
STABLE SETS OF PRIMES IN NUMBER FIELDS

A. IVANOV

Abstract. We de�ne a new class of sets � stable sets � of primes in
number �elds. For example, Chebotarev sets PM{Kpσq, with M{K Ga-
lois and σ P GpM{Kq, are very often stable. These sets have positive
(but arbitrary small) Dirichlet density and generalize sets with density
1 in the sense that arithmetic theorems like certain Hasse principles, the
Grunwald-Wang theorem, the Riemann's existence theorem, etc. hold
for them. Geometrically this allows to give examples of in�nite sets S
with arbitrary small positive density such that SpecOK,S is algebraic
Kpπ, 1q (for all p simultaneous).
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1. Introduction

The main goal of this paper is to de�ne a new class of sets of primes of
positive Dirichlet density in number �elds � stable sets. These sets have
positive, but arbitrary small density and they generalize in many aspects
sets of density one. In particular, most of the arithmetic theorems, such as
certain Hasse principles, Grunwald-Wang theorem, Riemann's existence the-
orem, Kpπ, 1q-property, etc., which hold for sets of density one (cf. [NSW08]
Chapters IX and X), also hold for stable sets. Our goals are on the one
side to prove these arithmetic results and on the other side to give many
examples of stable sets.

The idea as follows: let λ ¡ 1. A set S of primes in a number �eld
K is λ-stable for the extension L {K, if there is a subset S0 � S, a �nite
subextension L {L0{K and some a ¡ 0 such that we have δLpS0q P ra, λaq
for all �nite L {L{L0. We call the �eld L0 a λ-stabilizing �eld for S for

The author was supported by the Mathematical Center Heidelberg.
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L {K. A more restrictive version of this is the notion of persistent sets: S is
persistent if δ�pS0q gets constant beginning from some �nite subextension L0

(cf. De�nition 2.4). In particular, for any λ ¡ 1, a λ-stable set is persistent.
The main result in this paper is the following theorem, which links stabil-

ity to vanishing of certain Shafarevich groups. In the theorem, X1 denotes
the usual Shafarevich group, consisting of global cohomology classes, which
vanish locally in a given set of primes and if A is a module under a �nite
group G, then H1

�pG,Aq means the subgroup of H1pG,Aq consisting of pre-
cisely such classes, which vanish after restriction to all cyclic subgroups of
G. Moreover, if L {L is a Galois extension of �elds and A is a GL {L-module,
then LpAq{L denotes the trivializing extension of A.

Theorem 4.1. Let K be a number �eld, T a set of primes of K and L {K
a Galois extension. Let A be a �nite GL {K-module. Assume that T is p-
stable for L {K, where p is the smallest prime divisor of 7A. Let L be a
p-stabilizing �eld for T for L {K. Then:

X1pL {L, T ;Aq � H1
�pLpAq{L,Aq.

In particular, if H1
�pLpAq{L,Aq � 0, then X1pL {L, T ;Aq � 0.

This theorem has many applications to the structure of the Galois group
GK,S :� GalpKS{Kq where K is a number �eld and S is stable. To give a
�avor of these applications, without introducing now the �ner terminology
from the text, let us state the following result. The notations are mostly
self-explaining, compare also the end of this introduction.

Theorem. (cf. Theorems 5.1 and 6.4) Let K be a number �eld, p a rational
prime and T � S � R sets of primes of K with R �nite. Assume that S is
p-stable1 for KR

S pµpq{K. Then

(A) (Local extensions)

KR
S,p �

#
Kpppq if p P SrR

Knr
p ppq if p R S.

(B) (Riemann's existence theorem) Let I 1pppq denote the Galois group of

the maximal pro-p extension of KR
S,p and K

1
T ppq{K

R
S denote the max-

imal pro-p subextension of KT {K
R
S . The natural map

φRT,S : �
pPRpKR

S q
Gpppq � �

pPpT rSqpKR
S q
I 1pppq

�
ÝÑ GK1

T ppq{K
R
S

is an isomorphism (where � is to be understand in the sense of
[NSW08] Chapter IV).

(C) (Cohomological dimension) cdp GR
K,S � scdp GR

K,S � 2.
(D) (Kpπ, 1q-property) Assume additionally that R � H, S � S8 and

that either p is odd or K is totally imaginary. Then SpecOK,S is
Kpπ, 1q for p (cf. De�nition 6.1).

1In fact a weaker condition would do the job, cf. Theorem 5.1.
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There are also corresponding results for the maximal pro-p quotient GR
K,Sppq

of GR
K,S . This results were well-known (cf. [NSW08]) essentially if δKpSq � 1

resp. if S � SpYS8. Also, A. Schmidt showed recently that if T0 is any �xed
set with δKpT0q � 1 and S is arbitrary �nite then there is a �nite subset
T1 � T0 (depending on S) such that the pro-p versions of the above results
essentially (e.g. except the result on scdp) hold if one replaces S by S Y T1
(cf. [Sch07], [Sch09], [Sch10]).

A further application of stable sets concerns a generalization of the Neukirch-
Uchida theorem, which is a result of anabelian nature. More details on this
can be found in [Iv13] Section 6. Now we see many examples of stable (even
persistent) sets:

Corollary 3.4. Let M{K be �nite Galois and let σ P GM{K . Let S w
PM{Kpσq (we call such sets almost Chebotarev sets). Let L {K be any ex-
tension. Then S is persistent (or equivalently, stable; cf. Corollary 3.6) for
L {K if and only if

GM{MXL XCpσ; GM{Kq � H,

where Cpσ; GM{Kq denotes the conjugacy class of σ in GM{K . In particular,

(i) If σ � 1, then S w PM{Kp1q � cspM{Kq is persistent for any exten-
sion L {K.

(ii) If M XL � K, then S w PM{Kpσq is persistent for L {K.

Outline of the paper. In Section 2 we introduce stable and persistent
sets and the properties p�qp,p:q

rel
p ,p:qp associated with the stability property.

Section 3 is devoted to examples: in particular, we introduce almost Cheb-
otarev sets, which provide us with a rich supply of persistent sets (Section
3.2), and we show that essentially, an almost Chebotarev set satis�es the
properties p�qp and p:qp for almost all p (Section 3.3). In Section 4.1 we
prove our main result which is a general Hasse principle. In Sections 4.2-4.4
we discuss some further Hasse principles and uniform bounds on Shafarevich
groups for stable sets. In Section 5 we deduce arithmetic applications, such
as the Grunwald-Wang theorem, realization of local extensions, Riemann's
existence theorem and cohomological dimension. In Section 6 we deduce the
Kpπ, 1q property at p for SpecOK,S with S satisfying p:qp, using results from
Section 5.

Notation. Our notation will essentially coincide with the notations in [NSW08]
resp. [Iv13]. We collect some of the most important notations here. For a
pro-�nite group G we denote by Gppq its maximal pro-p quotient. For a
subgroup H � G, we denote by NGpHq its normalizer in G. If σ P G, then
we write Cpσ;Gq for its conjugacy class. For two �nite groups H � G, we
write mG

H (resp. mH , if G is clear from the context) for the character of the

induced representation IndGH 1H .
For a Galois extension M{L of �elds, GM{L denotes its Galois group and

Lppq denotes the maximal pro-p extension of L (in a �xed algebraic closure).
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ByK we always denote an algebraic number �eld, that is a �nite extension of
Q. If p is a prime of K and L{K is a Galois extension, then Dp,L{K � GL{K

denotes the decomposition subgroup of p. We write ΣK for the set of all
primes of K and S, T,R, . . . will usually denote subsets of ΣK . If L{K is an
extension and S a set of primes of K, then we denote the pull-back of S to
L by SL, SpLq or S (if no ambiguity can occur). We write KR

S {K for the
maximal extension of K, which is unrami�ed outside S and completely split

in R and GR
S :� GR

K,S for its Galois group. We use the shortcuts KS :� KH
S

and GS :� GH
S . Further, for p ¤ 8 a (archimedean or non-archimedean)

prime of Q, Sp � SppKq denotes the set of all primes of K lying over p.
Further, if S � ΣK , we write NpSq :� NXO�

K,S , i.e. p P NpSq if and only if
Sp � S.

We write δK for the Dirichlet density on ΣK . For S, T subsets of ΣK , we
use

S
�
� T :ô δKpSrT q � 0

S w T :ô pS
�
� T q and pT

�
� Sq.

For a �nite Galois extension M{K and σ P GM{K , we have the Chebotarev
set

PM{Kpσq � tp P ΣK : p is unrami�ed in M{K and pp,M{Kq � Cpσ; GM{Kqu,

where pp,M{Kq denotes the conjugacy class of Frobenius elements corre-
sponding to primes of M lying over p.

Acknowledgements. A part of the results in this paper coincide with the
results in author's Ph.D. thesis [Iv13], which was written under supervision
of Jakob Stix at the University of Heidelberg. The author is very grateful to
him for the very good supervision, and to Kay Wingberg, Johannes Schmidt
and a lot of other people for very helpful remarks and interesting discussions.
The work on author's Ph.D. thesis was partially supported by Mathematical
Center Heidelberg and the Mathematical Institute Heidelberg. Also the
author is grateful to both of them for their hospitality and the excellent
working conditions.

2. Stable and persistent sets

2.1. Warm-up: preliminaries on Dirichlet density. Let PK denote
the set of all subsets of ΣK . The Dirichlet density δK is not de�ned for all
elements in PK , and moreover there are examples of �nite extensions L{K
and S P PK , such that S has a density, but the pull-back SL of S to L has
no density. To omit dealing with such sets we make the following convention,
which holds until the end of this paper.
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Convention 2.1. If S P PK is a set of primes of K, then we assume
implicitly that for all �nite extensions L{K, all �nite Galois extensions M{L
and all σ P GM{L, the set SL X PM{Lpσq has a Dirichlet density.2

Convention 2.1 is satis�ed for all sets lying in the following rather big
subset of PK :

AK :�

"
S � ΣK : S w

�
i PLi{KipσiqK for some K{Ki{Q

and Li{Ki �nite Galois and σi P GLi{Ki

*
,

where the unions are disjoint and countable (or �nite or empty). This AK

can not be closed simultaneously under (arbitrary) unions and complements:
otherwise it would be a σ-algebra and hence would be equal to PK .

To compute the density of pull-backs of sets we use the following two
lemmas. Let L{K be a �nite extension of degree n (not necessarily Galois).
For 0 ¤ m ¤ n, de�ne the following sets:

PmpL{Kq :� tp P ΣK : p is unrami�ed and has exactly m degree-1-factors in Lu.

In particular, PnpL{Kq � cspL{Kq, Pn�1pL{Kq � H. Recall that if H � G
are �nite groups, then mH denotes the character of the G-representation
IndGH 1. One has:

mHpσq � 7tgH : xσyg � Hu � 7txσygH : xσyg � Hu,

where xσy � G denotes the subgroup generated by σ and xσyg :� g�1xσyg.
The equality on the right follows immediately from the fact that if xσyg � H,
then gH � xσygH.

Lemma 2.2. Let L{K be a �nite extension and N{K a �nite Galois ex-
tension containing L, with Galois group G, such that L corresponds to a
subgroup H � G. Then

PmpL{Kq w tp P PmpL{Kq : p is unrami�ed in N{Ku �
¤

Cpσ;Gq�G

mHpσq�m

PN{Kpσq

(disjoint union). In particular, PmpL{Kq P AK and

δKpPmpL{Kqq � 7G�1
¸

Cpσ;Gq�G

mHpσq�m

7Cpσ;Gq.

2The optimal way to omit sets having no density would be to �nd an appropriate sub-
σ-algebra of PK (for any K), such that the restriction of δK to it is a measure (and the
pull-back maps PK Ñ PL attached to �nite extensions L{K restrict to pull-back maps on
these sub-σ-algebras). Unfortunately, there is no satisfactory way to �nd such σ-algebra
BK , at least if one requires that if S P BK , then also T P BK for any T w S, or, which is
weaker, that any �nite set of primes of K lies in BK . Indeed, countability of ΣK would
imply BK � PK in this case, but not all elements of PK have a Dirichlet density.
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Proof. The proof of the �rst statement is an elementary exercise in Galois
theory (if p is a prime of K unrami�ed in N , then the primes of L lying
over p are in one-to-one correspondence with double cosets xσygH, where σ
is arbitrary in the Frobenius class of p; the residue �eld extension of a prime
belonging to the coset xσygH over p has the Galois group xσyg{xσyg XH).
The second statement follows from the �rst and the Chebotarev density
theorem. �

Lemma 2.3. Let L{K be a �nite extension of degree n, S a set of primes
of K and N{K a Galois extension containing L, such that G :� GN{K �
GN{L �: H. Then

δLpSq �
ņ

m�1

mδKpS X PmpL{Kqq �
¸

Cpσ;Gq�G

mHpσqδKpS X PN{Kpσqq.

If, in particular, L{K is Galois, we get the well-known formula δLpSq � rL :
KsδKpS X cspL{Kqq.

Proof. First equation is an easy computation and the second follows from
Lemma 2.2. �

2.2. De�nition of stable and persistent sets. Let K be a number �eld
and S a set of primes. If δKpSq � 0 resp. � 1, then also δLpSq � 0 resp. � 1
for all �nite L{K. Now, if 0   δKpSq   1, then it can happen that there is
some �nite L{K with δLpSq � 0 (e.g. take a �nite Galois extension L{K and
set S :� ΣK r cspL{Kq, having the density 1� rL : Ks�1 in K and density
0 in L). For stable sets, de�ned below this possibility is excluded.

De�nition 2.4. Let S be a set of primes of K and L {K any extension.

(i) Let λ ¡ 1. A �nite subextension L {L0{K is λ-stabilizing for S
for L {K, if there exists a subset S0 � S and some a P p0, 1s, such
that λa ¡ δLpS0q ¥ a ¡ 0 for all �nite subextensions L {L{L0.

(ii) A �nite extension L {L0{K is persisting for S for L {K, if there
exists a subset S0 � S, such that δLpS0q � δL0pS0q ¡ 0 for all �nite
subextensions L {L{L0.

We say that S is λ-stable resp. persistent for L {K, if it has a λ-stabilizing
resp. persisting extension for L {K. We say that S is stable for L {K, if
it is λ-stable for L {K for some λ ¡ 1. We say that S is λ-stable resp.
persistent, if it is λ-stable resp. persistent for KS{K.

Lemma 2.5. Let L {K be an extension and S a set of primes of K.

(i) Let λ ¥ µ ¡ 1. If S is µ-stable with µ-stabilizing �eld L0, then S is
λ-stable with λ-stabilizing �eld L0.

(ii) If L0 is λ-stabilizing resp. persisting �eld for S for L {K, then any
�nite subextension L {L1{L0 has the same property.

(iii) Let S1 be a further set of primes of K. If S
�
� S1, and S is λ-

stable resp. persistent for L {K, then S1 also has this property. Any
λ-stabilizing resp. persisting �eld for S has the same property for S1.
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(iv) Let L {N {M{K be subextensions. If S is λ-stable resp. persistent
for L {K with λ-stabilizing resp. persisting �eld L0 � N , then SM
is λ-stable resp. persistent for N {M .

The proof of this lemma is straightforward. The following proposition
gives another characterization of stable sets and shows in particular, that if
S is stable for L {K, then any �nite sub�eld L {L{K is λ-stabilizing for S
with a certain λ ¡ 1 depending on L.

Proposition 2.6. Let S be a set of primes of K and L {K an extension.
The following are equivalent:

(i) S is stable for L {K.
(ii) There exists some λ ¡ 1, such that S is λ-stable for L {K with λ-

stabilizing �eld K.
(iii) There exist some ε ¡ 0 such that δLpSq ¡ ε for all �nite L {L{K.

Proof. (iii) ñ (ii) ñ (i) are trivial. We prove (i) ñ (iii). Let λ ¡ 1 and let
S be λ-stable for L {K with λ-stabilizing �eld L0. Then there is some a ¡ 0
and a subset S0 � S such that a ¤ δLpS0q   λa for all L {L{L0. Suppose
there is no ε ¡ 0, such that δLpS0q ¡ ε for all L {L{K. This implies that
there is a family pMiq

8
i�1 of �nite subextensions of L {K with δMipS0q Ñ 0

as i Ñ 8. Then di � rL0Mi : Mis � rL0 : L0 XMis is bounded from above
by rL0 : Ks and hence

δL0MipS0q �
di̧

m�1

mδMipS0 X PmpL0Mi{Miqq ¤ rL0 : KsδMipS0q Ñ 0

for i Ñ 8. This contradicts to the λ-stability of S0 with respect to the
λ-stabilizing �eld L0. �

If S is stable for L {K, then δLpSq ¡ 0 for all �nite L {L{K. The converse
is not true in general (cf. [Iv13] Section 3.5.4), but it is true for almost
Chebotarev sets (cf. Section 3.2).

2.3. Properties p�qp, p:q
rel
p and p:qp. We will also need the following re�ned

properties.

De�nition 2.7. Let S be a set of primes of K and p a (�nite or in�nite)
prime of Q.

(i) We say that S satis�es property p�qp, if S is p-stable forKSYSpYS8{K
with a p-stabilizing �eld contained in KS (if p � 8, then this means
that S is stable for KSYS8{K, cf. Proposition 2.6).

(ii) Assume p   8. Let L {K be an extension. We say that the pair
pS,L {Kq satisfy property p:qrelp , if µp � L and S is p-stable for
L {K, or µp � L and S is stable for L pµpq{K.

(ii)' Assume p   8. We say that S satis�es property p:qp, if pS,KS{Kq

satis�es p:qrelp .
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For x P t�, :u, de�ne the exceptional set by

ExpSq :� tp : S does not satisfy pxqpu.

Lemma 2.8. Let L {K be an extension and S a set of primes of K. Assume
pS,L {Kq is p:qrelp . There is a �nite subextension L {L0{K, such that for any

subextensions L {N {L{L0 (with L{L0 �nite) pS,N {Lq is p:qrelp .

The proof of this lemma is straightforward. Further, we have p�qp ñ p:qp
and hence E�pSq � E:pSq. A set satisfying p�qp resp. p:qp is p-stable resp.
stable. Here is a small overview over the use of these conditions and the
examples in the practice:

- The most examples of stable sets are given by (almost) Chebotarev
sets, i.e. sets of the form S w PM{Kpσq, or sets containing them (cf.
Section 3.2).

- If an almost Chebotarev set is stable for an extension, then it is also
persistent for it (cf. Corollary 3.6). It is not clear whether there
are examples of stable but not persistent sets (but cf. [Iv13] Section
3.5.4).

- For a stable almost Chebotarev set S, E:pSq is �nite and E�pSq is
either ΣK or �nite (cf. Section 3.3).

- Roughly speaking, p-stability (for L {K) is enough to prove Hasse
principles in dimension 1 for p-primary (GL {K-)modules. Cf. Section
4.

- To prove Hasse principles in dimension 2 and Grunwald-Wang-style
results for p-primary GK,S-modules, we need the stronger condition
p�qp. We will give examples of persistent sets S together with a �nite

set T such that Grunwald-Wang (even stably) fails, i.e. coker1pKSYT {L, T ;Z{pZq �
0 for all �nite subextensionsKS{L{K. But it is not clear whether one
can �nd such an example with additional requirement that T � S
(and necessarily S violating p�qp). Cf. Section 5.2.

- On the other side, for applications of Grunwald-Wang (i.e. to prove
Riemann's existence theorem, to realize local extensions by KS{K,
to compute (strict) cohomological dimension, etc.), it is enough to
require that S satisfy p:qp. Cf. Sections 5.1, 5.3 and 5.4.

3. Examples

In this section we construct examples of stable sets. First, in Section 3.1
we see to which extend 'stable' is more general than 'of density 1'. Then,
in Sections 3.2 and 3.3 we introduce almost Chebotarev sets and determine
conditions for their stability resp. when they satisfy p�qp and p:qp. Finally, in
Section 3.4 we construct a stable almost Chebotarev set S with NpSq � t1u.

3.1. Sets of density one. Stable and persistent sets generalize sets of den-
sity one. In particular, every set of primes of K of density one is persistent
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for any extension L {K with persisting �eld K and satis�es p�qp for each
p. Nevertheless, sets of density one have some properties, which stable resp.
persistent sets do not have in general:

(i) The intersection of two sets of density one again has density one,
which is not true for stable and persistent sets: the intersection of
two sets persistent for L {K can be empty (cf. Corollary 3.4 and
explicit examples below).

(ii) If S � ΣK has density one, then there are in�nitely many primes
p P ΣQ, such that Sp � S (otherwise, for all primes p P cspK{Qq one
could choose a prime p P SprS of K and we would have δKpSq ¤
1� rKn : Qs�1, where Kn denotes the normal closure of K over Q).
On the other side, it is easy to construct a persistent set S � ΣK

with NpSq � t1u, i.e. S` � S for all ` P ΣQ (cf. Section 3.4 for an
example).

Observe that for sets S with NpSq � t1u, mentioned above, no one of the
`-adic representations ρA,` : GK Ñ GLdpQ`q, which comes from an abelian
variety A{K, factors through the quotient GK � GK,S (indeed, the Tate-
pairing onA shows that the determinant of ρA,` is the `-part of the cyclotomic
character of K, and in particular, ρA,` is highly rami�ed at all primes of K
lying over `. If ρA,` would factor over GK,S , then we would have S` � S). In
particular, this makes it very hard, if not impossible, to study the group GK,S

via Langlands program (for example in the manner of [Ch07] and [CC09],
where indeed a prime ` P NpSq is always necessary). If S is additionally
stable, then methods involving stability allow to study GK,S .

3.2. Almost Chebotarev sets.

De�nition 3.1. Let K be a number �eld and S a set of primes of K.
Then S is called a Chebotarev set resp. an almost Chebotarev set, if
S � PM{Kpσq resp. S w PM{Kpσq, where M{K is a �nite Galois extension
and σ P GM{K .

Remark 3.2. M and the conjugacy class of σ are not unique, i.e. there
are pairs pM{K,σq, pN{K, τq such that M � N and PM{Kpσq w PN{Kpτq
(or even equal). If one restricts attention to pairs pM{K,σq such that σ is
central in GM{K , then pM{K,σq is indeed unique. Cf. [Iv13] Remark 3.13.

Proposition 3.3. Let M{K be a �nite Galois extension, σ P GM{K and
L{K any �nite extension. Let L0 :� LXM . Then:

δLpPM{KpσqLq �
7Cpσ; GM{Kq XGM{L0

7GM{L0

.

Thus δLpPM{KpσqLq � 0 if and only if Cpσ; GM{Kq X GM{L0
� H. In

particular, this is always the case if L0 � K or if σ � 1.

Proof. Let N{K be a �nite Galois extension with N � ML. Let H :�
GN{L and H :� GM{L0

. We have a natural surjection H � H. Let 1σ
9



denote the class function on GM{K , which has value 1 on Cpσ; GM{Kq and 0
outside. Finally, let mH denote the character on G :� GN{K of the induced

representation IndGH 1H . Then we have (the �rst equality below follows from
[Wi06] Proposition 2.1 and the second from Lemma 2.3):

δLpPM{KpσqLq �
¸

Cpg;GqÞÑCpσ;GM{Kq

δLpPN{KpgqLq

�
¸

Cpg;GqÞÑCpσ;GM{Kq

mHpgqδKpPN{Kpgqq

�
¸

Cpg;GqÞÑCpσ;GM{Kq

mHpgq
7Cpg;Gq

7G

�
1

7G

¸
g ÞÑCpσ;GM{Kq

mHpgq

� xmH , infGGM{K
1σyG

� x1H , infHGM{K
1σyH

� x1H ,1σ|HyH

�
7Cpσ; GM{Kq XH

7H
,

where the third to last equality sign is Frobenius reciprocity, and the second
to last follows from the easy fact that if H � H is a surjection of �nite
groups, χ, ρ are two characters of H, then xinfH

H
χ, infH

H
ρyH � xχ, ρyH . �

Corollary 3.4. Let M{K be �nite Galois and let σ P GM{K . Let L {K be
any extension and set L0 :�M XL . Then a set S w PM{Kpσq is persistent
for L {K if and only if

Cpσ; GM{Kq XGM{L0
� H.

If this is the case, L0 is a persistent �eld for S for L {K. In particular,

(i) any set S w cspM{Kq is persistent for any extension L {K,
(ii) any set S w PM{Kpσq is persistent for any extension L {K with

L XM � K.

Example 3.5. (A persistent set) Let K be a number �eld, M{K a �nite
Galois extension, which is totally rami�ed in a prime p of K. Let σ P GM{K

and let S be a set of primes of K, such that S w PM{Kpσq and p R S. Then
S is persistent with persisting �eld K. Indeed, we have KS XM � K by
construction, and the claim follows from Corollary 3.4.

Corollary 3.6. Let S be an almost Chebotarev set and L {K an extension.
Then the following are equivalent:

(i) S is stable for L {K.
(ii) S is persistent for L {K.
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(iii) δLpSq ¡ 0 for all �nite L {L{K.

Proof. Let S w PM{Kpσq with a �nite Galois extensionM{K and σ P GM{K .
By Proposition 3.3, the density of S is constant and equal to some d ¥ 0 in
the tower L {L0 with L0 � L XM . There are two cases: either d � 0 or
d ¡ 0. If d � 0, then S is not stable and hence also not persistent for L {K
by Proposition 2.6, i.e., (i), (ii) and (iii) do not hold in this case. If d ¡ 0,
then S is obviously persistent for L {K with persisting �eld L0 and hence
also stable, i.e., (i),(ii),(iii) hold. �

Remark 3.7. If S is any stable set, then (ii) ñ (i) ñ (iii) still holds. But
(iii)ñ (i) fails in general (cf. [Iv13] Section 3.5.4) and it is not clear whether
(i) ñ (ii) holds.

3.3. Finiteness of E�pSq and E:pSq. Examples.

Proposition 3.8. Let S w PM{Kpσq with σ P GM{K .

(i) If 8 P E�pSq, then E�pSq contains all rational primes. If 8 R
E�pSq, then E�pSq is �nite.

(ii) If S is stable, and µp � KS or M{K unrami�ed in SprS, then S is
p:qp. In particular, if S is stable, then E:pSq is �nite.

Proof. (i): If 8 P E�pSq, then S does not have a stabilizing �eld for
KSYS8{K, which is contained in KS . This is by Proposition 2.6 equivalent
to the fact that S is not stable for KSYS8{K, which in turn is equivalent
by Corollary 3.6 to the fact that δLpSq � 0 for all KSYS8{L{L0 where L0 is
some �nite subextension of KSYS8{K. Thus p P E�pSq for any p.

Now assume8 R E�pSq. Let L0 :�MXKSYS8 and Lp :�MXKSYSpYS8 .
By Proposition 3.3, the density of S is constant in the towers KSYS8{L0 and
KSYSpYS8{Lp and equal to some real numbers d0 and dp respectively. Since
S is stable for KSYS8{K, we have d0 ¡ 0.

We claim that for almost all p's we have Lp � L0. More precisely, this is
true for all p's, such that the set

tp P pSprSqL0 : p is rami�ed in M{L0u.

is empty. In fact, if this set is empty for p, then the extension Lp{L0 is
unrami�ed in SprSpL0q, since contained in M{L0. But being contained
in KSYSpYS8 and unrami�ed in SprSpL0q, it is contained in KSYS8 , and
hence also in M XKSYS8 � L0, which proves our claim.

Let now p be such that Lp � L0. Then we claim that S is prL0 : Ksd�1
0 q-

stable for KSYSpYS8{K with prL0 : Ksd�1
0 q-stabilizing �eld K. Indeed,

as Lp � L0, we have dp � d0 ¡ 0. Let KSYSpYS8{N{K be any �nite
subextension. We have

d0 � δL0N pSq � rL0N : N sδN pS X cspL0N{Nqq ¤ rL0 : KsδN pSq,

i.e., δN pSq ¥ rL0 : Ks�1d0 for all N , and in particular our claim follows.
11



Finally, almost all primes satisfy p ¡ rL0 : Ksd�1
0 and Lp � L0. For such

primes S is p-stable for KSYSpYS8{K with stabilizing �eld K.
(ii): the second assertion of (ii) follows from the �rst. If µp � KS , then

S is p:qp by Corollary 3.6. So assume M{K is unrami�ed in SprS. Let
L0 :� M X KS , L

1
0 :� L0pµpq X KS and Lp :� M X KSpµpq. From these

de�nitions resp. from our assumption on M{K we have: (1) GKSpµpq{L
1
0
�

GKS{L
1
0
�GL0pµpq{L10

and L0pµpq{L
1
0 has no subextension unrami�ed in SprS,

(2) Lp XKS � L0 and (3) Lp{L0 is unrami�ed in SprS. By (3) the exten-
sion Lp.L

1
0{L

1
0 is unrami�ed in SprS and by (1) we get Lp � Lp.L

1
0 � KS .

Hence (2) gives Lp � L0. Thus for all KSpµpq{L{L0 we have by Proposition
3.3: δLpSq � δLppSq � δL0pSq ¡ 0 since S is stable.

�

Remark 3.9. Let S w PM{Kpσq. We have the following equivalences:

p R E:pSq ô S stable for KSpµpq{K ô Cpσ; GM{KqXGpM{MXKSpµpqq � H.

Example 3.10. (Persistent sets with E�pSq �nite but non-empty) Let K be
a totally imaginary number �eld and let M{K be a �nite Galois extension,
which satis�es the following conditions:

 M{K is totally rami�ed in a prime p P SppKq,
 d :� rM : Ks ¡ p.

Let σ P GM{K and let S be a set of primes of K, such that

 S w PM{Kpσq,
 RampM{KqrS � tpu.

Then S is persistent (δLpSq � d�1 for all KS{L{K) with persisting �eld K.
Further, S do not satisfy p�qp, i.e., p P E

�pSq and 8 R E�pSq, i.e., E�pSq is
�nite by Proposition 3.8. Indeed, M � KSYSpYS8 and there are two cases
σ � 1 or σ � 1. In the second case, the density of S in KSYSpYS8{K is
zero beginning from M , hence S is non-stable for this extension, and p�qp is
not satis�ed. In the �rst case, we have δLpSq � 1 for all KSYSpYS8{L{M .
Assume there is a p-stabilizing �eld N � KS for S for KSYSpYS8{K, i.e.,
there is some S0 � S and some a P p0, 1s with a ¤ δLpS0q   pa for all
KSYSpYS8{L{N . But this leads to a contradiction. Indeed,

δMN pS0q � rMN : N sδN pS0 X cspMN{Nqq � rM : KsδN pS0q ¥ pδN pS0q,

since N XM � K and S0 � S w cspM{Kq.

Example 3.11. (Persistent sets with E�pSq � H) Let M{K be a �nite
Galois extension of degree d with K totally imaginary, which is totally ram-
i�ed in at least two primes p resp. l with di�erent residue characteristics `1
resp. `2. Let S w PM{Kpσq for some σ P GM{K , such that p, l R S. Then
M X KS � K, hence S is persistent with persisting �eld K. Let p be a
rational prime. Then M XKSYSpYS8 � K, since M{K is totally rami�ed
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over primes with di�erent residue characteristics `1 and `2. Hence S satis�es
p�qp for every prime p and K is a persisting �eld for S for KSYSpYS8{K.

Example 3.12. (Persistent sets with E�pSq � H) There is also another
possibility to construct sets S with E�pSq � H, using the same idea as in
the preceding example. Assume for simplicity that K is totally imaginary.
LetM1,M2{K be two Galois extensions of K, and σ1 P GM1{K , σ2 P GM2{K .
Assume Mi{K is totally rami�ed in a non-archimedean prime pi of K, such
that the residue characteristics of p1, p2 are unequal. Then let S be a set of
primes of K, such that

 S
�
� PM1{Kpσ1q Y PM2{Kpσ2q,

 tp1, p2u R S.

Then, by the same reasoning as in the preceding example, S is persistent
with persisting �eld K and E�pSq � H. Moreover for each rational prime
p, the �eld K is persisting for S for KSYSpYS8{K.

3.4. Stable sets with NpSq � t1u. Let M{K{K0 be two �nite Galois ex-
tensions of a number �eld K0. Then the natural map GM{K0

Ñ AutpGM{Kq
induces an exterior action

GK{K0
Ñ OutpGM{Kq,

thus inducing a natural action of GK{K0
on the set of all conjugacy classes

of GM{K . For any g P GK{K0
and σ P GM{K , we choose a representative

of the conjugacy class g.Cpσ; GM{Kq and denote it by g.σ. Further, GK{K0

acts naturally on ΣK , and we have

g.PM{Kpσq � PM{Kpg.σq.

Let K0 � Q and let σ P GM{K be an element, such that Cpσ; GM{Kq is not
�xed by the action of GK{Q. Let then

S :� cspK{QqK X PM{Kpσq.

If p P ΣQ,f r cspK{Qq, then S X Sp � H. If p P cspK{Qq such that
Sp X S � H, then the action of g P GK{K0

, chosen such that Cpσ; GM{Kq �
Cpg.σ; GM{Kq, de�nes an isomorphism between the disjoint sets SpXPM{Kpσq
and SpXPM{Kpg.σq, hence the last of these two sets is non-empty. From this
we obtain Sp � S. Thus NpSq � t1u. Moreover, if we choose σ such that the
stabilizer of Cpσ; GM{Kq in GK{Q is trivial, then for any p the intersection
Sp X S is either empty or contains exactly one element.

Now we have to choose M in a way such that S is stable. This is easy:
for example take M{K to be totally rami�ed in a �xed prime, which is
(by de�nition of S) not contained in S. Then KS X M � K, i.e., S is
stable for KS{K with stabilizing �eld K, as δKpcspK{QqKq � 1 and hence
S w PM{Kpσq.
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4. Shafarevich groups of stable sets

In this section we generalize many Hasse principles to stable sets and
additionally prove �niteness resp. uniform bounds of certain Shafarevich
groups associated with stable sets. The main result is the Hasse principle
in Theorem 4.1. Further, there are two variants of uniform bounds on the
size of Xi: on the one side one can vary the coe�cients, and on the other
side the base �eld. We study both variants, the �rst in Section 4.3 and the
second in Section 4.4. These results are needed in later sections.

4.1. Stable sets and X1: key result. Let K be a number �eld and L {K
a (possibly in�nite) Galois extension. Let A be a �nite GL {K-module. Let
now T be a set of primes of K. Consider the i-th Shafarevich group with
respect to T :

XipL {K,T ;Aq :� kerpresi : HipL {K,Aq Ñ
¹
pPT

HipGp,Aqq,

where Gp � GKsep
p {Kp

is the local absolute Galois group (the map res is essen-

tially independent of the choice of this separable closure, and we suppress it
in the notation). We also write XipKS{K;Aq instead of XipKS{K,S;Aq.
We denote by KpAq the trivializing extension for A, i.e., the smallest �eld
between K and L , such that the subgroup GL {KpAq of GL {K acts trivially
on A. It is a �nite Galois extension of K.

Let G be a �nite group and A a G-module. Following Serre [Se64]�2
and Jannsen [Ja82], let Hi

�pG,Aq be de�ned by exactness of the following
sequence:

0 Ñ Hi
�pG,Aq Ñ HipG,Aq Ñ

¹
H�G
cyclic

HipH,Aq.

Our key result is the following theorem. All results in the following make
use of this theorem in a crucial way.

Theorem 4.1. Let K be a number �eld, T a set of primes of K and L {K
a Galois extension. Let A be a �nite GL {K-module. Assume that T is p-
stable for L {K, where p is the smallest prime divisor of 7A. Let L be a
p-stabilizing �eld for T for L {K. Then:

X1pL {L, T ;Aq � H1
�pLpAq{L,Aq.

In particular, if H1
�pLpAq{L,Aq � 0, then X1pL {L, T ;Aq � 0.

Lemma 4.2. Let L {L{K be two Galois extensions of K and T a set of
primes of K. Let A be a GL {K-module, such that for any p P T one has

AGL {L � ADp,L {L . Then there is an exact sequence

0 ÑX1pL{K,T ;AGL {Lq ÑX1pL {K,T ;Aq ÑX1pL {L, TL;Aq

Proof. The proof is an easy and straightforward exercise. �
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Lemma 4.3. Let L{K be a �nite Galois extension, T a set of primes of K,
and A a �nite GL{K-module and i ¡ 0. Assume that T is p-stable for L{K
with p-stabilizing �eld K, where p is the smallest prime divisor of 7A. Then

XipL{K,T ;Aq � Hi
�pL{K,Aq.

Proof. Since any p-stable set is `-stable for all ` ¡ p, we can assume that
A is p-primary. We have to show that any cyclic p-subgroup of GL{K is
a decomposition subgroup of a prime in T . This is content of the next
lemma. �

Lemma 4.4. Let L{K be a �nite Galois extension, T a set of primes of K
and p a rational prime, such that T is p-stable for L{K with p-stabilizing
�eld K. Then any cyclic p-subgroup of GL{K is the decomposition group of
a prime in T .

Remark 4.5. (i) This shows automatically that there are in�nitely many
primes in T , for which the given cyclic group is a decomposition
group.

(ii) In some sense this lemma 'generalizes' Chebotarev's density theorem,
which says in particular, that if S has density one and L{K is �nite
Galois, then any element of GL{K is a Frobenius of a prime in S.

Proof. Assume that the cyclic p-subgroup H � GL{K is not a decomposition
group of a prime in T . Let pH � H be the subgroup of index p. Then
one computes directly mpHpσq � pmHpσq for any σ P pH. Since H is not a
decomposition subgroup of a prime p P T , no generator of H is a Frobenius
at T , i.e., PL{Kpσq X T � H for any σ P H r pH. By p-stability of T , there
is a subset T0 � T and an a ¡ 0, such that pa ¡ δL1pT0q ¥ a for all L{L1{K.
Let L0 � LH and L1 � LpH . Then by Lemma 2.3

δL0pT0q �
¸
σPH

mHpσqδKpPL{Kpσq X T0q

�
¸
σPpH

mHpσqδKpPL{Kpσq X T0q

� p�1
¸
σPpH

mpHpσqδKpPL{Kpσq X T0q

� p�1δL1pT0q.

This contradicts our assumption on T0.
�

Proof of Theorem 4.1. We can assume L � K. By applying Lemma 4.2 to
L {KpAq{K and using Lemma 4.3, we are reduced to showing that if A is a
trivial G-module, then X1pL {K,T ;Aq � 0. Let T0 � T and a ¡ 0 be such
that pa ¡ δL1pT0q ¥ a for all L {L1{K. Let GT

L {K be the quotient of GL {K ,

corresponding to the maximal subextension of L {K, which is completely
split in T . We have then
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X1pL {K,T ;Aq � kerpHompGL {K , Aq Ñ
¹
pPT

HompGp, Aqq � HompGT
L {K , Aq.

If 0 � φ P HompGT
L {K , Aq, then M :� L kerpφq{K is a �nite extension inside

L {K with Galois group impφq � 0 and completely decomposed in T , and in
particular in T0. Thus

pa ¡ δM pT0q � rM : KsδKpT0 X cspM{Kqq � 7impφqδKpT0q ¥ pa,

since δKpT0q ¥ a. This is a contradiction, and hence we obtain

X1pL {K,T ;Aq � HompGT
L {K , Aq � 0. �

4.2. Hasse principles. LetK,S, T be a number �eld and two sets of primes
of K. Various conditions on S, T,A which imply the Hasse principle in
cohomological dimensions 1 and 2 are considered in [NSW08] Chapter IX,
�1. We have their generalizations to stable sets. Before stating them, we
refer the reader to [NSW08] 9.1.5, 9.1.7 for the de�nitions of the special
cases.

Corollary 4.6. Let K be a number �eld, T, S sets of primes of K, A a
�nite GK,S-module. Assume that T is p-stable for KS{K, where p is the
smallest prime divisor of 7A. If L is a p-stabilizing �eld for T for KS{K and
H1
�pLpAq{L,Aq � 0, then

X1pKS{L, T ;Aq � 0.

In particular one has the following.

(i) Let L0 be a p-stabilizing �eld for T for KS{K, which trivializes A.
Then X1pKS{L, T ;Aq � 0 for any �nite KS{L{L0.

(ii) Assume S � S8 and n P NpSq with smallest prime divisor equal p. If
L0 is a p-stabilizing �eld for T for KS{K, then X1pKS{L, T ;µnq � 0
for any �nite KS{L{L0, such that we are not in the special case
pL, n, T q. In the special case pL, n, T q we have X1pKS{L, T ;µnq �
Z{2Z.

The same also holds, if one replaces GK,S by the quotient GK,Spcq, where
c be a full class of �nite groups in the sense of [NSW08] 3.5.2.

Proof. The �rst statement follows directly from Theorem 4.1. (i) follows
since with L0, which is a p-stabilizing �eld trivializing A, any L lying between
KS{L0 is too. To prove (ii), we can assume n � pr. If we are not in the special
case pL, prq, Proposition [NSW08] 9.1.6 implies H1pLpµprq{L, µprq � 0, i.e.,
we are done by Theorem 4.1. Assume we are in the special case pL, prq. In
particular, p � 2. Then H1pLpµ2rq{L, µ2rq � Z{2Z. Since

X1pKS{Lpµ2rq, T ;µ2rq � 0
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by Theorem 4.1, we see from Lemma 4.2

X1pKS{L, T ;µ2rq �X1pLpµ2rq{L, T ;µ2rq.

Now the same argument as in the proof of [NSW08] 9.1.9(ii) �nishes the
proof. �

Now we turn to X2. For a GK,S-module A, such that 7A P NpSq, we
denote by

A1 :� HompA,O�
KS ,S

q

the dual of A. As in [NSW08] 9.1.10, we obtain the following corollary.

Corollary 4.7. Let K be a number �eld, S � S8 a set of primes of K,
A a �nite GK,S-module with 7A P NpSq. Assume that S is p-stable (i.e.,
p-stable for KS{K), where p is the smallest prime divisor of 7A. Let L be a
p-stabilizing �eld for S for KS{K, such that H1

�pLpA
1q{L,A1q � 0. Then

X2pKS{L;Aq � 0.

In particular:

(i) Let L0 be a p-stabilizing �eld for S for KS{K, which trivializes A1.
Then X2pKS{L;Aq � 0 for any �nite KS{L{L0.

(ii) Let n P NpSq with smallest prime divisor p. If L is a p-stabilizing �eld
for S and we are not in the special case pL, n, Sq, then X2pKS{L,Z{nZq �
0. In the special case, we have X2pKS{L;Z{nZq � Z{2Z.

Remark 4.8. The condition 7A P NpSq is not necessary if A is trivial:
we postpone the proof of this until all necessary ingredients (in particular
Grunwald-Wang theorem, Riemann's existence theorem and cdp GK,S � 2)
are proven. Cf. Proposition 5.13.

Proof of Corollary 4.7. By Poitou-Tate duality [NSW08] 8.6.7 (this is the
reason, why we need S � S8 and 7A P NpSq) we have:

X2pKS{L,Aq �X1pKS{L,A
1q_,

where X_ :� HompX,R{Zq is the Pontrjagin dual. An application of Theo-
rem 4.1 to KS{K, the sets S � T and the module A1 gives the desired result.
(i) and (ii) follow from Corollary 4.6. �

4.3. Finiteness of the Shafarevich group with divisible coe�cients.

As a version of Corollary 4.6(i), we have the following proposition.

Proposition 4.9. Let K be a number �eld, L {K a Galois extension, pm

some rational prime power (m ¥ 1). Let T be a set of primes of K, which
is pm-stable for L {K, with pm-stabilizing �eld L0. Then

7X1pL {L, T ;Z{prZq   pm

for any r ¡ 0 and any �nite L {L{L0.
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Proof. Let T0 � T and a ¡ 0 be such that a ¤ δLpT0q   pma for all �nite
L {L{L0. Let L {L{L0 be a �nite extension. Assume that 7X1pL {L, T ;Z{prZq ¥
pm. Then also

7X1pL {L, T0;Z{prZq ¥ pm

and we have:

X1pL {L, T0;Z{prZq � HompGT0
L {Lppq,Z{p

rZq � pGT0
L {Lppq

ab{prq_.

Thus 7X1pL {L, T0;Z{prZq ¥ pm implies 7GT0
L {Lppq

ab{pr ¥ pm, and if M{L

is the subextension of L {L, corresponding to GT0
L {Lppq

ab{pr, then it has a

�nite subextensionM1 of degree ¥ pm, which is completely split in T0, hence
δM1pT0q ¥ pmδLpT0q, which is a contradiction to pm-stability of T0. �

Corollary 4.10. Let K be a number �eld, L {K a Galois extension, and T
a set of primes of K stable for L {K. Then X1pL {K,T ;Qp{Zpq is �nite
for any p. Moreover, X1pL {K,T ;Q{Zq is �nite.

Proof. For the �rst statement it is enough to show that 7X1pL {K,T ;Z{prZq
is uniformly bounded for r ¡ 0. By Proposition 2.6, there is some m ¥ 1,
such that K is a pm-stabilizing �eld for T for L {K. Then Proposition 4.9
implies 7X1pL {K,T ;Z{prZq   pm. For the last statement, we decompose:
X1pL {K,T ;Q{Zq �

À
pX

1pL {K,T ;Qp{Zpq. The proven part shows that
each of the summands is �nite. Moreover, almost all are zero: there is some
λ ¡ 1, such that K is λ-stabilizing �eld for T for L {K. Thus for any p ¥ λ,
the group X1pL {K,T ;Qp{Zpq vanishes. �

4.4. Uniform bound. For later needs (cf. Section 5.3) we prove the fol-
lowing uniform bounds. The results of this section were not part of [Iv13].

Proposition 4.11. Let M {L {K be Galois extensions, A a �nite GM {K-
module and let S be stable for L pAq{K. Then there is some C ¡ 0 such
that

7X1pM {L, S;Aq   C

for all L {L{K.

Proof. For each L {L{K, Lemma 4.2 applied to M {LpAq{L, gives an exact
sequence

0 ÑX1pLpAq{L, S;Aq ÑX1pM {L, S;Aq ÑX1pM {LpAq, SLpAq;Aq.
(4.1)

Now X1pLpAq{L, S;Aq � H1pLpAq{L,Aq and GLpAq{L is a subgroup of the
�nite group GKpAq{K , thus for all L {L{K, we have

7X1pLpAq{L, S;Aq   m :� 1� max
H�GKpAq{K

H1pH,Aq.

As S is stable for L pAq{K, by Proposition 2.6 there is some ε ¡ 0, such
that δN pSq ¡ ε for all L pAq{N{KpAq. Suppose that 7X1pM {LpAq, S,Aq ¥
ε�1 for some L {L{K. Then, exactly as in the proof of Proposition 4.9, there
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is an extension M{LpAq of degree ¥ ε�1, which is completely split in S. We
obtain:

δM pSq � rM : LpAqsδLpAqpSq ¡ ε�1ε � 1,

which is a contradiction. Taking into account equation (4.1), we obtain the
statement of the proposition with respect to C :� mε�1. �

Corollary 4.12. Let K be a number �eld, S, T sets of primes of K and n
a natural number.

(i) Assume that KS{L {K is a subextension such that S is stable for
L {K and that T has density 0. Then there is some real C ¡ 0, such
that for any L {L{K one has:

7X1pKSYT {L, SrT,Z{nZq   C.

(ii) Assume that T � pS8rSq has density 0 and n P O�
K,SYT . Let

KS{L {K be a subextension such that S is stable for L pµnq{K.
There is some real C ¡ 0 such that for any L {L{K one has:

7X1pKSYT {L, SrT, µnq   C.

Remark 4.13. The case S stable for L {K, but not stable for L pµpq{K
still remains mysterious: one neither can show such an uniform bound by
the same methods, nor �nd counterexamples. Moreover, the same kind of
arguments not even shows that X1pKSYT {K,SrT, µpq must be �nite.

5. Arithmetic applications

5.1. Overview and results. In this section we will be interested in appli-
cations of the Hasse principles proven in the preceding section for stable sets.
In particular, we will show two versions of the Grunwald-Wang theorem for
them, with varying assumptions: we will have a strong Grunwald-Wang re-
sult if we assume p�qp (Section 5.2) and only a weaker limÝÑ-version (which is

still enough for applications) after weakening the assumption to p:qp (Sec-
tion 5.3). After this we will be concerned with realizing local extensions,
the Riemann's existence theorem and the cohomological dimension of GK,S .
For each of these three results there is a pro-�nite and a pro-p version re-
spectively. We state them below and give proofs in Section 5.4. Further,
in Section 5.5 we prove a Hasse principle for X2 for constant p-primary co-
e�cients without the assumption p P O�

K,S (cf. Corollary ?? and Remark

4.8).

Theorem 5.1. Let K be a number �eld, p a rational prime and T � S � R
sets of primes of K with R �nite.

(Ap) Assume pS,KR
S ppqq is p:q

rel
p . Then

KR
S ppqp �

#
Kpppq if p P SrR

Knr
p ppq if p R S.
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(A) Assume pS,KR
S q is p:q

rel
p . Then

KR
S,p �

#
Kpppq if p P SrR

Knr
p ppq if p R S.

(Bp) Assume pS,KR
S ppqq is p:q

rel
p . Then the natural map

φRT,Sppq : �
pPRpKR

S ppqq
Gpppq � �

pPpT rSqpKR
S ppqq

Ipppq
�
ÝÑ GKT ppq{K

R
S ppq

is an isomorphism, where Ipppq :� GKpppq{Knr
p ppq � Gpppq :� GKpppq{Kp

.

Let K 1
T ppq{K

R
S denote the maximal pro-p subextension of KT {K

R
S .

(B) Assume pS,KR
S q is p:q

rel
p . Then the natural map

φRT,S : �
pPRpKR

S q
Gpppq � �

pPpT rSqpKR
S q
I 1pppq

�
ÝÑ GK1

T ppq{K
R
S

is an isomorphism, where I 1pppq denotes the Galois group of the max-

imal pro-p extension of KR
S,p.

Assume p is odd or K is totally imaginary.

(Cp) Assume pS,KR
S ppqq is p:q

rel
p . Then

cd GR
K,Sppq � scd GR

K,Sppq � 2.

(C) Assume pS,KR
S q is p:q

rel
p . Then

cdp GR
K,S � scdp GR

K,S � 2.

5.2. Grunwald-Wang theorem and p�qp. Consider the cokernel of the
global-to-local restriction homomorphism

cokeripKS{K,T ;Aq :� cokerpresi : HipKS{K,Aq Ñ
¹1

pPT
HipGp,Aqq,

where A is a �nite GK,S-module, T � S and
±1 means that almost all classes

are unrami�ed. If A is a trivial GK,S-module, then the vanishing of this
cokernel is equivalent to the existence of global extensions unrami�ed outside
S, which realize given local extensions at primes in T . If S has density 1, the
set T is �nite, A is constant and we are not in a special case, this vanishing is
essentially the statement of the Grunwald-Wang theorem. Certain conditions
on S, T,A, under which this cokernel vanishes are considered in [NSW08]
chapter IX �2. All of them require S to have certain minimal density. We
prove analogous results for stable sets.

Corollary 5.2. Let K be a number �eld, T � S sets of primes of K with
S8 � S. Let A be a �nite GK,S-module with 7A P NpSq. Assume that T
is �nite and S is p-stable, where p is the smallest prime divisor of 7A. For
any p-stabilizing �eld L for S for KS{K, such that H1

�pLpA
1q{L,A1q � 0, we

have:
coker1pKS{L, T ;Aq � 0.
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Proof. Since T is �nite and S is p-stable for KS{K, SrT also is p-stable for
KS{K, and the p-stabilizing �elds for S and SrT are equal. Let L be as in
the corollary. By Theorem 4.1, applied to KS{L, SrT and A1, we obtain
X1pKS{L, SrT ;A1q � 0. Then [NSW08] 9.2.2 implies coker1pKS{L, T ;Aq �
0. �

Now we give a generalization of [NSW08] 9.2.7.

Theorem 5.3. Let K be a number �eld, S a set of primes of K. Let T0, T �
S be two disjoint subsets, such that T0 is �nite. Let p be a rational prime
and r ¡ 0 an integer. Assume SrT is p-stable for KSYSpYS8{K with p-
stabilizing �eld L0, which is contained in KS. Then for any �nite KS{L{L0,
such that we are not in the special case pL, pr, Sr pT0 Y T qq, the canonical
map

H1pKS{L,Z{prZq Ñ
à

pPT0pLq

H1pGp,Z{prZq `
à

pPTpLq

H1pIp,Z{prZqGp

is surjective, where Ip � Gp � GKsep
p {Lp

is the inertia subgroup. If we are

in the special case pL, pr, Sr pT0 Y T qq, then p � 2 and the cokernel of this
map is of order 1 or 2.

Proof. This follows from Corollary 4.6(ii) in exactly the same way as [NSW08]
9.2.7 follows from [NSW08] 9.2.3(ii). �

Remarks 5.4.

(i) Observe that if δKpT q � 0, the condition �SrT is p-stable for
KSYSpYS8{K with a p-stabilizing �eld contained in KS� is equiv-
alent to �S satis�es p�qp�.

(ii) If δKpSq � 1 and δKpT q � 0, then L0 � K is a persisting �eld for
SrT for any L {K and the condition in the theorem is automatically
satis�ed. Thus our result is a generalization of [NSW08] 9.2.7. To
show that it is a proper generalization, we give the following example.
Let N{M{K be �nite Galois extensions of K, such that N{K (and
hence also M{K) is totally rami�ed in a non-archimedean prime l of
K, lying over the rational prime `. Let σ P GM{K and let σ̃ P GN{K

be a preimage of σ. Let S � T be such that
- S w PM{Kpσq, l R S and T w PM{KpσqrPN{Kpσ̃q.

Then SrT w PN{Kpσ̃q is persistent for KSYSpYS8{K for any p �
`, and, moreover, K is a persisting �eld (indeed, this follows from
KSYSpYS8 XN � K). Hence the sets S � T satis�es the conditions
of the theorem with respect to each p � `. Observe that in this
example T is itself persistent KSYSpYS8{K, with persisting �eld K.
In [NSW08] 9.2.7, the set T must have density zero.

From this we obtain the following classical form of the Grunwald-Wang
theorem. The proof is the same as in [NSW08] 9.2.8.
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Corollary 5.5. Let T � S be sets of primes of a number �eld K. Let A be a
�nite abelian group. Assume that T is �nite and that for any prime divisor p
of 7A, S is p-stable for KSYSpYS8{K with stabilizing �eld K. For all p P T ,
let Lp{Kp be a �nite abelian extension, such that its Galois group can be em-
bedded into A. Assume that we are not in the special case pK, exppAq, SrT q.
Then there exists a global abelian extension L{K with Galois group A, un-
rami�ed outside S, such that L has completion Lp at p P T .

Example 5.6. (A set with persistent subset for which Grunwald-Wang sta-
bly fails) Let p be an odd prime and assume µp � K (in particular, K is
totally imaginary and we can ignore the in�nite primes). Let S be a set of
primes of K. Let V � SprS and let T � V be a �nite set of primes of K.
By [NSW08] 9.2.2 we have for all KS{L{K a short exact sequence (recall
that µp � Z{pZ by assumption):

0 ÑX1pKSYT {L, SYT ;Z{pZq ÑX1pKSYT {L, SrT ;Z{pZq Ñ coker1pKSYT {L, T ;Z{pZq_ Ñ 0.

Assume now that S is p-stable with p-stabilizing �eld K. Then

X1pKSYT {L, S Y T ;Z{pZq �X1pKS{L, S;Z{pZq � 0

and hence we have

coker1pKSYT {L, T ;Z{pZq �X1pKSYT {L, SrT ;Z{pZq_.
We can �nd such a set S for which one has additionallyX1pKSYT {L, SrT ;Z{pZq �
0 for each KS{L{K. For an explicit example, let K � Qpµpq and let
T � SppKq (SppKq consists of exactly one prime) be a �nite set of primes of
K. Let M{K be a Galois extension of degree p with H � RampM{Kq � T
(e.g. M � Qpµp2q). Let S :� cspM{Kq. Then M X KS � K and
hence ML X KS � L for each KS{L{K. Thus S is persistent with per-
sisting �eld K. Further, ML{L is a Galois extension of degree p which
is completely split in SrT and unrami�ed outside S Y T , hence the sub-
group of GKSYT {ML � GKSYT {L is the kernel of a nontrivial homomorphism

0 � φM PX1pKSYT {L, SrT ;Z{pZq. Hence this group is non-trivial.
Thus we have: S is persistent but not p�qp, in particular, no p-stabilizing

�eld for S w S Y T for KSYSpYS8{K is contained in KS and the Grunwald-
Wang does not hold for S Y T � T (i.e. the cokernel in Theorem 5.3 is

non-zero). It is still unclear, whether there is an example of sets S̃ � T̃ such

that S̃ is persistent but not p�qp and the Grunwald-Wang fails for S̃ � T̃ .

Finally, we have two corollaries generalizing [NSW08] 9.2.4 and 9.2.9 to
stable sets.

Corollary 5.7. Let K be a number �eld, T � S sets of primes of K with
T �nite. Let KS{L{K be a �nite Galois subextension with Galois group G.
Let p be a prime and A � FprGsn a GK,S-module. Assume S is p-stable for
KSYSpYS8{K with p-stabilizing �eld L. Then the restriction map
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H1pKS{K,Aq Ñ
à
pPT

H1pGp,Aq

is surjective.

Proof (cf. [NSW08] 9.2.4). We have the commutative diagram, in which the
vertical maps are Shapiro-isomorphisms:

H1pKS{K,Aq

�

��

//
À
pPT

H1pGp,Aq

�

��
H1pKS{L,Fn

pq //
À

PPT pLq

H1pGP,Fn
pq

The lower map is surjective by Theorem 5.3, and so is the upper. �

Corollary 5.8. Let K be number �eld, S a set of primes of K. Let KS{L{K
be a �nite Galois subextension with Galois group G. Let p be a prime and
A � FprGsn a GK,S-module. Assume that S is p-stable for KSYSpYS8{L
with p-stabilizing �eld L. Then the embedding problem

GK,S

����
1 // A // E // G // 1

is properly solvable.

Proof. It follows from Corollary 5.7 in the same way as [NSW08] 9.2.9 follows
from [NSW08] 9.2.4. �

5.3. Grunwald-Wang cokernel in the limit and p:qp. If one is interested
(motivated by Theorem 5.1, we are) in the vanishing of the direct limit over
KS{L{K of the Grunwald-Wang cokernel, rather than in the vanishing of
the cokernel for each L, one can considerably weaken the condition p�qp.

Theorem 5.9. Let K be a number �eld, S a set of primes of K and L � KS

a subextension normal over K, such that pS,L q satis�es p:qrelp . Let T be a
�nite set of primes of K containing pSp Y S8qrS. If p8|rL : Ks, then

limÝÑ
L {L{K,res

coker1pKSYT {L, T,Z{pZq � 0.

Proof. For any �nite subextension L {L{K we have the short exact sequence

0 ÑX1pKSYT {L, SYT ;µpq ÑX1pKSYT {L, SrT ;µpq Ñ coker1pKSYT {L, T ;Z{pZq_ Ñ 0.

Dualizing it, we see that it is enough to show that limÝÑL {L{K,cor_
X1pKSYT {L, SrT ;µpq

_ �

0. For any two �nite subextensions L {L1{L{K we have the maps:

resL
1

L : X1pKSYT {L, SrT ;µpqÔ X1pKSYT {L
1, SrT ;µpq : corL

1

L (5.1)
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Lemma 5.10. There is a �nite subextension L {L1{K, such that for all

L {L1{L{L1, the map resL
1

L is an isomorphism.

Proof. First we claim that resL
1

L is injective if L is big enough. Assume
�rst that µp � L and S is p-stable for L {K. Let L {L0{K be a �nite
subextension which p-stabilizes S and contains µp. Then any �nite subex-

tension L {L{L0 satis�es the same. Assume resL
1

L is not injective, i.e. there

is some 0 � φ P X1pKSYT {L, SrT ;Z{pZq with resL
1

L pφq � 0 (we have
chosen some trivialization of µp). This φ can be seen as a homomorphism
φ : GKSYT {L Ñ Z{pZ which is trivial on all decomposition subgroups of

primes in SrT . Let M :� pKSYT q
kerφ. This is a �nite Galois extension of

L with Galois group Z{pZ and cspM{Lq � SrT . But then

δM pSq � rM : LsδLpS X cspM{Lqq � pδLpSq,

since T is �nite. Now resL
1

L pφq � 0 implies M � L1 � L and hence we get a
contradiction to p-stability of S.

Now assume that µp � KS . Then resL
1

L is always injective. Indeed suppose
there is an

0 � x PX1pKSYT {L, SrT ;µpq � tx P L�{p : x P UpL
�,p
p for p R SYT and x P L�,pp for p P SrT u

with resL
1

L pxq � 0. This implies x P L1,�,p. Let yp � x with y P L1. Then
Lpyq � L1 � L . Since the polynomial T p � x is irreducible over L (since
x R L�,p), the conjugates of y over L are precisely the roots of this polynomial,

which are obviously tζiyup�1
i�0 for ζ P µppKqr t1u. Since L is normal over

L, these conjugates lie in L , and in particular we deduce ζ P L , which
contradicts µp � L . This �nishes the proof of the injectivity claim.

By Corollary 4.12(ii), there is a constant C ¡ 0 such that 7X1pKSYT {L, SrT, µpq  
C for all L {L{K. Together with the injectivity shown above, this shows that
there is a �nite subextension L {L1{K such that for all L {L1{L{L1, the map

resL
1

L is bijective. �

Now we can �nish the proof of Theorem 5.9. Assume L1 is as in Lemma
5.10. Let L {L{L1. Since p

8|rL : Ks, there is a further extension L {L1{L
such that p divides rL1 : Ls. In the situation of (5.1) we have cor � res � rL1 :
Ls � 0 since µp is p-torsion. Dualizing gives res_ � cor_ � pcor � resq_ � 0.
But with res also res_ is an isomorphism, hence we obtain cor_ � 0. This
shows

limÝÑ
L {L{K,cor_

X1pKSYT {L, SrT ;µpq
_ � 0. �

We also have same arguments for X2.

Proposition 5.11. Let K be a number �eld, S a set of primes of K and
L � KS a subextension normal over K, such that pS,L {Kq satis�es p:qrelp .
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Let T � S Y Sp Y S8 be a further set of primes. If p8|rL : Ks, then

limÝÑ
L {L{K,res

X2pKT {L, T ;Z{pZq � 0.

Proof. By Poitou-Tate duality this is equivalent to

limÝÑ
L {L{K,cor_

X1pKT {L, T ;µpq
_ � 0.

This follows in the same way as in the proof of Theorem 5.9. �

5.4. Consequences. Here we prove Theorem 5.1.

Lemma 5.12. Let S � R be sets of primes of K. Assume R is �nite and
S X cspKpµpq{Kq is in�nite. Then p

8|rKR
S ppq : Ks.

Proof. By [NSW08] 10.7.7, for any C ¡ 0 there is some �nite subset SC �
S X cspKpµpq{Kq such that R � SC and

dimFp H1pGR
K,SC

ppq,Z{pZq ¡ C.

Since each group GR
K,SC

ppq is a quotient of GR
K,Sppq, the lemma follows. �

Proof of Theorem 5.1. (Ap): Let p be a prime of K which is not contained
in R. Since the local group Gpppq is solvable and the assumptions carry
over to extensions of K in KR

S ppq, it is enough to show that any class αp P
H1pGpppq,Z{pZq (which has to be unrami�ed if p R S) is realized by a global
class after a �nite extension. Let T :� tpu Y R Y Sp Y S8 and let pαqq P±

qPT H1pGpppq,Z{pq, such that αq is unrami�ed if q R S and 0 if p P R.

By Theorem 5.9, there is some �nite extension KR
S ppq{L{K, such that pαqq

comes from a global class α P H1pGR
L,SYTppq,Z{pZq. The Z{pZ-extension

of L corresponding to α is unrami�ed outside S, completely split in R and
hence contained inKR

S ppq, which �nishes the proof. (A) has analogous proof.
(Bp): The proof essentially coincide with the proofs of [NSW08] 10.5.8

resp. [Iv13] Theorem 4.26. As done there, we can restrict ourselves to the
case T � SpYS8. All cohomology groups in the proof have Z{pZ-coe�cients
and we omit them from the notation. After computing the cohomology on
the left side, by [NSW08] 1.6.15 we have to show that the map

HipφRT,Sppqq : HipKTppq{K
R
S ppqq Ñ

à1

pPRpKR
S ppqq

HipGpppqq`
à1

pPpTrSqpKR
S ppqq

HipIpppqq

induced by φRT,Sppq in the cohomology is bijective for i � 1 and injective

for i � 2 (here
À1 means the restricted direct sum in the sense of [NSW08]

4.3.13). Now, H1pφRT,Sppqq is injective since φ
R
T,Sppq is clearly surjective. To

show surjectivity for i � 1, consider for any �nite subset T1 � T rS, which
contains pSp Y S8qrS, and any �nite KR

S ppq{L{K the composed maps:

H1pKSYT1ppq{Lq Ñ
à

pPpRYT1qpLq

H1pGpq�
à

pPRpLq

H1pGpq `
à

pPT1pLq

H1pIpq
Gp ,
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where Ip � IKp{Lp
� GKp{Lp

� Gp is the inertia subgroup. Passing to the

direct limit over KR
S ppq{L{K, we obtain by Theorem 5.9 the surjection

H1pKSYT1ppq{K
R
S ppqq�

à1

pPRpKR
S ppqq

H1pGpppqq`
à1

pPT1pKR
S ppqq

H1pIKp{Kp
q
G

Kp{K
R
S,p

ppq
.

which is, after passing to the direct limit over all �nite T1 � T rS, exactly
H1pφRT,Sppqq, since by pApq we have KR

S ppqp � Knr
p ppq for p P T rS and

hence H1pIKp{Kp
q
G

Kp{K
R
S,p

ppq
� H1pIpppqq (cf. the proofs of [NSW08] 10.5.8

resp. [Iv13] 4.26). Finally, the injectivity of H2pφRT,Sppqq follows by passing

to the limit and using Proposition 5.11. (B): By Lemma 2.8, there is some
KR
S {L0{K, such that for all KR

S {L{L0 the pair pS,L
R
S ppqq is p:q

rel
p . Thus (B)

follows from (Bp) as we have

I 1pppq � limÐÝ
KR
S {L{K

ILpppq{Lp

and

GK1
T ppq{K

R
S
� limÐÝ

KR
S {L{K

GLT ppq{L
R
S ppq

.

(Cp),(C) The proof essentially coincide with the proofs of [NSW08] 10.5.10,
10.5.11 resp. [Iv13] Theorem 4.31, Corollary 4.33. To avoid many repetitions,
we only recall the argument for cd GR

K,Sppq ¤ 2 in the case R � H (which
di�ers in one aspect from cited proofs). Therefore, let V � pSp Y S8qrS

and consider the Hochschild-Serre spectral sequence pEijn , δ
ij
n q for the Galois

groups of the global extensions KSYV ppq{KSppq{K. By [NSW08] 8.3.18 and
10.4.8, we have:

cd GK,SYV ppq ¤ cdp GK,SYV ¤ 2.

By Riemann's existence theorem (Bp) the group GKSYV ppq{KSppq is pro-p

free. Hence Eijn degenerates in the second tableau and in particular, we have
(omitting Z{pZ-coe�cients from the notation)

cokerpδ112 q � E30
3 � E30

8 � H3pGK,SYVppqq � 0.

I.e., δ112 is surjective. Again by Riemann's existence theorem we have

H1pKSYVppq{KSppqq �
à
pPV

Ind
GK,Sppq
Dp,KSppq{K

H1pIpppqq,

This and Shapiro's lemma imply

E11
2 �

à
pPV

H2pKpppq{Kpq. (5.2)

Further we have the following commutative diagram with exact rows and
columns:
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À
pPS H2pKpppq{Kpq

� _

��

// // H0pKSYV{K, µpq
_

�

��
H2pKSYVppq{Kq //

��

À
pPSYV H2pKpppq{Kpq // //

����

H0pKSYV{K, µpq
_

��
H1pKSppq{K,H

1pKSYVppq{KSppqqq
� //

δ112����

À
pPV H2pKpppq{Kpq // 0

H3pKSppq{Kq

in which the second row comes from the Poitou-Tate long exact sequence.
The �rst map in the third row is the isomorphism (5.2). The map in the �rst
row is surjective since its dual map is µppKq Ñ `pPSµppKpq is injective. Now
(in contrast to proofs cited from [NSW08] and [Iv13]) the �rst map in the
second row is not necessarily injective, but one can simply replace the �rst
entry in the second row by H2pKSYV ppq{Kq{X2pKSYV {K,S Y V ;Z{pZq,
as both maps in the diagram which start at this entry factor through this
quotient. Now apply the snake lemma to the second and the third row and
obtain H3pKSppq{Kq � 0 and hence also cd GK,Sppq ¤ 2 by [NSW08] 3.3.2.

�

5.5. Vanishing of X2pGS ;Z{pZq without p P O�
K,S. We generalize Corol-

lary 4.7 for the constant module. The proof makes use of Theorem 5.1 (A),
(B), (C) along with the result of Neumann showing the vanishing of certain
cohomology groups. Its special case δKpSq � 1 is not contained in [NSW08].
Part (i) is [Iv13] 4.34.

Proposition 5.13. Let K be a number �eld, S a set of primes of K. Let p
be a rational prime, r ¡ 0 an integer. Assume that either p is odd or KS is
totally imaginary. Then the following holds:

(i) Assume S is p�qp and L0 is a p-stabilizing �eld for S forKSYSpYS8{K.
Assume p is odd or L0 is totally imaginary. Then

X2pKS{L;Z{prZq � 0

for any �nite KS{L{L0, such that we are not in the special case
pL, pr, Sq.

(ii) Let KS{L {K be a normal subextension. Assume pS,L q is p:qrelp and
p8|rL : Ks. Then

limÝÑ
L {L{K

X2pKS{L;Z{prZq � 0.

Proof. Let V :� pSp Y S8qrS. In the following, we write H�p�q instead of
H�p�,Z{prZq and X�p�, �q instead of X�p�, �;Z{prZq. Let K 1

SYV ppq be the
maximal pro-p-subextension of KSYV {KS . Let KS{L{K be a �nite subex-
tension and consider the following tower of extensions:
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KSYV

N

GL,SYV

K 1
SYV ppq

H

G1
L,SYV ppqKS

GL,S

L
withN :� GKSYV {K

1
SYV ppq

,H :� GK1
SYV ppq{KS

and G1
L,SYV ppq :� GK1

SYV ppq{L
.

We claim that for any such L we have under the assumptions of (i) resp. (ii),
the following natural isomorphisms:

X2pK 1
SYV ppq{L, S Y V q �X2pKSYV {L, S Y V q for any KS{L{K and

X2pKS{L, Sq �X2pK 1
SYV ppq{L, S Y V q for any KS{L{L0 under (i), and

(5.3)

limÝÑ
L {L{K

X2pKS{L, Sq � limÝÑ
L {L{K

X2pK 1
SYV ppq{L, S Y V q under (ii).

Once this claim is shown, (i) follows immediately from Corollary 4.7 and (ii)
follows from Proposition 5.11. Thus it is enough to prove the above claim.
The �rst isomorphism in (5.3) follows immediately from the de�nition of
X2, once we know that the in�ation map H2pG1

L,SYVppqq Ñ H2pGL,SYVq is
an isomorphism. To show this last assertion, consider the Hochschild-Serre
spectral sequence

Eij2 � HipG1
L,SYVppq,H

jpNqq ñ Hi�jpGL,SYVq.

A result of Neumann ( [NSW08] 10.4.2) applied to KSYV {K
1
SYV ppq (the

upper �eld is p� pS Y V q-closed, the lower is p� pSp Y S8q-closed) implies

Eij2 � 0 for j ¡ 0, hence the sequence degenerates in the second tableau and

HipG1
SYVppqq � HipGSYVq,

for i ¥ 0, proving our claim. Thus we are reduced to show the second and
the third isomorphisms in (5.3). For p P V , let K 1

pppq denote the maximal
pro-p extension of KS,p. Let

I 1pppq :� GK1
pppq{KS,p

(observe that if p P S8, then I 1pppq � 1. Indeed, if p ¡ 2, this is always
the case, and if p � 2, then KS,p � C using the assumption that KS is
totally imaginary). By [Iv13] Lemma 4.23 (which was only shown there
under assumption p�qp on S, but due to Theorem 5.1 (A), it also holds
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under p:qp with exactly the same proof), we have I 1pppq � Dp,K1
SYV ppq{KS

. By

Riemann's existence Theorem 5.1 (B) applied to K 1
SYV ppq{KS{K), we have

H � �
pPV pKSq

I 1pppq.

By [Iv13] Corollary 4.24, the groups I 1pppq are free pro-p-groups, and hence
H is free pro-p-group. Thus cdpH ¤ 1. Consider the exact sequence

1 Ñ H Ñ G1
L,SYV ppq Ñ GL,S Ñ 1,

and the corresponding Hochschild-Serre spectral sequence

Eij2 � HipGL,S,H
jpHqq ñ Hi�jpG1

L,SYVppqq

Since by Theorem 5.1(C) we know that cdp GL,S � 2, we have Eij2 � 0 if
i ¡ 2 or j ¡ 1. Moreover, we have

H1pHq �
à1

VpKSq
H1pI1pppqq �

à
VpLq

Ind
GL,S

Dp,KS{L
H1pI1pppqq,

as GL,S-modules, where Dp,KS{L � GL,S is the decomposition group at p,
which is in particular pro-cyclic and has an in�nite p-Sylow subgroup (by
Theorem 5.1(A)). Using this, an easy computation involving Frobenius reci-
procity, Shapiro's lemma and [Iv13] Lemma 4.24 allows us to compute the
terms E01

2 and E11
2 . Writing down explicitly what remains from the spectral

sequence, we obtain the following exact sequence (where δ :� δ012 : E01
2 Ñ

E20
2 denotes the di�erential in the second tableau):

0 // H1pGL,Sq // H1pG1
L,SYVppqq

//
À
V pLq

H1pI1pppqq
Dp,KS{L //

δ // H2pGL,Sq // H2pG1
L,SYVppqq

d //
À
V pLq

H2pGpq // 0.

Assume �rst we are in the situation of (i) and let L be as introduced there.
We have the following surjections:

H1pG1
L,SYVppqq�

à
pPVpLq

H1pGpq �
à

pPVpLq

H1pDp,K1
SYVppq{L

q�
à
VpLq

H1pI1pppqq
Dp,KS{L ,

(the �rst map is surjective by Grunwald-Wang Theorem 5.3, and the second
and the third maps follow from [Iv13] Lemma 4.24. Hence the map preceding
δ is surjective and hence δ � 0. Thus the lower row of the above 6-term exact
sequence gives the short exact sequence

0 //X2pKS{L, Sq //X2pK 1
SYV ppq{L, Sq

d //
À
V pLq

H2pGpq,
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On the other side, by de�nition ofX2, the kernel of d is preciselyX2pK 1
SYV ppq{K,SY

V q, which shows the second equality in (5.3). The third equality in (5.3) fol-
lows from the assumptions in (ii) by the same arguments after taking limÝÑ
over L {L{K (and using Theorem 5.9 instead of Theorem 5.3). �

6. Kpπ, 1q-property

Assume that either p is odd or K is totally imaginary and let

X � SpecOK,S .

While it is well known that X is algebraic Kpπ, 1q for p if either S � SpYS8
(�wild case�), or δKpSq � 1, it is a challenging problem to determine whether
X is Kpπ, 1q if S is �nite and not necessarily contains SpYS8. Until recently
there were no non-trivial examples of pK,Sq such that X is Kpπ, 1q for p or
pro-p Kpπ, 1q and, say, S X Sp � H. Recent results of A. Schmidt ( [Sch07],
[Sch09], cf. also [Sch10]) show that any point of SpecOK has a basis for
Zariski-topology consisting of pro-p Kpπ, 1q-schemes. More precisely, given
K, a �nite set S of primes of K, a rational prime p and any set T of primes of
K of density 1, Schmidt showed that one can �nd a �nite subset T1 � T such
that X rT1 is pro-p Kpπ, 1q. The main ingredient in the proof is the theory
of mild pro-p groups, developed by Labute. We conjecture that one can
replace the condition δKpT q � 1 in Schmidt's work by the weaker condition
that T satis�es p�qp (or even that pT,KT ppqq is p:q

rel
p ).

In the present section we enlarge the set of the examples of such pairs
pK,Sq, for which X is algebraic Kpπ, 1q for p and prove essentially that if S
satis�es p:qp, then X is algebraic Kpπ, 1q for p. In particular, if S is a stable
almost Chebotarev set with S8 � S, then X is algebraic Kpπ, 1q for almost
all primes p (cf. Proposition 3.8 and Example 3.10), and if E:pSq � H and
K is totally imaginary, then X is an algebraic Kpπ, 1q.

6.1. Generalities on the Kpπ, 1q-property. There are many equivalent
ways to de�ne algebraic Kpπ, 1q-spaces (cf. [St02] Appendix A, where they
are discussed in detail). Without repeating all of them, we want to introduce
a small re�nement of terminology, such that it is better adapted to formulate
our results.

To begin with, let X be a connected scheme, Xét the étale site on X. Fix
a geometric point x̄ P X and let π :� π1pX, x̄q be the étale fundamental
group of X. Let Bπ denote the site of continuous π-sets endowed with the
canonical topology. Let further p be a rational prime, and let Bπp denote
the site of continuous πppq-sets, where πppq is the pro-p completion of π. As
in [St02] A.1, we have natural continuous maps of sites

Xét

γ //

γp ""

Bπ

��
Bπp
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For a site Y , let S pY q denote the category of sheaves of abelian groups on
Y , let S pY qf be the subcategory of locally constant torsion sheaves, and
S pY qp the subcategory of locally constant p-primary torsion sheaves. Let
A P S pBπqf resp. B P S pBπpqp. Then we have the natural transforma-
tions of functors id Ñ R γ�γ

� resp. id Ñ R γp,�γ
�
p , which induce maps in the

cohomology:

ciA : Hipπ,Aq ÝÑ HipXét, γ
�Aq

cip,B : Hipπppq,Bq ÝÑ HipXét, γ
�
pBq

Let X̃ resp. X̃ppq denote the universal resp. the universal pro-p covering of
X. Since

H1pX̃et,Aq � H1pX̃ppqet,Bq � 0

for each A,B, the maps ciA and cip,B are isomorphisms for i � 0, 1 and are
injective for i � 2.

De�nition 6.1. Let X be a connected scheme.

(i) X is algebraic Kpπ, 1q if ciA is an isomorphism for all A P S pBπqf
for all i ¥ 0.

(ii) X is algebraic Kpπ, 1q for p if ciA is an isomorphism for all A P
S pBπqp for all i ¥ 0.

(iii) X is pro-p Kpπ, 1q if cip,B is an isomorphism for all B P S pBπpqp for
all i ¥ 0.

Notice that we use a shift in the de�nitions compared with [Sch07] or
[Wi07]: what there is called algebraic Kpπ, 1q for p, we call here pro-pKpπ, 1q.
Parts (i) and (iii) of our de�nition coincide with the de�nition of Kpπ, 1q
in [St02] A.1.2. By decomposing any sheaf into p-primary components we
obtain:

Lemma 6.2. X is algebraic Kpπ, 1q if and only if it is algebraic Kpπ, 1q for
all p.

Now we have a criterion for being Kpπ, 1q. For a scheme X let FetX (resp.

Fet
ppq
X ) denote the category of all �nite étale coverings (resp. �nite étale

p-coverings) of X. For a number �eld K let

δK �

#
1 if µp � K,

0 otherwise.

Proposition 6.3. Let K be a number �eld, S � S8 a set of primes of K
such that either δK � 0 or Sf � H. Assume that either p is odd or K is
totally imaginary. Let X � SpecOK,S. The following are equivalent:

(i) X is Kpπ, 1q for p.
(ii) One has

limÝÑ
Y PFetX

H2pYét,Z{pZq � 0.
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The same also holds if one replaces 'Kpπ, 1q for p' by 'pro-p Kpπ, 1q' and

'FetX ' by 'Fet
ppq
X ' respectively.

Proof. For the full proof, cf. [Iv13] Proposition 5.5. For convenience, we
sketch here the main steps. (i) ñ (ii) holds for any connected scheme and
follows from [St02] A.3.1 and (ii)ñ (i) follows from the well-known criterion
[St02] A.3.1, and the fact that for every q ¡ 0 and every locally constant
p-primary torsion sheaf A on Xét, we have

limÝÑ
Y PFetX

HqpYét,A|Yq � 0.

Since A is trivialized on some Y P FetX , we can assume that A is con-
stant. By dévissage we are reduced to the case A � Z{pZ. The elements
of H1pYét,Z{pZq can be interpreted as torsors, which kill themselves, i.e.
the case q � 1 follows. Further by [SGA4] Exposé X Proposition 6.1,
HqpYét,Z{pZq � 0 for q ¡ 3. The case q � 3 follows from Artin-Verdier
duality. Finally, (ii) implies the case q � 2. The pro-p case has a similar
proof. �

6.2. Kpπ, 1q and p:qp.

Theorem 6.4. Let K be a number �eld, S � S8 a set of primes of K and
p a rational prime. Assume that either p is odd or K is totally imaginary.
The following holds:

(i) If pS,KSppq{Kq is p:q
rel
p , then SpecOK,S is a pro-p Kpπ, 1q.

(ii) If S is p:qp, then SpecOK,S is a Kpπ, 1q for p.

Remark 6.5. If K is totally imaginary or in the pro-p case, the assumption
S8 � S is super�uous as GSppq � GSYS8ppq: if p ¡ 2, then this is true
in general and if p � 2, then this is true since we have assumed that K is
totally imaginary.

Corollary 6.6. Let K be a number �eld, S � S8 a stable set of primes
of K, such that E:pSq is �nite (in particular S can be any stable almost
Chebotarev set with S � S8). Then SpecOK,S is a Kpπ, 1q for almost all

primes p. If E:pSq � H and K is totally imaginary, then SpecOK,S is an
algebraic Kpπ, 1q.

Example 6.7. Let K be totally imaginary. Let K̃ :�
�
pKpµpq. Let M{K

be �nite Galois withMXK̃ � K and σ P GM{K . Assume that S w PM{Kpσq
is stable. Then SpecOK,S is a Kpπ, 1q.

Proof of Theorem 6.4. (The proof essentially coincide with that of [Iv13]
Theorem 5.12) We only prove (ii) (the pro-p case (i) has a similar proof).
Let X :� SpecOK,S . As L goes through �nite subextensions of KS{K, the
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normalization Y of X in L goes through all �nite étale connected coverings
of X. Let V :� SprS. For any such Y we have a decomposition

Y rV
j
ãÑ Y

i
Ðâ V

in an open and a closed part. Now Y rV is a Kpπ, 1q for p and π1pY rV q �
GL,SYV . Hence

ciA : HipGL,SYVq
�
ÝÑ HippYrVqét,Aq (6.1)

is an isomorphism for any i ¥ 0 and any p-primary GL,SYV -module A. We
have the Lerray spectral sequence for j:

Emn2 � HmpY,Rnj�Z{pZq ñ Hm�npYrV,Z{pZq.
Let us compute the terms in this spectral sequence. First of all we have

Rnj�Z{pZ �

$'&
'%
Z{pZ if n � 0,À

pPV H1pIp,Z{pZq if n � 1,

0 if n ¡ 1,

where Ip � Gp denotes the inertia subgroup of the full local Galois group at
p. Thus

E01
2 �

à
pPV

H1pIp,Z{pZqG
nr
p

E11
2 � H1pYét,

à
pPV

H1pIp,Z{pZqq �
à
pPV

H2pGp,Z{pZq

and Emn2 � 0 if n ¡ 1 or if n � 1 and m ¡ 1 (as cdppG nr
p q � 1). Further,

Em0
2 � 0 for m ¡ 3, as cdpY ¤ 3 and E30

2 � H3pY,Z{pZq � 0 by [Iv13]
Lemma 5.9. Further,

E10
2 � H1pYét,Z{pZq � H1pGL,S,Z{pZq

Thus we have the following non-zero entries in the second tableau:

À
pPV H1pIp,Z{pZqG

nr
p

δ012

,,

À
pPV H2pGp,Z{pZq 0 0

Z{pZ H1pGL,S,Z{pZq H2pYét,Z{pZq 0

From this and the isomorphism (6.1) we obtain the following exact sequence
(from now on, we omit the Z{pZ-coe�cients):

0 // H1pGL,Sq // H1pGL,SYVq //
À

pPV H1pIpq
G nr
p

δ012 //

// H2pYétq // H2pGL,SYVq //
À

pPV H2pGpq // 0
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By Proposition 6.3 it is enough to show that limÝÑY PFetX
H2pYétq � 0. Taking

the limit over all Y P FetX of this sequence, we see by Theorem 5.9 that the
direct limit of the maps preceding δ012 is surjective, hence we obtain:

limÝÑ
Y PFetX

H2pYétq � limÝÑ
Y PFetX

X2pKSYV {L, V ;Z{pZq.

To �nish the proof consider the following commutative diagram with exact
rows:

H2pGL,SYVq //

��

À
pPSYV H2pGpq //

��

µppLq
_ //

��

0

0 //
À

pPV H2pGpq
� //

À
pPV H2pGpq // 0 // 0,

in which the �rst map in the upper row gets injective after taking the limit
by Proposition 5.11. Snake lemma shows that

limÝÑ
Y PFetX

H2pYétq � limÝÑ
Y PFetX

X2pKSYV {L, V ;Z{pZq � limÝÑ
Y PFetX

à
pPS

H2pGpq,

and the last limit vanishes as p8|rKS,p : Kps for all p P S by Theorem 5.1(A).
This �nishes the proof of (ii). �
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