restriction, and RGhTh (θ)N∩GO = 0 means

〈1, r(RGhTh (θ))〉 = 0, where 1 is the trivial representation). This follows from Proposition

5.2. �

Proposition 5.2. Let N be the unipotent radical of a proper K-rational parabolic subgroup

of G. Then

RGhTh (θ)N∩GO = 0.

We prove Proposition 5.2 in Section 5.1 in the case κ = 0, and in Section 5.2 in general.

The proof in the general case is more technical, but follows exactly the same idea as in the

special case κ = 0. For reasons of clarity we explain the special case �rst.

The explicit description in Lemma 5.6 used in the proof of Proposition 5.2 is � to the

author's knowledge � already new for classical Deligne�Lusztig varieties, i.e., when h = 1

(and κ = 0). In particular, for the Coxeter-type variety for GLn,Fq it gives an alternative and

much more direct proof of the cuspidality result for Coxeter-type varieties [DL76, Theorem

8.3], which is the last statement of the following corollary to Proposition 5.2.

Corollary 5.3. Let n ≥ 1, and let X be a Deligne�Lusztig variety of Coxeter type at-

tached to GLn,Fq . Let θ be an arbitrary character of T1
∼= F×qn, the corresponding GLn(Fq)-

representation R(θ) realized in the cohomology of X, satis�es R(θ)N(Fq) = 0, for any unipo-

tent radical N of a proper rational parabolic subgroup of GLn. In particular, if θ is in general

position, the genuine GLn(Fq)-representation |R(θ)| is irreducible cuspidal.

Remark 5.4. The proof of Proposition 5.2 is based on the key lemmas 5.6, 5.8, where the

quotient Nh\Xh is determined. If Xh denotes the quotient of Xh by the Th-action, then

(the cohomology of) Nh\Xh can probably be computed in big generality by same methods

as in [Lus76, (2.10)] (where Coxeter-type Deligne�Lusztig varieties in the �ag manifold for

a reductive group G over Fq are studied, in particular h = 1). Proofs of Lemmas 5.6, 5.8

suggest that the quotients Nh\Xh are harder to understand than Nh\Xh.
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For h = 1 and G arbitrary reductive group over Fq, a quotient similar to Nh\Xh appears

in [BR06, Section 3.2], [Dud13] and a couple of related articles. The methods used in [BR06]

are indirect in the sense that the structure of the tame fundamental group of the multiplicative

group Gm,Fq is used. In our situation these methods would only apply in the case h = 1,

because for h > 1 the natural covering Xh → Xh is wildly rami�ed.

5.1. Proof of Proposition 5.2 for κ = 0. For N to have a convenient form, we take

b = 1. We also take ẇ1 to be the element b0 as in (3.1). Then literally G = GLn(K),

GO = GLn(OK) and Gh = GLn(OK/($h)). Let Nh denote the image of N ∩ GO in Gh.

We can assume that N is the unipotent radical of a maximal proper parabolic subgroup.

Moreover, conjugating N if necessary, we may assume that there is an 1 ≤ i0 ≤ n− 1, such

that N consists of matrices u = (uij)1≤i,j≤n with uii = 1∀1 ≤ i ≤ n, and uij = 0 unless i = j

or (1 ≤ i ≤ i0 and n− i0 < j ≤ n). As the actions of Gh and Th on Xh commute, we have

RGhTh (θ)Nh = H∗c (Xh)Nhθ = H∗c (Nh\Xh)θ.

We introduce some convenient notation. For r ≥ 1, and an r× r-matrix g, let |g| := det g.

For x = (xi)
r
i=1 ∈ Wh(R)r, write gr(x) for the r × r-matrix whose ith column is σi−1(x).

Also we put

Yr,h := {x ∈Wr
h : |gr(x)| ∈W×h }.

This is a functor on PerfFq , which is represented by an a�ne perfectly �nitely presented

perfect Fq-scheme. The description of Xh in [CI18, 7.2] says precisely that Xh ⊆ Yn,h is a

closed subset de�ned by the condition σ(|gn(x)|) = (−1)n−1|gn(x)|.

Lemma 5.5. The quotient Nh\Xh exists as a perfect scheme, and Xh → Nh\Xh is �nite

étale.

Proof. Xh is a�ne and Nh �nite, so the quotient exists. As the action has no �xed points

the last claim also follows. �

Lemma 5.6. There is an isomorphism of perfect schemes

α : Nh\Xh →

{
(m,x′) ∈ Yi0,h × Yn−i0,h :

|gi0(m)|

|gn−i0(x′)|
∑i0−1
j=1 σj

∈W×h (Fq)

}
,

induced by x = (xi)
n
i=1 7→ ((mi(x))i0i=1, (xi)

n
i=i0+1), where mi(x) is the (n−i0+1)×(n−i0+1)-

minor of gn(x) given by

mi(x) :=

∣∣∣∣∣∣∣∣∣∣∣

xi σ(xi) . . . σn−i0(xi)

xi0+1 σ(xi0+1) . . . σn−i0(xi0+1)

xi0+2 σ(xi0+2) . . . σn−i0(xi0+2)

. . . . . . . . . . . .

xn σ(xn) . . . σn−i0(xn)

∣∣∣∣∣∣∣∣∣∣∣
Proof. It is clear that the assignment in the lemma de�nes an Nh-equivariant morphism

Xh → (Wh)i0 × (Wh)n−i0 (with trivial Nh-action on the right). Thus it induces a map

Nh\Xh → (Wh)i0 × (Wh)n−i0 .

A standard argument shows that for x = (xi)
n
i=1 ∈ Xh(R) with corresponding x′ =

(xi)
n
i=i0+1 and m = (mi(x))i0i=1, one has that gn−i0(x′) ∈ W×h (R) (see e.g. [CI18, Lemma

6.13]). This combined with Lemma 5.7 below, shows that we also have |gi0(m)| ∈ W×h (R).

Thus (using Lemma 5.7 again), we see that α is well-de�ned.

To prove the lemma, it now su�ces to check that α is an isomorphism of étale sheaves on

PerfFq . First we check that as a map of étale sheaves, α is surjective. Let R ∈ PerfFq . Let
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Z denote the target of α, and let m = (mi)
i0
i=1, x

′ = (x′i)
n
i=i0+1 be a element of Z(R). We

construct a preimage x = (xi)
n
i=1 ∈ Xh(R′) for some étale R-algebra R′. Take xi = x′i for

i0 + 1 ≤ i ≤ n. Now, we can �nd an (�nite) étale R-algebra R′, and for each 1 ≤ i ≤ i0, an

xi =
∑h−1

j=0 [xi,j ]$
j ∈Wh(R′) such that

mi = mi(x) =

n−i0∑
k=0

(−1)k+1σk(xi) · |gn−i0,k(x′)|, (5.1)

holds in Wh(R′), where gn−i0,k(x
′) denotes the (n− i0)× (n− i0)-matrix whose columns are

x′, σ(x′), . . . , σ̂k(x′), . . . , σn−i0(x′) (here ·̂ means that the vector · is omitted). Indeed, note

that for k = n− i0 and for k = 0, we have

|gn−i0,n−i0(x′)| = |gn−i0,0(x′)| = |gn−i0(x′)| ∈W×h (Fq) (5.2)

Thus, �xing an i, and proceeding successively for j = 0, 1, . . . , h−1, we can take (5.1) modulo

$j+1 and resolve it for xi,j , noting that each time to �nd a solution we need a (�nite) étale

extension of R. Thus α is an epimorphism of étale sheaves.

By Lemma 2.3 it remains to show that α(R) : (Nh\Xh)(R)→ Z(R) is injective whenever

R is an algebraically closed �eld. With notation as above, for a �xed 1 ≤ i ≤ i0 and

xi,0, xi,1, . . . , xi,j−1, Equation (5.1) gives an equation for xi,j of degree precisely qn−i0 (by

(5.2)), which is separable (by (5.2) again). Doing this for each 1 ≤ i ≤ i0 and 0 ≤ j < h,

we obtain precisely qi0(n−i0)h possible values for x = (xi)
n
i=1 ∈ Wh(R)n which map to the

given point (m,x′) ∈ Z(R). By Lemma 5.7 all those x automatically lie in Xh(R). This

shows that each �ber of the composition of Xh(R) → (Nh\Xh)(R) with α(R) has precisely

qi0(n−i0)h = #Nh points, i.e., that α(R) is injective. The lemma is proven. �

Lemma 5.7. Let n ≥ 2, 1 ≤ i0 ≤ n− 1. For an Fq-algebra R and x = (xi)
n
i=1 ∈ Yn,h(R), let

m = (mi(x))i0i=1 ∈ Yi0,h(R), x′ = (xi)
n
i=i0+1 ∈ Yn−i0,h(R). Then

|gi0(m)| = |gn(x)| · |gn−i0(x′)|
∑i0−1
j=1 σj (5.3)

Proof. For v = (vj)
r
j=1 ∈ Yr,h(R), and 1 ≤ i ≤ r, let v(i) = (vj)

n
j=1;j 6=i ∈ Yr−1,h(R) denote

the vector v with i-th coordinate omitted. The claim is tautological for i0 = 1 (in particular,

we may assume n > 2). We use induction on i0. Expanding along the �rst column and using

the induction hypothesis (for n− 1, i0 − 1), we get

|gi0(m)| =
i0∑
i=1

(−1)i+1miσ
(
|gi0−1(m(i))|

)
=

i0∑
i=1

(−1)i+1miσ

|gn−1(x(i))| ·
i0−2∏
j=1

σj
(
|gn−i0(x′)|

)
To show that this equals the right hand side of (5.3) it su�ces to show that

i0∑
i=1

(−1)i+1miσ
(
|gn−1(x(i))|

)
= |gn(x)| · σ

(
|gn−i0(x′)|

)
. (5.4)

This follows from a classical minor identity of Turnbull [Tur09]. We use the more modern

source [Lec93]. Let us �rst recall some notation from [Lec93]. Let S be a ring (commutative,

with 1). For 1 ≤ i ≤ n, let ai, bi ∈ Sn. Then the 2× n-tableau

T = a1 a2 . . . an
b1 b2 . . . bn

∈ S

is the product of the determinants of the two n×n-matrices A and B, where the i-th column

of A resp. B is ai resp. bi. Similarly one de�nes an s × n-tableau for each positive integer

s. The entries of the tableau are the elements ai, bi. More generally we need tableaux with
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boxes containing some of the entries. Let T be a s×n-tableau, let A be a subset of elements

of T . For a permutation σ of elements of A, let σ(T ) denote the tableau obtained from T ,

where the elements of A were permuted by σ. Then the tableau τ = (T with boxes around

entries in A) is de�ned as the alternating sum
∑

σ sgn(σ)σ(T ), where the sum is taken over

the cosets of the symmetric group on A, modulo the subgroup, which leaves unchanged the

rows of T . We give an example for n = 4, s = 2:

a1 a2 a3 a4

b1 b2 b3 b4
=

a1 a2 a3 a4

b1 b2 b3 b4
− b3 a2 a3 a4

b1 b2 a1 b4
− b4 a2 a3 a4

b1 b2 b3 a1

.

To continue with our proof, we take S = Wh(R). For 1 ≤ i ≤ n, let i = (0i−1, 1, 0n−i) ∈
Wh(R)n denote the i-th coordinate vector. An easy computation shows that

|gn(x)| · σ
(
|gn−i0(x′)|

)
−

i0∑
i=1

(−1)i+1miσ
(
|gn−1(x(i))|

)
= ± 1 2 . . . i0 σ(x) . . . σn−i0(x)

x σ(x) . . . σn−1(x)

With other words, to show (5.4) it su�ces to show that the tableau on the right side vanishes.

Towards this we have

1 2 . . . i0 σ(x) . . . σn−i0(x)

x σ(x) . . . σn−1(x)
= 1 2 . . . i0 σ(x) . . . σn−i0(x)

x σ(x) . . . σn−1(x)
= 0

Here the �rst equality is immediate from the de�nition of a tableau with boxes and the fact

that the entries σ(x), . . . , σn−i0(x) appear in the second row, and the second equality is an

application of Turnbull's identity [Tur09] (see [Lec93, Proposition 1.2.2(i)]), which claims that

if the number k of boxed entries satis�es k > n, then the tableau vanishes. Indeed, viewed as

a function on the boxed entries the tableau is a linear alternating (not only skew-symmetric

as stated in the proof of [Lec93, Proposition 1.2.2(i)]) form on Sn in k variables, which must

therefore vanish, as ΛkSM = 0 for any �nitely generated S-moduleM which can be generated

by n elements (in loc. cit. the proof is only formulated when S is a �eld, but it generalizes

to all rings). �

We continue with the proof of Proposition 5.2 for κ = 0. The group G2
m,Fq

acts on

Yi0,h × Yn−i0,h by

(τ1, τ2) : (y, z) 7→ (τ1y, τ2z). (5.5)

(here τ1y := (τ1yi)
i0
i=1 means entry-wise multiplication, and similarly for z). This action

restricts to an action of the closed subgroup

H0 :=

(τ1, τ2) ∈ G2
m : τ

∑i0−1
j=0 σj

1

(
n−i0−1∏
i=0

σi(τ2)

)−∑i0−1
j=1 σj

= 1


on α0(Nh\Xh), where α0 is as in Lemma 5.6. By Lemma 5.6 α0 induces an isomorphism

on étale cohomology. Now H is 1-dimensional, hence its connected component H◦ is a 1-

dimensional torus. Therefore the projection of H◦ to at least one of the Gm-factors of the

ambient group G2
m is non-constant, hence surjective. Hence α0(Nh\Xh)H

◦
= ∅.

The action of Th ∼= W×h (Fqn) on Xh induces an action on Nh\Xh, which under α0 is

compatible with the Th-action on α0(Nh\Xh) given by t : (m,x′) 7→ (m ·
∏i0−1
j=0 σj(t), x′ · t)

(both products mean scalar multiplication). This action of Th commutes with the above action

of H0 on α0(Nh\Xh). The explicit description in Lemma 5.6 also shows that α0(Nh\Xh) is

a�ne. Thus the Th-equivariant version of the well-known result [DM91, 10.15 Proposition]
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gives

dimQ`
H∗c (Nh\Xh)θ = dimQ`

H∗c (α0(Nh\Xh)H
◦
)θ = 0.

This �nishes the proof of Proposition 5.2 in the case κ = 0.

5.2. Proof of Proposition 5.2 for arbitrary κ. Let κ be arbitrary. Let c :=
(

0 $
1n0−1 0

)k0
,

and for r ≥ 1 let br :=
⊕

r c be the block-diagonal n0r × n0r-matrix with blocks equal to

c. Let b = bn′ (it is the special representative corresponding to κ, n as in [CI18, �5.2.2]).

Let ẇ = b0tκ,n be as in (3.1). We have then the corresponding groups G,GO,T, Gh, . . .

as in Section 2.1. A maximal rational parabolic subgroup of G is determined by an integer

1 ≤ i0 ≤ n′− 1. Its unipotent radical N consists of matrices (Aij)1≤i,j≤n′ where each Aij is a

n0×n0-matrix, and Aii = 1n0 , Aij = 0, unless i = j or (1 ≤ i ≤ i0 and n′−i0+1 ≤ j ≤ n). Let
l denote an integer which modulo n0 is the multiplicative inverse of k0. Moreover, for a ∈ Z
de�ne [a]n0 ∈ Z by the requirement that 1 ≤ [a]n0 ≤ n0 and [a]n0 ≡ a mod n0. The subgroup

Nh of Gh corresponding to N (see Section 3.1) consists of n× n-matrices of the same shape,

where now each of the n0×n0-blocks Aij with 1 ≤ i ≤ i0 and n′−i0 +1 ≤ j ≤ n is of the form∑n0−1
λ=0 $

−bλk0
n0
c
cλ diag(aλ, σ

[l]n0 (aλ), σ[2l]n0 (aλ), . . . , σ[(n0−1)l]n0 (aλ)) with a0 ∈Wh(Fqn0 ) and

aλ ∈Wh−1(Fqn0 ) for λ > 0. In particular, #Nh = qn0(h+(n0−1)(h−1))i0(n′−i0).

Let r ≥ 1 and let Zn0,r,h = {(xi)n0r
i=1 : xi ∈Wh if i ≡ 1 mod n0 and xi ∈Wh−1 otherwise}.

This is a a�ne, perfectly �nitely presented perfect Fq-scheme. For a perfect Fq-algebra R and

x ∈ Zn0,r,h(R) let gn0,r(x) denote the n0r×n0r-matrix whose i-th column is$
−b (i−1)k0

n0
c
(brσ)i−1(x)

(the entries of gn0,r(x) are either in Wh(R) or in Wh−1(R) or in $Wh−1(R) ⊆Wh(R)). The

determinant |gn0,r(x)| of gn0,r(x) is a well-de�ned element of Wh(R). Let

Yn0,r,h = {x ∈ Zn0,r,h : |gn0,r(x)| ∈W×h }

The description of Xh in [CI18, 7.2] says precisely that Xh ⊆ Yn0,n′,h is the subset de�ned by

the closed condition that σ(|gn0,n′(x)|) = (−1)n
′−1|gn0,n′(x)|.

To simplify notation we write s := n0i0 from now on. For x ∈ Xh and 1 ≤ i ≤ s, let mi(x)

denote the (n−s+1)× (n−s+1)-minor obtained from gn0,n′(x) by removing all rows except

for the i-th and s + 1, s + 2, . . . , n-th and all but the �rst n − s + 1 columns. Then mi(x)

makes sense as an element of Wh resp. of Wh−1 if i ≡ 1 mod n0 resp. if i 6≡ 1 mod n0.

Thus (mi(x))si=1 ∈ Zn0,i0,h. The analog of Lemma 5.5 for Nh\Xh holds with the same proof.

We have the following generalization of Lemma 5.6.

Lemma 5.8. The assignment x = (xi)
n
i=1 ∈ Xh 7→ m = (mi(x))si=1, x

′ = (xi)
n
i=s+1 induces

an isomorphism of perfect schemes,

ακ : Nh\Xh →

{
(m,x′) ∈ Yn0,i0,h × Yn0,n′−i0,h :

|gn0,i0(m)|

|gn0,n′−i0(x′)|
∑s−1
j=1 σ

j
∈W×h (Fq)

}
.

Proof. Using the description of Nh given above, one checks that mi(x) is stable under the

Nh-action on Xh. Now the proof proceeds in a completely analogous fashion to the proof of

Lemma 5.6 (with Lemma 5.7 replaced by its generalization Lemma 5.9). �

Lemma 5.9. Let n ≥ 2, 1 ≤ i0 ≤ n − 1. For a perfect Fq-algebra R and x = (xi)
n
i=1 ∈

Yn0,n′,h(R), we have m = (mi(x))si=1 ∈ Yn0,i0,h(R), x′ = (xi)
n
i=i0+1 ∈ Yn0,n′−i0,h(R) and

|gn0,i0(m)| = |gn0,n′(x)| · |gn0,n′−i0(x′)|
∑i0−1
j=1 σj (5.6)

Proof. It is known that for x ∈ Yn0,n′,h(R), we have x′ ∈ Yn0,n′−i0,h(R) (see [CI18, Lemma

6.13]). Thus the similar claim for m follows, once (5.6) is shown. To show (5.6) we �rst
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notice that all entries of gn0,i0(m) (and not only those in the �rst column) are in fact (n −
s + 1) × (n − s + 1)-minors of gn0,n′(x). More precisely, for 1 ≤ i, j ≤ s the (i, j)-th entry

of gn0,i0(m) is the minor of gn0,n′(x) obtained by removing all columns except those with

numbers j, j + 1, . . . , j + n− s, and all rows except those with numbers i, s, s+ 1, . . . , n. Let

Xi denote the i-th row of gn0,n′(x). Let also a denote the a-th standard basis vector of a free

rank n module (over an arbitrary ring). Using the formalism of tableaux with boxes (as in

the proof of Lemma 5.7), but now for the rows of gn0,n′(x), we can express |gn0,i0(m)| as the
s× n-tableau with boxes:

X1 Xs+1 Xs+2 . . . Xn n− s + 2 n− s + 3 . . . n

1 X2 Xs+1 Xs+2 . . . Xn−1 Xn n− s + 2 n− s + 3 . . . n

1 2 X3 Xs+1 . . . Xn−1 Xn n− s + 2 n− s + 3 . . . n
. . . . . . . . .

1 2 . . . s− 2 Xs−1 Xs+1 Xs+2 . . . Xn−1 Xn n

1 2 . . . s− 1 Xs Xs+1 . . . Xn−1 Xn

As each of the entries Xs+1, Xs+2, . . . , Xn appears in each row of this tableau, it is equal to

X1 Xs+1 Xs+2 . . . Xn n− s + 2 n− s + 3 . . . n

1 X2 Xs+1 Xs+2 . . . Xn−1 Xn n− s + 2 n− s + 3 . . . n

1 2 X3 Xs+1 . . . Xn−1 Xn n− s + 2 n− s + 3 . . . n
. . . . . . . . .

1 2 . . . s− 2 Xs−1 Xs+1 Xs+2 . . . Xn−1 Xn n

1 2 . . . s− 1 Xs Xs+1 . . . Xn−1 Xn

Apply (second) Turnbull's identity [Lec93, Proposition 1.2.2(ii)] to the last row of this tableau,

deducing that it is equal to

1 Xs+1 Xs+2 . . . Xn n− s + 2 n− s + 3 . . . n

1 2 Xs+1 Xs+2 . . . Xn−1 Xn n− s + 2 n− s + 3 . . . n

1 2 3 Xs+1 . . . Xn−1 Xn n− s + 2 n− s + 3 . . . n
. . . . . . . . .

1 2 . . . s− 2 s− 1 Xs+1 Xs+2 . . . Xn−1 Xn n

X1 X2 . . . Xs−1 Xs Xs+1 . . . Xn−1 Xn

Here all boxes can be removed without changing the value of the tableau, as any non-trivial

permutation produces a zero s×n-tableau (as at least one row will contain two equal entries

and hence be equal to 0). The resulting tableau (without boxes) is precisely the right hand

side of (5.6). �

Remark 5.10. In the proof of Lemma 5.8, the fact that the entries of gn0,i0(m) are certain

minors of gn0,n′(x) can be shown by a somewhat tedious but straightforward calculation,

which we omit here. To illustrate the principle, we give an example. Let n = 9, κ = 6, so

that n′ = 3, n0 = 3, k0 = 2. Let i0 = 2. We have the two minors of gn0,n′(x),

m2 =

∣∣∣∣∣∣
x2 $σ(x3) σ2(x1) σ3(x2)

x7 $σ(x8) $σ2(x9) σ3(x7)

x8 $σ(x9) σ2(x7) σ3(x8)

x9 σ(x7) σ2(x8) σ3(x9)

∣∣∣∣∣∣ and M :=

∣∣∣∣∣∣
$σ(x2) $σ2(x3) σ3(x1) $σ4(x2)

$σ(x8) $σ2(x9) σ3(x7) $σ4(x8)

$σ(x9) σ2(x7) σ3(x8) $σ4(x9)

σ(x7) σ2(x8) σ3(x9) σ4(x7)

∣∣∣∣∣∣
the �rst corresponding to rows 2, 7, 8, 9 and columns 1, 2, 3, 4, and the second corresponding

to rows 1, 7, 8, 9 and 2, 3, 4, 5. The �rst of these minors is by de�nition the (2, 1)-entry of
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gn0,i0(m), and the fact mentioned above claims that the second minor is equal to the (1, 2)-

entry of gn0,i0(m), that is, to $σ(m2) ∈ $Wh−1 ⊆Wh. First, M makes sense as an element

of $Wh−1. To compute it, we may lift its entries to elements in W, where we can multiply

rows and columns by powers of $, to see that

M = $−2

∣∣∣∣∣∣
$σ(x2) $2σ2(x3) $σ3(x1) $σ4(x2)

$σ(x8) $2σ2(x9) $σ3(x7) $σ4(x8)

$σ(x9) $σ2(x7) $σ3(x8) $σ4(x9)

σ(x7) $σ2(x8) $σ3(x9) σ4(x7)

∣∣∣∣∣∣ = $

∣∣∣∣∣∣
σ(x2) $σ2(x3) σ3(x1) σ4(x2)

σ(x8) $σ2(x9) σ3(x7) σ4(x8)

σ(x9) σ2(x7) σ3(x8) σ4(x9)

σ(x7) $σ2(x8) $σ3(x9) σ4(x7)

∣∣∣∣∣∣ = $σ(m2)

(after reducing modulo $hW), as claimed.

We continue with the proof of Proposition 5.2. The group G2
m,Fq

acts on Yn0,i0,h×Yn0,n−i0,h

by the same formula as in (5.5). This action restricts to an action of the closed subgroup

Hκ :=

(τ1, τ2) ∈ G2
m : τ

∑s−1
j=0 σ

j

1

(
n−s−1∏
i=0

σi(τ2)

)−∑s−1
j=1 σ

j

= 1


on Nh\Xh

∼= ακ(Nh\Xh), where ακ is as Lemma 5.8. Now H is 1-dimensional, hence its

connected component H◦ is a 1-dimensional torus. The rest of the argument is exactly as at

the end of Section 5.1. Proposition 5.2 is now proven.

6. Review of some representation theory

We �x an isomorphism Q`
∼= C and use it to identify the isomorphism classes of smooth

complex with smooth Q`-representations of all involved groups. For a �nite dimensional

(complex or Q`-) representation ρ of a group, we denote by deg(ρ) the degree of ρ.

6.1. Square-integrable representations. We recall some well-known results about square-

integrable representations of p-adic reductive groups due to Harish-Chandra. For a detailed

treatment we refer to [HC70] (see also [Car79]).

In this section let G be an arbitrary reductive group over K and G = G(K). Let Z be the

(K-valued points of) the maximal split torus contained in the center of G. Let ψ : Z → Q×`
be a unitary character of Z. We �x now an invariant Haar measure on G/Z (recall that G

is unimodular). We work with complex-valued representations of G. Let E2(G,ψ) denote

the set of equivalence classes of irreducible unitary representations (π, V ) of G, which have

central character ψ and satisfy ∫
G/Z
|(u, π(g)v)|2dḡ < +∞ (6.1)

where (·, ·) denotes the scalar product in the Hilbert space V (the integral makes sense as

ψ is unitary). These are the square-integrable representations with central character χ. All

irreducible supercuspidal representations with unitary central character are square-integrable

[HC70, �3].

For a given π ∈ E2(G,ψ), the integral (6.1) is equal to d(π, dḡ)|u|2|v|2, where the constant
d(π, dḡ) > 0 is independent of u, v (and thus only depends on π and the chosen measure

dḡ). The constant d(π, dḡ) is called the formal degree of π (with respect to dḡ). Let H

be a compact open subgroup of G. If dḡ, dḡ′ are two invariant Haar measures on G, then

d(π, dḡ)vol(HZ/Z, dḡ) = d(π, dḡ′)vol(HZ/Z, dḡ′). Moreover, if π ∈ E2(G,ψ) is of the form

π = cIndGZH τ for an (automatically �nite-dimensional) representation τ on which Z acts by

the character ψ, then d(π, dḡ)vol(HZ/Z, dḡ) = deg τ (cf. [Car79, 1.6]).
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For any π ∈ E2(G,ψ) and a smooth irreducible representation ρ of H, let (π : ρ) denote

the multiplicity of ρ in the restriction of π to H. We need the following estimate due to

Harish-Chandra.

Theorem 6.1 (see [HC70, p.6]). Given H, ρ as above, let π ∈ E2(G,ψ). Then∑
π∈E2(G,ψ)

d(π, dḡ)vol(HZ/Z, dḡ)(π : ρ) ≤ deg ρ. (6.2)

6.2. Traces on elliptic elements. For the moment keep the assumptions of Section 6.1

(in particular, G is arbitrary reductive). Let H(G) denote the convolution algebra of locally

constant compactly supported functions on G. Fix a Haar measure dg on G. For any

smooth G-representation (π, V ), H(G) acts in V by π(f)v =
∫
G f(g)π(g)vdg for all v ∈ V ,

f ∈ H(G). If π is admissible, then π(f) has �nite dimensional range, and hence a trace.

Let Greg,ss denote the set of regular semi-simple elements of G. It is open dense in G. The

following result due to Harish-Chandra and Lemaire ensures the existence of a trace of a

�nite length G-representation on regular semisimple elements of G.

Theorem 6.2 (see [Hen06, Theorem 1]). Let π be a �nite length (hence admissible) smooth

representation of G. Then there is a unique (hence invariant under conjugation) locally

constant function tr(π, ·) on Greg,ss of G, locally integrable on G, such that for all f ∈ H(G),

one has trπ(f) =
∫
G tr(π, g)f(g)dg.

Now assume again, that G = G(K) for an inner form G of GLn. For g ∈ G, let P (g)

denote the reduced characteristic polynomial of g. Two elements of g1, g2 ∈ Greg,ss are

conjugate in G if and only if P (g1) = P (g2). All said above applies to GLn(K) as a special

case. Moreover, for an elements g ∈ Greg,ss there is a unique up to conjugation element

g′ ∈ GLn(K)reg,ss such that P (g1) = P (g2). This has a partial converse. Let Gell ⊆ Greg,ss

denote the (open) subset of elliptic elements. For any g′ ∈ GLn(K)ell there is a unique up to

conjugation g ∈ Gell with the same (reduced) characteristic polynomial. The local Jacquet�

Langlands correspondence is then the following result, which in its most general form is due

to Deligne�Kazhdan�Vigneras [DKV84] and Badulescu [Bad02].

Theorem 6.3 (see [Hen06, Theorem 2]). There is a unique bijection π′ ↔ π = JL(π′) between

the sets of A 2(G) and A 2(GLn(K)) of smooth irreducible square-integrable representations

of GLn(K) and G, such that tr(π, g) = (−1)n−n
′
tr(π′, g′) whenever g ∈ Gell, g′ ∈ GLn(K)ell

with P (g) = P (g′).

Now we recall a result from [CI18]. An (elliptic) element x ∈ T ∼= L× is called very

regular, if x ∈ O×L and the image of x in the residue �eld OL/pL ∼= Fqn has trivial stabilizer

in Gal(L/K). This de�nition does not depend on the choice of the isomorphism T ∼= L× as

in Section 2.1.2. Write θγ := θ ◦ γ for γ ∈ Gal(L/K), θ : L× → Q×` .

Proposition 6.4 (Theorem 11.2 of [CI18]). Let θ : T → Q×` be smooth and x ∈ T very

regular. Then tr(RGT (θ), x) = ±
∑

γ∈Gal(L/K) θ
γ(x).

6.3. Special cases of local Langlands and Jacquet�Langlands correspondences. As

in the introduction, to a character θ : L× → Q×` one can attach the n-dimensional represen-

tation σθ = IndWK
WL

(θ · µ) of the Weil group of K, where we recall that µ is the rectifying

character of L×, given by µ|UL = 1 and µ($) = (−1)n−1. The representation σθ is irreducible

if and only if θ is in general position. In this case, the local Langlands correspondence at-

taches to σθ the irreducible supercuspidal GLn(K)-representation πGLn
θ := LL(σθ). Moreover,
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the local Jacquet�Langlands correspondence attaches to πGLn
θ the irreducible supercuspidal

G-representation πθ := JL(πGLn
θ ).

Moreover, θ is in general position if and only if it is admissible in the sense of [How77],

and the construction of Howe [How77] attaches to it an irreducible supercuspidal GLn(K)-

representation, which is (equivalent to) πGLn
θ . With other words, with notation as in the

introduction, the diagram

X /GalL/K

G ε
K(n) A ε

K(n, 0) A ε
K(n, κ)

θ 7→σθ
Howe

LL JL

commutes.

7. Realization of LL and JL in the cohomology of XDL
ẇ (b) in some cases

We now will prove Theorem A from the introduction. Let θ : T ∼= L× → Q×` be a smooth

character in general position. Let πθ = JL(LL(σθ)) ∈ AK(n, κ) be as in Section 6.3.

7.1. Degree of RGT (θ) and formal degree of πθ. First we check that the degree of RGhTh (θ)

matches with the formal degree of πθ (see Section 6.1). Here we use results from [CI19b].

Fix a Howe decomposition for θ: there is a unique tower of �elds L = Lt ) Lt−1 ) · · · )
L1 ) L0 = K and characters χ, φ1, . . . , φt of K

×, L×1 , . . . , L
×
t respectively, such that θ =

(χ ◦NL/K)(φ1 ◦NL/L1
) . . . (φt). Denote by h1, . . . , ht the levels of φ1, . . . , φt respectively and

put dk = [L : Lk], in particular, d0 = n, dt = 1. Also, θ|U1
L
is in general position if and only

if ht > 1.

Lemma 7.1. Assume p > n. Assume θ|U1
L
is in general position. Then

deg |RGhTh (θ)| = q
1
2
n[n(h1−1)−(ht−1)−

∑t−1
k=1 dk(hk−hk+1)]

n′−1∏
i=1

(qn0(n′−i) − 1). (7.1)

Proof. As RGT (θ · (ψ ◦NL/K)) ∼= RGT (θ)⊗ (ψ ◦ det) [CI18, Lemma 8.4], we may assume χ = 1,

i.e., h = h1. The assumptions along with Theorem 4.1 imply that RGhTh (θ) ∼= H∗c (Xh,n′)θ.

We may assume that b is a Coxeter-type representative (as in [CI18, 5.2.1]). For t ∈ Th put

S1,t = {x ∈ Xh,n′ : F
n(x) = xt}. As in [CI18, Lemma 9.3] we see that S1,t = ∅, unless

t = 1 (in loc. cit. we worked with the special representative for b and this explains the sign

(−1)n
′−1 appearing there). Further, one has S1,1 = Gh [CI19b], and so

#S1,1 =

(
h−1∏
i=1

#Gii+1

)
·#G1 = qn

2(h−1)·
n′−1∏
i=0

(qn0n′−qn0i) = qn
2(h−1)+ 1

2
n(n′−1)·

n′−1∏
i=0

(qn0(n′−i)−1),

as G1
∼= (ResFqn0 /Fq GLn′,Fqn0 )(Fq) and as #Gii+1 = qn

2
for each i ≥ 1. Boyarchenko's trace

formula [Boy12, Lemma 2.12] and the determination [CI19b, Theorem 6.1.1] of the scalar by

which Fn acts in the non-vanishing cohomology group Hrθ
c (Xh)θ gives

dim |RGhTh (θ)| = dim |H∗c (Xh,n′)θ| =
(−1)rθ

(−1)rθq
nrθ
2 #Th

·#S1,1,

The lemma now follows by an easy calculation, as #Th = (qn − 1)qn(h−1), and as rθ =

(n′−n)+ht+(n−2)h+
∑t−1

k=1 dk(tk−tk+1) by [CI19b, Corollary 6.1.2]. (Technically speaking,

one has to check that the choices (of U, b, w) made here and in [CI19b, �4] are coherent and

give rise to isomorphic Xh's. This follows from a simple calcuation with matrices.) �
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On the other side we use the computation of the formal degree of πGLn
θ from [CMS90].

Lemma 7.2. Assume that θ|U1
L
is in general position. For any left invariant Haar measure

dḡ on G/Z, d(πθ, dḡ)vol(ZH/Z, dḡ) is equal to the right hand side of (7.1). In particular, we

have

d(πθ, dḡ)vol(GOZ/Z, dḡ) = deg |RGhTh (θ)|.

Proof. The product on the left hand side in the lemma is independent of dḡ, so it is enough

to show the lemma for a �xed (left invariant) Haar measure. Let dx̄ be the Haar measure

on G/Z, normalised such that the Steinberg representation StG of G satis�es d(StG, dx̄) = 1.

Then by Macdonald's formula [SZ96, �3.7] (see also [Kar13, Proposition 5.4]), we have

vol(GOZ/Z, dx̄) =
1

n

n′−1∏
i=1

(qn0i − 1). (7.2)

The normalized formal degree d(π, dḡ) is stable under the Jacquet�Langlands correspondence

[DKV84,BHL10], so we deduce by using (7.2),

d(π, dx̄)vol(ZH/Z, dx̄) = d(πGLn
θ , dx̄GLn) · 1

n

n′−1∏
i=1

(qn0i − 1),

where dx̄GLn is the measure dx̄ in the special case n′ = n. Now the normalized formal degree

of πGLn
θ is determined in [CMS90, Theorem 2.2.8] and coincides with the right hand side of

(7.1). �

7.2. Comparison. We now prove Theorem A. Assume p > n and assume that θ|U1
L
is in

general position. Let Z = K× be the center of G. For a smooth character φ of K× we have

RGT (θ ·(φ◦NL/K)) ∼= RGT (θ)⊗(φ◦det) [CI18, Lemma 8.4]. An analogous formula holds for πθ.

Hence we may twist both sides of the equality claimed in the theorem by a smooth character

φ of K×. Thus we are reduced to the case that θ|Z is unitary. Fix an invariant Haar measure

dḡ on G/Z.

By Theorem 5.1, there exists a �nite set I and an irreducible supercuspidal representation

πi of G for each i ∈ I such that |RGT (θ)| ∼=
⊕s

i=1 πi. It is easy to see (e.g. using [Boy12,

Lemma 2.12]) that the central character of RGT (θ) is θ|Z . From this and the fact that all

supercuspidal representations are square-integrable it follows that πi ∈ E2(G, θ|Z) for all i.

As by assumption (p, n) = 1, each πi is attached to a pair (Ei/K, χi) with Ei/K is a separable

degree n extension and χi is an admissible character of E×i in the sense of [How77] (indeed,

Howe's construction also works for inner forms of GLn, so that there is no need to pass to

the more general constructions of Yu [Yu01] and Kaletha [Kal19]). Let Inr ⊆ I denote the

subset of those i ∈ I, for which Ei/K is unrami�ed, i.e., Ei ∼= L. For each i ∈ I, πi has

a well-de�ned trace on regular elliptic elements of G, and in particular on the very regular

elements of T ∼= L×. If i ∈ I r Inr, then πi ∼= cIndGHEi τi, where H ⊆ GO is certain (explicitly

determined) compact open subgroup, which is not maximal compact, and E×i is appropriately

embedded as a subgroup of G(K) normalizing H. In particular, for i ∈ I r Inr, no conjugate

of a very regular element x ∈ T lies in HE×i (in fact, x has precisely one �xed point on BK ,

which has to be a vertex, so it is contained in no stabilizer of a facet of BK of dimension

≥ 1). By [BH96, (A.14) Theorem], tr(πi, x) = 0 for i 6∈ Inr, and hence for any very regular

element x ∈ T ∼= L×, we have

±
∑

γ∈Gal(L/K)

θγ(x) = tr(|RGT (θ)|, x) =
∑
i∈Inr

tr(πi, x) =
∑
i∈Inr

ci
∑

γ∈Gal(L/K)

χγi (x),
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where ci ∈ {±1}, the �rst equality is Proposition 6.4 and the last follows from [Hen92, 3.1

Théorème] (in fact, it shows the claim only for GLn, but this along with trace relations

de�ning the Jacquet�Langlands correspondence give also the other cases). We now use the

argument from [Hen92, 2.8]: if x ∈ UL is very regular and y ∈ U1
L, then xy ∈ UL is again

very regular. Thus letting x be a �xed very regular element of UL and varying y ∈ U1
L we

obtain an equality of �nite linear combinations of smooth characters of the group U1
L. We

may �nd an integer h′ such that θ and all χi's are trivial on U
h′
L , and replace U1

L by its �nite

quotient U1
L/U

h′
L . As θ|U1

L
is in general position, the coe�cient of θ|U1

L
on the left hand side is

θ(x) 6= 0. By linear independence of characters of a �nite group there is at least one i0 ∈ Inr
with χi0 |U1

L
= θ|U1

L
.

Frobenius reciprocity for the compact induction shows that

(πi : |RGhTh (θ)|) ≥ 1 for i ∈ I. (7.3)

with notation as in Section 6.1. Fix a Haar measure dḡ on G/Z. By Lemma 7.2 we have

d(πi0 , dḡ)vol(GOZ/Z, dḡ) = deg |RGhTh (θ)|, so that Theorem 6.1 implies (πi0 : |RGhTh (θ)|) = 1

and (π : |RGhTh (θ)|) = 0 for all π ∈ E2(G, θ|K×), π 6= πi0 . Combining this with (7.3) we see

that I = {i0}. It remains to show that χi0 = θ. Either one can apply [CI18, Theorem 11.3]

(as we now know that RGT (θ) ∼= πi0 is irreducible), or alternatively use that we already know

χi0 = θ on K×U1
L, and then apply the same argument as in [Hen93, 5.3]. Theorem A is

proven.
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