STABLE SETS OF PRIMES IN NUMBER FIELDS

A. IVANOV

ABsTRACT. We define a new class of sets — stable sets — of primes in
number fields. For example, Chebotarev sets Py k (o), with M/K Ga-
lois and 0 € G(M/K), are very often stable. These sets have positive
(but arbitrary small) Dirichlet density and generalize sets with density
1 in the sense that arithmetic theorems like certain Hasse principles, the
Grunwald-Wang theorem, the Riemann’s existence theorem, etc. hold
for them. Geometrically this allows to give examples of infinite sets .S
with arbitrary small positive density such that Spec Ok, s is algebraic
K(m,1) (for all p simultaneous).
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1. INTRODUCTION

The main goal of this paper is to define a new class of sets of primes of
positive Dirichlet density in number fields — stable sets. These sets have
positive, but arbitrary small density and they generalize in many aspects
sets of density one. In particular, most of the arithmetic theorems, such as
certain Hasse principles, Grunwald-Wang theorem, Riemann’s existence the-
orem, K(m, 1)-property, etc., which hold for sets of density one (cf. [NSWO0S]
Chapters IX and X), also hold for stable sets. Our goals are on the one
side to prove these arithmetic results and on the other side to give many
examples of stable sets.

The idea as follows: let A > 1. A set S of primes in a number field
K is A-stable for the extension .Z/K, if there is a subset Sy € S, a finite
subextension .Z'/Lo/K and some a > 0 such that we have §1,(Sp) € |a, Aa)
for all finite .£/L/Lo. We call the field Lo a A-stabilizing field for S for

The author was supported by the Mathematical Center Heidelberg.
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Z/K. A more restrictive version of this is the notion of persistent sets: S is
persistent if 0,(Sy) gets constant beginning from some finite subextension Lg
(cf. Definition . In particular, for any A > 1, a A-stable set is persistent.

The main result in this paper is the following theorem, which links stabil-
ity to vanishing of certain Shafarevich groups. In the theorem, ITI' denotes
the usual Shafarevich group, consisting of global cohomology classes, which
vanish locally in a given set of primes and if A is a module under a finite
group G, then HL(G, A) means the subgroup of H'(G, A) consisting of pre-
cisely such classes, which vanish after restriction to all cyclic subgroups of
G. Moreover, if Z/L is a Galois extension of fields and A is a G ¢/;-module,
then L(A)/L denotes the trivializing extension of A.

Theorem Let K be a number field, T a set of primes of K and L/K
a Galois extension. Let A be a finile Gy c-module. Assume that T is p-
stable for £ /K, where p is the smallest prime divisor of $A. Let L be a
p-stabilizing field for T for £ /K. Then:

' (Z/L,T; A) < HL(L(A)/L, A).
In particular, if HL(L(A)/L,A) = 0, then II}(Z/L,T; A) = 0.
This theorem has many applications to the structure of the Galois group
Gk, = Gal(Kg/K) where K is a number field and S is stable. To give a
flavor of these applications, without introducing now the finer terminology

from the text, let us state the following result. The notations are mostly
self-explaining, compare also the end of this introduction.

Theorem. (cf. Theorems cmd Let K be a number field, p a rational
prime and T 2 5 2 R sets of primes of K with R finite. Assume that S is
p—stablfﬂ for KE(u,)/K. Then

(A) (Local extensions)

R o Ky,(p) ifpeS\R

KSR ifpéS.

(B) (Riemann’s existence theorem) Let Iy(p) denote the Galois group of
the mazimal pro-p extension of Kg;p and Kr(p)/KE denote the maz-
imal pro-p subextension of KT/Kg. The natural map

of g Gp)x & L(p) = Gy ykE

*

PER(KE) pe(T ~ S)(KE)
is an isomorphism (where % is to be understand in the sense of
INSWO8] Chapter IV).

(C) (Cohomological dimension) cd,, G%S = scd, G?S = 2.

(D) (K(m,1)-property) Assume additionally that R = &, S 2 S and
that either p is odd or K 1is totally imaginary. Then Spec Ok g is
K(m,1) for p (cf. Definition[6.1]).

n fact a weaker condition would do the job, cf. Theorem
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There are also corresponding results for the maximal pro-p quotient G% s(p)

of G%S. This results were well-known (cf. [NSW08|) essentially if dx(S) = 1
resp. if § 2.5, USy%. Also, A. Schmidt showed recently that if T is any fixed
set with 0x(Tp) = 1 and S is arbitrary finite then there is a finite subset
Ty < Ty (depending on S) such that the pro-p versions of the above results
essentially (e.g. except the result on scdy) hold if one replaces S by S u T}
(cf. [Sch07], [Sch09], [Sch10]).

A further application of stable sets concerns a generalization of the Neukirch-
Uchida theorem, which is a result of anabelian nature. More details on this
can be found in [Iv13| Section 6. Now we see many examples of stable (even
persistent) sets:

Corollary Let M/K be finite Galois and let 0 € Gy Let S =
Prric(0) (we call such sets almost Chebotarev sets). Let £ /K be any ex-
tension. Then S is persistent (or equivalently, stable; cf. Corollary|3.6) for
Z/K if and only if

Guymng NC(o;Gyyi) # O,
where C(0; Gpyy) denotes the conjugacy class of o in Gy In particular,
(i) If o =1, then S = Py (1) = cs(M/K) is persistent for any exten-

sion /K.
(ii) If M n & = K, then S = Pyi(0) is persistent for £ /K.

Outline of the paper. In Section [2] we introduce stable and persistent
sets and the properties (*)p,(T);fl,(T)p associated with the stability property.
Section [3] is devoted to examples: in particular, we introduce almost Cheb-
otarev sets, which provide us with a rich supply of persistent sets (Section
, and we show that essentially, an almost Chebotarev set satisfies the
properties (), and (1), for almost all p (Section [3.3). In Section we
prove our main result which is a general Hasse principle. In Sections [4.2
we discuss some further Hasse principles and uniform bounds on Shafarevich
groups for stable sets. In Section [5| we deduce arithmetic applications, such
as the Grunwald-Wang theorem, realization of local extensions, Riemann’s
existence theorem and cohomological dimension. In Section [6] we deduce the
K(m, 1) property at p for Spec Ok g with S satistying (}),, using results from
Section [Bl

Notation. Our notation will essentially coincide with the notations in [NSWO0§]
resp. [Iv13]. We collect some of the most important notations here. For a
pro-finite group G we denote by G(p) its maximal pro-p quotient. For a
subgroup H € G, we denote by Ng(H) its normalizer in G. If o € G, then
we write C'(o; G) for its conjugacy class. For two finite groups H € G, we
write mg (resp. my, if G is clear from the context) for the character of the
induced representation Ind% 1.

For a Galois extension M /L of fields, G, /L denotes its Galois group and
L(p) denotes the maximal pro-p extension of L (in a fixed algebraic closure).
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By K we always denote an algebraic number field, that is a finite extension of
Q. If p is a prime of K and L/K is a Galois extension, then Dy 1 = G/
denotes the decomposition subgroup of p. We write X for the set of all
primes of K and S, T, R, ... will usually denote subsets of Y. If L/K is an
extension and S a set of primes of K, then we denote the pull-back of S to
L by Sr, S(L) or S (if no ambiguity can occur). We write K&/K for the
maximal extension of K, which is unramified outside .S and completely split
in R and G& := G%S for its Galois group. We use the shortcuts Kg := KS@

and Gg = G? . Further, for p < o a (archimedean or non-archimedean)
prime of Q, S, = Sp(K) denotes the set of all primes of K lying over p.
Further, if S € Y, we write N(S) := Nn O g, i.e. p€ N(S) if and only if
Sp < S.

We write dx for the Dirichlet density on Y. For S, T subsets of X, we
use

SST & §(S\T)=0
ST & (S<T)and (T <89).

For a finite Galois extension M /K and o € G/, we have the Chebotarev
set

Pric(0) = {p € i+ p is unramified in M /K and (p, M/K) = C(0; Gpi) s

where (p, M/K) denotes the conjugacy class of Frobenius elements corre-
sponding to primes of M lying over p.

Acknowledgements. A part of the results in this paper coincide with the
results in author’s Ph.D. thesis [Iv13], which was written under supervision
of Jakob Stix at the University of Heidelberg. The author is very grateful to
him for the very good supervision, and to Kay Wingberg, Johannes Schmidt
and a lot of other people for very helpful remarks and interesting discussions.
The work on author’s Ph.D. thesis was partially supported by Mathematical
Center Heidelberg and the Mathematical Institute Heidelberg. Also the
author is grateful to both of them for their hospitality and the excellent
working conditions.

2. STABLE AND PERSISTENT SETS

2.1. Warm-up: preliminaries on Dirichlet density. Let &k denote
the set of all subsets of ¥ . The Dirichlet density §x is not defined for all
elements in Pk, and moreover there are examples of finite extensions L/K
and S € P, such that S has a density, but the pull-back St of .S to L has
no density. To omit dealing with such sets we make the following convention,
which holds until the end of this paper.
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Convention 2.1. If S € Pk is a set of primes of K, then we assume
implicitly that for all finite extensions L/K , all finite Galois extensions M /L
and all o € Gy, the set S 0 Py (o) has a Dirichlet densityﬂ

Convention is satisfied for all sets lying in the following rather big
subset of Pk

. Sc¥k: S22, Py (0i) i for some K/K;/Q
K= and L;/K; finite Galois and o; € G, /k,

where the unions are disjoint and countable (or finite or empty). This @7k
can not be closed simultaneously under (arbitrary) unions and complements:
otherwise it would be a g-algebra and hence would be equal to Pk

To compute the density of pull-backs of sets we use the following two
lemmas. Let L/K be a finite extension of degree n (not necessarily Galois).
For 0 < m < n, define the following sets:

P, (L/K) :={p € £k p is unramified and has exactly m degree-1-factors in L}.

In particular, P,(L/K) = cs(L/K), P,_1(L/K) = . Recall that if H € G
are finite groups, then my denotes the character of the G-representation
Ind% 1. One has:

mu(0) = H{gH : (o) < H} = §{{o)gH: {0)? < H},
where (o) € G denotes the subgroup generated by o and {(o)J := g~ 1{(o)g.

The equality on the right follows immediately from the fact that if (o)9 € H,
then gH = (o)gH.

Lemma 2.2. Let L/K be a finite extension and N/K a finite Galois ex-
tenston containing L, with Galois group G, such that L corresponds to a
subgroup H < G. Then

P, (L/K) < {p € Pp(L/K): p is unramified in N/K} = U Py (o)

C(o;G)EG
mg(o)=m

(disjoint union). In particular, P, (L/K) € /x and
Ok (Pn(L/K)) =4G™" > C(0;G).

C(o;G)cG
mp(o)=m

2The optimal way to omit sets having no density would be to find an appropriate sub-
o-algebra of & (for any K), such that the restriction of dx to it is a measure (and the
pull-back maps Pk — 21, attached to finite extensions L/K restrict to pull-back maps on
these sub-o-algebras). Unfortunately, there is no satisfactory way to find such o-algebra
P, at least if one requires that if S € HB, then also T € Ak for any T = S, or, which is
weaker, that any finite set of primes of K lies in %k . Indeed, countability of >, would
imply Bk = Pk in this case, but not all elements of Zx have a Dirichlet density.
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Proof. The proof of the first statement is an elementary exercise in Galois
theory (if p is a prime of K unramified in N, then the primes of L lying
over p are in one-to-one correspondence with double cosets {(o)gH, where o
is arbitrary in the Frobenius class of p; the residue field extension of a prime
belonging to the coset {(o)gH over p has the Galois group {c)?/{c)? n H).
The second statement follows from the first and the Chebotarev density
theorem. O

Lemma 2.3. Let L/K be a finite extension of degree n, S a set of primes
of K and N/K a Galois extension containing L, such that G := Gy g 2
Gy =: H. Then
0p(S) = >, még(S A Pu(L/K)) = > mpu(0)dx(S n Pyx(0)).
m=1 C(0;G)cG
If, in particular, L/K is Galois, we get the well-known formula 61,(S) = [L :
K6k (S nes(L/K)).

Proof. First equation is an easy computation and the second follows from
Lemma 2.2 0

2.2. Definition of stable and persistent sets. Let K be a number field
and S a set of primes. If 0 (S) = 0 resp. = 1, then also §1(S) = O resp. =1
for all finite L/K. Now, if 0 < dx(S) < 1, then it can happen that there is
some finite L/K with 61,(S) = 0 (e.g. take a finite Galois extension L/K and
set S := Y \ cs(L/K), having the density 1 — [L : K]~! in K and density
0 in L). For stable sets, defined below this possibility is excluded.

Definition 2.4. Let S be a set of primes of K and .#/K any extension.

(i) Let A > 1. A finite subextension .%/Lo/K is A-stabilizing for S
for Z/K, if there exists a subset Sy € S and some a € (0, 1], such
that Aa > d1,(Sp) = a > 0 for all finite subextensions .Z/L/Ly.

(ii) A finite extension .Z/Lo/K is persisting for S for Z/K, if there
exists a subset Sp € S, such that 0(Sy) = dr,(So) > 0 for all finite
subextensions .Z/L/Ly.

We say that S is A-stable resp. persistent for £ /K, if it has a A-stabilizing
resp. persisting extension for £ /K. We say that S is stable for Z/K, if
it is A-stable for £/K for some A > 1. We say that S is A-stable resp.
persistent, if it is A-stable resp. persistent for Kg/K.

Lemma 2.5. Let £ /K be an extension and S a set of primes of K.
(i) Let A = p > 1. If S is p-stable with p-stabilizing field Ly, then S is
A-stable with \-stabilizing field Lg.
(ii) If Lo is A-stabilizing resp. persisting field for S for £ /K, then any
finite subextension £ /L1/Lg has the same property.
(iii) Let S’ be a further set of primes of K. If S ~ S', and S is \-
stable resp. persistent for £ /K, then S’ also has this property. Any

A\-stabilizing resp. persisting field for S has the same property for S'.
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(iv) Let L/ N /M/K be subextensions. If S is A-stable resp. persistent
for LJK with \-stabilizing resp. persisting field Lo < A, then Sy
is \-stable resp. persistent for N /M.

The proof of this lemma is straightforward. The following proposition
gives another characterization of stable sets and shows in particular, that if
S is stable for .Z/K, then any finite subfield .Z/L/K is A-stabilizing for S
with a certain A > 1 depending on L.

Proposition 2.6. Let S be a set of primes of K and £ /K an extension.
The following are equivalent:
(i) S is stable for L/K.
(ii) There exists some X > 1, such that S is A-stable for £ /K with \-
stabilizing field K.
(iii) There exist some € > 0 such that 61,(S) > € for all finite £/L/K.

Proof. (iii) = (ii) = (i) are trivial. We prove (i) = (iii). Let A > 1 and let
S be A-stable for £ /K with A-stabilizing field Lo. Then there is some a > 0
and a subset Sy € S such that a < 0(Sp) < Aa for all £/L/Ly. Suppose
there is no € > 0, such that 61,(Sp) > € for all £/L/K. This implies that
there is a family (M;)72, of finite subextensions of £ /K with d,(So) — 0
as i > 0. Then d; = [LoM; : M;] = [Lo : Lo n M;] is bounded from above
by [Lo : K] and hence

d;
Oron; (S0) = Y mnr,(So A Pon(LoMi/M;)) < [Lo : K16, (S0) — 0
m=1
for i — oo. This contradicts to the A-stability of Sy with respect to the
A-stabilizing field Ly. O

If S is stable for 2 /K, then 01,(S) > 0 for all finite £ /L/K. The converse
is not true in general (cf. [Iv13] Section 3.5.4), but it is true for almost
Chebotarev sets (cf. Section [3.2).

2.3. Properties (x),, (T);el and (f),. We will also need the following refined
properties.

Definition 2.7. Let S be a set of primes of K and p a (finite or infinite)
prime of Q.
(1) We say that S satisfies property (x)p, if S is p-stable for Ks_s,us.. /K
with a p-stabilizing field contained in Kg (if p = o0, then this means
that S is stable for Kg,g, /K, cf. Proposition [2.6).
(ii) Assume p < . Let .Z/K be an extension. We say that the pair
(S, Z/K) satisfy property (T);el, if p, € &£ and S is p-stable for
Z/K, or pp, & £ and S is stable for Z(p,)/K.
(ii)” Assume p < co. We say that S satisfies property (f),, if (S, Kg/K)
satisfies ().

p
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For z € {*, }, define the exceptional set by
E*(S) := {p: S does not satisfy (z),}.

Lemma 2.8. Let Z/K be an extension and S a set of primes of K. Assume
(S, Z/K) is (T)Ir)el. There is a finite subextension £ /Lo/K, such that for any

subestensions £/ N [L/Lq (with L/Lg finite) (S, A /L) is (1)i".

The proof of this lemma is straightforward. Further, we have (x), = (),
and hence E*(S) 2 EY(S). A set satisfying (), resp. (1), is p-stable resp.
stable. Here is a small overview over the use of these conditions and the
examples in the practice:

- The most examples of stable sets are given by (almost) Chebotarev
sets, i.e. sets of the form S = Py;/i (o), or sets containing them (cf.
Section .

- If an almost Chebotarev set is stable for an extension, then it is also
persistent for it (cf. Corollary . It is not clear whether there
are examples of stable but not persistent sets (but cf. [Iv13] Section
3.5.4).

- For a stable almost Chebotarev set S, ET(S) is finite and E*(S) is
either ¥ or finite (cf. Section [3.3]).

- Roughly speaking, p-stability (for .#/K) is enough to prove Hasse
principles in dimension 1 for p-primary (G ¢/x-)modules. Cf. Section
4

- To prove Hasse principles in dimension 2 and Grunwald-Wang-style
results for p-primary Gg s-modules, we need the stronger condition
(%)p. We will give examples of persistent sets S together with a finite
set T such that Grunwald-Wang (even stably) fails, i.e. coker'(Kg_r/L,T;Z/pZ) #
0 for all finite subextensions Kg/L/K. But it is not clear whether one
can find such an example with additional requirement that " < S
(and necessarily S violating (x),). Cf. Section

- On the other side, for applications of Grunwald-Wang (i.e. to prove
Riemann’s existence theorem, to realize local extensions by Kg/K,
to compute (strict) cohomological dimension, etc.), it is enough to

require that S satisfy (f),. Cf. Sections and

3. EXAMPLES

In this section we construct examples of stable sets. First, in Section
we see to which extend ’stable’ is more general than ’of density 1°. Then,
in Sections and [3.3] we introduce almost Chebotarev sets and determine
conditions for their stability resp. when they satisfy (*), and (f),. Finally, in
Section [3.4] we construct a stable almost Chebotarev set S with N(S) = {1}.

3.1. Sets of density one. Stable and persistent sets generalize sets of den-

sity one. In particular, every set of primes of K of density one is persistent
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for any extension .Z/K with persisting field K and satisfies (x), for each
p. Nevertheless, sets of density one have some properties, which stable resp.
persistent sets do not have in general:

(i) The intersection of two sets of density one again has density one,
which is not true for stable and persistent sets: the intersection of
two sets persistent for .Z/K can be empty (cf. Corollary and
explicit examples below).

(ii) If S € Yk has density one, then there are infinitely many primes
p € Xq, such that S, < S (otherwise, for all primes p € cs(K/Q) one
could choose a prime p € S, S of K and we would have dx (S5) <
1—[K":Q] !, where K™ denotes the normal closure of K over Q).
On the other side, it is easy to construct a persistent set S € Yg
with N(S) = {1}, i.e. Sy & S for all £ € Sg (cf. Section [B.4] for an
example).

Observe that for sets S with N(S) = {1}, mentioned above, no one of the
(-adic representations pa¢: Gxg — GL4(Qy), which comes from an abelian
variety A/K, factors through the quotient Gx — Gg g (indeed, the Tate-
pairing on A shows that the determinant of p4 ¢ is the /-part of the cyclotomic
character of K, and in particular, pa ¢ is highly ramified at all primes of K
lying over £. If p4 would factor over Gg g, then we would have Sy, < S). In
particular, this makes it very hard, if not impossible, to study the group Gg s
via Langlands program (for example in the manner of |[Ch07] and [CC09),
where indeed a prime ¢ € N(S) is always necessary). If S is additionally
stable, then methods involving stability allow to study Gg s.

3.2. Almost Chebotarev sets.

Definition 3.1. Let K be a number field and S a set of primes of K.
Then S is called a Chebotarev set resp. an almost Chebotarev set, if
S = Py (o) resp. S = Py (o), where M/K is a finite Galois extension
and o € GM/K

Remark 3.2. M and the conjugacy class of o are not unique, i.e. there
are pairs (M/K,o), (N/K,7) such that M # N and Py/i(0) = Pk (T)
(or even equal). If one restricts attention to pairs (M /K, o) such that o is
central in G/, then (M /K, o) is indeed unique. Cf. [Iv13] Remark 3.13.

Proposition 3.3. Let M/K be a finite Galois extension, o € Gyyx and
L/K any finite extension. Let Ly := L n M. Then:

$C (05 Garyre) 0 Garyrg

$G /L,
Thus 01(Pyx (o)) # 0 if and only if C(o;Gryx) N Gy, # F- In
particular, this is always the case if Lo = K or if 0 = 1.

Proof. Let N/K be a finite Galois extension with N 2 ML. Let H :=

Gyyr and H := Gar/r,- We have a natural surjection H — H. Let 1,
9

or(Pyyr(o)r) =



denote the class function on Gy x, which has value 1 on C(o; GM/K) and 0
outside. Finally, let mpy denote the character on G := Gy g of the induced

representation IndIG_I 1y. Then we have (the first equality below follows from
[Wi06] Proposition 2.1 and the second from Lemma [2.3):

oL(Pyyk (o)) = Z or(Pn/k(9)L)
C(g§G)’_’C(U§GJ\l/K)
= 2 mu(9)0x (Pn/i(9))

C(QQG)’_’C(U§GJW/K)
1C(g; G
= Z mu(g) ;G )

C(9;:G)—C(0;:G k)
1
= fTG Z m(g)
9—C (G k)
= <mH,inng/K 10>G

o eH
= <1H’1nfGM/K ]—a>H

= Qg Llpx
_ 1000 Gayx) 0 H
tH ’

where the third to last equality sign is Frobenius reciprocity, and the second
to last follows from the easy fact that if H — H is a surjection of finite
groups, X, p are two characters of H, then <inf% X, inf% o =6 O
Corollary 3.4. Let M/K be finite Galois and let o € Gyp/c. Let ZL/K be
any extension and set Ly := M n.L. Then a set S = PM/K(O') 18 persistent
for Z/K if and only if

C(o;Guyr) 0 Gy, # -
If this is the case, Ly is a persistent field for S for L /K. In particular,
(i) any set S = cs(M/K) is persistent for any extension £ /K,

(ii) any set S = Pyyi(o) is persistent for any extension Z/K with
ZLnM=K.

Example 3.5. (A persistent set) Let K be a number field, M/K a finite
Galois extension, which is totally ramified in a prime p of K. Let 0 € G/
and let S be a set of primes of K, such that S = Py/i(0) and p ¢ S. Then
S is persistent with persisting field K. Indeed, we have Kg n M = K by
construction, and the claim follows from Corollary

Corollary 3.6. Let S be an almost Chebotarev set and £ /K an extension.
Then the following are equivalent:
(i) S is stable for L /K.
(ii) S is persistent for L /K.
10



(iii) 0L(S) > 0 for all finite £ /L/K.

Proof. Let S = Py (o) with a finite Galois extension M/K and o € G/
By Proposition [3.3] the density of S is constant and equal to some d > 0 in
the tower £ /Ly with Ly = £ n M. There are two cases: either d = 0 or
d > 0. If d = 0, then S is not stable and hence also not persistent for .£/K
by Proposition i.e., (i), (ii) and (iii) do not hold in this case. If d > 0,
then S is obviously persistent for /K with persisting field Ly and hence
also stable, i.e., (i),(ii),(iii) hold. O

Remark 3.7. If S is any stable set, then (ii) = (i) = (iii) still holds. But
(iii) = (i) fails in general (cf. [Iv13] Section 3.5.4) and it is not clear whether
(i) = (i) holds.

3.3. Finiteness of E*(S) and Ef(S). Examples.

Proposition 3.8. Let S = Py (o) with o € Gy k.

(i) If o € E*(S), then E*(S) contains all rational primes. If oo ¢
E*(S), then E*(S) is finite.

(ii) If S is stable, and p, < Kg or M /K unramified in S, \ S, then S is
(1)p- In particular, if S is stable, then ET(S) is finite.

Proof. (i): If oo € E*(S), then S does not have a stabilizing field for
Kgsys, /K, which is contained in Kg. This is by Proposition equivalent
to the fact that S is not stable for Kg g, /K, which in turn is equivalent
by Corollary to the fact that 67,(S) = 0 for all Kg s, /L/Lo where Ly is
some finite subextension of Kg. g, /K. Thus p e E*(S) for any p.

Now assume o ¢ E*(S). Let Lo := MnKgys, and Ly := MnKgys,0s.,, -
By Proposition the density of S is constant in the towers Kg. s, /Lo and
Ksus,us., /L, and equal to some real numbers dy and d,, respectively. Since
S is stable for K¢ s, /K, we have dy > 0.

We claim that for almost all p’s we have L, = Lg. More precisely, this is
true for all p’s, such that the set

{p e (Sp~95)r,: p is ramified in M /Ly}.
is empty. In fact, if this set is empty for p, then the extension L,/Lg is
unramified in S, \ S(Log), since contained in M/Lg. But being contained
in Ksus,us,, and unramified in S, \ S(Lo), it is contained in Kg_g, , and
hence also in M n Kg g, = Lo, which proves our claim.

Let now p be such that L, = Lo. Then we claim that S is ([Lo : K]dy')-
stable for Kgus,us, /K with ([Lo : K]dal)—stabilizing field K. Indeed,
as L, = Lo, we have d, = dgp > 0. Let Ksus,us,./N/K be any finite
subextension. We have

do = 5LON(S) = [L()N : N](SN(S 8 CS(L()N/N)) < [LO : K](SN(S),

i.e., On(S) = [Lo : K] 'dp for all N, and in particular our claim follows.
11



Finally, almost all primes satisfy p > [Lo : K]dy L and L, = Ly. For such
primes S is p-stable for Kg_gs,0s,. /K with stabilizing field K.
(ii): the second assertion of (ii) follows from the first. If pu, < Kg, then
S is (f)p by Corollary So assume M /K is unramified in S, \S. Let
Lo := M n Kg, Ly := Lo(pp) n Kg and L, := M n Kg(pp,). From these
definitions resp. from our assumption on M/K we have: (1) Grg(,)/my =
Grs/ry % Gro(uy)/ry, and Lo(pp)/Li has no subextension unramified in Sp N 5,
(2) L, n Kg = Lo and (3) Lp/Lg is unramified in S, \. 5. By (3) the exten-
sion L,.L{/L{ is unramified in S, \.S and by (1) we get L, < L,.Lj, < Kg.
Hence (2) gives L, = Lg. Thus for all Kg(u,)/L/Lo we have by Proposition
: 0r(S) = 6r,(S) = 01,(S) > 0 since S is stable.
([

Remark 3.9. Let S = Py /(o). We have the following equivalences:
p¢ E'(S) & S stable for Ks(up)/K < C(0;Gprr)nG(M/MKs(p)) # &.

Example 3.10. (Persistent sets with £*(.5) finite but non-empty) Let K be
a totally imaginary number field and let M /K be a finite Galois extension,
which satisfies the following conditions:

e M /K is totally ramified in a prime p € S,(K),
o d:=[M:K]>p.

Let 0 € Gy i and let S be a set of primes of K, such that

o S= Pyk(o),

e Ram(M/K)~\ S = {p}.
Then S is persistent (6.(S) = d ! for all Kg/L/K) with persisting field K.
Further, S do not satisfy (x),, i.e., pe E*(S) and oo ¢ E*(5), i.e., E*(S) is
finite by Proposition Indeed, M = Kgyus,us, and there are two cases
o =1or o # 1. In the second case, the density of S in Kgus,us, /K is
zero beginning from M, hence S is non-stable for this extension, and (x),, is
not satisfied. In the first case, we have 0.(5) = 1 for all Ksus,0s../L/M.
Assume there is a p-stabilizing field N < Kg for S for Kgus,us,. /K, i.e.,
there is some Sy € S and some a € (0,1] with a < 01(Sp) < pa for all
Ksus,us.,./L/N. But this leads to a contradiction. Indeed,

(SMN(S()) = [MN . N]éN(SO M CS(MN/N)) = [M : K](sN(S()) = p(;N(So),
since Nn M = K and Sy € S = cs(M/K).

Example 3.11. (Persistent sets with E*(S) = &) Let M/K be a finite

Galois extension of degree d with K totally imaginary, which is totally ram-

ified in at least two primes p resp. [ with different residue characteristics ¢1

resp. f2. Let S = Py (o) for some o € Gy g, such that p,[ ¢ S. Then

M n Kg = K, hence S is persistent with persisting field K. Let p be a

rational prime. Then M n Ksys,us, = K, since M/K is totally ramified
12



over primes with different residue characteristics ¢1 and fo. Hence S satisfies
(#)p for every prime p and K is a persisting field for S for Kg,s,0s.. /K.

Example 3.12. (Persistent sets with E*(S) = () There is also another
possibility to construct sets S with E*(S) = ¢, using the same idea as in
the preceding example. Assume for simplicity that K is totally imaginary.
Let Mj, My/K be two Galois extensions of K, and o1 € Gy /i 02 € Gagy k-
Assume M;/K is totally ramified in a non-archimedean prime p; of K, such
that the residue characteristics of p1, po are unequal. Then let S be a set of
primes of K, such that

o SR Pyy(o1) U Puyi(02),

o {p1,p2} ¢ 5.
Then, by the same reasoning as in the preceding example, S is persistent
with persisting field K and E*(S) = . Moreover for each rational prime
p, the field K is persisting for S for Kg_s,0s.. /K.

3.4. Stable sets with N(S) = {1}. Let M /K /K, be two finite Galois ex-
tensions of a number field Ko. Then the natural map Gs/x, — Aut(Ga/x)
induces an exterior action

Gr/ro = Out(Gay/k),

thus inducing a natural action of Gg/k, on the set of all conjugacy classes
of Gyi. For any g € Gg/g, and o € Gy/k, we choose a representative
of the conjugacy class g.C(0; Gy i) and denote it by g.o. Further, Gg/x,
acts naturally on X, and we have

9-Pyyic(0) = Py (g.0).

Let Ko = Q and let 0 € Gyy/k be an element, such that C(o; Gy k) is not
fixed by the action of G g. Let then

S = CS(K/Q)K M PM/K(U)

If p e Xg 5~ cs(K/Q), then S~ S, = &. If p € cs(K/Q) such that
Spn S # &, then the action of g € Gg/x,, chosen such that C(o; Gy ) #
C(9.0; Gy ), defines an isomorphism between the disjoint sets SN P/ (o)
and Sy N Py (g9.0), hence the last of these two sets is non-empty. From this
we obtain S, ¢ S. Thus N(S) = {1}. Moreover, if we choose ¢ such that the
stabilizer of C'(0; Gyy/k) in Gg g is trivial, then for any p the intersection
Sp N S is either empty or contains exactly one element.

Now we have to choose M in a way such that S is stable. This is easy:
for example take M /K to be totally ramified in a fixed prime, which is
(by definition of S) not contained in S. Then Kg n M = K, ie., S is
stable for Kg/K with stabilizing field K, as dx(cs(K/Q)x) = 1 and hence
S = Pyk (o).

13



4. SHAFAREVICH GROUPS OF STABLE SETS

In this section we generalize many Hasse principles to stable sets and
additionally prove finiteness resp. uniform bounds of certain Shafarevich
groups associated with stable sets. The main result is the Hasse principle
in Theorem [4.I] Further, there are two variants of uniform bounds on the
size of IIT*: on the one side one can vary the coefficients, and on the other
side the base field. We study both variants, the first in Section and the
second in Section .4l These results are needed in later sections.

4.1. Stable sets and I1I': key result. Let K be a number field and .#/K
a (possibly infinite) Galois extension. Let A be a finite G &/ g-module. Let
now T be a set of primes of K. Consider the ¢-th Shafarevich group with
respect to T

II'(.Z/K,T; A) := ker(res’: H(Z/K,A) - [ [H\(%, A
peT

where 4, = G K3 /K, is the local absolute Galois group (the map res is essen-
tially independent of the choice of this separable closure, and we suppress it
in the notation). We also write III*(Kg/K; A) instead of III*(Kg/K, S; A).
We denote by K (A) the trivializing extension for A, i.e., the smallest field
between K and &, such that the subgroup G gk (4) of Gg/k acts trivially
on A. It is a finite Galois extension of K.

Let G be a finite group and A a G-module. Following Serre [Se64|§2
and Jannsen [Ja82|, let HL (G, A) be defined by exactness of the following
sequence:

0— HL(G,A) > H(G,A) > [[ H(H,A).

HcSG
cyclic

Our key result is the following theorem. All results in the following make
use of this theorem in a crucial way.

Theorem 4.1. Let K be a number field, T a set of primes of K and £ /K
a Galois extension. Let A be a finile Gy c-module. Assume that T is p-
stable for £ /K, where p is the smallest prime divisor of $A. Let L be a
p-stabilizing field for T for £ /K. Then:

' (Z/L,T; A) € HL(L(A)/L, A).
In particular, if HL(L(A)/L,A) = 0, then II'(Z/L,T; A) = 0.

Lemma 4.2. Let £/L/K be two Galois extensions of K and T a set of
primes of K. Lel A be a Ggx-module, such that for any p € T' one has

ASziL = APv.2/L Then there is an ezact sequence
0 - IIY(L/K,T; AS2/r) > Y ZL/K,T; A) - IYZL/L, Ty; A)

Proof. The proof is an easy and straightforward exercise. O
14



Lemma 4.3. Let L/K be a finite Galois extension, T a set of primes of K,
and A a finite G i-module and i > 0. Assume that T is p-stable for L/K
with p-stabilizing field K, where p is the smallest prime divisor of §A. Then

I (L/K,T; A) € H,(L/K, A).

Proof. Since any p-stable set is f-stable for all £ > p, we can assume that
A is p-primary. We have to show that any cyclic p-subgroup of Gp k is
a decomposition subgroup of a prime in 7. This is content of the next
lemma. O

Lemma 4.4. Let L/K be a finite Galois extension, T a set of primes of K
and p a rational prime, such that T is p-stable for L/K with p-stabilizing
field K. Then any cyclic p-subgroup of G, is the decomposition group of
a prime i T

Remark 4.5. (i) This shows automatically that there are infinitely many
primes in T, for which the given cyclic group is a decomposition
group.

(ii) In some sense this lemma 'generalizes’ Chebotarev’s density theorem,
which says in particular, that if S has density one and L/K is finite
Galois, then any element of Gk is a Frobenius of a prime in S.

Proof. Assume that the cyclic p-subgroup H S Gy /f is not a decomposition
group of a prime in T. Let pH < H be the subgroup of index p. Then
one computes directly my,p(0) = pmpy(o) for any o € pH. Since H is not a
decomposition subgroup of a prime p € T', no generator of H is a Frobenius
at T, i.e., Ppg(0) nT = J for any o € H \ pH. By p-stability of T', there
is a subset Ty € T and an a > 0, such that pa > §;/(Ty) = a for all L/L'/K.
Let Lo = L and L; = LPY. Then by Lemma [2.3]

0ro(To) = Y mu(0)dx(Px(o) N To)
oeH

- Z mu(0)dk (P (o) nTh)
oepH

= p " D) mpu(0)dk(Pryk (o) N To)
oepH

= p_16L1 (TO)
This contradicts our assumption on Tp.
O

Proof of Theorem[{.1. We can assume L = K. By applying Lemma to
Z/K(A)/K and using Lemma we are reduced to showing that if A is a
trivial G-module, then 1T (£ /K, T; A) = 0. Let Ty < T and a > 0 be such
that pa > d/(Tp) = a for all Z/L'/K. Let G;/K be the quotient of G ¢/,
corresponding to the maximal subextension of /K, which is completely

split in T'. We have then
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01N (Z/K,T; A) = ker(Hom(G g/, A) = | [ Hom(%, 4)) = Hom(GY ., A).
peT

fO0#¢ge Hom(G;/K, A), then M := Z*(?) /K is a finite extension inside
Z /K with Galois group im(¢) # 0 and completely decomposed in 7', and in
particular in 7y. Thus

pa > o (Ty) = [M : Ko (To nes(M/K)) = $im(¢)dx (To) = pa,
since 0x (Tp) = a. This is a contradiction, and hence we obtain

' (Z/K, T; A) = Hom(G ., A) = 0. 0

4.2. Hasse principles. Let K, S, T be a number field and two sets of primes
of K. Various conditions on S,T, A which imply the Hasse principle in
cohomological dimensions 1 and 2 are considered in [NSWO08| Chapter IX,
§1. We have their generalizations to stable sets. Before stating them, we
refer the reader to [NSWO08| 9.1.5, 9.1.7 for the definitions of the special
cases.

Corollary 4.6. Let K be a number field, T,S sets of primes of K, A a
finite Gg s-module. Assume that T is p-stable for Kg/K, where p is the
smallest prime divisor of §A. If L is a p-stabilizing field for T for Kg/K and
HL(L(A)/L,A) =0, then
Y (Ks/L,T; A) = 0.
In particular one has the following.
(i) Let Lo be a p-stabilizing field for T for Kg/K, which trivializes A.
Then MY (Ks/L,T; A) = 0 for any finite Ks/L/Lo.
(ii) Assume S 2 So and n € N(S) with smallest prime divisor equal p. If
Lo is a p-stabilizing field for T for Ks/K, then Y (Kg/L, T ji,) = 0
for any finite Kg/L/Lgy, such that we are not in the special case
(L,n,T). In the special case (L,n,T) we have 1N (Kg/L,T; u,) =
7)27.

The same also holds, if one replaces Gk s by the quotient Gg g(c), where
¢ be a full class of finite groups in the sense of [NSW0§| 3.5.2.

Proof. The first statement follows directly from Theorem [1.1} (i) follows
since with Lg, which is a p-stabilizing field trivializing A, any L lying between
Kg/Lgis too. To prove (ii), we can assume n = p”. If we are not in the special
case (L,p"), Proposition [NSW08|] 9.1.6 implies H' (L(ppr)/L, pipr) = 0, i.e.,
we are done by Theorem Assume we are in the special case (L,p"). In
particular, p = 2. Then H"(L(uor)/L, por) = Z/27Z. Since

T (Ks/L(par), T; par) = 0
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by Theorem we see from Lemma [4.2
I (Kg/L, T; pugr) = O (L(pgr ) /L, T pior).

Now the same argument as in the proof of [NSWO0§| 9.1.9(ii) finishes the
proof. O

Now we turn to II?. For a Gg g-module A, such that $4 € N(S), we
denote by
A" :=Hom(A, O, 5)
the dual of A. As in [NSWO0§| 9.1.10, we obtain the following corollary.

Corollary 4.7. Let K be a number field, S 2 Sy a set of primes of K,
A a finite Gk g-module with §A € N(S). Assume that S is p-stable (i.e.,
p-stable for Kg/K ), where p is the smallest prime divisor of §A. Let L be a
p-stabilizing field for S for Kg/K, such that HL(L(A’)/L,A’) = 0. Then

1*(Kg/L; A) = 0.
In particular:
(i) Let Lo be a p-stabilizing field for S for Kg/K, which trivializes A’.
Then IN%(Kg/L; A) = 0 for any finite Ks/L/Ly.
(ii) Let n € N(S) with smallest prime divisor p. If L is a p-stabilizing field
for S and we are not in the special case (L,n, S), then N*(Kg/L,7Z/n7) =
0. In the special case, we have 11*(Kg/L; Z/nZ) = Z/27.

Remark 4.8. The condition $4 € N(S) is not necessary if A is trivial:
we postpone the proof of this until all necessary ingredients (in particular
Grunwald-Wang theorem, Riemann’s existence theorem and cd, Gx g = 2)

are proven. Cf. Proposition

Proof of Corollary[{.7. By Poitou-Tate duality [NSWO08| 8.6.7 (this is the
reason, why we need S 2 Sy, and §4 € N(5)) we have:

m2(KS/L7 A) = H-Il(KS/La Al)va

where XV := Hom(X,R/Z) is the Pontrjagin dual. An application of Theo-
rem to Kg/K, the sets S = T and the module A’ gives the desired result.
(i) and (ii) follow from Corollary [4.6] O

4.3. Finiteness of the Shafarevich group with divisible coefficients.
As a version of Corollary [£.6{1), we have the following proposition.

Proposition 4.9. Let K be a number field, £ /K a Galois extension, p™

some rational prime power (m > 1). Let T be a set of primes of K, which

is p-stable for L /K, with p™-stabilizing field Ly. Then
{2 /L, T; Z/p"Z) < p™

for any r > 0 and any finite £ /L/Ly.
17



Proof. Let Ty € T and a > 0 be such that a < §1(Tp) < p™a for all finite
Z/L/Ly. Let £/L/L be a finite extension. Assume that {1111 (L /L, T;Z/p"Z) >
p™. Then also

{1 (L/L, Ty; Z/p'Z) = p™

and we have:

W' (Z/L, To; Z/p"Z) = Hom(G L, (p). Z/p'Z) = (G2, (p)™"/p")"-

Thus 11 (£ /L, To; Z/p"Z) = p™ implies ﬁG?/L(p)ab/pr > p™, and if M/L
is the subextension of Z/L, corresponding to G;@’/L(p)ab/p’”, then it has a

finite subextension Mj of degree > p™, which is completely split in Ty, hence
o, (To) = p™0r(Th), which is a contradiction to p™-stability of Tp. O

Corollary 4.10. Let K be a number field, /K a Galois extension, and T
a set of primes of K stable for £ /K. Then NN (ZL/K,T;Q,/Zy,) is finite
for any p. Moreover, IN' (£ /K, T;Q/Z) is finite.

Proof. For the first statement it is enough to show that $111' (£ /K, T; Z/p"Z)
is uniformly bounded for r > 0. By Proposition there is some m > 1,
such that K is a p™-stabilizing field for T for . /K. Then Proposition
implies $1I1' (¢ /K, T;Z/p"Z) < p™. For the last statement, we decompose:
(< /K, T;Q/Z) = D, I (#/K,T;Qp,/Zy). The proven part shows that
each of the summands is finite. Moreover, almost all are zero: there is some
A > 1, such that K is A-stabilizing field for T for .#/K. Thus for any p > A,
the group I (Z /K, T;Q,/Z,) vanishes. O

4.4. Uniform bound. For later needs (cf. Section [5.3) we prove the fol-
lowing uniform bounds. The results of this section were not part of [Iv13].

Proposition 4.11. Let # /2L /K be Galois extensions, A a finite G 4k -
module and let S be stable for L (A)/K. Then there is some C' > 0 such
that

$IIY (4L, S; A) < C
forall Z/L/K.

Proof. For each £ /L/K, Lemma applied to .#/L(A)/L, gives an exact
sequence

0 — II'(L(A)/L, S; A) —» II' (A /L, S; A) — I (A /L(A), Spa); A).

(4.1)
Now III'(L(A)/L, S; A) < HY(L(A)/L, A) and G4y, is a subgroup of the
finite group G (a)/xk, thus for all Z/L/K, we have
#IIY(L(A)/L,S; A) <m:=1+ max H'(H A).
HQGK(A)/K

As S is stable for Z(A)/K, by Proposition there is some € > 0, such
that dn (S) > e for all £(A)/N/K(A). Suppose that $1I1'(.#/L(A), S, A) >
¢! for some .Z/L/K. Then, exactly as in the proof of Proposition there
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is an extension M /L(A) of degree > ¢!, which is completely split in S. We
obtain:

5a0(S) = [M : L(A)]0r4)(S) > e te=1,
which is a contradiction. Taking into account equation (4.1)), we obtain the
statement of the proposition with respect to C' := me™!. (]

Corollary 4.12. Let K be a number field, S, T sets of primes of K and n
a natural number.

(i) Assume that Kg/Z/K is a subextension such that S is stable for
Z/K and that T has density 0. Then there is some real C > 0, such
that for any £ /L/K one has:

$IY (Ksor/L, S\ T,Z/nZ) < C.

(i) Assume that T 2 (Su N S) has density 0 and n € Of g p. Let
Ks/Z /K be a subextension such that S is stable for £L(pn)/K.
There is some real C' > 0 such that for any £ /L/K one has:

$IIY(Ksor/L, S\T, pn) < C.

Remark 4.13. The case S stable for Z/K, but not stable for £ (yu,)/K
still remains mysterious: one neither can show such an uniform bound by
the same methods, nor find counterexamples. Moreover, the same kind of
arguments not even shows that 11 (Kg_ 7/K, S\ T, u,) must be finite.

5. ARITHMETIC APPLICATIONS

5.1. Overview and results. In this section we will be interested in appli-
cations of the Hasse principles proven in the preceding section for stable sets.
In particular, we will show two versions of the Grunwald-Wang theorem for
them, with varying assumptions: we will have a strong Grunwald-Wang re-
sult if we assume (%), (Section and only a weaker lim-version (which is
still enough for applications) after weakening the assumption to (f), (Sec-
tion . After this we will be concerned with realizing local extensions,
the Riemann’s existence theorem and the cohomological dimension of G g.
For each of these three results there is a pro-finite and a pro-p version re-
spectively. We state them below and give proofs in Section Further,
in Section we prove a Hasse principle for IT1I? for constant p-primary co-
efficients without the assumption p € (’)}‘(7 g (cf. Corollary ?? and Remark

i)
Theorem 5.1. Let K be a number field, p a rational prime and T 2 S 2 R
sets of primes of K with R finite.

(Ap) Assume (S, K& (p)) is (T);,el. Then

Ky(p) ifpeS~\R

Ky'(p) ifp¢s.
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(A) Assume (S, KE) is (T);)el. Then

r - ) Ep(p) ifpeSNR
PTA\KM(p) ifpéS.

(Bp) Assume (S, K&(p)) is (T);fl. Then the natural map

R ~
: * A * % 1 — G
#7.5(0) peR(KE (p)) ) pe(T ~ S)(KE(p)) & Kr@)/KS @)

is an isomorphism, where I,(p) := Gry )/ S % (p) = G, (p)/K, -
Let Kr(p)/KE denote the mazimal pro-p subextension of K7/KE.
(B) Assume (S, KE) is ()iel. Then the natural map

p
T Golp)x & L(p) = Gy ykE

*
peR(K) pe(T ~ S)(KE)
s an isomorphism, where I{, (p) denotes the Galois group of the maz-
1mal pro-p extension of Kgp.
Assume p is odd or K is totally imaginary.

(Cp) Assume (S, KE(p)) is (T)Irfl. Then

cd G 5(p) = scd G 5(p) = 2.
(C) Assume (S, KE) is (T);el. Then
cdp G%S = scd) G%S = 2.

5.2. Grunwald-Wang theorem and (x),. Consider the cokernel of the
global-to-local restriction homomorphism

coker’(Kg/K,T; A) := coker(res’: H(Kg/K, A) — H;eT H'(%,, A)),

where A is a finite Gg s-module, T < S and ]_[' means that almost all classes
are unramified. If A is a trivial Gg s-module, then the vanishing of this
cokernel is equivalent to the existence of global extensions unramified outside
S, which realize given local extensions at primes in T". If S has density 1, the
set T is finite, A is constant and we are not in a special case, this vanishing is
essentially the statement of the Grunwald-Wang theorem. Certain conditions
on S,T, A, under which this cokernel vanishes are considered in [NSWOS|
chapter IX §2. All of them require S to have certain minimal density. We
prove analogous results for stable sets.

Corollary 5.2. Let K be a number field, T S S sets of primes of K with
Sew S S. Let A be a finite Gi,g-module with §A € N(S). Assume that T
is finite and S is p-stable, where p is the smallest prime divisor of §A. For
any p-stabilizing field L for S for Kg/K, such that HL(L(A")/L,A") = 0, we
have:
coker! (Kg/L,T; A) = 0.
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Proof. Since T is finite and S is p-stable for Kg/K, S\ T also is p-stable for
Kg/K, and the p-stabilizing fields for S and S\ T" are equal. Let L be as in
the corollary. By Theorem , applied to Kg/L, S~\T and A’, we obtain
I (Kg/L,S~T;A") = 0. Then [NSW08] 9.2.2 implies coker! (Ks/L,T; A) =
0. O

Now we give a generalization of [NSWO08| 9.2.7.

Theorem 5.3. Let K be a number field, S a set of primes of K. Let Ty, T ©
S be two disjoint subsets, such that Ty s finite. Let p be a rational prime
and r > 0 an integer. Assume S\T is p-stable for Ksus,us.,. /K with p-
stabilizing field Lo, which is contained in Kg. Then for any finite Kg/L/ Ly,
such that we are not in the special case (L,p", S~ (Tp v T)), the canonical
map

H'(Ks/L,Z/p'Z) —» @ HY%,Z/p'2)® @ H'(%,2/p2)%
peTo(L) peT(L)

is surjective, where S, C 9, = GKSCP/LP is the inertia subgroup. If we are
in the special case (L,p", S~ (To v T)), then p = 2 and the cokernel of this
map s of order 1 or 2.

Proof. This follows from Corollary {.6{(ii) in exactly the same way as [NSWO§]
9.2.7 follows from [NSWO08§| 9.2.3(ii). O

Remarks 5.4.

(i) Observe that if dx(T) = 0, the condition “S~\T is p-stable for
Ksus,us.,. /K with a p-stabilizing field contained in Kg” is equiv-
alent to “S satisfies (x),”.

(ii) If 0x(S) = 1 and dx(T) = 0, then Lo = K is a persisting field for
S\ T for any .2 /K and the condition in the theorem is automatically
satisfied. Thus our result is a generalization of [NSWO0§| 9.2.7. To
show that it is a proper generalization, we give the following example.
Let N/M /K be finite Galois extensions of K, such that N/K (and
hence also M/K) is totally ramified in a non-archimedean prime [ of
K, lying over the rational prime £. Let 0 € G/ and let 6 € Gy
be a preimage of . Let S © T be such that

- S22 Pyyg(o), 1¢ S and T' = Py (o) N Py (6).
Then S\T = Py/g(0) is persistent for Ksys,0s,. /K for any p #
¢, and, moreover, K is a persisting field (indeed, this follows from
Ksus,0s, NN = K). Hence the sets S 2 T' satisfies the conditions
of the theorem with respect to each p # £. Observe that in this
example T is itself persistent Kgous,0s.,. /K, with persisting field K.
In [NSWO08| 9.2.7, the set 7' must have density zero.

From this we obtain the following classical form of the Grunwald-Wang
theorem. The proof is the same as in [NSW08] 9.2.8.
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Corollary 5.5. Let T < S be sets of primes of a number field K. Let A be a
finite abelian group. Assume that T is finite and that for any prime divisor p
of $A, S is p-stable for Ksus,us.,./K with stabilizing field K. For allp e T,
let Ly/K, be a finite abelian extension, such that its Galois group can be em-
bedded into A. Assume that we are not in the special case (K, exp(A), S\ T).
Then there exists a global abelian extension L/K with Galois group A, un-
ramified outside S, such that L has completion Ly at p e T.

Example 5.6. (A set with persistent subset for which Grunwald-Wang sta-
bly fails) Let p be an odd prime and assume p, < K (in particular, K is
totally imaginary and we can ignore the infinite primes). Let S be a set of
primes of K. Let V' = S,~ S and let T' 2 V be a finite set of primes of K.
By [NSWO08| 9.2.2 we have for all Kg/L/K a short exact sequence (recall
that p, = Z/pZ by assumption):

0 — MIY(Ksor/L, SUT; Z/pZ) — I (Ks,r/L, S\ T;Z/pZ) — coker(Ks_r/L,T;7/pZ)" — 0.
Assume now that S is p-stable with p-stabilizing field K. Then
MY (Ks r/L,S v T;Z/pZ) < Y (Ks/L, S;Z/pZ) = 0

and hence we have

coker' (Ksur/L, T; Z/pZ) = I (K5 r/L, S\ T; Z/pZ)" .

We can find such a set S for which one has additionally II1*(Kg_7/L, S\ T; Z/pZ) #
0 for each Kg/L/K. For an explicit example, let K = Q(up) and let
T 2 S,(K) (Sp(K) consists of exactly one prime) be a finite set of primes of
K. Let M/K be a Galois extension of degree p with ¢§ # Ram(M/K) < T
(eg. M = Q(up2)). Let S := cs(M/K). Then M n Ks = K and
hence ML n Kg = L for each Kg/L/K. Thus S is persistent with per-
sisting field K. Further, ML/L is a Galois extension of degree p which
is completely split in S \7T and unramified outside S U T, hence the sub-
group of Ggg /v & Grgp/r 18 the kernel of a nontrivial homomorphism
0 # ¢y € I (Kg /L, S\ T;Z/pZ). Hence this group is non-trivial.

Thus we have: S is persistent but not (x),, in particular, no p-stabilizing
field for S = S U T for Kgys,0s../K is contained in Kg and the Grunwald-
Wang does not hold for S T 2 T (i.e. the cokernel in Theorem is
non-zero). It is still unclear, whether there is an example of sets S 2 T such
that S is persistent but not (x), and the Grunwald-Wang fails for S 2 7.

Finally, we have two corollaries generalizing [INSW08] 9.2.4 and 9.2.9 to
stable sets.

Corollary 5.7. Let K be a number field, T S S sets of primes of K with
T finite. Let Kg/L/K be a finite Galois subextension with Galois group G.
Let p be a prime and A = Fp|G|" a Gi,s-module. Assume S is p-stable for
Ksus,us.. /K with p-stabilizing field L. Then the restriction map
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H'(Ks/K,A) > P H (%, A
peT
18 surjective.

Proof (cf. INSWO08] 9.2.4). We have the commutative diagram, in which the
vertical maps are Shapiro-isomorphisms:

H'(Ks/K, A) @ HY(%, A)

‘N o

H'(Ks/L,Fp) — @ H' (%, F})
PeT(L)
The lower map is surjective by Theorem and so is the upper. O

Corollary 5.8. Let K be number field, S a set of primes of K. Let Kg/L/K
be a finite Galois subextension with Galois group G. Let p be a prime and
A = Fp[G]" a G g-module. Assume that S is p-stable for Ksos,os,. /L
with p-stabilizing field L. Then the embedding problem

Gk.s

i

1 A E G 1
s properly solvable.

Proof. 1t follows from Corollary [5.7]in the same way as [NSW08] 9.2.9 follows
from [NSWO0S] 9.2.4. O

5.3. Grunwald-Wang cokernel in the limit and (f),. If one is interested
(motivated by Theorem we are) in the vanishing of the direct limit over
Kg/L/K of the Grunwald-Wang cokernel, rather than in the vanishing of
the cokernel for each L, one can considerably weaken the condition ().

Theorem 5.9. Let K be a number field, S a set of primes of K and £ € Kg
a subextension normal over K, such that (S,.%) satisfies (T);el. Let T be a
finite set of primes of K containing (Sp U Sw) N S. If p*|[.Z : K], then

lig  coker'(Ksur/L,T,Z/pZ) = 0.
Z/L/K res

Proof. For any finite subextension ¢ /L/K we have the short exact sequence

0 — MY (Ksr/L, SUT; up) — M (Kg7/L, S\ T; 1) — coker' (Ks r/L, T; Z/pZ)" — 0.
g co L N Ksor/L,SNTs pp)Y =
0. For any two finite subextensions .¢/L'/L/K we have the maps:

rest s N (Ksor/L, S\ T; pp) S W (Ksor/L', S\ T; py): cork  (5.1)
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Lemma 5.10. There is a finite subextension £/Li/K, such that for all
ZL/L'/L/Ly, the map resg is an isomorphism.

Proof. First we claim that resg is injective if L is big enough. Assume

first that p, € £ and S is p-stable for Z/K. Let £/Lo/K be a finite
subextension which p-stabilizes S and contains j,. Then any finite subex-
tension £ /L/Lg satisfies the same. Assume resﬁl is not injective, i.e. there
is some 0 # ¢ € II'(Ks, r/L,S~T;Z/pZ) with rest' (¢) = 0 (we have
chosen some trivialization of y,). This ¢ can be seen as a homomorphism
¢: Grgop/L — Z/pZ which is trivial on all decomposition subgroups of
primes in S\ T. Let M := (Kg_7)*"?. This is a finite Galois extension of
L with Galois group Z/pZ and cs(M/L) 2 S~ T. But then

0r(S) = [M : L]oL(S nes(M/L)) = por(S),

since T is finite. Now res? (¢) = 0 implies M < L' € .% and hence we get a
contradiction to p-stability of S.

Now assume that p, € Kg. Then resg is always injective. Indeed suppose
there is an

0+ ze Y (Ksur/L, S\T;pp) = {x e L*/p: x € ULy ? for p ¢ SUT and x € L, for pe S\ T}

with rest () = 0. This implies 2 € L"*P. Let y? = z with y € L. Then
L{y) € L' € . Since the polynomial TP — x is irreducible over L (since
x ¢ L*P), the conjugates of y over L are precisely the roots of this polynomial,
which are obviously {Ciy}f;ol for ¢ € pup(K) ~\ {1}. Since . is normal over
L, these conjugates lie in %, and in particular we deduce ( € .Z, which
contradicts p, ¢ .Z. This finishes the proof of the injectivity claim.

By Corollary (ii), there is a constant C' > 0 such that fIII* (Kg_r/L, S\ T, j1,) <
C for all £/L/K. Together with the injectivity shown above, this shows that
there is a finite subextension .¢’/L1 /K such that for all £ /L’/L/L,, the map
resg is bijective. ([

Now we can finish the proof of Theorem [5.9] Assume L; is as in Lemma
Let .£/L/L,. Since p*|[.£ : K], there is a further extension .¥¢/L'/L
such that p divides [L’ : L]. In the situation of we have corores = [L':
L] = 0 since p, is p-torsion. Dualizing gives res¥ ocor¥ = (corores)¥ = 0.
But with res also res“ is an isomorphism, hence we obtain corY = 0. This
shows

lim  MY(Ksor/L, S~ T;pp)Y = 0. O
Z/L/K,corY

We also have same arguments for 1112

Proposition 5.11. Let K be a number field, S a set of primes of K and
Z € Kg a subextension normal over K, such that (S, Z/K) satisfies (T);el,
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Let T 25 U S, U Sy be a further set of primes. If p*|[£ : K], then

lim UI*(Kr/L,T;Z/pZ) = 0.
Z/L/K res

Proof. By Poitou-Tate duality this is equivalent to
lim I (Kp/L, T )" =0.
Z/L/K corV
This follows in the same way as in the proof of Theorem O

5.4. Consequences. Here we prove Theorem

Lemma 5.12. Let S 2 R be sets of primes of K. Assume R is finite and
S nes(K(pp)/K) is infinite. Then p®|[KE(p) : K].

Proof. By [INSW08| 10.7.7, for any C' > 0 there is some finite subset S¢ <
S nes(K(pp)/K) such that R < Sc and

dimg, Hl(G%SC (p),Z/pZ) > C.
Since each group G% s.(p) is a quotient of G% 5(p), the lemma follows. O

Proof of Theorem[5.1] (Ap): Let p be a prime of K which is not contained
in R. Since the local group %,(p) is solvable and the assumptions carry
over to extensions of K in K& (p), it is enough to show that any class oy €
HY(%,(p), Z/pZ) (which has to be unramified if p ¢ S) is realized by a global
class after a finite extension. Let T := {p} U R U Sp U Sy and let (oyq) €
]_[qu HY(%,(p), Z/p), such that aq is unramified if ¢ ¢ S and 0 if p € R.
By Theorem there is some finite extension K% (p)/L/K, such that (cq)
comes from a global class a € HI(GESUT(p),Z/pZ). The Z/pZ-extension
of L corresponding to « is unramified outside S, completely split in R and
hence contained in K #(p), which finishes the proof. (A) has analogous proof.

(Bp): The proof essentially coincide with the proofs of [NSWO08| 10.5.8
resp. [Iv13] Theorem 4.26. As done there, we can restrict ourselves to the
case T' 2 5, USew. All cohomology groups in the proof have Z/pZ-coefficients
and we omit them from the notation. After computing the cohomology on
the left side, by [NSW08] 1.6.15 we have to show that the map

B0 5(p): H(Kr(0)/KI0) = B peniinon B GBI yeir . syxoy T 1 (P)

induced by QS%S(]O) in the cohomology is bijective for i« = 1 and injective
for i = 2 (here @' means the restricted direct sum in the sense of [NSWOS]
4.3.13). Now, H'(¢% 4(p)) is injective since ¢ (p) is clearly surjective. To
show surjectivity for = 1, consider for any finite subset Ty €T\ S, which
contains (S, U Sp) \ S, and any finite K (p)/L/K the composed maps:

H'(Ksom (/L) > @ H(#) -~ @ H#He O H(H%,
pe(RUT1)(L) peR(L) peT: (L)
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where .7, = I "o/l S GK/L;J = &, is the inertia subgroup. Passing to the
direct limit over K% (p)/L/K, we obtain by Theorem [5.9| the surjection

/ /
HI(KSUT1 (p)/KSR(p)) - (‘B peR(Kg'(p)) Hl(gp (p))®® PETl(KSR(p)) Hl (Im/Kp)

which is, after passing to the direct limit over all finite 77 € T\ S, exactly
H1(¢¥7S(p)), since by (Ap) we have K& (p), = K(p) for p € T\ S and

G
hence H' (I ) /0™ = HI(I(p)) (cf. the proofs of [NSWO0S] 10.5.8

resp. [Iv13] 4.26). Finally, the injectivity of H2(¢%S(p)) follows by passing
to the limit and using Proposition (B): By Lemma there is some
K&/Lo/K, such that for all K/L/Lg the pair (S, LE(p)) is (1)5'. Thus (B)
follows from (B,) as we have

Lp) = lm Iy,
KE/L/K

and

Crpeyy = W Gy
KB/LJK

(Cp),(C) The proof essentially coincide with the proofs of [NSW08| 10.5.10,
10.5.11 resp. [Iv13] Theorem 4.31, Corollary 4.33. To avoid many repetitions,
we only recall the argument for cd G%S(p) < 2 in the case R = ¢J (which
differs in one aspect from cited proofs). Therefore, let V' = (S, U Se) \ S

and consider the Hochschild-Serre spectral sequence (E;/, 6;7) for the Galois
groups of the global extensions Ks v (p)/Ks(p)/K. By [NSWO08] 8.3.18 and
10.4.8, we have:

cd G suv(p) < cdp Gr suv < 2.

By Riemann’s existence theorem (B,) the group GKgov(p)/Ks(p) 18 Pro-p

free. Hence E% degenerates in the second tableau and in particular, we have
(omitting Z/pZ-coefficients from the notation)

coker(63h) = E3° = B3V < H3(GK,SUV(p)) = 0.

Le., 31 is surjective. Again by Riemann’s existence theorem we have

H! (Ksov (p)/Ks(p) = @ mdas®  H(1,(p)),

Kg(p)/K
eV Dy kg(p)/

This and Shapiro’s lemma imply

= @ H*(Kp(p)/Ky). (5.2)

peV

Further we have the following commutative diagram with exact rows and
columns:
26
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Dpes H2(Kp(p)/Kp) H(Ksov/K, pp)

H?(Ksuv (p)/K) Byesov B (Kp(p)/Kp) —= HO(Ksov /K, p1p)”

| |

H' (Ks(p)/K, H' (Ksuv (p)/Ks(p))) —— Dyer B (Kp(p)/Kp)

H?(Ks(p)/K)
in which the second row comes from the Poitou-Tate long exact sequence.
The first map in the third row is the isomorphism . The map in the first
row is surjective since its dual map is p1,(K) — @pespp(Kyp) is injective. Now
(in contrast to proofs cited from [NSWOS8| and [Iv13]) the first map in the
second row is not necessarily injective, but one can simply replace the first
entry in the second row by H?(Kg v (p)/K)/IN*(Ks v/K,S v V;Z/pZ),
as both maps in the diagram which start at this entry factor through this
quotient. Now apply the snake lemma to the second and the third row and
obtain H3(Kg(p)/K) = 0 and hence also cd G s(p) < 2 by [NSW08] 3.3.2.
O

5.5. Vanishing of 111?(Gs; Z/pZ) without p € O% 4. We generalize Corol-
lary for the constant module. The proof makes use of Theorem (A),
(B), (C) along with the result of Neumann showing the vanishing of certain

cohomology groups. Its special case dx(S) = 1 is not contained in [NSWOS].
Part (i) is [[vI3] 4.34.

Proposition 5.13. Let K be a number field, S a set of primes of K. Let p
be a rational prime, v > 0 an integer. Assume that either p is odd or Kg is
totally imaginary. Then the following holds:
(i) Assume S is (x), and Lg is a p-stabilizing field for S for Ksus,0s.,. /K.
Assume p is odd or Lg is totally imaginary. Then
M*(Ks/L; Z/p"Z) = 0
for any finite Kg/L/Lgy, such that we are not in the special case
(L,p",95).
(i) Let Kg/ L /K be a normal subextension. Assume (S,.ZL) is (T);e1 and
p®||Z : K|. Then
liy I0%(Ks/L;Z/p'Z) = 0.
LILIK
Proof. Let V := (S, U Sx) \S. In the following, we write H*(-) instead of
H*(-,Z/p"Z) and II*(-,-) instead of II*(-,-;Z/p"Z). Let Kg_ (p) be the
maximal pro-p-subextension of Kg v /Kg. Let Kg/L/K be a finite subex-

tension and consider the following tower of extensions:
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/‘KSUV

KguV(p)

Gr,s0v H

KS G/L,suv(l’)

Gr,s
L

with N := Grg v /it ) H = Grr,_p)/is and G sov(p) == Giy, )/
We claim that for any such L we have under the assumptions of (i) resp. (ii),
the following natural isomorphisms:

M%K% (p)/L,Su V) =T*(Ks,v/L,SuwV) forany Kg/L/K and
M*(Ks/L,S) = II*(K% v (p)/L,S uV) for any Kg/L/Lg under (i), and
(5.3)
lim II*(Ks/L,S) = lim II*(K§,y(p)/L,Su V) under (ii).
ZLILIK ZLILIK

Once this claim is shown, (i) follows immediately from Corollary 4.7/ and (ii)
follows from Proposition Thus it is enough to prove the above claim.
The first isomorphism in follows immediately from the definition of
112, once we know that the inflation map H*(Gy, g v (p)) = H*(GLsuv) is
an isomorphism. To show this last assertion, consider the Hochschild-Serre
spectral sequence

Ey = H(GLgov(p) W(N)) = HH(GLs,v).
A result of Neumann ( [NSWO08| 10.4.2) applied to Kgo,v/Kg i (p) (the
upper field is p — (S v V)-closed, the lower is p — () U Seo)-closed) implies
Ey =0 for j > 0, hence the sequence degenerates in the second tableau and

Hi( ISUV(p)) = Hi(GSuV)7

for ¢ = 0, proving our claim. Thus we are reduced to show the second and
the third isomorphisms in (5.3). For p € V, let K| (p) denote the maximal
pro-p extension of Kg,. Let

L(p) = Giy(p)/Ks,

(observe that if p € Sy, then I(p) = 1. Indeed, if p > 2, this is always

the case, and if p = 2, then Kg, = C using the assumption that Kg is

totally imaginary). By [Iv13] Lemma 4.23 (which was only shown there

under assumption (x), on S, but due to Theorem (A), it also holds
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under (f), with exactly the same proof), we have I (p) = Dy k. (p)/Ks- BY
Riemann’s existence Theorem (B) applied to Kg, ,/(p)/Ks/K), we have
H=> x I(p).
peV(Ks)

By [Iv13] Corollary 4.24, the groups Ié (p) are free pro-p-groups, and hence
H is free pro-p-group. Thus c¢d,H < 1. Consider the exact sequence

1— H— G 50v(p) > Grs — 1,
and the corresponding Hochschild-Serre spectral sequence
By = H(Gps, B (H)) = HY(GL s,y (p))

Since by Theorem (C) we know that ¢d, G g = 2, we have EY = 0 if
1> 2 or j > 1. Moreover, we have

I G
' (H) = 'y ) H (15(0) = @ Indps H(T,(p)),

as Gr,s-modules, where Dy i1 © Gp s is the decomposition group at p,
which is in particular pro-cyclic and has an infinite p-Sylow subgroup (by
Theorem [5.1fA)). Using this, an easy computation involving Frobenius reci-
procity, Shapiro’s lemma and [Iv13| Lemma 4.24 allows us to compute the
terms E9' and E3'. Writing down explicitly what remains from the spectral
sequence, we obtain the following exact sequence (where & := §9': EJl —
E29 denotes the differential in the second tableau):

0 —=H'(GLs) — H(GL s v(p) — V((JBL) H (I (p)) Prss/t ——

- H2(Grg) — HX(GL sy (p) — 2 @ HX(%,)

V(L)
Assume first we are in the situation of (i) and let L be as introduced there.
We have the following surjections:

0.

H (GLsov () » @D H'(&%) = @ H'(Dyxe o) — @ HUI(p)) wssrr,
peV(L) peV(L) V(L)

(the first map is surjective by Grunwald-Wang Theorem , and the second

and the third maps follow from [Iv13| Lemma 4.24. Hence the map preceding

d is surjective and hence § = 0. Thus the lower row of the above 6-term exact

sequence gives the short exact sequence

0 —— II%(Ks/L, S) — W2(K y (p)/L, S) 2~ @ HX(%),
V(L)
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On the other side, by definition of II1%, the kernel of d is precisely III?(K% - (p)/K, Su
V'), which shows the second equality in . The third equality in fol-
lows from the assumptions in (ii) by the same arguments after taking lim
over Z/L/K (and using Theorem 5.9|instead of Theorem [5.3). O

6. K(m, 1)-PROPERTY
Assume that either p is odd or K is totally imaginary and let
X = SpecOk 5.

While it is well known that X is algebraic K(m, 1) for p if either S 2 .S, U Se
(“wild case”), or i (S) = 1, it is a challenging problem to determine whether
X is K(m, 1) if S is finite and not necessarily contains S, U Se. Until recently
there were no non-trivial examples of (K, S) such that X is K(m,1) for p or
pro-p K(m, 1) and, say, S n .S, = ¢J. Recent results of A. Schmidt ( [Sch07],
[Sch09), cf. also [Sch10]) show that any point of Spec Ok has a basis for
Zariski-topology consisting of pro-p K(m, 1)-schemes. More precisely, given
K, afinite set S of primes of K, a rational prime p and any set T of primes of
K of density 1, Schmidt showed that one can find a finite subset 71 € T such
that X ~\ Ty is pro-p K(m, 1). The main ingredient in the proof is the theory
of mild pro-p groups, developed by Labute. We conjecture that one can
replace the condition dx(T) = 1 in Schmidt’s work by the weaker condition
that T satisfies (x), (or even that (T, Kr(p)) is (T);el).

In the present section we enlarge the set of the examples of such pairs
(K, S), for which X is algebraic K(m, 1) for p and prove essentially that if S
satisfies (1)p, then X is algebraic K(m, 1) for p. In particular, if S is a stable
almost Chebotarev set with Sy, © S, then X is algebraic K(m, 1) for almost
all primes p (cf. Proposition and Example , and if E7(S) = & and
K is totally imaginary, then X is an algebraic K(m,1).

6.1. Generalities on the K(m,1)-property. There are many equivalent
ways to define algebraic K(m, 1)-spaces (cf. [St02] Appendix A, where they
are discussed in detail). Without repeating all of them, we want to introduce
a small refinement of terminology, such that it is better adapted to formulate
our results.

To begin with, let X be a connected scheme, X the étale site on X. Fix
a geometric point € X and let 7 := m(X,Z) be the étale fundamental
group of X. Let #Am denote the site of continuous m-sets endowed with the
canonical topology. Let further p be a rational prime, and let Z7P denote
the site of continuous 7P)-sets, where 7(®) is the pro-p completion of 7. As
in [St02] A.1, we have natural continuous maps of sites

Xét $- B

N

BrP
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For a site Y, let #(Y') denote the category of sheaves of abelian groups on
Y, let 7(Y); be the subcategory of locally constant torsion sheaves, and
Z(Y), the subcategory of locally constant p-primary torsion sheaves. Let
Ae S (HBr)s resp. B e S (AnP), Then we have the natural transforma-
tions of functors id — Rvxy* resp. id — R, 47, which induce maps in the
cohomology:

cf4: Hi(m,A) — Hi(Xét,’Y*A)
C;;,Bi Hi(W(p)aB) —’Hl(Xétﬁ;B)

Let X resp. X(p) denote the universal resp. the universal pro-p covering of
X. Since R ~
H' (Xet, A) = H' (X(p)er, B) = 0
for each A, B, the maps cf4 and c; p are isomorphisms for 7 = 0,1 and are
injective for i = 2.
Definition 6.1. Let X be a connected scheme.
(i) X is algebraic K(m, 1) if ¢4 is an isomorphism for all A € .%(%r)¢
for all 7 > 0. _
(ii) X is algebraic K(m, 1) for p if ¢4 is an isomorphism for all A €
S (Br)p, for all i > 0.
(i) X is pro-p K(m, 1) if c;%B is an isomorphism for all B € .(#n?),, for
all ¢ = 0.

Notice that we use a shift in the definitions compared with [Sch07] or
[Wi07]: what there is called algebraic K(m, 1) for p, we call here pro-p K(m, 1).
Parts (i) and (iii) of our definition coincide with the definition of K (m,1)
in [St02] A.1.2. By decomposing any sheaf into p-primary components we
obtain:

Lemma 6.2. X is algebraic K(m, 1) if and only if it is algebraic K(w, 1) for
all p.

Now we have a criterion for being K(7, 1). For a scheme X let Fetx (resp.

Fetg?)) denote the category of all finite étale coverings (resp. finite étale
p-coverings) of X. For a number field K let

ox =

1 if pp € K,
0 otherwise.

Proposition 6.3. Let K be a number field, S 2 Sy, a set of primes of K
such that either dx = 0 or Sy # . Assume that either p is odd or K is
totally imaginary. Let X = Spec Ok s. The following are equivalent:

(i) X is K(m, 1) for p.

(ii) One has

lig H*(Ye, Z/pZ) = 0.
YeFetx
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The same also holds if one replaces 'K (mw,1) for p’ by ’pro-p K(m, 1) and
Fetx ” by ’Fetg?) " respectively.

Proof. For the full proof, cf. [Iv13| Proposition 5.5. For convenience, we
sketch here the main steps. (i) = (ii) holds for any connected scheme and
follows from [St02] A.3.1 and (ii) = (i) follows from the well-known criterion
[St02] A.3.1, and the fact that for every ¢ > 0 and every locally constant
p-primary torsion sheaf A on Xg, we have

lim HY(Yey, Aly) = 0.
YeFet x
Since A is trivialized on some Y € Fetx, we can assume that A is con-
stant. By dévissage we are reduced to the case A = Z/pZ. The elements
of H'(Yet,Z/pZ) can be interpreted as torsors, which kill themselves, i.e.
the case ¢ = 1 follows. Further by [SGA4] Exposé X Proposition 6.1,
H%Y¢t, Z/pZ) = 0 for ¢ > 3. The case ¢ = 3 follows from Artin-Verdier
duality. Finally, (ii) implies the case ¢ = 2. The pro-p case has a similar
proof. ([l

6.2. K(r,1) and (1),.

Theorem 6.4. Let K be a number field, S 2 Sy a set of primes of K and
p a rational prime. Assume that either p is odd or K is totally imaginary.

The following holds:
(i) If (S, Ks(p)/K) is ()i, then Spec Ok s is a pro-p K(m,1).

p
(ii) If S is ()p, then Spec Ok s is a K(m, 1) for p.

Remark 6.5. If K is totally imaginary or in the pro-p case, the assumption
S € S is superfluous as Gg(p) = Ggus, (p): if p > 2, then this is true
in general and if p = 2, then this is true since we have assumed that K is
totally imaginary.

Corollary 6.6. Let K be a number field, S 2 Su a stable set of primes
of K, such that EY(S) is finite (in particular S can be any stable almost
Chebotarev set with S 2 S ). Then Spec Ok s is a K(m,1) for almost all
primes p. If ET(S) = & and K is totally imaginary, then Spec O g is an
algebraic K(m,1).

Example 6.7. Let K be totally imaginary. Let K := Up K(pp). Let M/K

be finite Galois with M nK = K and o € Gr/ic- Assume that S = Py (o)
is stable. Then Spec Ok s is a K(m, 1).

Proof of Theorem[6.4] (The proof essentially coincide with that of [Iv13|

Theorem 5.12) We only prove (ii) (the pro-p case (i) has a similar proof).

Let X := Spec Ok s. As L goes through finite subextensions of Kg/K, the
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normalization Y of X in L goes through all finite étale connected coverings
of X. Let V :=5,~.S. For any such Y we have a decomposition

yVdydvy
in an open and a closed part. Now Y\ V isa K(7, 1) for pand m (Y \V) =
Gr,suv. Hence
cyr H(Grsuv) = H((Y N V)et, A) (6.1)

is an isomorphism for any ¢ > 0 and any p-primary Gy, g y-module A. We
have the Lerray spectral sequence for j:

B = H™(Y, RY,Z/pZ) = H™™(Y \ V, Z/pZ).

Let us compute the terms in this spectral sequence. First of all we have

77 itn =0,
R"j.Z/pZ = @pev HY(4%,Z/pZ) ifn=1,
0 ifn>1,

where ., € %, denotes the inertia subgroup of the full local Galois group at
p. Thus

Ey' = @HNA, /L)
peV

B} = H'(Ye, QH(S,Z/pL) = @ HX(%,, Z/pL)
peV pev

and E5" = 0ifn > 1orifn =1and m > 1 (as cdp(¥4,") = 1). Further,
Ey0 =0 for m > 3, as cd,Y < 3 and E3Y = H3(Y,Z/pZ) = 0 by [Iv13]
Lemma 5.9. Further,

By’ = H'(Ye, Z/pZ) = H'(GL s, Z/pZ)

Thus we have the following non-zero entries in the second tableau:

@pev Hl(fp’ Z/pZ)gpm @pe\/ 0’ (gp’ Z/pZ) 0
591
Z/pZ HY(GLs,Z/pZ) H?(Yet, Z/pZ)

From this and the isomorphism (6.1)) we obtain the following exact sequence
(from now on, we omit the Z/pZ-coefficients):

01
nr (52

0 —= HY(GLs) —= H'(GLsuv) — @y H(H)H ——

——H*(Yat) —— H*(Grsov) — @pey B} (%) —0
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By Proposition it is enough to show that lim H?(Ys) = 0. Taking

—>Y€Fetx

the limit over all Y € Fety of this sequence, we see by Theorem [5.9] that the
direct limit of the maps preceding 69! is surjective, hence we obtain:

lim H*(Ye) =~ lim I0*(Kgov/L,V;Z/pZ).

YeFet x YeFet x

To finish the proof consider the following commutative diagram with exact
rows:

H2(GL,SUV) - @peSuV H? (gp) - ,U'p(L) V——=0

l | |

00— (‘DpeV HQ(%J) — @pe\/ H2(gp) 0 0,

in which the first map in the upper row gets injective after taking the limit
by Proposition Snake lemma shows that

iy H(Ve) =l P(Ksoy/LV:ZpZ) €l (DHA%).
YeFetx YeFetx YeFetx pesS

and the last limit vanishes as p®|[Kg, : K] for all p € S by Theorem [5.1(A).
This finishes the proof of (ii). O

REFERENCES

[CCO09] Chenevier G., Clozel L.: Corps de nombres peu ramifiés et formes automorphes
autoduales, J. of the AMS, vol. 22, no. 2, 2009, p. 467-519.

[Ch07] Chenervier G.: On number fields with given ramification, Comp. Math. 143 (2007),
no. 6, 1359-1373; or www.math.polytechnique.fr/ chenevier/articles/numberfields.pdf

[Iv13] Ivanov A.: Arithmetic and anabelian theorems for stable sets in number fields,
Dissertation, Universitit Heidelberg, 2013.

[Ja82] Jannsen U.: Galoisrnoduln mit Hasse-Prinzip. J. Reine Angew. Math. 337 (1982),
154-158.

[Ma73] Mazur B.: Notes on étale cohomology of number fields, Ann. Scient. Ecole Norm.
Sup., 4.sér., 6 (1973), 521-553.

[Na04] Narkiewicz W.: Elementary and analytic theory of algebraic numbers, Springer,
2004, third edition.

[Ne07] Neukirch J.: Algebraische Zahlentheorie, Springer, 2007.

[NSWO08] Neukirch J., Schmidt A., Wingberg K.: Cohomology of number fields, Springer,
2008, second edition.

[Sch07] Schmidt A.: Rings of integers of type K(m,1), 2007, Doc. Math. 12 (2007), 441-
471.

[Sch09] Schmidt A.: On the K(w,1)-property of rings of integers in the mized case, RIMS
Kokyuroku Bessatsu B12 (2009), 91-100.

[Sch10] Schmidt A.: Uber Pro-p-Fundamentalgruppen markierter arithmetischer Kurven,
J. reine u. angew. Math. 640 (2010) 203-235.

[Se64] Serre J.-P.: Sur les groupes de congruence des variétés abeliénnes, Izv. Akad. Nauk
SSSR. 28 (1964), 3-20.

34



[SGA4] Artin M., Grothendieck A., Verdier J. L.: Théorie de Topos et Cohomologie étale
de schémas, LNM 269, 270, 305, Springer, 1972-1973.

[St02] Stix J.: Projective anabelian curves in positive characteristic and descent theory for
log-étale covers, Dissertation, Univ. of Bonn, 2002.

[Wi06] Wingberg K.: On Chebotarev sets, Math. Res. Lett. 13 (2006), no. 2, 179-197.

[Wi07] Wingberg K.: Riemann’s Ezistence theorem and the K (m,1)-property of rings of
integers, Preprint Heidelberg 2007.

|Zi78] Zink T.: Etale cohomology and duality in number fields, Haberland, Galois coho-
mology, Berlin, 1978, Appendix 2.

Email address: ivanov@mathi.uni-heidelberg.de

MATHEMATISCHES INSTITUT, UNIVERSITAT HEIDELBERG, IM NEUENHEIMER FELD
288, 69120 HEIDELBERG, GERMANY

35



	1. Introduction
	2. Stable and persistent sets
	3. Examples
	4. Shafarevich groups of stable sets
	5. Arithmetic applications
	6.  K(,1)-property
	References

