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Abstract. We show that the local-global divisibility in commutative algebraic groups de�ned

over number �elds can be tested on sets of primes of arbitrary small density, i.e. stable and

persistent sets. We also give a new description of the cohomological group giving an obstruction

to the problem. In addition, we show new examples of stable sets.

1. Introduction

Let k be a number �eld. Let A be a connected commutative group scheme of �nite type over

k. Dvornicich and Zannier investigated a local-global principle for divisibility of rational points

on A:

Problem 1.1 (Local-global divisibility problem [DZ01]). Let r be a positive integer and let

P ∈ A(k). Suppose that for all but �nitely many primes p of k, we have rDp = P for some

Dp ∈ A(kp), where kp denotes the completion of k at p. Can one conclude that there exists

D ∈ A(k) with rD = P?

Of course, one may assume that r is a power of a rational prime without loosing any generality.

The solution to Problem 1.1 and to variants of it are known in many cases, in particular, for

tori [DZ01, Ill08] and for elliptic curves [PRV12,PRV14,Cre16]. In elliptic curves the answer is

a�rmative for every power r = pn, with p > B(d), where d := [k : Q] and

B(d) :=

{
3 if k = Q;

(3
d
2 + 1)2 if d > 1.

Observe that for k 6= Q the bound B(d) = (3
d
2 + 1)2 is the one appearing in [Oes], giving

an e�ective version of Merel's Theorem on torsion points of an elliptic curve [Mer96], and in

particular E(k)[p] = 0 for all primes p > B(d). It is shown in [DP22b, �5] that for a �xed elliptic

curve E, a �xed number �eld k and a �xed power r, Problem 1.1 admits an explicit and e�ective

solution, that is there is an e�ectively computable constant C(k,E, r) > 0 such that to deduce

global divisibility, it su�ces to test the local one for all primes p of k with norm Np < C(k,E, r).

In this note we ask, whether in Problem 1.1 one can considerably shrink the set of primes

where local divisibility is tested, simultaneously for all A, all k and all r. It turns out that this

strengthened version of the problem admits a solution. More precisely, we show that certain

sets of primes with arbitrary small Dirichlet density su�ce, cf. Theorem 2.7. For clarity, let

us state our main result in the case of elliptic curves, where the original Problem 1.1 is quite

well-understood.

Theorem 1.1 (see Corollary 2.9 for most general statement). For any ε > 0 there exists a set

S of primes of Q, such that for all number �elds k, all elliptic curves E/k and all primes p one

has 0 < δk(S) < ε and the following hold:
1
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(1) If a point P ∈ E(k) is locally divisible by p at any p ∈ Sk, then it is globally divisible by

p in E(k).

(2) Suppose that p > B(d). Then for all n ≥ 1, if a point P ∈ E(k) is locally divisible by pn

at any p ∈ S, then it is globally divisible by pn in E(k).

Moreover, sets S as in Theorem 1.1 exist in abundance, and examples of them can be given

explicitly, cf. �3.

It is well known that an obstruction to the validity of Problem 1.1 is given by the �rst local

cohomology group (see [DZ01], [DZ07] and Equation (2.2) below). Such a group is isomorphic

to some modi�ed Tate-Shafarevich groups de�ned by sets S of primes of density one (see for

instance [Cre12, DP22a]). If one shrinks the set S, the Tate-Shafarevich group can a priori

become bigger. Our main point is that if we shrink S is an appropriate way, then the Tate-

Shafarevich group will stay small. This is based on the properties of the so-called stable and

persistent sets of primes studied in [Iva16]. In �3 we also give new examples of such sets with

particularly nice properties.

At the end of the paper we state a generalization of a classical question posed by Cassels about

the p-divisibility of elements of the Tate-Shafarevich group and we discuss the implications of

our results for such a question.

Notation. We denote by p a rational prime. We �x once and for all an algebraic closure Q of

Q, and consider all algebraic extensions of Q as sub�elds of Q. Unless stated otherwise, k always

denote a number �eld of degree d = [K : Q]. If `/k is a Galois extension, we denote by Gal`/k its

Galois group. We denote by Σk the set of primes of k. If S ⊆ Σk and `/k is a �nite extension,

we write S` for the preimage of S under the natural map Σ` → Σk. We denote by δk(S) ∈ [0, 1]

the Dirichlet density of a set S ⊆ Σk, whenever it exists. Whenever we write �density� below,

we mean �Dirichlet density�.

By A we denote a commutative algebraic group de�ned over k and by Kn the extension of

k trivializing A[pn], i.e. the pn-division �eld of A over k, where p is a �xed prime and n is a

positive integer.

Acknowledgements. The �rst author was supported by a Heisenberg grant of the DFG (grant

nr. IV 177/3-1), based at the Universities of Bonn and Bochum. Also he was supported by the

Leibniz Universität Hannover. The second author is a member of INdAM-GNSAGA.

2. Testing local-global divisibility at a stable set

2.1. Review of stable sets. We recall the following de�nition.

De�nition 2.1 ( [Iva16], �2). Let L /k be an algebraic extension, S ⊆ Σk and λ > 1.

(1) A �nite subextension L /K/k is called λ-stabilizing (resp. persisting) for S, if there

exists a subset T ⊆ S and some a ∈ (0, 1] such that for all �nite subextensions L /L/K

one has λa > δL(TL) ≥ a (resp. δL(TL) = δK(TK) > 0).

(2) S is λ-stable (resp. persisting) for L /k, if it has a λ-stabilizing (resp. persisting)

subextension of L /k.

There are many natural examples of stable and persistent sets, cf. [Iva16, �3]. For example, if

`/k is a �nite Galois extension, then for σ ∈ Gal`/k the set

P`/k(σ) = {p ∈ Σk : p is unrami�ed in `/k and Frobp = C(σ,Gall/k)}, (2.1)
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where C(σ,G`/k) denotes the conjugacy class of σ, is persistent for any algebraic extension L /k

satisfying C(σ,G`/k) ∩Gal`/L∩` 6= ∅, with persisting �eld L ∩ `. In �3 we give new interesting

examples of persistent sets.

Stable sets generalize sets of density one in the following sense. Let `/k be a �nite extension.

If S is a set of primes of k with density one, then any element of Gal`/k is a Frobenius at S,

and consequently any cyclic subgroup is a decomposition subgroup of a prime in S. Weakening

the assumption on S to be p-stable for `/k with stabilizing �eld k, destroys the claim about

elements, but the claim about cyclic p-subgroups (that is, of p-power order and not just of order

p) remains true:

Lemma 2.2 ( [Iva16], Lemma 4.4). Let `/k be a �nite Galois extension, S a set of primes of k

and p a rational prime such that S is p-stable for `/k with p-stabilizing �eld k. Then any cyclic

p-subgroup of Gal`/k is the decomposition subgroup of a prime in S.

2.2. p-stable sets detect local-global divisibility by pn.

Recall the de�nition of the cohomology group satisfying the local conditions [DZ01]. Let Γ be

a �nite group and M a discrete Γ-module. Then

H1
loc(Γ,M) := ker

H1(Γ,M)→
∏
C⊆Γ

H1(C,M)

 , (2.2)

where the product is taken over all cyclic subgroups C ⊆ Γ, and the map is the product of

restriction maps.

Lemma 2.3. Let Γ,M be as above, and suppose that M is p-primary for a rational prime p.

Then H1
loc(Γ,M) = ker

(
H1(Γ,M)→

∏
C⊆ΓH

1(C,M)
)
, where the product is taken over all

cyclic p-subgroups C ⊆ Γ.

Proof. This follows from the fact that for any �nite group H and any p-primary module M ,

H1(H,M) → H1(Hp,M) is injective, where Hp is a p-Sylow subgroup of H (see [NSW13,

(1.6.10)]). �

Let Kab
n (p)/k be the maximal abelian pro-p extension of Kn. The following generalization

of [DZ01, Prop. 2.1] shows that it su�ces to test local-global divisibility by pn at a p-stable set

of primes:

Proposition 2.4. Let p be a rational prime and n ≥ 1 an integer. Let A/k be a commutative

algebraic group. Let S be a set of primes of k, which is p-stable for Kab
n (p)/k with p-stabilizing

�eld k. Assume that H1
loc(GalKn/k, A[pn]) = 0. Then the following holds. Let P ∈ A(k), such

that for all p ∈ S, there is some Qp ∈ A(kp) with Pp = pnQp. Then there is some Q ∈ A(k) with

P = pnQ.

Proof. Let D ∈ A(Q) be a point with pnD = P and let ` = k(D) be the corresponding extension

of k. Put F = Kn · `. Then F/k is Galois and `/k is cyclic of p-power degree, so in particular

F ⊆ Kn(p)ab. One can de�ne a 1-cocycle c : GalF/k → A[pn], by c(σ) := σ(D) − D, for

all σ ∈ GalF/k. Its image [c] ∈ H1(GalF/k, A[pn]) is zero if and only if P = pnD′ for some

D′ ∈ A(k), see [DZ01, p. 320]. Moreover, as by assumpion P is locally pn-divisible at any p ∈ S,
the same argument with cocycles show that the restriction of [c] to H1(C,A[pn]) is zero, where
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C ⊆ GalF/k is the decomposition subgroup of any prime in S. Now, as F ⊆ Kn(p)ab, by Lemma

2.2 the set of decomposition subgroups in GalF/k at primes in S contains the set of all cyclic

p-subgroups of GalF/k, and so by Lemma 2.3 we deduce [c] ∈ H1
loc(GalF/k, A[pn]). To �nish

the proof of Proposition 2.4 it thus remains to show that the restriction via GalF/k � GalKn/k

induces an isomorphism H1
loc(GalKn/k, A[pn])

∼→ H1
loc(GalF/k, A[pn]). But this is done in the

proof of [DZ01, Prop. 2.1]. �

Corollary 2.5. Let p be a rational prime and n ≥ 1 an integer. Let A/k be a commutative

algebraic group. Let S be a set of primes of k, which is p-stable for Kab
n (p)/k with p-stabilizing

�eld k. Assume that P ∈ A(k), such that for all p ∈ S, there is some Qp ∈ A(kp) with Pp = pnQp.

Then D ∈ A(Kn), for all D such that P = pnD.

Proof. One can apply the same argument used in the proof of [DZ01, Corollary 2.3], by substi-

tuting the set of density one with the set S. �

We denote by Gk the absolute Galois group GalQ̄/k and by Gkp the absolute Galois group

Galk̄p/kp , where k̄p is an algebraic closure of kp. Let S be a subset of primes of k which is p-stable

at Kab
n (p)/k with p-stabilizing �eld k. We de�ne a modi�ed Tate-Shafarevich group related to

S and we will prove that it is isomorphic to H1
loc(GalKn/k, A[pn]).

De�nition 2.6. Let A be a comutative algebraic group de�ned over a number �eld k and let

S be a set of primes of k, unrami�ed in Kn, which is p-stable at Kab
n (p)/k with p-stabilizing

�eld k. We denote by XS(k,A[pn]) the subgroup of H1(Gk, A[pn]) formed by the classes of the

cocycles vanishing in kp, for all p ∈ S, i.e.

XS(k,A[pn]) :=
⋂
p∈S

ker(H1(Gk, A[pn])
resp−−−−→ H1(Gkp , A[pn])) (2.3)

Notice that in Equation (2.3) by replacing S with the set of primes of k one gets the de�nition

of the classical Tate-Shafarevich group X(k,A[pn]). We are going to prove that H1
loc(G,A[pn]) '

XS(k,A[pn]).

Proposition 2.7. Let p be a rational prime and n ≥ 1 an integer. Let A/k be a commutative

algebraic group. Let S be a set of primes of k, unrami�ed in Kn, which is p-stable for Kab
n (p)/k

with p-stabilizing �eld k. Then H1
loc(G,A[pn]) 'XS(k,A[pn]).

Proof. Let SKn denote the set of primes wp of Kn extending the primes p in S and by Kn,wp we

denote the completion of Kn at the place wp. Let Gp := GalKn,wp/kp
and consider the following

diagram given by the in�ation restrictions exact sequence

0 −−→ H1(G,A[pn])
inf−−−→ H1(Gk, A[pn])

res−−−→ H1(GKn , A[pn])y∏ resp

y∏ resp

y∏ reswp

0 −−→
∏

p∈S H
1(Gp, A[pn])

inf−−−→
∏

p∈S H
1(Gkp , A[pn])

res−−−→
∏

wp∈SKn
H1(GKn,wp

, A[pn])

The kernel of the vertical map on the left is H1
loc(G,A[pn]) by assumption on S and by Lemma

2.2 and the kernel of the central vertical map is XS(k,A[pn]). The vertical map on the right is

injective because of GKn acting trivially on A[pn] and because of GKn,w varying over all cyclic
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subgroups of GKn as w varies in SKn by Lemma 2.2. Therefore H1
loc(G,A[pn]) 'XS(k,A[pn]).

�

At cost of slightly strengthening the assumption on S, we can eliminate the dependence on

the particular algebraic group A in Proposition 2.4. For an integer M > 0, consider the class

C≤M (k) of all commutative algebraic groups over k, such that dimFp #A[p](Q) ≤M . Moreover,

for a set P ⊆ ΣQ of rational primes, let k(P) be the compositum of all �nite extensions of k

whose orders are products of elements of P.

Corollary 2.8. Let p be a rational prime and let M > 0. Let S be a set of primes of k. Assume

that S is p-stable with p-stabilizing �eld k for the extension k(P(M))/k, where P(M) is the set

of all prime divisors of # GLM ′(Fp) for all M ′ ≤ M . Then for any A ∈ C≤M (k), such that

H1
loc(GalKn/k, A[pn]) = 0, the following holds.

Let P ∈ A(k), such that for all p ∈ S, there is some Qp ∈ A(kp) with Pp = pnQp. Then there

is some Q ∈ A(k) with P = pnQ.

For example, if one restricts further to the class of elliptic curves one can take M = 2 and P
the set of prime divisors of p, p±1. For abelian varieties of dimension ≤ g, one can takeM = 2g.

Proof of Corollary 2.8. We have to show that for a particular A ∈ CM (k), the assumptions of

Proposition 2.4 hold, i.e., that Kn(p)ab ⊆ k(P(M)). As p ∈ P(M), it su�ces to show that

Kn ⊆ k(P(M)). Also as Kn/K1 is a p-extension, it su�ces to show that K1/k ⊆ k(P(M)). But

GalK1/k ⊆ GL(A[p]), which is a subgroup of GLM ′(Fp) for some M ′ ≤M . �

Strengthening assumptions on S even further, Corollary 2.8 immediately gives the following:

Corollary 2.9. Fix a prime p. Let S be a set of primes of k, which is persistent for Q/k with per-

sisting �eld k. For any commutative algebraic group A/k and any n > 0, if H1
loc(GalKn/k, A[pn]) =

0, the following holds.

Let P ∈ A(k), such that for all p ∈ S, there is some Qp ∈ A(kp) with Pp = pnQp. Then there

is some Q ∈ A(k) with P = pnQ.

We show in Proposition 3.1 below that sets S satisfying the requirements of the corollary

exist in abundance. Using this along with existing results on the original form of Problem 1.1,

Corollary 2.9 specializes to the case of elliptic curves:

Proof of Theorem 1.1. Pick a set S ⊆ ΣQ as constructed in Proposition 3.1. Let E/k be an

elliptic curve. By Corollary 2.9 it su�ces to show that H1
loc(GalKp/k, E[p]) = 0 for all p, resp.

that H1
loc(GalKpn/k, E[pn]) = 0 for all p > B(d) and all n > 1. The �rst case is easy, as was

observed in [DZ01, beginning of �3]: GalKp/k is then a subgroup of GL2(Fp), which implies that

the p-Sylow subgroup of GalKp/k is cyclic and so H1
loc(GalKp/k, E[p]) = 0. In the second case we

may apply [PRV12, Theorem 1' (on p. 8)] (see also Corollary 2 of loc. cit.) and [PRV14]. �

3. New examples of stable sets

It is easy to give examples of stable sets S with arbitrary small density in the whole tower

L /k, when L is some reasonably small subextension of Q/k. However, those examples will often

not be stable for other towers L ′/k. Consider, for example, S = P`/k(σ) as in (2.1). If σ = 1,

then S will be stable �even persistent� for any extension L /k, but if L ⊇ `, the persisting �eld



6 ALEXANDER B. IVANOV AND LAURA PALADINO

is ` and δ`(S`) = 1, that is S` eventually becomes �big�. On the other hand, if σ 6= 1, then

δ`′(S`′) = 0 for any �nite `′/`, and hence S is not stable for L /k whenever L ⊇ `. With this

in mind, we now produce now many examples of sets persistent for Q/k with persisting �eld k

and arbitrary small positive density.

Proposition 3.1. For any number �eld k and any ε > 0, there exists a set S of primes of k

satisfying

0 < δk(S) = δ`(S`) < ε

for all �nite extensions `/k. In particular, S is persistent for Q/k with persisting �eld k.

Proof. Let p be a prime such that 1
p−1 < ε. Let k∞/k be a Zp-extension (e.g. the cyclotomic

one) with Galois group identi�ed with Zp. For n ≥ 1, choose an ∈ F×p and consider the set

A =
⋃
n≥1

(
anp

n−1 + pnZp

)
⊆ Zp.

We put

S = Pk∞/k(A),

the set of all primes unrami�ed in k∞/k, whose Frobenius lies in A. Clearly, A is open in Zp and

one computes A = A ∪ {0}. Equip Zp with the invariant Haar measure µ normalized such that

µ(Zp) = 1. Then the boundary ArA◦ = {0} of A has measure 0, and the in�nite Chebotarev

theorem [Ser68, I.2.2 Corollary 2b)] (which we may apply as k∞/k is rami�ed at most in the

�nitely many primes above p and ∞) then shows that S has a density and that it is equal to

δk(S) = µ(A) =
∞∑
n≥1

p−n =
1

p− 1
.

Now, let `/k be a �nite extension. Then there is some m ≥ 0 such that ` ∩ k∞ = km :=

(k∞)p
mZp . Let `∞ = k∞.`. Via Gal`∞/`

∼= Galk∞/km , we may identify Gal`∞/` with p
mZp ⊆ Zp.

Let Spl`/k denotes the set of primes of `, which are split (and unrami�ed) over k. Then

S` ∩ Spl`/k = P`∞/`(A ∩ pmZp), (3.1)

where we ignore the �nitely many primes of ` which ramify in `∞/k. Now, Σ`rSpl`/k consists

of primes of `, which are not split over Q, so it has density 0. In particular, δ`(S`) exists if and

only if δ`(S` ∩ Spl`/k) exists, in which case both agree. On the other hand, the argument using

in�nite Chebotarev applied above to compute δk(S) applies also to P`∞/`(A ∩ pmZp), giving

δ`(P`∞/`(A ∩ pmZp)) = 1
p−1 . Combining the two computations, we get δ`(S`) = δ`(P`∞/`(A ∩

pmZp)) = 1
p−1 , �nishing the proof. �

Remark 3.2. One has to be careful in the above proof, as the Dirichlet density does not satisfy

σ-additivity: suppose that Tn ⊆ Σk (n ≥ 1) is a collection of mutually disjoint subsets, such that

δk(Tn) exists. Let T =
⋃

n Tn. Then it might happen that δk(T ) does not exist, and even if it

exists, it might happen that δk(T ) 6=
∑

n≥1 δk(Tn) (it is enough to consider singletons Tn = {pn}
for any n). However, by the argument in the proof of Proposition 3.1, the density of the set S,

which is in fact a disjoint union of in�nitely many Chebotarev sets, exists and is equal to the

sum of densities of these Chebotarev sets.
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4. On a question posed by Cassels

In addition Problem 1.1 is strongly related to the following question stated by Cassels in 1962

that remained open for 50 years (see [DP22a] for further details).

Cassels' question. Let k be a number �eld and E be an elliptic curve de�ned over k. Are

the elements of X(k,E) in�nitely divisible by a prime p when considered as elements of the

Weil-Châtelet group H1(Gk, A) of all classes of principal homogeneous spaces for E de�ned over

k?

An a�rmative answer for p > B(d) is implied by [Cre13, Theorem 3] and the results in

[PRV12,PRV14]. Since 1972 this question was considered in abelian varieties of every dimension

by various authors [Ba²72,Cre13,ÇS15]. In particular, Creutz showed su�cient and necessary

conditions to get an a�rmative answer and the existence of counterexamples for every p in

in�nitely many abelian varieties [Cre13]. [Cre16]. Moreover, Çiperiani and Stix also showed

su�cient conditions to get an a�rmative answer [ÇS15].

In the spirit of this article, we can pose the following more general question.

Problem 4.1. Let k be a number �eld and A an abelian variety de�ned over k. Let S be an

in�nite set of places of k and let

XS(k,A) :=
⋂
p∈S

ker(H1(Gk, A[pn])
resp−−−−→ H1(Gkp , A[pn])).

Are the elements of XS(k,A) in�nitely divisible by a prime p when considered as elements of

the Weil-Châtelet group H1(Gk, A)?

As a consequence of Proposition 2.7, in the case of elliptic curves curves Problem 4.1 has an

a�rmative answer for all p > B(d), for every sets S which is p-stable for ∪n∈NKab
n (p)/k with

p-stabilizing �eld k.

Corollary 4.1. Let k be a number �eld and E an elliptic curve over k. Let S be a set of places

of k which is p-stable for ∪n∈NKab
n (p)/k with stabilizing �eld k. Then the elements of XS(k,E)

are in�nitely divisible by every p > B(d) when considered as elements of H1(Gk, E).

Proof. By the results in [PRV12] and [PRV14], we have H1
loc(G,E[pn]) = 0, for all p > B(d) and

all n ≥ 1. By Proposition 2.7, we have XS(k,E[pn]) = 0, for all p > B(d) and all n ≥ 1. The

conclusion is then implied by [Cre13, Theorem 3]. �

Observe that by Proposition 3.1 there are many sets S of primes satisfying the assumtpions of

Corollary 4.1.
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