ON SOME ANABELIAN PROPERTIES OF ARITHMETIC CURVES

A. IVANOV

ABSTRACT. In this paper we generalize an argument of Neukirch from birational anabelian ge-
ometry to the case of arithmetic curves. In contrast to the function field case, it seems to be
more complicated to describe the position of decomposition groups of points at the boundary of the
scheme Spec Ok, s, where K is a number field and S a set of primes of K, intrinsically in terms of the
fundamental group. We prove that it is equivalent to give the following pieces of information addi-
tionally to the fundamental group 71 (Spec Ok, s): the location of decomposition groups of boundary
points inside it, the p-part of the cyclotomic character, the number of points on the boundary of
all finite étale covers, etc. Under a certain finiteness hypothesis on Tate-Shafarevich groups with
divisible coefficients, one can reconstruct all these quantities simply from the fundamental group.

1. INTRODUCTION

Let K be a number field, K a fixed algebraic closure and Gg the absolute Galois group. In [6]
Neukirch showed, using an argument involving the Brauer groups of K and its extensions, that the
group Gg determines intrinsically, how the decomposition groups Dy of primes of K lie inside it. In
contrast to the case of curves over finite fields, which is now well-understood, in particular, due to
Tamagawa [10], there is almost nothing known about the case of arithmetic curves. Not even this
Brauer group argument of Neukirch generalizes from the birational to the arithmetic situation, i.e., if
one replaces Spec K by Spec Ok g, where S 2 Sy is a finite set of primes of K and considers only the
decomposition groups of primes in S. The reason for this failure is the obstruction given by the non-
vanishing second Tate-Shafarevich group. We are interested in the question, how much information
about the decomposition groups of primes in S is encoded intrinsically in Gg := m;(Spec Ok g).
It seems to be possible, at least using some additional information, to reconstruct the position of
decomposition groups of primes in S inside Gg. Essentially, it turns out that it is equivalent to
know one of the following data: the embeddings Dy < Gg for p € Sy := S\ Sy; the cyclotomic
character on Gg; the S-class number of all finite subfields Kg/L/K; the number $S(L) for all these
L. The results of this paper are part of author’s Ph.D. thesis [4].

Theorem 1.1. Let K be a number field, S 2 Sy a finite set of primes. Assume that at least two
rational primes lie in O?(,Sf and p is one of them. Assume (Gg,p) are given. The knowledge of one
of the following extra structures is equivalent to any other:
(i) The embeddings v5: Dy — Gg for p € Sy.
(ii) The cyclotomic p-character x,: U — Z; on some open U S Gg.
(iii) For all open U < Gg with totally imaginary fized field L, the group Clg(L).
(iii)" For all open U < Gg with totally imaginary fized field L, the number §Clg(L)/p.
(iv) For all open U € Gg with fized field L, the number §S(L).
Assume that the decomposition subgroups at primes in Sy are isomorphic to absolute Galois groups of
local fields of characteristic zero. Then the knowledge of the above is also equivalent to the knowledge
of the following:



(i)’ The cyclotomic character on some open subgroup U S Gg.

Observe that in the arithmetic situation, to give Gg together with the cyclotomic character,
corresponds in some sense in the geometric situation over a finite field, to give the fundamental
group of a curve together with the attached outer Galois representation. The assumption in the
theorem, that there are at least two rational primes lying under .S, implies by the work of Clozel
and Chenevier [2| Theorem 5.1, that the decomposition groups in Gg of primes in S,, U Sy, are
isomorphic to absolute Galois groups of local fields. It does not imply in general that this holds for
all primes in S (but it still does for primes lying in the maximal subset of S, defined over a totally
real subfield: cf. [2] Remark 5.3(i)).

Remark 1.2. We make the following observation. If one of the data in the theorem is determined
with respect to an open subgroup Uy € Gg, then it is also determined for Gg. Indeed, it is enough
to see this for (i). So, if the embeddings into Uy of the decomposition groups at Sy inside U
are given, then (using Corollary [2.7)ii) below) the whole projective system of continuous Gg-sets
LiLnUgUO,U<1GS S¢(U) is determined (here, we write S;(U) for S;(L) if L = KY), and one obtains
the decomposition groups Dy © Gg as the stabilizers of points under the action of Gg on it.

Of all the quantities listed in the theorem, the numbers §S(L) seem to be the most accessible
ones. First of all, the numbers §S¢,(U) are determined by (Gg, p) (cf. Proposition [£.1)). Proposition
given below, allow to reconstruct the numbers §5;(U) for all open U < Uy < Gg with Uy small
enough, under a certain finiteness assumption. Then Remark allows to reconstruct the numbers
45 (U) for all U < Gg open.

Proposition 1.3. Let K, S be a number field together with a set of primes. Let p € (’)}“(75. Assume
that p is odd and p, < K. Assume, the following holds: for any character x: Gs — Z; =
Aut(Qp/Zy) whose restriction to %Z/Z is trivial, the group I?*(Gg, Qp/Zy(X)) is finite. Then for
any such x, the group Hz(GS,Qp/Zp(X)) is of finite corank and

#S;(K) = 1 + max, corank(H?*(Gg, Q,/Zp(x)))- (1.1)

This finiteness assumption on I1%(Gg, Q,/Zy(x)) has the following (at least partial) evidence: if
X is the cyclotomic p-character x,, then III?(Gg, Q,/Z,(x)) = 0 is easy to compute and for y = X;’?k
with k € Z ~ {1} Soulé showed in [9] using K-theory, that H*(Gg, Q,/Z,(x)) = 0. Compare also [§]
10.3.27 and the discussion preceding it.

Directly from Theorem [I.I] and Proposition [I.3] we get:

Corollary 1.4 (Local correspondence at the boundary). For i = 1,2, let K;,S; be a number field
together with a finite set of primes containing Ss«. Assume that at least two rational primes lie
completely under S;, and assume that one of them, denoted p, lies under both. Let x;, denote the
p-cyclotomic character on G, s,. Let

o GK175'1 ? GK2752

be a topological isomorphism, such that xa2,p © olu, = X1,plv, for some open subgroup Uy S Gk, s,
holds. Then for any p1 € Sf(Kis,), there is a unique prime o*(p1) € S§(Ka,s,), such that o(Dg,) =
D« 5,)- This defines a G, s, -equivariant bijection

o*: 81 (K1,5,) — S2,5(Kas,),
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which induces compatible bijections

oy, : S1.p(L1) = S2,4(L2),

for any L1/K; finite with corresponding subgroup Uy € Gk, s, and Uz = o(Uy) with corresponding
field Lo. If the decomposition groups at primes in Siy are isomorphic to absolute Galois groups
of local fields of characteristic zero, then oy, preserves the residue characteristics and the absolute
degrees of primes.

Moreover, if p is odd and if for i = 1,2, there is an open subgroup U; < Gk, s,, such that for
all characters x: U; — Z,, with torsion-free image, the group WI2(U;, Qp/Zp(x)) is finite, then the
condition x2,p © oly, = X1p|lU, 15 automatically satisfied.

Notation. Our notation will essentially coincide with the notations in [8]. We collect some of
the most important notations here. For a pro-finite group G we denote by G(p) its maximal pro-p
quotient and by G a p-Sylow subgroup. For a subgroup H € G, we denote by Ng/(H) its normalizer
in G.

For a Galois extension M /L of fields, G/, denotes its Galois group. By K we always denote an
algebraic number field, that is a finite extension of Q. If L/K is a Galois extension and p is a prime
of L, then Dy 1/ © Gr/i denotes the decomposition subgroup of p. If p := p|k is the restriction
of p to K, then we sometimes allow us to write Dy or Dy instead of Dy 1k, if no ambiguity can
occur. We write X for the set of all primes of K and S, T will usually denote subsets of Y. If
L/K is an extension and S a set of primes of K, then we denote the pull-back of S to L by Sz,
S(L) or S (if no ambiguity can occur). We write Kg/K for the maximal extension of K, which
is unramified outside S and Gg := Gk g for its Galois group. Further, for p < o0 a (archimedean
or non-archimedean) prime of Q, S, = S,(K) denotes the set of all primes of K lying over p and
Spi=5\ 5.

Let K, S be a number field and a set of primes. Then ng, 1 (K), r2(K) is the degree, the number
of real and of conjugate pairs of complex embeddings of K/Q and N(S) :=Nn Ok, i€, pE€ N(S)
if and omly if S, € S. Further, x,,: Gg — Z; denotes the cyclotomic p-character for p € N(S) and
Clg(K) the S-class group of K. If U € Gg is an open subgroup and L = (Kg)Y, then we sometimes
write Clg(U),S(U), etc. instead of Clg(L),1S(L), etc.

If (x),(y) are some sets of invariants of K, S (like, for example, (i),(ii) in Theorem [1.1)), then (x)
v (y) resp. (x) o (y) will have the following meaning: if the data in (x) are known, then we can
deduce the data in (y) from them resp. the knowledge of (x) and (y) is equivalent. In particular,
(x) v (y) implies that if two pairs (K;,S;),7 = 1,2 are given, with Gg, 5, = Gk,,s, and such that
the data in (x) coincide for i = 1,2, then also the data in (y) are coincide.

A local field means always a non-archimedean local field.

Outline of the paper. In Section [2] we study intersections of decomposition subgroups of different
primes inside Gg, which is the first step towards a proof of Theorem Section [3] is devoted to
the proof of Theorem [I.I] In Section [d] we prove Proposition and discuss which invariants of

K, S can be recovered from Gg (plus possibly some further information).

2. INTERSECTIONS OF DECOMPOSITION SUBGROUPS

Let S be a finite set of primes of K and let p,q be two primes of Kg lying over Sy. In this

section we investigate, under the assumption that S, U So S S, how big the intersection of the
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decomposition groups Dj, Dj inside Gg is. If S'is the set of all primes of K, then this intersection is
trivial by a theorem of F.K. Schmidt [8] 12.1.3. Its proof does not generalize to the case of restricted
ramification, so we use different arguments, all of which are simple applications of class field theory.
The main result of this section, which will be used later in the text is Corollary 2.7} It is an analog
of [8] 12.1.4 in the case of Gg. Finally, in Section we consider the case of primes p, q not lying
over S.

2.1. Groups of p-decomposition type. One of the most frequently used objects in our inves-
tigations will be the p-Sylow subgroup of an absolute Galois group of a local field with residue
characteristic # p. Such a group has a very special and easy structure: it is a non-abelian pro-p-
Demushkin group of rank two. Recall (cf. [8] 3.9.9) that a pro-p-group is called a Demushkin group,
if HY(G, Z/pZ) is finite, H*(G, Z/pZ) is one-dimensional over [F,, and the cup-product from the first
degree into the second is non-degenerate. To have a shortcut, we define:

Definition 2.1. A group of p-decomposition type is a non-abelian pro-p Demushkin group of rank
2.

By a theorem of Demushkin (cf. [8] 3.9.11) a one-relator pro-p-group G is a Demushkin group,
if and only if for some integers n > 1,¢ > 0 (assume for simplicity that ¢ # 2; for the case ¢ = 2,
cf. [8] 3.9.19), G is generated by x1,...,z, subject to one relation:

ri(x1, xe) (@, 24) . . . (Tn—1,T0) = 1,
where (x,y) = 2~ 'y lzy. The numbers n, ¢ are the rank and the invariant of G respectively. For a
group G of p-decomposition type we have n = 2 and hence ¢ # 0 (otherwise G would be abelian).
Thus G is of the form Z, x Z, with Z, — Aut(Z,) = Z; injective. We need a description of all
closed subgroups of groups of p-decomposition type.

Lemma 2.2. Let H be a group of p-decomposition type.

(i) A non-trivial closed subgroup of H is either isomorphic to Z, or is of p-decomposition type.
(ii) The open subgroups of H are exactly the subgroups of p-decomposition type.
(iii) H has a unique mazximal closed normal pro-cyclic subgroup, denoted H,. It is also the unique
closed normal subgroup, such that H/H,, is infinite pro-cyclic.
(iv) If N € H is open, then N, = N n H,,.

Proof. Let H be a group of p-decomposition type. (i)+(ii): one verifies immediately that a closed
subgroup N < H is either = 7Z, or open. It remains to show that an open subgroup N € H is of
p-decomposition type. Let H, < H be a closed normal subgroup of H, such that H/H, =~ Z,. One
obtains an exact sequence:

1-NnH,—>N->N/NnH,—1

with the first and the last term isomorphic to Z,. Hence this sequence splits and N = Z, x4 Z,, for
some ¢: Z, — Aut(Z,). Either the image of ¢ is {1} or ¢ is injective. In the first case N = Z, x Z,,
and in the second N is of p-decomposition type. The first case can not occur, as otherwise one
would have the contradiction 3 = scd,(N) < scd,(H) = 2. (iii): Let H, be as above. Assume
Zy, =~ Hy < H is normal and H; & H,,. Then

Hl/(Hl N Hn) —> H/H =~ Zp,
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ie, HH n H, = 1. Now H,, H; are two normal subgroups of H with trivial intersection, i.e.,
H, x Hi € H. But H,, x H| # Z, is not of p-decomposition type. This is a contradiction to (i).
Hence H,, is the unique maximal normal closed pro-cyclic subgroup of H.

Assume now, Hy<1 H is normal with H/Hy =~ Z, and Hy P H,,. As H,/Hyn H,, — H/Hy = 7Z,,
we get H, n Hy = 1. The same reasoning as above gives a contradiction. Thus Hs 2 H,. Then
Hy = H,, follows easily.

(iv): Since N € H is open, N & H,, and we have an inclusion 1 # N/N n H, — H/H,, we
obtain that N/N n H,, is infinite pro-cyclic. Thus by (iii), N n H,, = N,,. O

To a group H of p-decomposition type we can associate the character defining the semi-direct
product:
xu: H—» H/H, — ZZ = Aut(H,).

2.2. Local situation. Let s be a local field with residue characteristic £ and let G, be its absolute
Galois group. For p # £, the p-Sylow subgroups of the maximal tame quotient

~ 7 7

G >~ 7 x 2

of G, are of p-decomposition type, which can easily be seen directly. Consider now a p-Sylow
subgroup G, € G,. The composition

tr
G‘%ap - GR - GH

is injective, since p # ¢ and the kernel of the second map is a pro-f-subgroup. Thus G, is isomorphic
to a p-Sylow subgroup of G, and hence is of p-decomposition type.

2.3. Metabelian covers.

Lemma 2.3. Let K be a number field and S 2 .S, U Sy a set of primes of K. Let p € (S5~ Sp)(Ks)
and p = p|i. Let 9, denote the absolute Galois group of K, and 9,5, o p-Sylow subgroup. Then the
composition

O Y p — Y% - Ds — Gg

is injective. In particular, any p-Sylow subgroup of Dy is of p-decomposition type.

Proof. Since p ¢ S, we have 4, , = (%, p/ Zop) X Fp,p, Where both factors are isomorphic to Z, and
the second is the inertia subgroup. Due to the cyclotomic p-extension, which realizes the maximal
unramified p-extension at p and is unramified outside S, < S, the kernel of ¢ is contained in %, ;.
To show that ker(¢) = 1, it is enough to show that for any n > 0, there is a finite subextension of
Kg/K, whose ramification degree at p is p".

Therefore, let Lo/K be the Hilbert class field of K and set L := LoK((y~). This is an abelian
extension of K, unramified outside S,. The ideal p is on the one side unramified in L, and on the
other side principal (being principal already in Lg). Thus we can write

pOL = (€) = pip2. .. pr,
with € € O, and p; unequal prime ideals of Or. We can assume that p|r = p;. Since p € S, we
have € € O g, and the extension L(€'/P") is unramified outside S, u S, € S. But since py|p is
unramified, we have

Upy (6) =1,
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where vy, denotes the valuation corresponding to p;. Thus the local extension Ly, (¢/?")/Ly, is
tamely ramified of degree p™. O

Proposition 2.4. Let p # q € S¢(Kg), such that there is a rational prime p € (’);“(S S {p,d}" Choose
some p-Sylow subgroups Dp, S Dy resp. Dz, © Dg. Then Dpy n Dy, is not open in Dpy,. In
particular, Dy N Dg 1s not open in Dg.

Proof. By Lemma , D; p, resp. Dy, are groups of p-decomposition type. Let p = p|x, q = q|xk-
By going up to a finite extension, we can assume p # q. Observe that the extension constructed in
the proof of Lemma is Galois and unramified in q, as q ¢ S, U {p}. Thus if I. , € D. , denotes
the corresponding inertia subgroup, we have I3, n I3, = 1.

Now, assume Dj,;, n D5, © Dy is open. The second group is of p-decomposition type, hence
the first also is (Lemma ii)). Hence, again by Lemma [2.2[(ii), the inclusion Djp, N Dgp S Dy
is also open. The maximal normal pro-cyclic subgroup of D., is I.,. Thus by Lemma (iv)
applied to both inclusions, the maximal normal pro-cyclic subgroup of Dg, n Dy, is equal to
I p n D5y and to Dgjp n I, simultaneously, i.e., these two intersections are equal. This implies
Dgp Iy = Iyp N I3, = 1. But this group, being the maximal normal pro-cyclic subgroup of a
group of p-decomposition type must be isomorphic to Z,. This is a contradiction.

Finally, if Dy n Dy S Dj were open, then also Dg , " Dy S Dj . But Djj,n Dy is a pro-p-subgroup
of Dg, hence contained in a p-Sylow subgroup Dg , of it. Thus the intersection Dy ,n Dy, = Dj ;10 Dy
would be open in Djj, which contradicts to the already proven part of the proposition. O

Observe that all arguments up to now made only use of solvable extensions of K, thus we could
also replace Gg by its maximal solvable quotient. Before going on, we quote the following recent
result of Clozel and Chenevier:

Theorem 2.5 (Clozel-Chenevier, [2| Theorem 5.1). Let Sy be a set of finite primes of Q. Let
S =Sy u{oo}. If§Sy = 2, then for any pe S and p € S(Qg) lying over p, the map

G0, = Dros/e € Go,s
18 1njective.
Its proof is rather involved and uses proven cases of the automorphic base change and results
of Harris-Taylor on local Langlands correspondence. We also remark that to prove this result it is

necessary to work with the full group Gg s and not with its maximal solvable quotient. We deduce
an immediate corollary:

Corollary 2.6. Let K be a number field, p,{ two different rational primes, S a set of primes of K,
such that S 2 S, U Sy U Sww. Then for any p € Sy, and p € S,(Kg) lying over p, the map

Gryi, = Dprs/x S Grs
15 injective.
Proof. Let S := {p,{,0}. Then So(K) < S and Qs, S Kg k) € Ks. By Theorem of Clozel-
Chenevier, Qg,/Q realizes the maximal local extensions at p, i.e., for any extension pg of p to Qg,,

the field Qg, 5, is algebraically closed. Hence for any p € S,(Kg) with restriction po to the subfield
Qs,, the field Kg5 2 Qg, 5, is also algebraically closed. This finishes the proof. ]

Using this, we deduce from Proposition the following analog of 8] 12.1.4 for Gg:
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Corollary 2.7.

(i) If pe Ok 5,0 € (S5 N Sp)(Ks) and H S Dy is a closed subgroup, such that H n Dy, © Dy,
is open for some p-Sylow subgroup D, S Dp, then Nggy(H) S Ds.
(ii) Assume that at least two rational primes lie in Ol s- Then the intersection of two distinct
decomposition subgroups in Gg of primes in Sy(Kg) is not open in any of them.
Proof. (i): Let z € Ngy(H). Then H = xHz ! € 2Dpz ! = Dyp. Thus Dy n Dy 2 H contains an
open subgroup of a p-Sylow subgroup of Dj. Proposition implies zp = p, i.e., x € Dj.

(ii): By Proposition the only case to consider, is S, U Sy S S, p € Sp, g€ Sy with p # £ (and
there is no further prime to compare Dy with Dg). Assume Dy n Dy € Dj is open. By Corollary
2.6, Dy resp. Dy is isomorphic to the absolute Galois group of a p-adic resp. f-adic field. Hence also
the open subgroup Dy n Dy of Dy is isomorphic to a Galois group of a p-adic field. Hence Dy n Dg
contains free pro-p-subgroups of any finite rank. But Dg does not, and we get a contradiction. [J

2.4. Intersection of decomposition subgroups at good primes. Let K be a number field and
S 2 5, U Sy a finite set of primes. Arguments in this section make only use of abelian p-extensions,
so we work with G2°(p) instead of Gg. Let K2°(p) denote the corresponding subfield of Kg. For
short, we write Dy for Dy K2b(p)/K - We consider the intersections of decomposition subgroups at
primes outside S. Observe first that if p € EKgb(p) S, then we have natural surjections:

7 —» Dy — Zy.
Indeed, the first surjection holds, since p|x is unramified with finite residue field and the second due
to the assumption on S and the existence of the cyclotomic p-extension. We will use the infinite
version of the Chebotarev density theorem to prove the following result. Let dx denote the Dirichlet
density on K.

Proposition 2.8. Let p be a rational prime, S a finite set of primes of K with S, uSx S S. Assume
that K is not totally real. Let p € ZKgb(p) NS and p = p|ix. Then there is a set T, € L NS with
Ok (Tp) = 1, such that for all q € T, and all extensions q of q to M, the following holds:

Dﬁ7p N thp = 1'

In particular, the intersection of Dy and Dy is not open in any of them.

Proof. Since K is not totally real, r3(/K) > 1 and hence rkz, Gg,b’p > 2 by [8] 10.3.20. Let H = Z2
be some quotient of Gfgb (p) with corresponding field L € K2P(p), such that p is not completely split
in L (such quotient exists due to the cyclotomic extension). Since H is torsion-free, this implies
that the composition Dy ), — G?gb(p) — H is injective, i.e., Dpp — Dy 1/ is an isomorphism.

We have Z, = Dj 1/ © H. Consider H — H ®z, Qp, and let N := H n (D 1/x ®z, Qp), the
intersection taken in H ®z, Q. Then N being compact and closed subgroup of Dy 1/x ®z, Qp = Q)
is isomorphic to Z,. Let p be the Haar measure on H, such that u(H) = 1. Then u(N) = 0 and
hence u(H~ N) =1 and pu(d(H n N)) = u(N) = 0. By Chebotarev’s density theorem for infinite
extensions, the set T, of primes of K, lying outside S, whose Frobenius lies in  ~\ N has density

1, and thus satisfies the requirements of the proposition. O
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3. MODIFIED ARGUMENT OF NEUKIRCH

In this section we prove Theorem Therefore we use a modification of Neukirch’s argument
involving Brauer groups (cf. [6] Theorem 1). From now on until the end of this section, we perma-
nently assume that K is a number field, S 2 Sy is a finite set of primes of K, that there are at
least two rational primes under S and that p denotes one of them.

3.1. Local invariants. For convenience we recall briefly the local situation. Local fields are not
anabelian (cf. [8] Remark before 12.2.7). This means that one can construct two non-isomorphic
local fields x 2 k' with isomorphic absolute Galois groups: G, = G,/. Nevertheless, the following
invariants of x can be recovered from Gg: the characteristics char x of k and char & of the residue
field R, the cardinality §& of &, the absolute degree [k : Qp], if £ is p-adic, the inertia and the wild
inertia subgroups V,, c I, © Gy, the Frobenius class Frob, € G, /I, the multiplicative group \* of
any finite extension \/k, the cyclotomic character Xcya on Gy.

These invariants can be recovered using the cohomology with finite coefficients of Gy, the local
reciprocity law and the structure of the tame quotient of G,. This material is essentially covered
by [8]. Further we have a (reformulation of a) nice lemma, proven by Neukirch:

Lemma 3.1 (cf. [6] Korollar 1). Let L, M be two local fields with L p-adic, and assume an injection
Gr € G is given. Then M is p-adic too, and Gy, is of finite index in Gps. Further [M: Q,] <
[L: Qp].

Proof. A proof can be found at the end of the proof of 8] 12.1.9. O

3.2. Some lemmas.

Lemma 3.2. Let p be a rational prime. Let G, be the absolute Galois group of a local field k,
H < Gi a subgroup of p-decomposition type. Then k is not p-adic.

Proof. Suppose k is p-adic. First, we choose some H < U € G, with last inclusion open, such that
the image of H in U(p) is not (pro-)cyclic. Indeed, choose an open normal subgroup V < G, such
that H/H nV is not (pro-)cyclic. Then let U be the preimage under G, — G, /V of the p-subgroup
H/HAV.

Now, by [8] 7.5.11, U(p) is either free or a Demushkin group of rank [A : Q,] + 2 > 2, where X is
the local field corresponding to U. In both cases U(p), being of finite cohomological dimension, is
torsion-free, hence the image of H in U(p) is torsion-free, hence H embeds into U(p) (using Lemma
2.2 one sees that the kernel of the map H — U(p) can only be the trivial subgroup of H). Now,
U(p) can neither be free: this contradicts cd,H = 2, nor a Demushkin group of rank > 2: this
contradicts Lemma [3.3] This finishes the proof. O

Lemma 3.3. Assume H,,, H, are two Demushkin pro-p-groups of ranks m,n = 2 respectively. If
there is an inclusion H,,  H,, then it is automatically open and m = (Hy, : Hy,)(n —2) + 2. In
particular, m = n.

Proof. If Hy,, € H,, is open, then m = (H,, : Hy,)(n —2) + 2 = n, which is well-known (cf. |3] or [1]

for a purely group-theoretic proof). If H,, € H, is not open, then p® divides the index (H,, : Hy,)

and [8| Chap. III §7 Ex.3 implies that cd,H,, < cd,H,, which is absurd, since both numbers are

equal to 2. ]
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In the original proof Neukirch used the following fact: let H € Gg be a closed subgroup, which
is isomorphic to the absolute Galois group of a local field of characteristic 0. If an open subgroup of
H is contained in a decomposition subgroup Dy of a prime p € S, then also H < Dj. Unfortunately,
this easy fact can not be applied to Theorem since we do not know in general, whether the
groups Dy are isomorphic to absolute Galois groups of local fields for p € Sy. However, a more
precise treatment involving p-Sylow subgroups of decomposition subgroups is available.

Lemma 3.4. Let H € Gg be a closed subgroup of p-decomposition type. Assume that there is an
open subgroup Ho of H with Hy S Dj for some p € Sy. Then H € Dy.

Proof. Taking the intersection over all conjugates of Hy in H, we can assume Hg to be normal
in H. By Lemma Hy is of p-decomposition type. Since two rational primes lie in (’);‘(75, the
decomposition groups of primes in S, < S are isomorphic to absolute Galois groups of local p-adic
fields. Hence by Lemma , p ¢ Sp. Further, Hy is a pro-p-subgroup of Dp, hence contained in a
pro-p-Sylow subgroup Dj ,, which is again of p-decomposition type, since p ¢ Sp,. Thus, Hy S Dj,,
are both of p-decomposition type and the inclusion is open by Lemma [2.2] Since H normalizes Hy,
Corollary [2.7)(1) implies H < D. O

3.3. Characterization of decomposition subgroups. Recall that in Section we associated
to any group H = Z;, x Z, of p-decomposition type a character xp: H — Zj, which describes the
action of the first Z, on the second. Recall that x;, denotes the p-cyclotomic character on Gg. For
any open subgroup U € Gg, let m, 7 denote the natural projection

mpu: U — Clg(U)/p. (3.1)

Then we have the following criteria for a subgroup of p-decomposition type of Gg to lie in a
decomposition subgroup of a prime.

Proposition 3.5. Let H S Gg be a closed subgroup of p-decomposition type. The following are
equivalent:

(a) H € D5 for some pe S¢~.Sp.

(b) For some open subgroup Ho € H, Xp|H, = XH,-
If moreover u, < K, then they are also equivalent to

(¢) For H the following condition holds:
(*Ya For any U < Gg open: H €U = H < ker(m,y: U — Cls(U)/p).

The prime p in (a) is unique.

Proof. If H € Dp, Dy with p,q € Sf\ S, then H € D; ,, D5, for some p-Sylow-subgroups, which
are again of p-decomposition type. Hence by Lemma (ii), the last inclusions are open. Proposition
implies then p = q. This proves the uniqueness of p in (a).

(a) = (b): After replacing Gg by an appropriate open subgroup containing H, we can assume
H = D, = Zp x Z, is a p-Sylow subgroup of Dj. Then the first Z, acts on the second as
the unramified quotient on the inertia subgroup, i.e., by the p-cyclotomic character. This means
XH = Xp|H .

(b) = (a): By Lemma [3.4] we can assume that K is totally imaginary. Again by Lemma [3.4]it is
enough to show that Hy S Dy for some p € Sy. First we claim that the restriction map

HQ(GSmuPYJ) - @ HQ(Dpv Hp= )7
peS(K)
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is injective. Interpreting elements of II!(Gg,Z/p"Z) as homomorphisms Gg — Z/p"Z, which
are trivial on the decomposition groups at S, we see from [8] 8.3.21(ii) that II'(Gg,Z/p"Z) =
(Clg /p™)"¥. Hence the kernel of the map which is claimed to be injective is by Poitou-Tate duality
equal to:

HIQ(GSJ-L;DZ‘) = h_H}HIQ(GSaNp") = h_H)l[LUl(GS’Z/an)V]
= [lim ' (Gs, Z/p"2)]" = [im(Cls /p")*]" = 0,

the last equality being true by finiteness of the Hilbert class field and as the transition maps in the
inverse limit are multiplications by p. This proves our claim.

Now we can do the same for any open subgroup U S Gg, and pass to the direct limit over all open
U containing Hy. Let M denote the fixed field of Hy. By exactness of lim and some straightforward
abstract nonsense we obtain:

0 — H?(Ho, fipr) — H HZ(Dp,KS/M7 fip= ). (3.2)
peS(M)
By (b), xpla#, = XH,- Thus H?(H,, tp>) = Qp/Zy. From the sequence (3.2), there is a prime p € Sy
with HQ(D@KS/M, ppe) # 0. We claim that the prime p = p|ys is indecomposed in Kg/M, i.e., that
Hy = Dj gg/m € Dy. Therefore, consider an open subgroup H "' € Hy with corresponding fixed field
M'. For any open H' € U < Gg with corresponding fixed field L, let T, i/(U) be the (finite) set of
all primes of L lying under a prime p’ € Sp(M’). Then we have the sequence

HQ(Uv NP“‘) - @ HQ(DILKS/L’ MP‘T) — 0,
9€T, 1 (U)
which is exact by [8] 9.2.1 (after passing to the limit over all finite submodules), since there are still
non-archimedean primes in S(L), which do not enter the index set of the direct sum. Passing to
the limit over all open U containing H' gives the exact sequence:

Hz(Hl7ﬂpf‘) - (‘B Hz(Dp’,KS/M’vﬂpT‘) — 0. (3.3)
p’eSp(M')
Since Xp|a = X#o|m = x#/, we have H*(H', =) = Q,/Z,. Further, HQ(DPQKS/Mr,upf‘) #0. In
fact, Dy gg/m 18 conjugate to an open subgroup of Dy g /n- But since H2(D57KS/M,,upw) # 0,
also H2(V, p1p=) # 0 for any open subgroup V < Dp kg/nr (this is an easy fact on p-decomposition
groups). By counting the coranks in (3.3]) it follows that there is only one prime lying over p in any
finite extension M’/M. Hence p|ys is indecomposed.

Since H is of p-decomposition type and the groups Dj with q € S, are isomorphic to absolute
Galois groups of local p-adic fields by Corollary (since two rational primes lie under S), Lemma
implies p ¢ Sp.

(a) = (c): Let H € U < Gg with last inclusion open. Consider the commutative diagram:

H—— Dﬁ NU———~U

AN

(D N U)P Uab Cls(U)/p.
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Since the composition of the maps in the lower row is zero by class field theory,
H < Dy nU < ker(U — Cls(U)/p),

i.e., (*)g holds.
(¢) = (a): Assume now (*)g holds. For any U 2 H open in Gg with corresponding field L, we
have p, © L, and hence by Poitou-Tate duality:

(U, Z/pL) = WIN(U, pp) ¥ = WH(U, Z/pZ)" = (Cls(U)/p)"" = Cls(U)/p.

This gives us the exact sequence:

0 — Cls(U)/p — H*(U, Z/pZ) — @ H?(Dy xy /1. Z/PZ).
peS(U

Set M = (Kg)" and consider the limit of these sequences over all open U 2 H:

0— liy Clg(U)/p > H*(H,Z/pZ) > []| B*(DyxymZ/0L).
HCUcCGg peS(M)

This sequence is exact. We claim that hﬂHgUgGs Clg(U)/p = 0. For an open H € U € Gg, let
U’ :=ker(U — Clg(U)/p). By the S-version of the principal ideal theorem, which states that any
ideal class in Clg(U)/p gets trivial in the subfield of the Hilbert class field corresponding to the
quotient C1(U) — Clg(U)/p (cf. e.g. [5] Theorem 8.11), the map Clg(U)/p — Cls(U’)/p, induced
by inclusion on ideals, is zero. On the other side, U’ appears in the index set of the limit due

to (*)g. Thus h_n)chUcG Clg(U)/p = 0. Now we can conclude as in the (b) = (a) part (with
ppo-coefficients replaced by Z/pZ), exactly as in the original argument of Neukirch [6] Theorem
1. ]

Remark 3.6. With exactly the same proof (except for the uniqueness statements, which follow
from Lemma and Corollary (ii) instead from Lemma as above), the same criteria as in
the proposition hold for H if one assumes it to be a closed subgroup of Gg, which is isomorphic to
the absolute Galois group of a local field of characteristic zero instead of a group of p-decomposition

type.

3.4. Proof of Theorem [I.11

Proof of (i) v~ (ii). Since we want to reconstruct the p-cyclotomic character x, only on an open
subgroup of Gg, we can assume 1, < K and K totally imaginary. Observe that x, on the local
groups Dy with p € S, is determined by the group structure, since Dy is the absolute Galois group
of a local field in this case (cf. Section. If pe S¢Sy, then Dj, — Dy — Dj(p) is bijective; x,
is determined on Dy, (in fact, it is equal to the character associated to the p-decomposition group
D, ,); and x, factors through Dy — Dg(p). Thus x, is in this case also determined on Dj. We have
the following exact sequence from class field theory ( [§] 8.3.21(ii)):

0— WS — H ng — G% - Clg(K) — 0. (3.4)

peS(K)
The data given by (i) determine this sequence, since they determine the map in the middle. Since
the global cyclotomic character factorizes through G2, it is determined by the local ones on the

open subgroup ker(Gg — Clg(K)) of Gg. O
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Under the additional assumption that the decomposition groups at Sy are isomorphic to absolute
Galois groups of local fields of characteristic zero, the proof of (i) v (ii)” works similarly and (ii)’
v (ii) and (iii) vww (iii)’ are immediate.

Proof of (i) ~~ (ii1). Assume the embeddings (t5: Dy < Gs)pes, are given. Then they are also
given for any open subgroup U € Gg. Let U be such that the corresponding field L is totally
imaginary, i.e., the decomposition groups of archimedean primes are trivial. Then the sequence
for U determines Clg(U) as the quotient of U by the closure of the normal subgroup generated
by the commutator and the images of ¢5 1, for p € S;. U

Proof of (i) v (iv). For any U, §S¢(U) is equal to the number of the U-conjugacy classes of the
subgroups Dy nU and §S4(U) is given by the number of real/complex embeddings, which is deduced

from (Gg,p) by Proposition O

Finally, we show the remaining directions, using criteria from Proposition

Proof of (ii) v~ (i), (iii)" v~ (i), (1v) v~ (i). Assume (i), (iii)” or (iv) is given. As we know that
the decomposition subgroups of primes over p are isomorphic to absolute Galois groups of local
p-adic fields and as such groups determine the residue characteristic, Remark implies that we
can reconstruct them from the given data.

Lemma 3.7. Assume pi, € K (and py € K if p = 2) in Theorem [1.1 Then (iii)’ e~ (iv).

Proof. Since pu, € K, we have for every U the exact sequence (, A means the p-torsion of the abelian
group A):
0 — Clg(U)/p — B*(U, Z/pZ) — , H*(U, 0%) — 0, and
dimg, , H(U, O%) = §S;(U) — 1,
since K is totally imaginary. Thus dim, H2(U,Z/pZ) + 1 = dimg, Cls(U)/p + #Sy(U). Since the
number on the left is known, the knowledge of one of the summands on the right is equivalent to
the knowledge of the other. O

Lemma 3.8. From the data in (iv) one can reconstruct the maps mpu (cf. (3.1)) and for any
V € U < Gg open, the maps Clg(U)/p — Clg(V)/p, which are induced by inclusion on ideals.

Proof. For any open U with corresponding field L, we can describe the Galois group of the maximal
abelian unramified extension of L, which is completely decomposed in S. By class field theory, it is
canonically isomorphic to Clg(U). In fact, an extension of L, corresponding to an open subgroup
V < U is completely decomposed in S, if and only if $S(V) = (U : V)§S(U). Observe that such
extension is automatically unramified, since it is unramified outside S, as all groups are subquotients
of Gg, and also unramified in S, being completely decomposed there. Thus if we set Vy := (), V,
where the intersection is taken over all open normal subgroups V' < U, such that §S(V) = (U :
V)$S(U) and the quotient U/V is abelian, then U/Vy = Clg(U). Thus (iv) gives us the surjections
U — Clg(U) and in particular the surjections

mpu: U — Clsg(U)/p

(notice that (iii)’ contains this information only implicitly!). Furthermore, for V'S U < Gg open,
the map Clg(U) — Clg(V') induced by inclusion on ideals, is encoded in the group theory as the

map induced by the transfer map U2 — V2 (cf. e.g. |7], after Proposition 6.13). O
12



Let now U € Gg be an open (normal) subgroup, small enough, such that the corresponding
fixed field L contains the p-roots of unity and is totally imaginary. By Proposition [3.5 applied
to U, using Corollary [2.7(i) if necessary, we can decide, using the information given by (ii), (iii)’
or (iv) and Lemmas and , whether a closed subgroup H < U of p-decomposition type is
contained in a decomposition subgroup of a prime in S\ S,. By Lemma and Lemma the
maximal subgroups with this property are exactly the p-Sylow subgroups of the groups Dj g /1.
with p € S\ Sp. Thus we have reconstructed the set

SyL,(U, Sy~ Sp) := {H € U: H is a p-Sylow-subgroup of Dj g/, with p € Sy~ Sy}

Now, U acts on this set by conjugation. We have an U-equivariant surjection (U acts trivially on
the right side):

Y2 SyL(U, Sy N\ Sp) = (S5 N Sp)(U),
which sends H to the prime p|;, (unique by Proposition [2.4]), such that H S Dj g /1. We want to

determine, when two elements have the same image under . For H € Syl,(U, Sy \ Sp) such that
H < Dj kg1 is a p-Sylow subgroup, consider the restriction map

resyy: HX(U, Z/pZ) — H*(H,Z/pZ),
which is surjective, being equal to the composition
H*(U, Z/pZ) — W*(Dp kg1, Z/pZ) = H*(H, Z/pTL),

in which the first map is surjective by [8] 9.2.1, since §S¢(U) > 1, and the second is an isomorphism,
since p, < L.

Lemma 3.9. Let H, H' € Syl,(U, Sy \ Sp). Then:
Y(H) = ¢Y(H') © ker(resy)) = ker(resy,).

Proof. Consider the commutative diagram with exact row:
0 — UI%(U, Z/pZ) — H2(U, Z7/pZ) — (@qu(L) HQ(Dq,KS/Lv Z./pZ)) =0 0

Tm—

H?(H,Z/pZ)
where > = 0 means that we take the subspace of trace zero elements. The diagonal map factors
through the vertical one, since H € Syl (U, Sy \ Sp). From this sequence we see that if p = ¢ (H),
then the kernel of resy is the extension of the subspace (Bqesr)~ (v} Hz(Dq,KS/L,Z/pZ))EZO of
the space on the right side by I12(U,Z/pZ). Two such subspaces of H?(U,Z/pZ) corresponding

to p resp. p’ are equal if and only if p = p’ (since we can assume S, U Sp, & SF(U) and hence
45 (U) = 3). This finishes the proof. O

The lemma gives a purely group-theoretical criterion to decide, whether two elements of Syl (U, Sy \. Sp)

lie in the same fiber of ¢. If we define an equivalence relation on Syl,(U, S\ Sp) by H ~ H' :&

ker(res;) = ker(resg{,), we get a bijective map induced by :

~

SyL,(U, Sy N Sp)/ ~ —  (Sp~Sp)(U).
13



If U € U < Gg, then we get a (non-canonical!) mapping
a: SyL(U', Sy ~.Sp) — Syl (U, Sy~ Sp),

which sends H' € Syl,(U’, Sy~ Sp) to some H € Syl (U, S~ Sy), such that H" € H (there is at
least one by construction). If H' < Hi, Hy, then Hi, Hy € Dj for some p by Proposition In
particular, o induces a map

a: Syl,(U', Sy~ Sp)/ ~— Syl (U, Sy~ Sp)/ ~,
which is independent of the above choices. We obtain the following commutative diagram:
Syl (U", Sp~ Sp)/ ~ —— (S~ Sp)(U')

| l
Sylp(U7 SpNSp)/ ~ — (S~ Sp)(U),
where horizontal maps are bijections induced by v, and the vertical map on the right is the restriction
of primes.

If U < Gg is normal, then Gg acts on Syl,(U, Sy \ S,) by conjugation. It is easy to see that
this action induces via ¥ a Gg-action on (Sy~\.S,)(U) and that this last action coincides with the
action of Gg on this set by permuting the primes. In this way we have reconstructed the projective
system of Gg-sets {(S¢~\Sp)(U): U < Uy, U < Gg}, where Uy S Gg is some open subgroup. Now
the decomposition subgroups of primes in Sy \ S, are exactly the stabilizers in Gg of elements in
the Gg-set liLnUgUo,U<1G5(Sf \.Sp)(U). This finishes the proof of Theorem O

4. INVARIANTS ENCODED IN Gg

In this section we discuss easy consequences of Theorem and prove Proposition

4.1. Recovering some global invariants. Let K, S be a number field together with a finite set of
primes. Assume there is a rational prime p with S 2 S, US,. Which invariants of K are encoded in
Gg resp. (Gg,p) resp. (Gg,p, xp)? The next two propositions determine some of these invariants.

Proposition 4.1. Let S be a finite set of primes of K. Assume there is a rational prime p with
Sp U S € S. Then (Gg,p) v [K : Q],r1(K),ro(K). If the Leopoldt conjecture is true for K and
for all rational primes, then Gg v [ K : Q, 71 (K), r2(K), N(S).

Proof. First we show the last statement. So, assume Leopoldt is true for K and all rational primes.
We show that Gg determines 7y = r3(K) and the set N(S). For any rational prime p consider the
number r(p) := rkz, G2P(p). The Leopoldt conjecture says that ro + 1 = 7(p) if S, U Sew € S. If
S, & S, then at least the cyclotomic Z,-extension is not contained in Kg/K, thus in this case

r(p) = 1kz, G%b(p) <rkgz, ngifqp =79+ 1.

Since S, < S for at least one p, we obtain ry = max,{r(p)} —1, and a prime lies in N(S) if and only
if r(p) is maximal.

Now it remains to recover [K : Q] and r;. Once [K : Q] is known, r can be recovered as
[K : Q] — 2ry. To recover [K : Q], observe that if K is totally imaginary, [K : Q] = 2ry can be
recovered together with ro. If 7 : Gg — GZ° denotes the natural surjection, and U := 7! (im([(p —
1)p]: G%b — G%b)), then U € Gg is open and L := K is totally imaginary. Indeed, L contains
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the p-roots of unity, since they are contained in Kg (p? and not simply p is needed to cover the
case p = 2). Thus
[K:Q] = (Ggs:U)"ML:Q] =2(Gs: U)" ra(L).
To show the first (unconditional) statement of the proposition, notice that once a prime p € N(S)
is known, one obtains rq(K) as the negative of the Euler characteristic —x(Gg, Z/pZ) ( [8] 8.7.5)
and [K : Q],r(K) as above, without assuming Leopoldst. O

Proposition 4.2. Let K, S be a number field together with a set of primes, such that the decomposi-
tion groups at primes in Sy are isomorphic to absolute Galois groups of local fields of characteristic
zero. Assume Gg is given together with any one (or, equivalently, all) pieces of information from
Theorem [1.1. Then one can recover the following invariants of K and its extensions:

(1) For any U < Gg open with corresponding field totally imaginary, the class number C1(U).

(ii) For every U' < U < Gg open, with corresponding fields totally imaginary, the natural maps
CI(U) - Ci(U").

(iii) For U € Gg small enough, with L = (Kg)Y, the roots of unity u(L).

(iv) For any U < Gg open with L = (Kg)V, the absolute inertia and ramification degrees fo.L/Q,
and e, g, of any p € Sp(L) (p lies over £).

(v) The set N(S).

(vi) The numbers [K : Q],r1(K),r2(K).

Proof. (i) + (ii): If K is totally imaginary, one obtains the group Gg = Gk, as the quotient
of Gg by the closure of the normal subgroup generated by the inertia subgroups of all Dj, p € S;.
Then canonically G%) ~ CI(K). The maps between two class groups are given by the transfer maps
in the class field theory.

(iii) follows from (i) e~ (ii)’ in Theorem

(iv) follows from the anabelian properties of local fields listed in Section

(v): for any rational prime ¢, let n(¢) := >, [K, : Q¢]. This number can be reconstructed from
peSN.Sy

the given data. Thus, ¢ € N(S) < n(f) is maximal. Finally (vi) follows from (v) and Proposition

4.1l O

4.2. The numbers §5¢(U).

Proof of Proposition[1.5 Recall that x, denotes the p-cyclotomic character, and that pu, < K
implies that its image lies in ker(Aut(Qp,/Z,) — Aut(%Z/Z)). Assume x: Gg — Z; induces
the trivial action on %Z/Z. We claim first that if x|p; = xp|p; for all p € S, then x = x;, on
Gg. Indeed, x, x, factor both through G%b. Using sequence (3.4)), X1 ® x, factors through a map
Cls(K) — Zj, i.e., its image is finite, and on the other side the images of x and Y, lie in the
subgroup ker(Aut(Q,/Z,) — Aut(%Z/Z)) >~ 7Z,, i.e., the image of x~! ® x, does too, and hence is
torsion-free. Thus ™! ® Xp 18 the trivial character of Gg, or with other words x = x;, on Gg.

The last part of the Tate-Poitou sequence for the Gg-modules Z/p"7Z(x) gives, after changing to
the limit over all n > 0, the following exact sequence:

0— HIQ(GSv Qp/Zp(X)) — HQ(GSva/Zp(X)) - (‘D HQ(DP,Kv Qp/Zp(x)) — coker — 0,
peS(K)
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where

coker = hm[HO(GS,—Z/Z(X ®xp)'] = LHO GSa*Z/Z(Xﬂ@Xp))]V =

-
n

[H(Gs. Zy( ™ @ )] = {Q”/ Zr X=X

0 if x # xp

(the last equality holds, since the restriction map Aut(Z,) — Aut(p"Z,) is an isomorphism; thus if
X' ® Xp is trivial on some open subgroup of Z,, then it is also trivial on Z,). By our assumption,
the corank (i.e., the Z,-rank of the Pontrjagin-dual) of the first term in the sequence is zero. Thus
the corank of the third term is equal to the sum of the coranks of the second and the last terms.
There are two cases:

Case x = Xp. Then the corank of the third term is §5;(K) and the corank of the last term is 1.
Thus the corank of the second term is §57(K) — 1.

Case x # Xp- Then by the claim above, x|p; # Xp|p; for at least one p € Sy. By Lemma the
corank of the third term is < #S¢(K) — 1, and the corank of the last term is 0. Thus the corank of
the second term is < §S¢(K) — 1. The proposition follows. O

Lemma 4.3. Let k be a local field, p # char(k) an odd prime. Let x: G, — Z; = Aut(Q,/Zy) be
a character. The following are equivalent:

(i) H*(Gr, Qp/Zp(x)) # 0.
(ii) x is the p-part of the cyclotomic character.

Proof. Let x, denote the p-part of the cyclotomic character of G,. The local duality gives:
H(Gy, Qu/Zp(x)) = ligH?(Gy, Z/p"Z(x)) = lig[H* (G, Z/p"Z(x ' @ X)) "]

= [mH (G, Z/p"Z(x ' @ xp))]" = [H(G, Zp(x ' ® xp))]”
Qp/Zp i X = Xxp
0 if X # xp-
The last equality holds by the same reasoning as in the proposition. O

Remark 4.4. Observe that the proof of Proposition does not determine x; directly as the
character with the maximal corank of H*(Gg, Q,/Z,(X)), but only intrinsically by determining the
numbers $S(U) and using Theorem [I.1]
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