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A. IVANOV

Abstract. In this paper we generalize an argument of Neukirch from birational anabelian ge-

ometry to the case of arithmetic curves. In contrast to the function �eld case, it seems to be

more complicated to describe the position of decomposition groups of points at the boundary of the

scheme SpecOK,S , whereK is a number �eld and S a set of primes ofK, intrinsically in terms of the

fundamental group. We prove that it is equivalent to give the following pieces of information addi-

tionally to the fundamental group π1pSpecOK,Sq: the location of decomposition groups of boundary

points inside it, the p-part of the cyclotomic character, the number of points on the boundary of

all �nite étale covers, etc. Under a certain �niteness hypothesis on Tate-Shafarevich groups with

divisible coe�cients, one can reconstruct all these quantities simply from the fundamental group.

1. Introduction

Let K be a number �eld, K a �xed algebraic closure and GK the absolute Galois group. In [6]

Neukirch showed, using an argument involving the Brauer groups of K and its extensions, that the

group GK determines intrinsically, how the decomposition groups Dp of primes of K lie inside it. In

contrast to the case of curves over �nite �elds, which is now well-understood, in particular, due to

Tamagawa [10], there is almost nothing known about the case of arithmetic curves. Not even this

Brauer group argument of Neukirch generalizes from the birational to the arithmetic situation, i.e., if

one replaces SpecK by SpecOK,S , where S � S8 is a �nite set of primes ofK and considers only the

decomposition groups of primes in S. The reason for this failure is the obstruction given by the non-

vanishing second Tate-Shafarevich group. We are interested in the question, how much information

about the decomposition groups of primes in S is encoded intrinsically in GS :� π1pSpecOK,Sq.

It seems to be possible, at least using some additional information, to reconstruct the position of

decomposition groups of primes in S inside GS . Essentially, it turns out that it is equivalent to

know one of the following data: the embeddings Dp̄ ãÑ GS for p̄ P Sf :� SrS8; the cyclotomic

character on GS ; the S-class number of all �nite sub�elds KS{L{K; the number 7SpLq for all these

L. The results of this paper are part of author's Ph.D. thesis [4].

Theorem 1.1. Let K be a number �eld, S � S8 a �nite set of primes. Assume that at least two

rational primes lie in O�
K,S, and p is one of them. Assume pGS , pq are given. The knowledge of one

of the following extra structures is equivalent to any other:

(i) The embeddings ιp̄ : Dp̄ ãÑ GS for p̄ P Sf .

(ii) The cyclotomic p-character χp : U Ñ Z�p on some open U � GS.

(iii) For all open U � GS with totally imaginary �xed �eld L, the group ClSpLq.

(iii)' For all open U � GS with totally imaginary �xed �eld L, the number 7ClSpLq{p.

(iv) For all open U � GS with �xed �eld L, the number 7SpLq.

Assume that the decomposition subgroups at primes in Sf are isomorphic to absolute Galois groups of

local �elds of characteristic zero. Then the knowledge of the above is also equivalent to the knowledge

of the following:
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(ii)' The cyclotomic character on some open subgroup U � GS.

Observe that in the arithmetic situation, to give GS together with the cyclotomic character,

corresponds in some sense in the geometric situation over a �nite �eld, to give the fundamental

group of a curve together with the attached outer Galois representation. The assumption in the

theorem, that there are at least two rational primes lying under S, implies by the work of Clozel

and Chenevier [2] Theorem 5.1, that the decomposition groups in GS of primes in Sp1 Y Sp2 are

isomorphic to absolute Galois groups of local �elds. It does not imply in general that this holds for

all primes in S (but it still does for primes lying in the maximal subset of S, de�ned over a totally

real sub�eld: cf. [2] Remark 5.3(i)).

Remark 1.2. We make the following observation. If one of the data in the theorem is determined

with respect to an open subgroup U0 � GS , then it is also determined for GS . Indeed, it is enough

to see this for (i). So, if the embeddings into U0 of the decomposition groups at Sf inside U0

are given, then (using Corollary 2.7(ii) below) the whole projective system of continuous GS-sets

limÐÝU�U0,U�GS
Sf pUq is determined (here, we write Sf pUq for Sf pLq if L � KU

S ), and one obtains

the decomposition groups Dp̄ � GS as the stabilizers of points under the action of GS on it.

Of all the quantities listed in the theorem, the numbers 7SpLq seem to be the most accessible

ones. First of all, the numbers 7S8pUq are determined by pGS , pq (cf. Proposition 4.1). Proposition

1.3 given below, allow to reconstruct the numbers 7Sf pUq for all open U � U0 � GS with U0 small

enough, under a certain �niteness assumption. Then Remark 1.2 allows to reconstruct the numbers

7Sf pUq for all U � GS open.

Proposition 1.3. Let K,S be a number �eld together with a set of primes. Let p P O�
K,S. Assume

that p is odd and µp � K. Assume, the following holds: for any character χ : GS Ñ Z�p �

AutpQp{Zpq whose restriction to 1
pZ{Z is trivial, the group X2pGS ,Qp{Zppχqq is �nite. Then for

any such χ, the group H2pGS ,Qp{Zppχqq is of �nite corank and

7Sf pKq � 1�maxχ corankpH2pGS ,Qp{Zppχqqq. (1.1)

This �niteness assumption on X2pGS ,Qp{Zppχqq has the following (at least partial) evidence: if

χ is the cyclotomic p-character χp, then X2pGS ,Qp{Zppχqq � 0 is easy to compute and for χ � χbkp
with k P Zr t1u Soulé showed in [9] using K-theory, that H2pGS ,Qp{Zppχqq � 0. Compare also [8]

10.3.27 and the discussion preceding it.

Directly from Theorem 1.1 and Proposition 1.3 we get:

Corollary 1.4 (Local correspondence at the boundary). For i � 1, 2, let Ki, Si be a number �eld

together with a �nite set of primes containing S8. Assume that at least two rational primes lie

completely under Si, and assume that one of them, denoted p, lies under both. Let χi,p denote the

p-cyclotomic character on GKi,Si . Let

σ : GK1,S1

�
ÝÑ GK2,S2

be a topological isomorphism, such that χ2,p � σ|U1 � χ1,p|U1 for some open subgroup U1 � GK1,S1

holds. Then for any p̄1 P Sf pK1,S1q, there is a unique prime σ�pp̄1q P Sf pK2,S2q, such that σpDp̄1q �

Dσ�pp̄1q. This de�nes a GK1,S1-equivariant bijection

σ� : S1,f pK1,S1q
�
ÝÑ S2,f pK2,S2q,
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which induces compatible bijections

σ�U1
: S1,f pL1q

�
ÝÑ S2,f pL2q,

for any L1{K1 �nite with corresponding subgroup U1 � GK1,S1 and U2 � σpU1q with corresponding

�eld L2. If the decomposition groups at primes in S1,f are isomorphic to absolute Galois groups

of local �elds of characteristic zero, then σU1 preserves the residue characteristics and the absolute

degrees of primes.

Moreover, if p is odd and if for i � 1, 2, there is an open subgroup Ui � GKi,Si , such that for

all characters χ : Ui Ñ Z�p with torsion-free image, the group X2pUi,Qp{Zppχqq is �nite, then the

condition χ2,p � σ|U1 � χ1,p|U1 is automatically satis�ed.

Notation. Our notation will essentially coincide with the notations in [8]. We collect some of

the most important notations here. For a pro-�nite group G we denote by Gppq its maximal pro-p

quotient and by Gp a p-Sylow subgroup. For a subgroup H � G, we denote by NGpHq its normalizer

in G.

For a Galois extension M{L of �elds, GM{L denotes its Galois group. By K we always denote an

algebraic number �eld, that is a �nite extension of Q. If L{K is a Galois extension and p̄ is a prime

of L, then Dp̄,L{K � GL{K denotes the decomposition subgroup of p̄. If p :� p̄|K is the restriction

of p̄ to K, then we sometimes allow us to write Dp̄ or Dp instead of Dp̄,L{K , if no ambiguity can

occur. We write ΣK for the set of all primes of K and S, T will usually denote subsets of ΣK . If

L{K is an extension and S a set of primes of K, then we denote the pull-back of S to L by SL,

SpLq or S (if no ambiguity can occur). We write KS{K for the maximal extension of K, which

is unrami�ed outside S and GS :� GK,S for its Galois group. Further, for p ¤ 8 a (archimedean

or non-archimedean) prime of Q, Sp � SppKq denotes the set of all primes of K lying over p and

Sf :� SrS8.

Let K,S be a number �eld and a set of primes. Then nK , r1pKq, r2pKq is the degree, the number

of real and of conjugate pairs of complex embeddings of K{Q and NpSq :� NXO�
K,S , i.e., p P NpSq

if and only if Sp � S. Further, χp : GS Ñ Z�p denotes the cyclotomic p-character for p P NpSq and
ClSpKq the S-class group of K. If U � GS is an open subgroup and L � pKSq

U , then we sometimes

write ClSpUq, 7SpUq, etc. instead of ClSpLq, 7SpLq, etc.

If (x),(y) are some sets of invariants of K,S (like, for example, (i),(ii) in Theorem 1.1), then (x)

ù (y) resp. (x)ú (y) will have the following meaning: if the data in (x) are known, then we can

deduce the data in (y) from them resp. the knowledge of (x) and (y) is equivalent. In particular,

(x)ù (y) implies that if two pairs pKi, Siq, i � 1, 2 are given, with GK1,S1 � GK2,S2 and such that

the data in (x) coincide for i � 1, 2, then also the data in (y) are coincide.

A local �eld means always a non-archimedean local �eld.

Outline of the paper. In Section 2 we study intersections of decomposition subgroups of di�erent

primes inside GS , which is the �rst step towards a proof of Theorem 1.1. Section 3 is devoted to

the proof of Theorem 1.1. In Section 4 we prove Proposition 1.3 and discuss which invariants of

K,S can be recovered from GS (plus possibly some further information).

2. Intersections of decomposition subgroups

Let S be a �nite set of primes of K and let p̄, q̄ be two primes of KS lying over Sf . In this

section we investigate, under the assumption that Sp Y S8 � S, how big the intersection of the
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decomposition groups Dp̄, Dq̄ inside GS is. If S is the set of all primes of K, then this intersection is

trivial by a theorem of F.K. Schmidt [8] 12.1.3. Its proof does not generalize to the case of restricted

rami�cation, so we use di�erent arguments, all of which are simple applications of class �eld theory.

The main result of this section, which will be used later in the text is Corollary 2.7. It is an analog

of [8] 12.1.4 in the case of GS . Finally, in Section 2.4 we consider the case of primes p̄, q̄ not lying

over S.

2.1. Groups of p-decomposition type. One of the most frequently used objects in our inves-

tigations will be the p-Sylow subgroup of an absolute Galois group of a local �eld with residue

characteristic � p. Such a group has a very special and easy structure: it is a non-abelian pro-p-

Demushkin group of rank two. Recall (cf. [8] 3.9.9) that a pro-p-group is called a Demushkin group,

if H1pG,Z{pZq is �nite, H2pG,Z{pZq is one-dimensional over Fp and the cup-product from the �rst

degree into the second is non-degenerate. To have a shortcut, we de�ne:

De�nition 2.1. A group of p-decomposition type is a non-abelian pro-p Demushkin group of rank

2.

By a theorem of Demushkin (cf. [8] 3.9.11) a one-relator pro-p-group G is a Demushkin group,

if and only if for some integers n ¥ 1, q ¥ 0 (assume for simplicity that q � 2; for the case q � 2,

cf. [8] 3.9.19), G is generated by x1, . . . , xn subject to one relation:

xq1px1, x2qpx3, x4q . . . pxn�1, xnq � 1,

where px, yq � x�1y�1xy. The numbers n, q are the rank and the invariant of G respectively. For a

group G of p-decomposition type we have n � 2 and hence q � 0 (otherwise G would be abelian).

Thus G is of the form Zp 
 Zp with Zp ãÑ AutpZpq � Z�p injective. We need a description of all

closed subgroups of groups of p-decomposition type.

Lemma 2.2. Let H be a group of p-decomposition type.

(i) A non-trivial closed subgroup of H is either isomorphic to Zp or is of p-decomposition type.

(ii) The open subgroups of H are exactly the subgroups of p-decomposition type.

(iii) H has a unique maximal closed normal pro-cyclic subgroup, denoted Hn. It is also the unique

closed normal subgroup, such that H{Hn is in�nite pro-cyclic.

(iv) If N � H is open, then Nn � N XHn.

Proof. Let H be a group of p-decomposition type. (i)+(ii): one veri�es immediately that a closed

subgroup N � H is either � Zp or open. It remains to show that an open subgroup N � H is of

p-decomposition type. Let Hn �H be a closed normal subgroup of H, such that H{Hn � Zp. One
obtains an exact sequence:

1 Ñ N XHn Ñ N Ñ N{N XHn Ñ 1

with the �rst and the last term isomorphic to Zp. Hence this sequence splits and N � Zp
φ Zp for
some φ : Zp Ñ AutpZpq. Either the image of φ is t1u or φ is injective. In the �rst case N � Zp�Zp
and in the second N is of p-decomposition type. The �rst case can not occur, as otherwise one

would have the contradiction 3 � scdppNq ¤ scdppHq � 2. (iii): Let Hn be as above. Assume

Zp � H1 �H is normal and H1 � Hn. Then

H1{pH1 XHnq ãÑ H{Hn � Zp,
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i.e., H1 X Hn � 1. Now Hn, H1 are two normal subgroups of H with trivial intersection, i.e.,

Hn �H1 � H. But Hn �H1 � Zp is not of p-decomposition type. This is a contradiction to (i).

Hence Hn is the unique maximal normal closed pro-cyclic subgroup of H.

Assume now, H2�H is normal with H{H2 � Zp and H2 � Hn. As Hn{H2XHn ãÑ H{H2 � Zp,
we get Hn X H2 � 1. The same reasoning as above gives a contradiction. Thus H2 � Hn. Then

H2 � Hn follows easily.

(iv): Since N � H is open, N � Hn and we have an inclusion 1 � N{N X Hn ãÑ H{Hn, we

obtain that N{N XHn is in�nite pro-cyclic. Thus by (iii), N XHn � Nn. �

To a group H of p-decomposition type we can associate the character de�ning the semi-direct

product:

χH : H � H{Hn ãÑ Z�p � AutpHnq.

2.2. Local situation. Let κ be a local �eld with residue characteristic ` and let Gκ be its absolute

Galois group. For p � `, the p-Sylow subgroups of the maximal tame quotient

Gtr
κ � Ẑ
 Ẑp`

1q

of Gκ are of p-decomposition type, which can easily be seen directly. Consider now a p-Sylow

subgroup Gκ,p � Gκ. The composition

Gκ,p ãÑ Gκ � Gtr
κ

is injective, since p � ` and the kernel of the second map is a pro-`-subgroup. Thus Gκ,p is isomorphic

to a p-Sylow subgroup of Gtr
κ , and hence is of p-decomposition type.

2.3. Metabelian covers.

Lemma 2.3. Let K be a number �eld and S � SpYS8 a set of primes of K. Let p̄ P pSf rSpqpKSq

and p � p̄|K . Let Gp denote the absolute Galois group of Kp and Gp,p a p-Sylow subgroup. Then the

composition

φ : Gp,p ãÑ Gp � Dp̄ ãÑ GS

is injective. In particular, any p-Sylow subgroup of Dp̄ is of p-decomposition type.

Proof. Since p R Sp, we have Gp,p � pGp,p{Ip,pq
Ip,p, where both factors are isomorphic to Zp and
the second is the inertia subgroup. Due to the cyclotomic p-extension, which realizes the maximal

unrami�ed p-extension at p and is unrami�ed outside Sp � S, the kernel of φ is contained in Ip,p.

To show that kerpφq � 1, it is enough to show that for any n ¡ 0, there is a �nite subextension of

KS{K, whose rami�cation degree at p is pn.

Therefore, let L0{K be the Hilbert class �eld of K and set L :� L0Kpζpnq. This is an abelian

extension of K, unrami�ed outside Sp. The ideal p is on the one side unrami�ed in L, and on the

other side principal (being principal already in L0). Thus we can write

pOL � pεq � p1p2 . . . pr,

with ε P OL, and pi unequal prime ideals of OL. We can assume that p̄|L � p1. Since p P S, we

have ε P O�
L,S , and the extension Lpε1{p

n
q is unrami�ed outside Sp Y Sp � S. But since p1|p is

unrami�ed, we have

vp1pεq � 1,
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where vp1 denotes the valuation corresponding to p1. Thus the local extension Lp1pε
1{pnq{Lp1 is

tamely rami�ed of degree pn. �

Proposition 2.4. Let p̄ � q̄ P Sf pKSq, such that there is a rational prime p P O�
KS ,Sr tp̄,q̄u. Choose

some p-Sylow subgroups Dp̄,p � Dp̄ resp. Dq̄,p � Dq̄. Then Dp̄,p X Dq̄,p is not open in Dp̄,p. In

particular, Dp̄ XDq̄ is not open in Dp̄.

Proof. By Lemma 2.3, Dp̄,p resp. Dq̄,p are groups of p-decomposition type. Let p � p̄|K , q � q̄|K .

By going up to a �nite extension, we can assume p � q. Observe that the extension constructed in

the proof of Lemma 2.3 is Galois and unrami�ed in q, as q R Sp Y tpu. Thus if I�,p � D�,p denotes

the corresponding inertia subgroup, we have Ip̄,p X Iq̄,p � 1.

Now, assume Dp̄,p X Dq̄,p � Dp̄,p is open. The second group is of p-decomposition type, hence

the �rst also is (Lemma 2.2(ii)). Hence, again by Lemma 2.2(ii), the inclusion Dp̄,p XDq̄,p � Dq̄,p

is also open. The maximal normal pro-cyclic subgroup of D�,p is I�,p. Thus by Lemma 2.2(iv)

applied to both inclusions, the maximal normal pro-cyclic subgroup of Dp̄,p X Dq̄,p is equal to

Ip̄,p X Dq̄,p and to Dp̄,p X Iq̄,p simultaneously, i.e., these two intersections are equal. This implies

Dp̄,p X Iq̄,p � Ip̄,p X Iq̄,p � 1. But this group, being the maximal normal pro-cyclic subgroup of a

group of p-decomposition type must be isomorphic to Zp. This is a contradiction.

Finally, if Dp̄XDq̄ � Dp̄ were open, then also Dp̄,pXDq̄ � Dp̄,p. But Dp̄,pXDq̄ is a pro-p-subgroup

ofDq̄, hence contained in a p-Sylow subgroupD1
q̄,p of it. Thus the intersectionDp̄,pXD

1
q̄,p � Dp̄,pXDq̄

would be open in Dp̄,p, which contradicts to the already proven part of the proposition. �

Observe that all arguments up to now made only use of solvable extensions of K, thus we could

also replace GS by its maximal solvable quotient. Before going on, we quote the following recent

result of Clozel and Chenevier:

Theorem 2.5 (Clozel-Chenevier, [2] Theorem 5.1). Let Sf be a set of �nite primes of Q. Let

S :� Sf Y t8u. If 7Sf ¥ 2, then for any p P S and p̄ P SpQSq lying over p, the map

GQp{Qp
� Dp̄,QS{Q � GQ,S

is injective.

Its proof is rather involved and uses proven cases of the automorphic base change and results

of Harris-Taylor on local Langlands correspondence. We also remark that to prove this result it is

necessary to work with the full group GQ,S and not with its maximal solvable quotient. We deduce

an immediate corollary:

Corollary 2.6. Let K be a number �eld, p, ` two di�erent rational primes, S a set of primes of K,

such that S � Sp Y S` Y S8. Then for any p P Sp and p̄ P SppKSq lying over p, the map

GKp{Kp
� Dp̄,KS{K � GK,S

is injective.

Proof. Let S0 :� tp, `,8u. Then S0pKq � S and QS0 � KS0pKq � KS . By Theorem 2.5 of Clozel-

Chenevier, QS0{Q realizes the maximal local extensions at p, i.e., for any extension p̄0 of p to QS0 ,

the �eld QS0,p̄0 is algebraically closed. Hence for any p̄ P SppKSq with restriction p̄0 to the sub�eld

QS0 , the �eld KS,p̄ � QS0,p̄0 is also algebraically closed. This �nishes the proof. �

Using this, we deduce from Proposition 2.4 the following analog of [8] 12.1.4 for GS :
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Corollary 2.7.

(i) If p P O�
K,S , p̄ P pSf rSpqpKSq and H � Dp̄ is a closed subgroup, such that H XDp̄,p � Dp̄,p

is open for some p-Sylow subgroup Dp̄,p � Dp̄, then NGS
pHq � Dp̄.

(ii) Assume that at least two rational primes lie in O�
K,S. Then the intersection of two distinct

decomposition subgroups in GS of primes in Sf pKSq is not open in any of them.

Proof. (i): Let x P NGS
pHq. Then H � xHx�1 � xDp̄x

�1 � Dxp̄. Thus Dp̄XDxp̄ � H contains an

open subgroup of a p-Sylow subgroup of Dp̄. Proposition 2.4 implies xp̄ � p̄, i.e., x P Dp̄.

(ii): By Proposition 2.4, the only case to consider, is Sp Y S` � S, p̄ P Sp, q̄ P S` with p � ` (and

there is no further prime to compare Dp̄ with Dq̄). Assume Dp̄ XDq̄ � Dp̄ is open. By Corollary

2.6, Dp̄ resp. Dq̄ is isomorphic to the absolute Galois group of a p-adic resp. `-adic �eld. Hence also

the open subgroup Dp̄ XDq̄ of Dp̄ is isomorphic to a Galois group of a p-adic �eld. Hence Dp̄ XDq̄

contains free pro-p-subgroups of any �nite rank. But Dq̄ does not, and we get a contradiction. �

2.4. Intersection of decomposition subgroups at good primes. Let K be a number �eld and

S � SpYS8 a �nite set of primes. Arguments in this section make only use of abelian p-extensions,

so we work with Gab
S ppq instead of GS . Let Kab

S ppq denote the corresponding sub�eld of KS . For

short, we write Dp̄ for Dp̄,Kab
S ppq{K . We consider the intersections of decomposition subgroups at

primes outside S. Observe �rst that if p̄ P ΣKab
S ppqrS, then we have natural surjections:

Ẑ � Dp̄ � Zp.
Indeed, the �rst surjection holds, since p̄|K is unrami�ed with �nite residue �eld and the second due

to the assumption on S and the existence of the cyclotomic p-extension. We will use the in�nite

version of the Chebotarev density theorem to prove the following result. Let δK denote the Dirichlet

density on K.

Proposition 2.8. Let p be a rational prime, S a �nite set of primes of K with SpYS8 � S. Assume

that K is not totally real. Let p̄ P ΣKab
S ppqrS and p � p̄|K . Then there is a set Tp � ΣK rS with

δKpTpq � 1, such that for all q P Tp and all extensions q̄ of q to M , the following holds:

Dp̄,p XDq̄,p � 1.

In particular, the intersection of Dp̄ and Dq̄ is not open in any of them.

Proof. Since K is not totally real, r2pKq ¥ 1 and hence rkZp Gab,p
S ¥ 2 by [8] 10.3.20. Let H � Z2

p

be some quotient of Gab
S ppq with corresponding �eld L � Kab

S ppq, such that p is not completely split

in L (such quotient exists due to the cyclotomic extension). Since H is torsion-free, this implies

that the composition Dp̄,p ãÑ Gab
S ppq� H is injective, i.e., Dp̄,p � Dp̄,L{K is an isomorphism.

We have Zp � Dp̄,L{K � H. Consider H ãÑ H bZp Qp, and let N :� H X pDp̄,L{K bZp Qpq, the

intersection taken in HbZp Qp. Then N being compact and closed subgroup of Dp̄,L{KbZp Qp � Qp

is isomorphic to Zp. Let µ be the Haar measure on H, such that µpHq � 1. Then µpNq � 0 and

hence µpH rNq � 1 and µpBpH XNqq � µpNq � 0. By Chebotarev's density theorem for in�nite

extensions, the set Tp of primes of K, lying outside S, whose Frobenius lies in H rN has density

1, and thus satis�es the requirements of the proposition. �
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3. Modified argument of Neukirch

In this section we prove Theorem 1.1. Therefore we use a modi�cation of Neukirch's argument

involving Brauer groups (cf. [6] Theorem 1). From now on until the end of this section, we perma-

nently assume that K is a number �eld, S � S8 is a �nite set of primes of K, that there are at

least two rational primes under S and that p denotes one of them.

3.1. Local invariants. For convenience we recall brie�y the local situation. Local �elds are not

anabelian (cf. [8] Remark before 12.2.7). This means that one can construct two non-isomorphic

local �elds κ � κ1 with isomorphic absolute Galois groups: Gκ � Gκ1 . Nevertheless, the following

invariants of κ can be recovered from Gκ: the characteristics charκ of κ and char κ̄ of the residue

�eld κ̄, the cardinality 7κ̄ of κ̄, the absolute degree rκ : Qps, if κ is p-adic, the inertia and the wild

inertia subgroups Vκ � Iκ � Gκ, the Frobenius class Frobκ P Gκ {Iκ, the multiplicative group λ� of

any �nite extension λ{κ, the cyclotomic character χcycl on Gκ.

These invariants can be recovered using the cohomology with �nite coe�cients of Gκ, the local

reciprocity law and the structure of the tame quotient of Gκ. This material is essentially covered

by [8]. Further we have a (reformulation of a) nice lemma, proven by Neukirch:

Lemma 3.1 (cf. [6] Korollar 1). Let L,M be two local �elds with L p-adic, and assume an injection

GL � GM is given. Then M is p-adic too, and GL is of �nite index in GM . Further rM : Qps ¤

rL : Qps.

Proof. A proof can be found at the end of the proof of [8] 12.1.9. �

3.2. Some lemmas.

Lemma 3.2. Let p be a rational prime. Let Gκ be the absolute Galois group of a local �eld κ,

H � Gκ a subgroup of p-decomposition type. Then κ is not p-adic.

Proof. Suppose κ is p-adic. First, we choose some H � U � Gκ with last inclusion open, such that

the image of H in Uppq is not (pro-)cyclic. Indeed, choose an open normal subgroup V �Gκ such

that H{HXV is not (pro-)cyclic. Then let U be the preimage under Gκ � Gκ {V of the p-subgroup

H{H X V .

Now, by [8] 7.5.11, Uppq is either free or a Demushkin group of rank rλ : Qps � 2 ¡ 2, where λ is

the local �eld corresponding to U . In both cases Uppq, being of �nite cohomological dimension, is

torsion-free, hence the image of H in Uppq is torsion-free, hence H embeds into Uppq (using Lemma

2.2, one sees that the kernel of the map H Ñ Uppq can only be the trivial subgroup of H). Now,

Uppq can neither be free: this contradicts cdpH � 2, nor a Demushkin group of rank ¡ 2: this

contradicts Lemma 3.3. This �nishes the proof. �

Lemma 3.3. Assume Hm, Hn are two Demushkin pro-p-groups of ranks m,n ¥ 2 respectively. If

there is an inclusion Hm � Hn, then it is automatically open and m � pHn : Hmqpn � 2q � 2. In

particular, m ¥ n.

Proof. If Hm � Hn is open, then m � pHn : Hmqpn� 2q � 2 ¥ n, which is well-known (cf. [3] or [1]

for a purely group-theoretic proof). If Hm � Hn is not open, then p8 divides the index pHn : Hmq

and [8] Chap. III �7 Ex.3 implies that cdpHm   cdpHn, which is absurd, since both numbers are

equal to 2. �
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In the original proof Neukirch used the following fact: let H � GS be a closed subgroup, which

is isomorphic to the absolute Galois group of a local �eld of characteristic 0. If an open subgroup of

H is contained in a decomposition subgroup Dp̄ of a prime p̄ P S, then also H � Dp̄. Unfortunately,

this easy fact can not be applied to Theorem 1.1, since we do not know in general, whether the

groups Dp̄ are isomorphic to absolute Galois groups of local �elds for p̄ P Sf . However, a more

precise treatment involving p-Sylow subgroups of decomposition subgroups is available.

Lemma 3.4. Let H � GS be a closed subgroup of p-decomposition type. Assume that there is an

open subgroup H0 of H with H0 � Dp̄ for some p̄ P Sf . Then H � Dp̄.

Proof. Taking the intersection over all conjugates of H0 in H, we can assume H0 to be normal

in H. By Lemma 2.2, H0 is of p-decomposition type. Since two rational primes lie in O�
K,S , the

decomposition groups of primes in Sp � S are isomorphic to absolute Galois groups of local p-adic

�elds. Hence by Lemma 3.2, p̄ R Sp. Further, H0 is a pro-p-subgroup of Dp̄, hence contained in a

pro-p-Sylow subgroup Dp̄,p, which is again of p-decomposition type, since p̄ R Sp. Thus, H0 � Dp̄,p

are both of p-decomposition type and the inclusion is open by Lemma 2.2. Since H normalizes H0,

Corollary 2.7(i) implies H � Dp̄. �

3.3. Characterization of decomposition subgroups. Recall that in Section 2.1 we associated

to any group H � Zp 
 Zp of p-decomposition type a character χH : H Ñ Z�p , which describes the

action of the �rst Zp on the second. Recall that χp denotes the p-cyclotomic character on GS . For

any open subgroup U � GS , let πp,U denote the natural projection

πp,U : U � ClSpUq{p. (3.1)

Then we have the following criteria for a subgroup of p-decomposition type of GS to lie in a

decomposition subgroup of a prime.

Proposition 3.5. Let H � GS be a closed subgroup of p-decomposition type. The following are

equivalent:

(a) H � Dp̄ for some p̄ P Sf rSp.

(b) For some open subgroup H0 � H, χp|H0 � χH0.

If moreover µp � K, then they are also equivalent to

(c) For H the following condition holds:

(*)H For any U � GS open: H � U ñ H � kerpπp,U : U � ClSpUq{pq.

The prime p̄ in (a) is unique.

Proof. If H � Dp̄, Dq̄ with p̄, q̄ P Sf rSp, then H � Dp̄,p, Dq̄,p for some p-Sylow-subgroups, which

are again of p-decomposition type. Hence by Lemma 2.2(ii), the last inclusions are open. Proposition

2.4 implies then p̄ � q̄. This proves the uniqueness of p̄ in (a).

(a) ñ (b): After replacing GS by an appropriate open subgroup containing H, we can assume

H � Dp̄,p � Zp 
 Zp is a p-Sylow subgroup of Dp̄. Then the �rst Zp acts on the second as

the unrami�ed quotient on the inertia subgroup, i.e., by the p-cyclotomic character. This means

χH � χp|H .

(b) ñ (a): By Lemma 3.4 we can assume that K is totally imaginary. Again by Lemma 3.4 it is

enough to show that H0 � Dp̄ for some p̄ P Sf . First we claim that the restriction map

H2pGS , µp8q Ñ
à

pPSpKq

H2pDp, µp8q,
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is injective. Interpreting elements of X1pGS ,Z{pnZq as homomorphisms GS Ñ Z{pnZ, which
are trivial on the decomposition groups at S, we see from [8] 8.3.21(ii) that X1pGS ,Z{pnZq �
pClS {p

nq_. Hence the kernel of the map which is claimed to be injective is by Poitou-Tate duality

equal to:

X2pGS , µp8q � limÝÑ
n

X2pGS , µpnq � limÝÑ
n

rX1pGS ,Z{pnZq_s

� rlimÐÝ
n

X1pGS ,Z{pnZqs_ � rlimÐÝ
n

pClS {p
nq_s_ � 0,

the last equality being true by �niteness of the Hilbert class �eld and as the transition maps in the

inverse limit are multiplications by p. This proves our claim.

Now we can do the same for any open subgroup U � GS , and pass to the direct limit over all open

U containing H0. LetM denote the �xed �eld of H0. By exactness of limÝÑ and some straightforward

abstract nonsense we obtain:

0 Ñ H2pH0, µp8q Ñ
¹

pPSpMq

H2pDp,KS{M , µp8q. (3.2)

By (b), χp|H0 � χH0 . Thus H2pH0, µp8q � Qp{Zp. From the sequence (3.2), there is a prime p̄ P Sf
with H2pDp̄,KS{M , µp8q � 0. We claim that the prime p � p̄|M is indecomposed in KS{M , i.e., that

H0 � Dp̄,KS{M � Dp̄. Therefore, consider an open subgroup H 1 � H0 with corresponding �xed �eld

M 1. For any open H 1 � U � GS with corresponding �xed �eld L, let Tp,H 1pUq be the (�nite) set of

all primes of L lying under a prime p1 P SppM
1q. Then we have the sequence

H2pU, µp8q Ñ
à

qPTp,H1 pUq

H2pDq,KS{L, µp8q Ñ 0,

which is exact by [8] 9.2.1 (after passing to the limit over all �nite submodules), since there are still

non-archimedean primes in SpLq, which do not enter the index set of the direct sum. Passing to

the limit over all open U containing H 1 gives the exact sequence:

H2pH 1, µp8q Ñ
à

p1PSppM 1q

H2pDp1,KS{M 1 , µp8q Ñ 0. (3.3)

Since χp|H 1 � χH0 |H 1 � χH 1 , we have H2pH 1, µp8q � Qp{Zp. Further, H2pDp1,KS{M 1 , µp8q � 0. In

fact, Dp1,KS{M 1 is conjugate to an open subgroup of Dp̄,KS{M . But since H2pDp̄,KS{M , µp8q � 0,

also H2pV, µp8q � 0 for any open subgroup V � Dp̄,KS{M (this is an easy fact on p-decomposition

groups). By counting the coranks in (3.3) it follows that there is only one prime lying over p in any

�nite extension M 1{M . Hence p̄|M is indecomposed.

Since H is of p-decomposition type and the groups Dq̄ with q̄ P Sp are isomorphic to absolute

Galois groups of local p-adic �elds by Corollary 2.6 (since two rational primes lie under S), Lemma

3.2 implies p̄ R Sp.

(a) ñ (c): Let H � U � GS with last inclusion open. Consider the commutative diagram:

H �
� / Dp̄ X U �

� /

����

U

���� $$ $$
pDp̄ X Uqab // Uab // // ClSpUq{p.
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Since the composition of the maps in the lower row is zero by class �eld theory,

H � Dp̄ X U � kerpU � ClSpUq{pq,

i.e., (*)H holds.

(c) ñ (a): Assume now (*)H holds. For any U � H open in GS with corresponding �eld L, we

have µp � L, and hence by Poitou-Tate duality:

X2pU,Z{pZq �X1pU, µpq
_ �X1pU,Z{pZq_ � pClSpUq{pq

__ � ClSpUq{p.

This gives us the exact sequence:

0 Ñ ClSpUq{pÑ H2pU,Z{pZq Ñ
à

pPSpUq

H2pDp,KS{L,Z{pZq.

Set M � pKSq
H and consider the limit of these sequences over all open U � H:

0 Ñ limÝÑ
H�U�GS

ClSpUq{pÑ H2pH,Z{pZq Ñ
¹

pPSpMq

H2pDp,KS{M ,Z{pZq.

This sequence is exact. We claim that limÝÑH�U�GS
ClSpUq{p � 0. For an open H � U � GS , let

U 1 :� kerpU � ClSpUq{pq. By the S-version of the principal ideal theorem, which states that any

ideal class in ClSpUq{p gets trivial in the sub�eld of the Hilbert class �eld corresponding to the

quotient ClpUq � ClSpUq{p (cf. e.g. [5] Theorem 8.11), the map ClSpUq{p Ñ ClSpU
1q{p, induced

by inclusion on ideals, is zero. On the other side, U 1 appears in the index set of the limit due

to (*)H . Thus limÝÑH�U�GS
ClSpUq{p � 0. Now we can conclude as in the (b) ñ (a) part (with

µp8-coe�cients replaced by Z{pZ), exactly as in the original argument of Neukirch [6] Theorem

1. �

Remark 3.6. With exactly the same proof (except for the uniqueness statements, which follow

from Lemma 3.1 and Corollary 2.7(ii) instead from Lemma 3.4 as above), the same criteria as in

the proposition hold for H if one assumes it to be a closed subgroup of GS , which is isomorphic to

the absolute Galois group of a local �eld of characteristic zero instead of a group of p-decomposition

type.

3.4. Proof of Theorem 1.1.

Proof of (i)ù (ii). Since we want to reconstruct the p-cyclotomic character χp only on an open

subgroup of GS , we can assume µp � K and K totally imaginary. Observe that χp on the local

groups Dp̄ with p̄ P Sp is determined by the group structure, since Dp̄ is the absolute Galois group

of a local �eld in this case (cf. Section 3.1). If p̄ P Sf rSp, then Dp̄,p ãÑ Dp̄ � Dp̄ppq is bijective; χp
is determined on Dp̄,p (in fact, it is equal to the character associated to the p-decomposition group

Dp,p); and χp factors through Dp̄ � Dp̄ppq. Thus χp is in this case also determined on Dp̄. We have

the following exact sequence from class �eld theory ( [8] 8.3.21(ii)):

0 Ñ O�
K,S Ñ

¹
pPSpKq

Dab
p̄ Ñ Gab

S Ñ ClSpKq Ñ 0. (3.4)

The data given by (i) determine this sequence, since they determine the map in the middle. Since

the global cyclotomic character factorizes through Gab
S , it is determined by the local ones on the

open subgroup kerpGS � ClSpKqq of GS . �
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Under the additional assumption that the decomposition groups at Sf are isomorphic to absolute

Galois groups of local �elds of characteristic zero, the proof of (i)ù (ii)' works similarly and (ii)'

ù (ii) and (iii)ù (iii)' are immediate.

Proof of (i)ù (iii). Assume the embeddings pιp̄ : Dp̄ ãÑ GSqp̄PSf
are given. Then they are also

given for any open subgroup U � GS . Let U be such that the corresponding �eld L is totally

imaginary, i.e., the decomposition groups of archimedean primes are trivial. Then the sequence

(3.4) for U determines ClSpUq as the quotient of U by the closure of the normal subgroup generated

by the commutator and the images of ιp̄,L for p̄ P Sf . �

Proof of (i)ù (iv). For any U , 7Sf pUq is equal to the number of the U -conjugacy classes of the

subgroups Dp̄XU and 7S8pUq is given by the number of real/complex embeddings, which is deduced

from pGS , pq by Proposition 4.1. �

Finally, we show the remaining directions, using criteria from Proposition 3.5.

Proof of (ii)ù (i), (iii)'ù (i), (iv)ù (i). Assume (ii), (iii)' or (iv) is given. As we know that

the decomposition subgroups of primes over p are isomorphic to absolute Galois groups of local

p-adic �elds and as such groups determine the residue characteristic, Remark 3.6 implies that we

can reconstruct them from the given data.

Lemma 3.7. Assume µp � K (and µ4 � K if p � 2) in Theorem 1.1. Then (iii)'ú (iv).

Proof. Since µp � K, we have for every U the exact sequence (pA means the p-torsion of the abelian

group A):

0 Ñ ClSpUq{pÑ H2pU,Z{pZq Ñ p H2pU,O�
Sq Ñ 0, and

dimFp p H2pU,O�
Sq � 7Sf pUq � 1,

since K is totally imaginary. Thus dimFp H2pU,Z{pZq � 1 � dimFp ClSpUq{p � 7Sf pUq. Since the

number on the left is known, the knowledge of one of the summands on the right is equivalent to

the knowledge of the other. �

Lemma 3.8. From the data in (iv) one can reconstruct the maps πp,U (cf. (3.1)) and for any

V � U � GS open, the maps ClSpUq{pÑ ClSpV q{p, which are induced by inclusion on ideals.

Proof. For any open U with corresponding �eld L, we can describe the Galois group of the maximal

abelian unrami�ed extension of L, which is completely decomposed in S. By class �eld theory, it is

canonically isomorphic to ClSpUq. In fact, an extension of L, corresponding to an open subgroup

V � U is completely decomposed in S, if and only if 7SpV q � pU : V q7SpUq. Observe that such

extension is automatically unrami�ed, since it is unrami�ed outside S, as all groups are subquotients

of GS , and also unrami�ed in S, being completely decomposed there. Thus if we set V0 :�
�
V V ,

where the intersection is taken over all open normal subgroups V � U , such that 7SpV q � pU :

V q7SpUq and the quotient U{V is abelian, then U{V0 � ClSpUq. Thus (iv) gives us the surjections

U � ClSpUq and in particular the surjections

πp,U : U � ClSpUq{p

(notice that (iii)' contains this information only implicitly!). Furthermore, for V � U � GS open,

the map ClSpUq Ñ ClSpV q induced by inclusion on ideals, is encoded in the group theory as the

map induced by the transfer map Uab Ñ V ab (cf. e.g. [7], after Proposition 6.13). �
12



Let now U � GS be an open (normal) subgroup, small enough, such that the corresponding

�xed �eld L contains the p-roots of unity and is totally imaginary. By Proposition 3.5, applied

to U , using Corollary 2.7(i) if necessary, we can decide, using the information given by (ii), (iii)'

or (iv) and Lemmas 3.7 and 3.8, whether a closed subgroup H � U of p-decomposition type is

contained in a decomposition subgroup of a prime in Sf rSp. By Lemma 2.3 and Lemma 3.4, the

maximal subgroups with this property are exactly the p-Sylow subgroups of the groups Dp̄,KS{L

with p̄ P Sf rSp. Thus we have reconstructed the set

SylppU, Sf rSpq :� tH � U : H is a p-Sylow-subgroup of Dp̄,KS{L with p̄ P Sf rSpu.

Now, U acts on this set by conjugation. We have an U -equivariant surjection (U acts trivially on

the right side):

ψ : SylppU, Sf rSpq� pSf rSpqpUq,

which sends H to the prime p̄|L (unique by Proposition 2.4!), such that H � Dp̄,KS{L. We want to

determine, when two elements have the same image under ψ. For H P SylppU, Sf rSpq such that

H � Dp̄,KS{L is a p-Sylow subgroup, consider the restriction map

resUH : H2pU,Z{pZq� H2pH,Z{pZq,
which is surjective, being equal to the composition

H2pU,Z{pZq� H2pDp̄,KS{L,Z{pZq
�
Ñ H2pH,Z{pZq,

in which the �rst map is surjective by [8] 9.2.1, since 7Sf pUq ¡ 1, and the second is an isomorphism,

since µp � L.

Lemma 3.9. Let H,H 1 P SylppU, Sf rSpq. Then:

ψpHq � ψpH 1q ô kerpresUHq � kerpresUH 1q.

Proof. Consider the commutative diagram with exact row:

0 //X2pU,Z{pZq // H2pU,Z{pZq

resUH **

// p
À

qPSpLq H2pDq,KS{L,Z{pZqq
Σ�0 //

��

0

H2pH,Z{pZq
where Σ � 0 means that we take the subspace of trace zero elements. The diagonal map factors

through the vertical one, since H P SylppU, Sf rSpq. From this sequence we see that if p � ψpHq,

then the kernel of resUH is the extension of the subspace p
À

qPSpLqr tpu H2pDq,KS{L,Z{pZqq
Σ�0 of

the space on the right side by X2pU,Z{pZq. Two such subspaces of H2pU,Z{pZq corresponding
to p resp. p1 are equal if and only if p � p1 (since we can assume Sp1 Y Sp2 � Sf pUq and hence

7Sf pUq ¥ 3). This �nishes the proof. �

The lemma gives a purely group-theoretical criterion to decide, whether two elements of SylppU, Sf rSpq

lie in the same �ber of ψ. If we de�ne an equivalence relation on SylppU, Sf rSpq by H � H 1 :ô

kerpresUHq � kerpresUH 1q, we get a bijective map induced by ψ:

SylppU, Sf rSpq{ �
�
ÝÑ pSf rSpqpUq.
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If U 1 � U � GS , then we get a (non-canonical!) mapping

α : SylppU
1, Sf rSpq Ñ SylppU, Sf rSpq,

which sends H 1 P SylppU
1, Sf rSpq to some H P SylppU, Sf rSpq, such that H 1 � H (there is at

least one by construction). If H 1 � H1, H2, then H1, H2 � Dp̄ for some p̄ by Proposition 2.4. In

particular, α induces a map

α : SylppU
1, Sf rSpq{ �Ñ SylppU, Sf rSpq{ �,

which is independent of the above choices. We obtain the following commutative diagram:

SylppU
1, Sf rSpq{ �

α

��

� // pSf rSpqpU
1q

��
SylppU, Sf rSpq{ �

� // pSf rSpqpUq,

where horizontal maps are bijections induced by ψ, and the vertical map on the right is the restriction

of primes.

If U � GS is normal, then GS acts on SylppU, Sf rSpq by conjugation. It is easy to see that

this action induces via ψ a GS-action on pSf rSpqpUq and that this last action coincides with the

action of GS on this set by permuting the primes. In this way we have reconstructed the projective

system of GS-sets tpSf rSpqpUq : U � U0, U � GSu, where U0 � GS is some open subgroup. Now

the decomposition subgroups of primes in Sf rSp are exactly the stabilizers in GS of elements in

the GS-set limÐÝU�U0,U�GS
pSf rSpqpUq. This �nishes the proof of Theorem 1.1. �

4. Invariants encoded in GS

In this section we discuss easy consequences of Theorem 1.1 and prove Proposition 1.3.

4.1. Recovering some global invariants. Let K,S be a number �eld together with a �nite set of

primes. Assume there is a rational prime p with S � SpYS8. Which invariants of K are encoded in

GS resp. pGS , pq resp. pGS , p, χpq? The next two propositions determine some of these invariants.

Proposition 4.1. Let S be a �nite set of primes of K. Assume there is a rational prime p with

Sp Y S8 � S. Then pGS , pqù rK : Qs, r1pKq, r2pKq. If the Leopoldt conjecture is true for K and

for all rational primes, then GSù rK : Qs, r1pKq, r2pKq,NpSq.

Proof. First we show the last statement. So, assume Leopoldt is true for K and all rational primes.

We show that GS determines r2 � r2pKq and the set NpSq. For any rational prime p consider the

number rppq :� rkZp Gab
S ppq. The Leopoldt conjecture says that r2 � 1 � rppq if Sp Y S8 � S. If

Sp � S, then at least the cyclotomic Zp-extension is not contained in KS{K, thus in this case

rppq � rkZp Gab
S ppq   rkZp Gab,p

SYSp
� r2 � 1.

Since Sp � S for at least one p, we obtain r2 � maxptrppqu�1, and a prime lies in NpSq if and only

if rppq is maximal.

Now it remains to recover rK : Qs and r1. Once rK : Qs is known, r1 can be recovered as

rK : Qs � 2r2. To recover rK : Qs, observe that if K is totally imaginary, rK : Qs � 2r2 can be

recovered together with r2. If π : GS � Gab
S denotes the natural surjection, and U :� π�1pimprpp�

1qps : Gab
S Ñ Gab

S qq, then U � GS is open and L :� KU
S is totally imaginary. Indeed, L contains
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the p2-roots of unity, since they are contained in KS (p2 and not simply p is needed to cover the

case p � 2). Thus

rK : Qs � pGS : Uq�1rL : Qs � 2pGS : Uq�1r2pLq.

To show the �rst (unconditional) statement of the proposition, notice that once a prime p P NpSq
is known, one obtains r2pKq as the negative of the Euler characteristic �χpGS ,Z{pZq ( [8] 8.7.5)
and rK : Qs, r1pKq as above, without assuming Leopoldt. �

Proposition 4.2. Let K,S be a number �eld together with a set of primes, such that the decomposi-

tion groups at primes in Sf are isomorphic to absolute Galois groups of local �elds of characteristic

zero. Assume GS is given together with any one (or, equivalently, all) pieces of information from

Theorem 1.1. Then one can recover the following invariants of K and its extensions:

(i) For any U � GS open with corresponding �eld totally imaginary, the class number ClpUq.

(ii) For every U 1 � U � GS open, with corresponding �elds totally imaginary, the natural maps

ClpUq Ñ ClpU 1q.

(iii) For U � GS small enough, with L � pKSq
U , the roots of unity µpLq.

(iv) For any U � GS open with L � pKSq
U , the absolute inertia and rami�cation degrees fp,L{Q`

and ep,L{Q`
of any p P Sf pLq (p lies over `).

(v) The set NpSq.
(vi) The numbers rK : Qs, r1pKq, r2pKq.

Proof. (i) + (ii): If K is totally imaginary, one obtains the group GH � GKH{K as the quotient

of GS by the closure of the normal subgroup generated by the inertia subgroups of all Dp̄, p̄ P Sf .

Then canonically Gab
H � ClpKq. The maps between two class groups are given by the transfer maps

in the class �eld theory.

(iii) follows from (i)ú (ii)1 in Theorem 1.1.

(iv) follows from the anabelian properties of local �elds listed in Section 3.1.

(v): for any rational prime `, let np`q :�
°

pPSXS`

rKp : Q`s. This number can be reconstructed from

the given data. Thus, ` P NpSq ô np`q is maximal. Finally (vi) follows from (v) and Proposition

4.1. �

4.2. The numbers 7Sf pUq.

Proof of Proposition 1.3. Recall that χp denotes the p-cyclotomic character, and that µp � K

implies that its image lies in kerpAutpQp{Zpq � Autp1
pZ{Zqq. Assume χ : GS Ñ Z�p induces

the trivial action on 1
pZ{Z. We claim �rst that if χ|Dp̄ � χp|Dp̄ for all p̄ P S, then χ � χp on

GS . Indeed, χ, χp factor both through Gab
S . Using sequence (3.4), χ�1 b χp factors through a map

ClSpKq Ñ Z�p , i.e., its image is �nite, and on the other side the images of χ and χp lie in the

subgroup kerpAutpQp{Zpq � Autp1
pZ{Zqq � Zp, i.e., the image of χ�1 b χp does too, and hence is

torsion-free. Thus χ�1 b χp is the trivial character of GS , or with other words χ � χp on GS .

The last part of the Tate-Poitou sequence for the GS-modules Z{pnZpχq gives, after changing to

the limit over all n ¡ 0, the following exact sequence:

0 ÑX2pGS ,Qp{Zppχqq Ñ H2pGS ,Qp{Zppχqq Ñ
à

pPSpKq

H2pDp,K ,Qp{Zppχqq Ñ coker Ñ 0,
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where

coker � limÝÑ
n

rH0pGS ,
1

pn
Z{Zpχ�1 b χpqq

_s � rlimÐÝ
n

H0pGS ,
1

pn
Z{Zpχ�1 b χpqqs

_ �

� rH0pGS ,Zppχ�1 b χpqqs
_ �

#
Qp{Zp if χ � χp,

0 if χ � χp

(the last equality holds, since the restriction map AutpZpq Ñ AutppnZpq is an isomorphism; thus if

χ�1 b χp is trivial on some open subgroup of Zp, then it is also trivial on Zp). By our assumption,

the corank (i.e., the Zp-rank of the Pontrjagin-dual) of the �rst term in the sequence is zero. Thus

the corank of the third term is equal to the sum of the coranks of the second and the last terms.

There are two cases:

Case χ � χp. Then the corank of the third term is 7Sf pKq and the corank of the last term is 1.

Thus the corank of the second term is 7Sf pKq � 1.

Case χ � χp. Then by the claim above, χ|Dp̄ � χp|Dp̄ for at least one p̄ P Sf . By Lemma 4.3, the

corank of the third term is ¤ 7Sf pKq � 1, and the corank of the last term is 0. Thus the corank of

the second term is ¤ 7Sf pKq � 1. The proposition follows. �

Lemma 4.3. Let κ be a local �eld, p � charpκq an odd prime. Let χ : Gκ Ñ Z�p � AutpQp{Zpq be
a character. The following are equivalent:

(i) H2pGκ,Qp{Zppχqq � 0.

(ii) χ is the p-part of the cyclotomic character.

Proof. Let χp denote the p-part of the cyclotomic character of Gκ. The local duality gives:

H2pGκ,Qp{Zppχqq � limÝÑ
n

H2pGκ,Z{pnZpχqq � limÝÑ
n

rH0pGκ,Z{pnZpχ�1 b χpqq
_s

� rlimÐÝ
n

H0pGκ,Z{pnZpχ�1 b χpqqs
_ � rH0pGκ,Zppχ�1 b χpqqs

_

�

#
Qp{Zp if χ � χp

0 if χ � χp.

The last equality holds by the same reasoning as in the proposition. �

Remark 4.4. Observe that the proof of Proposition 1.3 does not determine χp directly as the

character with the maximal corank of H2pGS ,Qp{Zppχqq, but only intrinsically by determining the

numbers 7SpUq and using Theorem 1.1.
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