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Abstract. In this paper we introduce new densities on the set of primes of a

number �eld. If K/K0 is a Galois extension of number �elds, we associate to

any element x ∈ GK/K0
a density δK/K0,x on the primes of K. In particular,

the density associated to x = 1 is the usual Dirichlet density on K. We also

give two applications of these densities (for x 6= 1): the �rst is a realization

results à la Grunwald-Wang theorem such that essentially, rami�cation is only

allowed in a set of primes of density zero. The second concerns the so called

saturated sets of primes, introduced by Wingberg.

1. Introduction

In this article we adress the question of generalizing the Dirichlet density on the

set of primes of a number �eld. In particular, we provide sets of primes with Dirich-

let density zero with an appropriate positive measure. We give two applications of

these generalized densities to (i) a realization result of local extensions by global

ones satisfying certain conditions and (ii) saturated sets of Wingberg.

To begin with, let K/K0 be a �nite Galois extension of number �elds, i.e., of

�nite extensions of Q. Let x ∈ GK/K0
be of order d. Let P xK/K0

denote the set of

all primes p of K which are unrami�ed in K/K0 and satisfy Frobp,K/K0
= x. We

will introduce a density δK/K0,x of a set S of primes of K, which measures how big

the ratio of the sizes of S ∩ P xK/K0
and P xK/K0

is. This is done in the same way as

for Dirichlet density, with the only di�erence that one has to take the limit over the

ratio of terms of the kind
∑

p∈∗N p−s not over s→ 1 but over s→ d−1 with s lying

in the right half plane <(s) > d−1. Further, δK/K0,x is essentially independent of

the base �eld K0, so one also could replace K0 once for all time by Q, but it is
easier to work with a Galois extension K/K0.

Once introduced, the most interesting thing about such a density is its base

change behavior. To explain it, let L/K be an extension such that L/K0 is Galois.

Write H := GL/K /GL/K0
=: G and π : G� G/H for the natural projection. For

any y ∈ π−1(x) we have the map induced by restriction of primes P yL/K0
→ P xK/K0

.

It is in general neither injective nor surjective. For y, z ∈ π−1(x) one easily sees that

the images of the corresponding maps are either equal or disjoint and that the �rst

is equivalent to y, z being H-conjugate (cf. Lemma 3.1). If C is an H-conjugacy
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class in π−1(x), let MC denote the image of P yL/K0
for some (any) y ∈ C in P xK/K0

.

We will show the following generalization of Chebotarev's density theorem and then

obtain a description of the base change behavior of δK/K0,x as a direct corollary:

Proposition 3.2. Let L/K/K0, π, x be as above. Let C be an H-conjugacy class

in π−1(x). Then

δK/K0,x(MC) =
]C

]H
.

Corollary 3.4. Let y ∈ π−1(x) and let C be its H-conjugacy class in π−1(x). Then

δL/K0,y(SL) =
]H

]C
δK/K0,x(S ∩MC)

if both densities exist.

More general, for any function ψ : GK/K0
→ C one can de�ne a weighted function

by δK/K0,ψ(S) := [K : K0]−1
∑
x∈GK/K0

ψ(x)δK/K0,x(S). Then for example the

Dirichlet density is associated with the character of the regular representation of

G.

Similarly as Serre extended the Dirichlet density to a density on the set of closed

points of a scheme of �nite type over SpecZ, also the densities associated to �xed

Frobenius elements should generalize in this way. Furthermore, it would be in-

tereting to know, whether in the case of varieties of dimension ≥ 2 over a perfect

�eld, it is possible to de�ne such �xed Frobenius densities for divisors (i.e, to non-

closed points) as was done with the Dirichlet density by Holschbach [3].

Finally, we have an obsevation concerning L-functions: there is the following

problem about extending L-functions in the same way as the densities above. Let

K/Q be a �nite Galois extension and x ∈ GK/Q. Consider the following product

associated to x and a Dirichlet character χ modulo m:

(1.1) Lx(m, s, χ) :=
∏

p∈Px
K/Q

1

1− χ(p) N p−s
.

This product converges on the right half plane <(s) > d−1, where d is the order of x.

But in general this function has no analytic continuation to the whole complex plain

(not even to the right half plane <(s) > 0). The reason is easy: let m = 1, χ = 1.

For s→ d−1 this product behaves like d−
1
d ( 1
s−d−1 )

1
d , i.e., their di�erence is bounded

for s→ d−1, and this last function clearly has no analytic continuation. A natural

question is, whether this problem can be resolved, for example by taking the d-th

power of the product above or by removing a half-line starting at d−1 from the

complex plain. Luckily, one does not need any non-vanishing results on such L-

functions to show Proposition 3.2, as it follows by simple counting arguments from

Chebotarev's density theorem.

Applications. Now we turn to applications of the above densities. The one

concerning stable sets of Wingberg and examples of Galois groups GKR/K contain-

ing torsion can be found in Section 6. We discuss here the other application to a

realization result à la Grunwald-Wang.
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Let us �rst �x some notations. Let c be a full class of �nite groups (in the

sense of [5] 3.5.2). Let R ⊆ S be two sets of primes of a number �eld K. Then

KR
S (c) denotes the maximal pro-c-extension of K which is unrami�ed outside S

and completely split in R. Moreover, for a prime p of K we denote by Kp(c) the

maximal pro-c-extension of Kp and by Knr
p the maximal unrami�ed extension of

Kp.

For ` a rational prime or ∞, let c≤` denote the smallest full class of all �nite

groups, containing the groups Z/pZ for all p ≤ `. Our main result will be the

following generalization of [5] 9.4.3, which handles the case of δK(S) = 1.

Theorem 1.1. Let K be a number �eld, S ⊇ R sets of primes of K, such that R

is �nite and S
⊃∼ PM/K(σ) for some �nite extension M/K and σ ∈ GM/K . For

any ` ≤ ∞ and any prime p of K we have:

(KR
S (c≤`))p =


Kp(c≤`) if p ∈ SrR

Kp(c≤`) ∩Knr
p if p 6∈ S

Kp if p ∈ R.
In particular, since absolute Galois groups of local �elds are solvable, taking ` =∞
shows that the maximal solvable subextension of KR

S /K lies dense in Kp resp. in

Knr
p for p ∈ SrR resp. p 6∈ S.

One part of the proof of Theorem 1.1, namely to realize a p-extension with given

local properties, when S is sharply p-stable (as introduced in [4]; see also Section

5.1 below) was already done in [4]. Essentially, sharp p-stability means that S

contains many primes p, which are completely split in K(µp)/K. The remaining

and much more delicate case is when δK(µp)(SK(µp)) = 0 holds. Then the usual

methods from [5] and [4] do not apply anymore. Moreover, in such a case the pro-

p-version of the theorem easily can fail. For example, suppose that µp 6⊆ K and

K(µp)/K is totally rami�ed at each p-adic prime, let 1 6= σ ∈ GK(µp)/K and set

S := PK(µp)/K(σ). Then any prime p ∈ S is unrami�ed in KS(p)/K, as p 6∈ Sp
and µp 6⊆ Kp. Hence KS(p) = K∅(p). In particular, let K = Q and p odd. Then

QS(p) = Q∅(p) = Q, i.e., the maximal possible local p-extension is realized nowhere.

However, in the pro-c≤`-case the theorem holds. For example take in the above

example ` = 3. The set S := PQ(µ3)/Q(σ) is sharply-p-stable for all p 6= 3, and in

particular sharply 2-stable. Hence at any p ∈ S the maximal pro-2-extension can be

realized, and hence µ3 ⊆ QS,p. After going up to an appropriate �nite subextension

QS(c≤2)/K/Q, the set PQ(µ3)/Q(σ)K ∩ cs(K(µ3)/K) would at least be in�nite and

not more empty as for K = Q. The main obstruction now is that this set has

Dirichlet density 0, and no one of the usual arguments involving Dirichlet density

will apply. To overcome this di�culty we will use the �xed Frobenius densities

introduced above. Namely, it turns out that certain x-density of this set is positive

and then one again can apply some density arguments. However, these arguments

are in our situation much more subtle than in the situations where one can use

Dirichlet density.
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Finally, we remark that there are several other appraoches to realization results

of similar spirit. As to the knowledge of the author, no one of them covers the

abovementioned case, where one tries to realize p-extensions with rami�cation al-

lowed only outside cs(K(µp/K)). We mention two recent approaches: a certain

pro-p version of the theorem above is also known (only for primes in S) in the

much harder situation of a �nite set S by the work of A. Schmidt (cf. e.g. [6]) but

only after enlarging S by an appropriate �nite subset of a �xed set T of primes of

density 1 (which, in particular, is sharply p-stable). A further, completely di�erent

and very powerful approach using automorphic forms, which deals with the whole

pro-�nite group and a �nite set S, was introduced by Chenevier and Clozel [2], [1].

However, compared to results of this paper, the drawback is that one has to forget

about solvability conditions and to assume R = ∅ (no control of the unrami�ed

extensions) and that at least one rational prime must lie in O∗K,S .

Notation. For any a ∈ R we denote by Ha the complex right half plane {s +

it : <(s) > a}. Let G be a group and σ ∈ G be any element. Then we denote

by C(σ,G) the conjugacy class of σ, by ord(σ) the order of σ and by ZG(σ) the

centralizer of σ.

Let L/K be an extension of number �elds. We write ΣK for the set of all primes

of K, Sp(L) for the set of primes in L lying over a prime p of K. If S ⊆ ΣK ,

then we write SL, S(L) or sometimes simply S for the pull-back of S to L. If L/K

is Galois and x ∈ GL/K , the Chebotarev set PL/K(x) is the set of primes in K

which are unrami�ed in L/K and whose Frobenius class is C(x,GL/K) and P xL/K
denotes the set of primes in L which are unrami�ed in L/K and whose Frobenius is

x. Moreover, we call a set which di�ers from a Chebotarev set only by a subset of

Dirichlet density 0 an almost Chebotarev set. For p ∈ ΣK , N p denotes the norm of

p over Q, i.e., the cardinality of the residue �eld. If S, T ⊆ ΣK , then S
⊂∼ T means

that S lies in T up to a (Dirichlet) density zero subset and S w T means S
⊂∼ T

and T
⊂∼ S.

Outline of the paper. In Section 2 we de�ne the generalized densities. In Sec-

tion 3 we establish some base-change formulas and an easy generalization of Cheb-

otarev's density theorem for these densities. In Section 4 we generalize slightly the

notion of these densities introduced in Section 2. In Section 5 we prove Theorem

1.1. In Section 6 we discuss the application to saturated sets.

2. Densities associated to Frobenius elements

Let K0 be a �xed �nite extension of Q. Let K/K0 be a �nite Galois extension

and x ∈ G := GK/K0
an element of order d. Our starting point is the following

easy but fundamental observation.

Lemma 2.1. The series
∑

p∈Px
K/K0

N p−s converges for all s with <(s) > d−1. It

de�nes a holomorphic function on Hd−1 and
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lim
s→d−1+0

∑
p∈Px

K/K0

N p−s =∞.

Proof. For p ∈ P xK/K0
with p0 := p|K0

we have N p = N pd0. The map P xK/K0
→

PK/K0
(x) is surjective and ]ZG(x)

〈x〉 -to-1 (this is immediate; cf. also Lemma 3.3).

Hence for all s ∈ Hd−1 and all a > 0 we get:

(2.1)

(
]
ZG(x)

〈x〉

)−1 ∑
p∈PxK/K0

N p<ad

|N p−s| =
∑

p0∈PK/K0
(x)

N p0<a

|N p−ds0 | ≤
∑

p0∈ΣK0
N p0<a

|N p−ds0 |.

The last term converges for a → ∞ and any �xed s ∈ Hd−1 . One sees easily that

the convergence is uniform on the half plane Hd−1+ε for any ε > 0, hence the series

in the lemma de�nes a holomorphic function on Hd−1 . Finally,
∑

p∈ΣK0
N p−s goes

to in�nity if s → 1 and 0 < δK0(PK/K0
(x)) = lim

s→1

∑
p∈PK/K0

(x) N p−s∑
p∈ΣK0

N p−s , hence also∑
p∈PK/K0

(x) N p−s → ∞ for s → 1, and the last statement of the lemma follows

from (2.1). �

De�nition 2.2. Let K/K0 be a �nite Galois extension and S ⊆ ΣK a set of primes

of K. For x ∈ GK/K0
we call the real number

δK/K0,x(S) := lim
s→ord(x)−1+0

∑
p∈S∩Px

K/K0

N p−s∑
p∈Px

K/K0

N p−s
,

if it exists, the density of S with respect to x (over K0), or simply, the x-density of

S.

Remarks 2.3.

(i) The x-density satis�es the usual properties: If exists, δK/K0,x(S) is a real

number lying in the interval [0, 1]. If δK/K0,x(S) = 0, then for any S′ ⊆ S,
the x-density δK/K0,x(S′) also exists and is 0. By Lemma 2.1, �nite sets of

primes are irrelevant for the x-density: if S and T di�er only by a �nite set

of primes, then δK/K0,x(S) exists if and only δK/K0,x(T ) exists and if this

is the case, then they are equal. Let S, T be two sets of primes of K having

an x-density. If S ∩ T or S ∪ T has an x-density, then the second set does

too and

δK/K0,x(S) + δK/K0,x(T ) = δK/K0,x(S ∩ T ) + δK/K0,x(S ∪ T ).

(ii) More interesting, δK/K0,x is essentially independent of K0 as Lemma 2.4

below shows. Moreover, the density in K with respect to a �xed Frobenius

element over a smaller sub�eld can be de�ned simply over Q, but then (if
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K/Q is not Galois and has Galois closure Kn) one has to deal with GKn/K-

cosets in GKn/Q, instead of elements in a Galois group, which is de�nitely

less nice. Thus we decide to stay by our approach.

Lemma 2.4. Assume K/K ′0/K0 are �nite Galois extensions of K0. Let x ∈
GK/K′0

⊆ GK/K0
be of order d. Then for any set of primes S in K we have:

δK/K′0,x(S) exists if and only δK/K0,x(S) exists and if this is the case, then they are

equal.

Proof. Indeed, the sum
∑
Px
K/K′0

r cs(K′0/K0)(K) N p−s is bounded for s → d−1 + 0

(since the inertia degree over K0 and hence also over Q of primes in this set is

bigger than d) and P xK/K′0
∩ cs(K ′0/K0)(K) = P xK/K0

and hence by Lemma 2.1:

δK/K′0,x(S) = lim
s→d−1+0

∑
p∈S∩Px

K/K′0
N p−s∑

p∈Px
K/K′0

N p−s
= lim
s→d−1+0

∑
p∈S∩Px

K/K0

N p−s∑
p∈Px

K/K0

N p−s
= δK/K0,x(S).

(when both exist). �

3. Pull-back properties of δK/K0,x

We �x the following setting in this section: L/K/K0 are �nite Galois extensions,

G := GL/K0
, H := GL/K , π : G � G/H the natural projection, x ∈ G/H. For

y ∈ π−1(x), let pr = prL/K : P yL/K0
→ P xK/K0

denote the restriction of primes from

L to K.

Lemma 3.1. Let y, z ∈ π−1(x). Then pr(P yL/K0
),pr(P zL/K0

) are either disjoint or

equal. They are equal if and only if y, z are H-conjugate.

Proof. Assume that pr(P yL/K0
) ∩ pr(P zL/K0

) 6= ∅. Then there are primes P ∈
P yL/K0

,Q ∈ P zL/K0
with P|K = Q|K =: p. Let p0 := p|K0 . The primes in L

lying over p0 are in 1:1-correspondence with cosets of 〈y〉 = DP,L/K0
⊆ G:

G/〈y〉 ∼−→ Sp0
(L), g〈y〉 7→ gP.

The Frobenius of gP is gyg−1; after reduction modulo H we obtain the same

correspondence for K: (G/H)/〈x〉 = G/H〈y〉 ∼→ Sp0(K) and P, gP lie over the

same prime of K if and only if π(g) ∈ 〈x〉, i.e., g ∈ H〈y〉. So with our assumption

we get Q = gP for some g ∈ H〈y〉 with gyg−1 = z. By multiplying with a power

of y, we can modify g such that g ∈ H.

Assume conversely that for y, z ∈ π−1(x) there is some g ∈ H with gyg−1 = z.

Then we claim that pr(P yL/K0
) = pr(P zL/K0

). Indeed, let p ∈ pr(P yL/K0
) with preim-

age P ∈ P yL/K0
. Using the above description of primes via cosets, it is immediate

to see that gP ∈ P zL/K0
also lies over p. �

For an H-conjugacy class C in π−1(x), let MC ⊆ P xK/K0
denote the image of

P yL/K0
under pr for some (any) y ∈ C. Thus if Ram(L/K) denotes the set of primes
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of K, which ramify in L, then we have a disjoint decomposition

P xK/K0
= (Ram(L/K) ∩ P xK/K0

) ∪
⋃

C⊆π−1(x)

MC ,

where the �rst set is �nite and the union is taken over all H-conjugacy classes inside

π−1(x). We have the following generalization of Chebotarev's density theorem

(observe that ]H = ]π−1(x)):

Proposition 3.2. Let L/K/K0, π, x be as above. Let C be an H-conjugacy class

in π−1(x). Then

δK/K0,x(MC) =
]C

]H
.

When setting x = 1, this reduces to the classical Chebotarev's density theorem

for the Dirichlet density. Fortunately, the proof of this proposition does not need

any new L-functions, it simply follows from the classical Chebotarev.

Lemma 3.3. Let L/K/K0, π, x be as above. Let d be the order of x in G/H. Let

y ∈ π−1(x) and let C ⊆ π−1(x) denote the H-conjugacy class of y. Then the map

pr: P yL/K0
�MC is surjective and γL/K(y)-to-1, where γL/K(y) := ]ZH(y)

]〈yd〉 .

Proof of Lemma 3.3. The surjectivity follows from de�nition. Using the description

of primes via cosets modulo the decomposition group, one sees easily that for p ∈
MC , the primes in Sp(L) ∩ P yL/K0

are in one-to-one correspondence with elements

in the group ZG(y) ∩H〈y〉/〈y〉. One sees then that the composition

ZH(y) ↪→ ZG(y) ∩H〈y〉� ZG(y) ∩H〈y〉/〈y〉

is surjective and its kernel is 〈yd〉. �

Proof of Proposition 3.2. By preceding lemmas, we have the following diagram:

P yL/K0

γL/K(y)

����
γL/K0

(y)

��

P xK/K0

γK/K0
(x)
����

MC
? _oo

����
PK/K0

(x) PL/K0
(y)? _oo

in which any vertical map is surjective and has �bers of equal cardinality, and the

number on the arrow denotes the dergee (γ is as in Lemma 3.3). Thus the lower

right map is β(y) : 1, with β(y) = ]ZG(y)
]〈x〉]ZH(y) . It follows:

δK/K0,x(MC) = lim
s→d−1+0

∑
MC

N p−s∑
Px
K/K0

N p−s
= lim
t→1+0

β(y)
∑

p∈PL/K0
(y) N p−t

γK/K0
(x)
∑

p∈PK/K0
(x) N p−t

=
β(y)δK0

(PL/K0
(y))

γK/K0
(x)δK0(PK/K0

(x))
.

where δK0
denotes the usual Dirichlet density on ΣK0

. By Chebotarev we have:

δK0(PL/K0
(y)) = ]C(y,G)

]G = 1
]ZG(y) and δK0

(PK/K0
(x)) = 1

]ZG/H(x) . Hence we

obtain:
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δK/K0,x(MC) =
β(y)]ZG/H(x)

γK/K0
(x)]ZG(y)

=
]ZG(y)

]〈x〉]ZH(y)

]〈x〉
]ZG/H(x)

]ZG/H(x)

]ZG(y)
=

1

]ZH(y)
=
]C

]H
.

�

Now we can derive the pull-back behavior of δK/K0,x.

Corollary 3.4. Let y ∈ π−1(x) and let C be its H-conjugacy class in π−1(x). Then

δL/K0,y(SL) = δK/K0,x(MC)−1δK/K0,x(S ∩MC) =
]H

]C
δK/K0,x(S ∩MC)

if all densities exist.

Proof. Let e denote the order of y in G and d the order of x in G/H. Then

δL/K0,y(SL) = lim
s→e−1+0

∑
p∈SL∩PyL/K0

N p−s∑
p∈Py

L/K0

N p−s
= lim
t→d−1+0

∑
p∈S∩MC

N p−t∑
p∈MC

N p−t

= δK/K0,x(MC)−1δK/K0,x(S ∩MC),

where we made a change of variables by replacing s by t := e
ds and used the fact

that SL is de�ned over K. Proposition 3.2 �nishes the proof. �

The special case x = y = 1 in Corollary 3.4 gives the well-known formula

δL(SL) = [L : K]δK(S ∩ cs(K/K0)).

for the Dirichlet density. We compute the x-density of pull-backs of Chebotarev

sets.

Corollary 3.5. Let L,M be two �nite Galois extensions of K. Let σ ∈ GM/K ,

x ∈ GL/K with images σ̄, x̄ in GL∩M/K respectively. Let S w PM/K(σ). Then

δL/K,x(SL) =

{
]C((x,σ),GLM/K)

[M :L∩M ]]C(x,GL/K) if σ̄ = x̄,

0 if σ̄ 6= x̄,

where we write (x, σ) for the unique element of GLM/K
∼= GL/K ×GL∩M/K GM/K

mapping to x, σ under both projections.

Proof. Indeed, apply Corollary 3.4 to δK/K,1 and δL/K,x. Then δK/K,1 = δK is the

Dirichlet density and we have Mx = PL/K(x) and

δL/K,x(SL) = δK(PL/K(x))−1δK(PL/K(x)∩S) = δK(PL/K(x))−1δK(PL/K(x)∩PM/K(σ)).

The intersection PL/K(x) ∩ PM/K(σ) is empty unless σ̄ = x̄, hence we can assume

equality. Under this assumption, we have PL/K(x) ∩ PM/K(σ) = PLM/K((σ, x))

and the corollary follows immediately from Chebotarev. �

4. Densities associated to characters

De�nition 4.1. Let K/K0 be �nite Galois and S ⊆ ΣK a subset.

(i) We call S mesurable (over K0), if for all x ∈ GK/K0
the density δK/K0,x(S)

exists (this is essentially independent of K0).
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(ii) Assume that S is mesurable. Then de�ne the characteristic function of S

as

χK/K0,S : GK/K0
→ [0, 1], x 7→ δK/K0,x(S).

Remark 4.2. Notice that χK/K0,S is only a real-valued function on GK/K0
, which

is not necessarily a class function. But, if S is de�ned over K0, it is a class function

(clearly, the converse is in general not true).

For a �nite group G, let G(C) be the set of complex valued functions on G. Then

we have the inner product on G(C) de�ned by

〈χ, ψ〉G := ]G−1
∑
x∈G

f(x)g(x)

for all χ, ψ ∈ G(C). If G = GL/K we also write 〈·, ·〉L/K (or even 〈·, ·〉L if K is clear

from the context) instead of 〈·, ·〉GL/K .

De�nition 4.3. Let K/K0 be �nite Galois. For any ψ ∈ GK/K0
(C) we de�ne the

C-valued function δK/K0,ψ on the set of all mesurable subsets of ΣK by

δK/K0,ψ(S) := 〈ψ, χK/K0,S〉K
for any mesurable set S. We say that δK/K0,ψ is a density, if for all mesurable S it

takes values in the real unit interval [0, 1] and δK/K0,ψ(ΣK) = 1.

Lemma 4.4. Let K/K0 be �nite Galois and ψ ∈ GK/K0
(C).

(i) Let S, T be mesurable. If one of the sets S ∩T, S ∪T is mesurable, then the

second set is too and

δK/K0,ψ(S) + δK/K0,ψ(T ) = δK/K0,ψ(S ∩ T ) + δK/K0,ψ(S ∪ T ).

(ii) The function δK/K0,ψ is a density if and only if ψ takes values only in the

real interval [0, [K : K0]] and 〈ψ,1〉K/K0
= 1, where 1 denotes the trivial

character of GK/K0
.

Proof. (i) follows from bilinearity of 〈·, ·〉K/K0
and Remark 2.3 and (ii) is an imme-

diate computation. �

Remark 4.5. In particular, the Dirichlet density δK corresponds to the character

of the regular representation of GK/K0
and δK/K0,x for x ∈ GK/K0

corresponds to

the function de�ned by ψ(y) = [K : K0]δxy, where δxy is the Kronecker symbol.

The next proposition shows that if L/K is a �nite extension then χL,SL is in a

sense the induction of χK,S to L:

Proposition 4.6. Let L/K/K0 be �nite Galois extensions. Denote by π : GL/K0
�

GK/K0
the natural projection. Then for all ψ ∈ GK/K0

(C) and all mesurable S we

have

〈inf
GL/K0

GK/K0
ψ, χL,SL〉L = 〈ψ, χK,S〉K

or equivalently,

δL/K0,ψ◦π(SL) = δK/K0,ψ(S).
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Proof. Let G := GL/K0
, H := GL/K . For y ∈ G, let C(y) ⊆ π−1(π(y)) denote its

H-conjugacy class. Then (we write δ∗,ψ instead of δ∗/K0,ψ):

〈ψ ◦ π, χL,SL〉L =
1

]G

∑
y∈G

ψ(π(y))δL,y(SL)

=
1

]G

∑
y∈G

ψ(π(y))
]H

]C(y)
δK,x(S ∩MC(y))

=
1

](G/H)

∑
x∈G/H

ψ(x)
∑

C⊆π−1(x)

∑
y∈C

1

]C
δK,x(S ∩MC)

=
1

](G/H)

∑
x∈G/H

ψ(x)
∑

C⊆π−1(x)

δK,x(S ∩MC)

=
1

](G/H)

∑
x∈G/H

ψ(x)δK,x(S) = 〈ψ, χK,S〉K .

where the second equality follows from Corollary 3.4. �

5. Realization of local extensions

5.1. Complements on stable sets. Before starting with the proof of Theorem

1.1, we recall for the convenience of the reader some de�nitions and results from [4].

De�nition 5.1 (part of [4] De�nitions 2.4, 2.7). Let S be a set of primes of K and

L /K any (algebraic) extension.

(i) Let λ > 1. A �nite subextension L /L0/K is λ-stabilizing for S for L /K,

if there exists a subset S0 ⊆ S and some a ∈ (0, 1], such that λa > δL(S0) ≥
a > 0 for all �nite subextensions L /L/L0. We say that S is λ-stable for

L /K, if it has a λ-stabilizing extension for L /K. We say that S is stable

for L /K, if it is λ-stable for L /K for some λ > 1. We say that S is

(λ-)stable, if it is (λ-)stable for KS/K.

(ii) We say that S is persistent for L /K (with persisting �eld L0, lying

between L /K) if the density of a subset S0 ⊆ S gets constant in the tower

L /L0.

(iii) Let p be a rational prime. We say that S is sharply p-stable for L /K,

if µp ⊆ L and S is p-stable for L /K, or µp 6⊆ L and S is stable for

L (µp)/K. We say that S is sharply p-stable, if S is sharply p-stable for

KS/K.

We will need the following crucial result about stable sets, which we take from [4].

Theorem 5.2 ( [4] Theorem 5.9). Let K be a number �eld, S a set of primes of

K and L ⊆ KS a subextension normal over K, such that S is sharply p-stable for

L /K. Let T be a �nite set of primes of K containing (Sp∪S∞)rS. If p∞|[L : K],

then

lim−→
L /L/K,res

coker1(KS∪T /L, T,Z/pZ) = 0.
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Remark 5.3. Many results (e.g., such as the one quoted above, but also �nite

cohomological dimension, etc.) holding for sets with Dirichlet density one also hold

(with respect to a prime p) for (sharply-p-)stable sets of primes. The proofs in the

case of sets with density one rely heavily on the fact that various Tate-Shafarevich

groups of GK,S with �nite resp. divisible coe�cients vanish. This is in general not

true for stable sets and the reason why many proofs (in particular, the proof of

Theorem 5.2) still work, is that one can, using stability conditions, bound the size

of Tate-Shafarevich groups, which in turn implies the vanishing of them in the limit

taken over all �nite subextensions of certain (in�nite) subextensions KS/L /K.

By easy density computations we obtain:

Lemma 5.4 ( [4] Proposition 3.3, Corollary 3.4). Let M/K be a �nite Galois

extension and σ ∈ GM/K .

(i) Let L/K be any �nite extension. Let L0 := L ∩M . Then:

δL(PM/K(σ)L) =
]C(σ; GM/K) ∩GM/L0

]GM/L0

.

(ii) Let S w PM/K(σ). Let L /K be any extension. Then S is persistent for

L /K with persisting �eld L0 if and only if

GM/M∩L ∩C(σ; GM/K) 6= ∅,

where C(σ; GM/K) denotes the conjugacy class of σ in GM/K .

From now on and until the end of the paper we prove Theorem 1.1. We let

M/K, σ,R ⊆ S and ` ≤ ∞ be as in the theorem.

5.2. Some reduction steps. Clearly, we can assume ` <∞. For any �nite subex-

tension KR
S /L/K, any �nite set T of primes of L and any rational prime p consider

the cokernel

H1(KS∪T /L,Z/pZ)→
∏
T

H1(Kp/Lp,Z/pZ)� coker1(KS∪T /L, T ;Z/pZ)

of the restriction map. Theorem 1.1 for KR
S (c≤`)/K follows easily from Claim 5.5

below for all p ≤ ` (cf. [5] 9.2.7, 9.4.3).

Claim 5.5. For all T ⊇ R ∪ Sp ∪ S∞, we have

lim−→
L

coker1(KS∪T /L, T ;Z/pZ) = 0,

where the limit is taken over all �nite subextensions L of KR
S (c≤`)/K.

Lemma 5.6. There are two �nite sets R1, R2 of primes of K with R1 ∩ R2 = R

and such that M ∩ KRj
S = K, i.e., PM/K(σ) (and hence also S) is persistent for

K
Rj
S /K with persisting �eld K for i = 1, 2.

Proof. Indeed, choose a set of generators g1, . . . , gr of GM/K and for j = 1, 2 primes

pj,1, . . . , pj,r of K unrami�ed in M/K such that the Frobenius conjugacy class
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corresponding to pj,k is the conjugacy class of gk and such that the sets {pj,k : k =

1, . . . , r}rR are disjoint for j = 1, 2 (this is possible by Chebotarev). Let Rj :=

{pj,k : k = 1, . . . , r}∪R. Then any non-trivial (Galois) subextension ofM/K is not

completely split in at least one prime p ∈ Rj . Hence M ∩K
Rj
S = K and hence by

Lemma 5.4, PM/K(σ) is persistent for K
Rj
S /K with persisting �eld K. �

Step 1. By Lemma 5.6 we can enlarge R and hence assume that M satis�esM ∩
KR
S = K. In particular, PM/K(σ) is persistent for KR

S /K with persisting �eld K by

Lemma 5.4 (note also that the assumptions of the theorem are inherited if we replace

K by a �nite subextension KR
S (c≤`)/L/K and S by SL, as PML/L(σ) w PM/K(σ)L

for any such L and since we also have LRS (c≤`) = KR
S (c≤`) and ML ∩LRS (c≤`) = L

(as KR
S (c≤`)∩M = K)). Now Claim 5.5 for all p ≤ ` such that S is sharply-p-stable

for KS
R(c≤`)/K, follows by Theorem 5.2 (observe, in particular, that since PM/K(σ)

is persistent for KR
S /K and µ2 ⊆ K, S is always sharply-2-stable for KR

S /K).

Step 2. Thus we can assume that PM/K(σ) is not sharply-p-stable forKS
R(c≤`)/K.

By induction we assume that Claim 5.5 holds for all p′ < p. As the assumptions

are stable under enlarging K inside KR
S (c≤`), it is enough to show that for each

T as in the claim, there is a (not necessarily �nite) subextension KR
S (c≤`)/L /K,

such that

(5.1) lim−→
L /L/K

coker1(KS∪T /L, T ;Z/pZ) = 0,

where the limit is taken over �nite subextensions of L /K. Further, since PM/K(σ)

is persistent forKR
S (c≤`)/K, our assumption implies µp 6⊆ KR

S (c≤`) and δL(µp)(PM/K(σ)) =

0 for L a su�cently big �nite subextension of KR
S (c≤`)/K. We replace K by such

L, and so we can assume that δK(µp)(PM/K(σ)) = 0.

Step 3. We have µp 6⊆ KR
S (c≤`) and after replacing K by a �nite subexten-

sion of KR
S (c≤`)/K if necessary, we can assume that for any �nite subextension

KR
S (c≤`)/L/K, the natural map GL(µp)/L → GK(µp)/K is an isomorphism. We

write ∆ := GK(µp)/K and d := ord(∆). The group ∆ can canonically be identi�ed

with a subgroup of F∗p, an element x ∈ F∗p acting on ζ ∈ µp by ζ 7→ ζx. Note that

by assumption we have 1 < d < p.

Step 4. We replace M by M(µp). Therefore consider the following diagram of

extensions of K:

M(µp)

M K(µp)

M ∩K(µp) K ′ = KR
S (c≤`) ∩M(µp)

K



DENSITIES OF PRIMES AND REALIZATION OF LOCAL EXTENSIONS 13

We have GM(µp)/K = GM/K ×GM∩K(µp)/K
GK(µp)/K . Let K ′ := KR

S ∩ M(µp).

Then K ′ ∩ M ⊆ KR
S (c≤`) ∩ M = K, hence GM(µp)/K′ and GM(µp)/M together

generate GM(µp)/K and hence the composition GM(µp)/K′ ↪→ GM(µp)/K � GM/K

is surjective. Let σ′ be a preimage of σ inside GM(µp)/K′ ⊆ GM(µp)/K . Then

PM(µp)/K(σ′) ⊆ PM/K(σ)
⊂∼ S and PM(µp)/K′(σ

′) w PM(µp)/K′(σ
′)∩cs(K ′/K)K′ =

PM(µp)/K(σ′)K′ . Hence PM(µp)/K′(σ
′)
⊂∼ SK′ . Thus we can replace (K,PM/K(σ))

by (K ′, PM(µp)/K′(σ
′)) and, in particular, we can assume that µp subseteqM . We

have now the following easy situation:

(5.2)

MKR
S (c≤`) KR

S (c≤`)(µp) KR
S (c≤`)

M K(µp) K

and the right and the outer squares are cartesian, i.e., M ∩ KR
S (c≤`) = K and

K(µp) ∩ KR
S (c≤`) = K. By Lemma 5.7 also the left square is cartesian, i.e.,

M ∩ KR
S (c≤`)(µp) = K(µp). Observe also that the situation is now stable under

replacing K,K(µp),M by L,L(µp),ML for a �nite subextension KR
S (c≤`)/L/K

and the Galois groups GM/K ,GM/K(µp),GK(µp)/K = ∆ will stay unchanged under

such a replacement.

Lemma 5.7. In the above situation we have M ∩KR
S (c≤`)(µp) = K(µp).

Proof. We have natural homomorphisms GMKR
S (c≤`)/M

→ GKR
S (c≤`)(µp)/K(µp) →

GKR
S (c≤`)/K

. The right one and the composition of both are isomorphisms. Hence

also the left one is an isomorphism. �

Observe that C(σ,GM/K) ∩ GM/K(µp) = ∅ since δK(µp)(PM/K(σ)) = 0 (cf.

Lemma 5.4), and hence the image σ̄ of σ in ∆ = GK(µp)/K is unequal 1.

Step 5. Let p 6∈ R be a prime of K. Recall the number 1 < d < p from step 3.

By the induction assumption in step 2, we can realize a cyclic extension of order

d at p by a �nite subextension of KR
S (c≤`)/K. More precisely, there is a �nite

subextension KR
S (c≤`)/K0/K such that the decomposition group Dp1,K0/K at a

prime p1 of K0 lying over p contains a cyclic subgroup H0 of order d. We replace

K by KH0
0 (and PM/K(σ) by P

MK
H0
0 /K

H0
0

(σ)) and hence can assume that K has a

cyclic extension K0 of degree d inside KR
S (c≤`).

We summarize the special situation obtained by all reduction steps: we have a

number �eld K, two sets of primes S ⊇ R of K with R �nite. We have further

a �nite extension M/K(µp)/K such that all squares in the diagram (5.2) in step

4 are cartesian, an element σ ∈ GM/K with PM/K(σ)
⊂∼ S and image 1 6= σ̄ ∈

∆ = GK(µp)/K . We have d := ]∆ with 1 < d < p, and there is a �nite cyclic

subextension KR
S (c≤`)/K0/K of degree d with Galois group H0 := GK0/K . In this

very special situation we want to show Claim 5.5 for p. As remarked in step 2, it

is enough to show that for each �nite set T ⊇ R∪Sp ∪S∞, there is a subextension
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KR
S (c≤`)/L /K, such that (5.1) holds. Recall that Poitou-Tate duality implies a

surjection:

X1(KS∪T /K, SrT, µp)
∨ � coker1(KS∪T /K, T ;Z/pZ)

(cf. [5] 9.2.2), where the transition maps res on the right correspond to cor∨ on the

left. By exactness of lim−→, it is enough to �nd a subextension KR
S /L /K with

(5.3) lim−→
L /L/K,cor∨

X1(KS∪T /L, SrT ;µp)
∨ = 0.

Finally remark that for any sub�elds KR
S (c≤`)/L

′/L/K the restriction maps

resL
′

L : H1(KS∪T /L, µp) ↪→ H1(KS∪T /L
′, µp),

are injective, as one sees from the Hochschild-Serre spectral sequence using the fact

that µp is not trivialized by L′. We can and will see these restriction maps as

embeddings and identify the �rst group with a subgroup of the second via resL
′

L .

5.3. Construction of the tower L /K. Recall that σ̄ 6= 1 denotes the image of

σ ∈ GM/K in GK(µp)/K = ∆ and H0 = GK0/K is cyclic of order d. By the order of

a character of a group we mean the cardinality of its image.

Lemma 5.8. There is a character χ : H0 → F∗p of order ≥ ord(σ̄) and a tower of

Galois extensions

K ⊂ K0 ⊂ K1 ⊂ · · · ⊂ Ki ⊂ · · · ⊂
⋃∞

i=0
Ki =: L ⊆ KR

S

such that for all i ≥ 1 we have:

Hi := GKi/K
∼= H0 n (

i∏
j=1

Z/pZ),

where H0 acts diagonally on
∏i
j=1 Z/pZ and the action on each component is given

by χ.

Proof. K0 and H0 were constructed in step 5 of Section 5.2. We haveM ∩KR
S = K

and hence

PM/K(σ) =
⋃
x∈H0

PMK0/K(σ, x).

up to �nitely many rami�ed primes (cf. [7] Proposition 2.1). By looking at the

Dirichlet density, S ∩ PMK0/K(σ, x) is in�nite for any x ∈ H0, hence also SK0
∩

PMK0/K(σ, x)K0
is in�nite. Choose such an x with ord(x) = ord(σ̄) and write

S′ := S∩PMK0/K(σ, x). Then for almost all p ∈ S′K0
, the local extensions K0,p/Kp

and K(µp)p/Kp are unrami�ed of degree ord(σ̄), hence K0(µp)p/K0,p is completely

split in p, i.e., µp ⊆ K0,p. In particular, by [5] 10.7.3, X := H1(K0,S′/K0,Z/pZ)

is in�nite. X is a (semisimple) Fp[H0]-module, hence it decomposes into isotypical

components X(φ) where φ goes through all F∗p-valued characters of H0. From

the Hochschild-Serre spectral sequence for the Galois groups of the extensions

K0,S′/K0/K
ker(φ)
0 and ( absker(φ), p) = 1 it follows that

(5.4) X(φ) ⊆ H1((K
ker(φ)
0 )S′/K

ker(φ)
0 ,Z/pZ) ⊆ H1(K0,S′/K0,Z/pZ)
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In particular, if ord(φ) < ord(σ̄), then the order of the image of x in H0/ ker(φ) =

G
K

ker(φ)
0 /K

is < ord(σ̄) and for all primes p ∈ S′(Kker(φ)
0 ) one has µp 6⊆ (K

ker(φ)
0 )p.

By [5] 10.7.3, the group in the middle of (5.4) is �nite and hence there must be

a chracter χ of H0 of order ≥ ord(σ̄) such that X(χ) is in�nite. For a family

(αi)
∞
i=1 of linearly independent elements of X(χ), let K0(αi) be the cyclic Z/pZ-

extension of K0 corresponding to αi and de�ne Ki to be the compositum of the

�elds {K0(αj)}ij=0. �

5.4. Action of ∆×Hi on X1(KS∪T /Ki, SrT, µp). Let L /Ki/K be one of the

�elds de�ned above. We write

X1
i := X1(KS∪T /Ki, SrT ;µp).

We have the following embeddings:

X1
i
� � // H1(KS∪T /Ki, µp)

� � //
� _

∆

��

H1(K/Ki, µp)� _

∆

��

K∗i /p� _

∆

��
H1(KS∪T /Ki(µp), µp)

� � // H1(K/Ki(µp), µp) Ki(µp)
∗/p

where the ∆ on the arrows means that the upper entry is obtained from the lower

one by taking ∆-invariants. The horizontal isomorphisms on the right are canonical

and given by Kummer theory. The vertical maps come from the Hochschild-Serre

spectral sequence. As a subset of the lower right entry X1
i de�nes by Kummer the-

ory a p-primary Galois extension of Ki(µp). Further, the subgroup X1
i is invariant

under the ∆ × Hi-action on the lower entries. Indeed, the Hi-invariance results

simply from the de�nition of X1
i and the fact that SrT is de�ned over K, and

the ∆-invariance is obvious from the diagram. Let Li denote the abelian p-primary

extension of Ki(µp), which is associated to X1
i ⊆ Ki(µp)

∗/p via Kummer theory.

The invariance discussed above implies that the composite extension Li/Ki(µp)/K

is Galois. Fix a trivialization of µp; this gives an isomorphism of the Galois group

of Li/Ki(µp) with X1,∨
i := Hom(X1

i ,Z/pZ) and ∆ acts on it via the embedding

∆ ↪→ F∗p. Here is a diagram of the involved extensions:

Li

X1,∨
i

Ki

Hi

Ki(µp)

K
∆

K(µp)

We have shown the following lemma:

Lemma 5.9. The composite extension Li/Ki(µp)/K is Galois. In particular, we

have the extension of Galois groups:

1→X1,∨
i → GLi/K → ∆×Hi → 1.
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The group ∆ × Hi acts on X1,∨
i as follows: ∆ acts by scalars via the canonical

embedding ∆ ↪→ F∗p, and the action of Hi on X1,∨
i is dual to the natural action of

Hi on X1
i .

Observe that by construction, Li/Ki(µp) is completely split in SrT . Now we

investigate the action of Hi more precise. For all i > 0, choose compatible sections

λi : H0 ↪→ Hi of the projections Hi � H0 (they exist as ]H0 = d is prime to

[Ki : K0] = pi). Via λi : H0
∼→ λi(H0) we identify the character group H∨0 of H0

with that of λi(H0). We have a decomposition

X1
i =

⊕
ψ∈H∨0

X1
i (ψ),

such that λi(H0) acts on X1
i (ψ) by ψ. Observe that the subspace Xi(ψ) is again

∆ × Hi-stable, hence the corresponding Kummer subextension Li(ψ)/Ki(µp) of

Li/Ki(µp) is Galois over K. We denote the Galois group of Li(ψ)/Ki by X1
i (ψ)∨.

We have X1
i (ψ)∨ = Hom(X1

i (ψ), µp) and λi(H0) acts on it by ψ−1.

5.5. Reduction to uniform boundedness. We reduce equation (5.3) for the

tower L /K de�ned in Section 5.3 which we have to show, to the following two

propositions (which we will prove in Subsections 5.6 and 5.7), both of them bound-

ing X1
i (ψ) in two di�erent cases:

Proposition 5.10. Let i ≥ 1 and let ψ ∈ H∨0 be of order < ord(σ̄). Then

X1
i (ψ) ⊆ H1(KS∪T /K0, µp)

(both regarded as subgroups of H1(KS∪T /Ki, µp)).

Proposition 5.11. There is a constant C > 0 depending only on M/K, p, σ (but

not on i) such that for all ψ ∈ H∨0 of order ≥ ord(σ̄) one has

]X1
i (ψ) < C

for each i ≥ 1.

Indeed, to deduce equation (5.3), it is enough to show that for j � i � 0, the

map

corji : X1
j →X1

i

is the zero map (we denote by corji resp. resij the corestriction resp. the restriction

maps between the levels Ki and Kj for i ≤ j). By compatibility of the chosen

sections λi : H0 ↪→ Hi, we have resij(X1
i (ψ)) ⊆ X1

j (ψ) for i ≤ j. Since the

restriction maps are injective, we can choose by Proposition 5.11 an i0 ≥ 0 such

that the inclusion

resij : X1
i (ψ) ↪→X1

j (ψ)

is an isomorphism for all j ≥ i ≥ i0 and all ψ ∈ H∨0 of order ≥ ord(σ̄). Then for

j > i ≥ i0 we have:

X1
j =

⊕
ψ∈H∨0

ord(ψ)≥ord(σ̄)

X1
j (ψ)⊕

⊕
ψ∈H∨0

ord(ψ)<ord(σ̄)

X1
j (ψ),
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where the �rst summand is contained in resi0j(X
1
i0

) and the second summand is

contained in H1(KS∪T /K0, µp) by Proposition 5.10. Thus we conclude that

X1
j ⊆ resij(H

1(KS∪T /Ki, µp)).

where both groups are seen as subgroups of H1(KS∪T /Kj , µp). Finally, recall that

for L′/L Galois, the composition corL
′

L ◦ resLL′ is equal to the multiplication by the

degree [L′ : L], that further p divides [Kj : Ki] for j > i ≥ 0 and that the group

H1(KS∪T /Ki, µp) is killed by p. So, for all i, j with j > i ≥ i0 and for any a ∈X1
j

with preimage b ∈ H1(KS∪T /Ki, µp) we have

corji(a) = corji resij(b) = 0,

i.e., corji : X1
j → X1

i is the zero map. Hence also cor∨ji is the zero map, which

shows equation (5.3).

5.6. Dealing with characters of small order. Here is the proof of Proposition

5.10: let Kψ
0 := (K0)ker(ψ), which is a proper sub�eld of K0. Let H

ψ
i := GKi/K

ψ
0

=

π−1
i (ker(ψ)), where πi denotes the projection Hi � H0. Further, λi(ker(ψ)) acts

trivially on X1
i (ψ). With λi(ker(ψ)) also the normal subgroup 〈〈λi(ker(ψ))〉〉 gen-

erated by it in Hi acts trivially on X1
i (ψ). By Lemma 5.12, 〈〈λi(ker(ψ))〉〉 = Hψ

i .

Hence:

X1
i (ψ) ⊆ H1(KS∪T /Ki, µp)

Hψi = H1(KS∪T /K
ψ
0 , µp),

where the last equality (inside H1(KS∪T /Ki, µp)) results from the Hochschild-Serre

spectral sequence and the fact that µp(Ki) = {1}. Finally, Proposition 5.10 follows

as H1(KS∪T /K
ψ
0 , µp) ⊆ H1(KS∪T /K0, µp) via restriction.

Lemma 5.12. We have 〈〈λi(ker(ψ))〉〉 = Hψ
i .

Proof. We can represent Hi as the follows (recall that χ : H0 → F∗p is the character
de�ning the action of H0 on ker(Hi � H0); it has order ≥ ord(σ̄)):

Hi
∼=
{

(a, v) : a ∈ H0, v ∈ Fip
}
, (a, v).(b, w) = (ab, v + χ(a)w).

As ord(χ) ≥ ord(σ̄) > ord(ψ), we have ker(ψ) ) ker(χ). Let h ∈ ker(ψ)r ker(χ).

Write λi(h) = (h, v). Then for any w ∈ Fip, the commutator

(h, v)−1.(1, w).(h, v).(1,−w) = (1, χ(h)−1w − w)

lies in 〈〈λi(ker(ψ))〉〉. As 1 6= χ(h) ∈ F∗p, we easily see that 〈〈λi(ker(ψ))〉〉 = Hψ
i . �

5.7. Uniform bounds and generalized densities. It remains to prove Propo-

sition 5.11. We use the �xed Frobenius densities introduced in preceding sections.

All densities are taken over K, so we omit K from the notation and write δL,x
instead of δL/K,x if L/K is �nite Galois and x ∈ GL/K . Let S0 := PM/K(σ) ∩ S.
Then S0 w PM/K(σ). For any i > 0 and any x ∈ Hi, we consider the element

(σ̄, x) ∈ ∆ ×Hi = GKi(µp)/K . We apply Corollary 3.5 to σ ∈ GM/K and (σ̄, x) ∈
∆ ×Hi: σ and (σ̄, x) lie over the same element σ̄ ∈ ∆ and M ∩Ki(µp) = K(µp).

Hence
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δKi(µp),(σ̄,x)(S0) =
]C((σ, x),GMKi/K)

[M : K(µp)]]C((σ̄, x),∆×Hi)

=
]C(σ,GM/K)]C(x,Hi)

[M : K(µp)]]C(σ̄,∆)]C(x,Hi)
(5.5)

=
]C(σ,GM/K)

[M : K(µp)]]C(σ̄,∆)

(this computation uses that all involved Galois groups which are a priori �bered

products, decompose into simple direct products). Thus we see that for any x, the

(σ̄, x)-density of S0 in Ki(µp) remains constant > 0 and independent of i and of x.

Let C > 0 be some �xed constant such that

(5.6) δKi(µp),(σ̄,x)(S0) > C−1.

Let now x ∈ H0 be an element such that ψ(x) = σ̄ ∈ ∆ ⊆ F∗p. This choice is

possible since ord(ψ) ≥ ord(σ̄) and hence 〈σ̄〉 ⊆ ψ(H0) ⊆ ∆ ⊆ F∗p (being cyclic, F∗p
has at most one subgroup of each order). Thus the element y := (σ̄, λi(x)) ∈ ∆×Hi

operates on X1
i (ψ)∨ trivially. Consider the Galois extensions:

Li(ψ)

X1
i (ψ)∨

Ki(µp)

∆×Hi

K
We have the following commutative diagram with exact rows:

1 //X1
i (ψ)∨ // GLi(ψ)/K

π // ∆×Hi
// 1

1 //X1
i (ψ)∨ // Gy //?�

OO

〈y〉 //
?�

OO

1,

where Gy is de�ned to be the pull-back of 〈y〉 and GLi(ψ)/K over ∆ × Hi. Now

ord(σ̄)| ord(x) = ord(λi(x)). Hence ord(y) = lcm(ord(σ̄), ord(x)) = ord(x) is co-

prime to p. The group X1
i (ψ)∨ is abelian p-primary, hence the lower sequence

in the above diagram splits. Since by construction the action of y on X1
i (ψ)∨ is

trivial, we have: Gy ∼= X1
i (ψ)∨×〈y〉. This shows explicitely that there is precisely

one element ỹ in the preimage of y in Gy (resp. in GLi(ψ)/K , which is the same)

such that ord(ỹ) = ord(y).

As in Section 3, for z ∈ π−1(y), let Mz be the image of P zLi(ψ)/K in P yKi(µp)/K

under the natural projection map. In particular, Proposition 3.2 gives

(5.7) δKi(µp),y(Mỹ) =
1

]X1
i (ψ)∨

=
1

]X1
i (ψ)



DENSITIES OF PRIMES AND REALIZATION OF LOCAL EXTENSIONS 19

as by the above order computations, the X1
i (ψ)∨-conjugacy class of ỹ in π−1(y)

contains the only element ỹ. The fundamental observation is now the following

lemma.

Lemma 5.13. We have P yKi(µp)/K ∩ cs(Li(ψ)/Ki(µp)) ⊆Mỹ.

Proof. Let p ∈ P yKi(µp)/K∩cs(Li(ψ)/Ki(µp)). Then p is unrami�ed in Li(ψ)/Ki(µp)

and hence lies in one of the sets Mz for some z ∈ π−1(y). Thus the Frobenius of a

lift of p to Li(ψ) is X1
i (ψ)∨-conjugate to z inside π−1(y). But since p is completely

split in Li(ψ), we must have ord(z) = ord(y), and this can only be satis�ed for

z = ỹ. �

Finally, S0 rT ⊆ cs(Li(ψ)/Ki(µp)) by construction and Lemma 5.13 implies

(S0 rT ) ∩ P yKi(µp)/K = (S0 rT ) ∩Mỹ.

Together with (5.7) and Corollary 3.4, this gives (since T is �nite, we can ignore it

in density computations):

1 ≥ δLi(ψ),ỹ(S0)

= δKi(µp),y(Mỹ)−1δKi(µp),y(S0 ∩Mỹ)

= ]X1
i (ψ)δKi(µp),y(S0 ∩ P yKi(µp)/K)

= ]X1
i (ψ)δKi(µp),y(S0).

Hence by (5.6):

]X1
i (ψ) ≤ δKi(µp),y(S0)−1 < C.

This �nishes the proof of Proposition 5.11 and hence of Theorem 1.1.

6. Densities and saturated sets

In this section we discuss an application of �in�nitesimal� densties to saturated

sets introduced by Wingberg in [7].

6.1. Saturated sets. Let us �rst recall the necessary notions concerning saturated

sets and generalized densities. In [8], Wingberg de�nes a set R of primes of K to

be

- saturated if R = cs(KR/K),

- stably saturated if RL is saturated for any �nite subextension KR/L/K,

or equivalently, if R is saturated and (KR)p/Kp has in�nite degree for any

p 6∈ R,
- strongly saturated if R is saturated and (KR)p = Kp for all p 6∈ R.

A saturation R̂ of R is the set cs(KR/K). The same de�nitions can also be

made with respect to a rational prime p, e.g., R is saturated with respect to p

if R = cs(KR(p)/K), etc. In [8], Wingberg discuss properties and give examples of

saturated sets. Let us point out some of these properties:

(i) A set R with positive Dirichlet density is saturated if and only if R =

cs(L/K) for some �nite extension L of K.
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(ii) If R 6= ΣK is stably saturated, then δK(R) = 0.

(iii) For any n > 0, there is a set R with δK(R) = 0 and δK(R̂) = 1
n ( [8]

Remark 3).

(iv) There are sets R such that δK(R̂) = δK(R) = 0. Indeed, Wingberg showed

that if p is an odd prime, K is a CM-�eld containg p-roots of unity, with

maximal totally real sub�eld K+, and x ∈ GK/K+ is the non-trivial ele-

ment, then P xK/K+ ∪Sp is strongly saturated (for p). This set has Dirichlet

density zero but δK/K+,x(R) = 1.

(v) Stably saturated sets are arithmetically interesting, because they behave

like �nite sets with respect to Riemann's existence theorem (cf. [8] Theorem

2).

Below we show the following property of stably saturated sets (Proposition 6.3):

if R is stably saturated (resp. stably saturated for p) set of primes in K de�ned

over K0, and δK/K0,x(R) = 1, then R ⊇ PK/K0
(x)K rSp(K).

6.2. The case of x-density one. In this section we let L/K/K0 be �nite Galois

extensions of a number �eld K0. All x-densities are taken over K0, so we write δK,x
instead of δK/K0,x.

Proposition 6.1. Let x ∈ GK/K0
and π : GL/K0

� GK/K0
be the natural projec-

tion. Then the following holds:

δK/K0,x(cs(L/K)) = 1⇒ ∀y ∈ π−1(x) : ord(y) = ord(x).

Proof. Write R = cs(L/K). Assume δK/K0,x(R) = 1 holds and let y ∈ π−1(x)

have order > ord(x). Let My denote the image of P yL/K0
in P xK/K0

under the

natural restriction map. Let p ∈ My with some extension P ∈ P yL/K0
to L. As

FrobP,L/K0
= y and Frobp,K/K0

= x, P|p has nontrivial inertia degree. Hence

p 6∈ R. Thus we have shown: if ord(y) > ord(x), then My ∩ R = ∅, i.e., R ∩
P xK/K0

⊆ R ∩ (P xK/K0
rMy). This last would imply δK,x(P xK/K0

rMy) ≥ δK,x(R ∩
P xK/K0

) = δK,x(R) = 1. But this would contradict Proposition 3.2, which shows

δK/K0,x(My) > 0. �

Corollary 6.2. Let x ∈ GK/K0
and let R be a set of primes of K, de�ned over

K0 with δK/K0,x(R) = 1. Then any prime p ∈ P xK/K0
has trivial inertia degree in

KR/K, i.e., Dnr
p,KR/K = 1.

Proof. Assume Dnr
p,KR/K 6= 1 for some p ∈ P xK/K0

. Since R is de�ned over K0,

KR/K0 is Galois and hence by our assumption there must be a �nite subextension

KR/L/K such that L/K0 is Galois and Dnr
p,L/K 6= 1. Choose an extension P of p

to L. We have the commutative diagram with exact rows:

1 // DP,L/K
//

����

DP,L/K0
//

����

Dp,K/K0
// 1

1 // Dnr
P,L/K

// Dnr
P,L/K0

// Dnr
p,K/K0

// 1

The right vertical arrow is an isomorphism, since p is unrami�ed in K/K0. Now,

Dnr
p,K/K0

is cyclic, generated by x, and Dnr
P,L/K0

is also cyclic, generated by a
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preimage y of x and as the left lower entry is non-zero, we have ord(y) > ord(x).

This contradicts Proposition 6.1. �

Proposition 6.3. Let p be a prime, K/K0 a �nite Galois extension of nubmer

�elds and x ∈ GK/K0
. Let R be a set of primes of K and R0 ⊆ R the subset de�ned

over K0. If δK/K0,x(R0) = 1 and R is stably p-saturated, then R ⊇ P xK/K0
rSp. In

particular, if R = R0, then R ⊇ PK/K0
(x)K rSp(K).

Proof. By Corollary 6.2 and the �rst assumption, for any p ∈ P xK/K0
r (R ∪ Sp),

the extension KR(p)p/Kp is totally rami�ed. Such extensions, being Galois, must

be �nite, which contradicts the second assumption. Hence P xK/K0
r (R ∪ Sp) = ∅

�nishing the proof. �

Example 6.4. We give examples of Galois groups GKR/K which contain many

torsion elements.

(i) A set R, such that R di�ers by a �nite subset from a set of the form P xk/k0

and Z/pZ ⊆ GkR(p)/k. Indeed, let k0 be a number �eld, p a rational prime

and let k, l0 be two disjoint Z/pZ-extensions of k0, such that there is a

prime p0 of k0 which is not p-adic, (totally) rami�ed in l0/k0 and inert in

k/k0. Let p be the (unique) lift of p0 to k and denote by 1 6= x ∈ Gk/k0
the

Frobenius of p. We have then Gk/k0
= 〈x〉, Gkl0/k0

= Gk/k0
×Gl0/k0

and:

Pk/k0
(x) = {q ∈ Σk0 : Frobq,k/k0

= x, q ∈ Ram(l0/k0)} ∪
⋃

g∈Gl0/k0

Pkl0/k0
(x, g).

In particular, p0 lies in the �rst set on the right side. Observe that since

both k/k0, l0/k0 are Z/pZ-extensions, all primes in Pkl0/k0
(x, g)k for any g ∈

Gl0/k0
are completely decomposed in kl0/k. This means (Pkl0/k0

(x)r Ram(l0/k0))k ⊆
cs(kl0/k). Let R := (Pk/k0

(x)r Ram(l0/k0))k. Then kl0 ⊆ kR(p) and

Dp,kR(p)/k � Dp,kl0/k
∼= Dp0,l0/k0

= Ip0,l0/k0
∼= Z/pZ. In particular,

Dq,kR(p)/k is non-trivial. On the other side, we have δk/k0,x(R) = 1, hence

by Corollary 6.2, Dnr
q,kR(p)/k = 1 and as in the proof of Proposition 6.3,

Dp,kR(p)/k must be �nite. This gives us a non-trivial torsion subgroup

Z/pZ ⊆ GkR(p)/k.

(ii) Now we make this example even worse and construct a set R, up to an

x-density zero subset equal to P xk/k0
, such that it contains in�nite torsion.

Therefore, let p be a rational prime and k/k0 a �xed Z/pZ-extension. As-
sume that µp ⊆ k0 and (p, ]Cl(k0)) = 1. Let 1 6= x ∈ Gk/k0

be an element.

In the set Pk/k0
(x)rSp choose an in�nite subset T := {pi}∞i=0 such that

δk0
(T ) = 0. As (p, ]Cl(k0)) = 1, for each pi, there is an element ai ∈ k∗0

such that valpi(ai) ≡ 1 mod p for all i and valq(ai) ≡ 0 mod p for all

q 6= pi. As µp ⊆ k0, the extension

li := k0(a
1/p
i )/k0

is Galois with Galois group Z/pZ and with
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{pi} ⊆ Ram(li/k0) ⊆ {pi} ∪ Sp(k0).

Oberve that for any �nite J ⊆ Z>0 and i ∈ Z>0 r J , the �eld exten-

sions k.
∏
j∈J `j and `i are linearly disjoint over k0 (indeed, `i/k0 is totally

rami�ed in pi and k.
∏
j∈J `j/k0 is unrami�ed in pi). Now make the con-

struction from (i) for each of the li and consider R := P xk/k0
r (Tk ∪ Sp) =

(Pk/k0
(x)r (T ∪ Sp))k. Then R ⊆ cs(k.

∏∞
i=0 li/k),hence k.

∏∞
i=0 `i ⊆ kR.

In particular, we have

δk(R̂) = δk(R) = 0

where R̂ is the saturation of R. On the other side, by Corollary 3.4,

δk,x(Tk) = 0, i.e., δk,x(R) = 1. Hence GkR(p)/k �
∏∞
i=0 Gli/k0

∼=
∏∞
i=0 Z/pZ

and (as in (i)), Dpi,kR(p)/k
∼= Z/pZ is �nite.

Remark 6.5. Observe that the examples of Wingberg (cf. [8] Example 2 after

Remark 4) do not show how big kR(p)/k in the above examples really is, as in our

case p divides the order of k/k0. It would be interesting to know the saturation of

R in either of these examples.
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