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Abstract. We give a geometric construction of representations of parahoric subgroups P of a

reductive group G over a local field which splits over an unramified extension. These represen-

tations correspond to characters θ of unramified maximal tori and, when the torus is elliptic,

are expected give rise to supercuspidal representations of G. We calculate the character of

these P -representations on a special class of regular semisimple elements of G. Under a certain

regularity condition on θ, we prove that the associated P -representations are irreducible. This

generalizes a construction of Lusztig from the hyperspecial case to the setting of an arbitrary

parahoric.

1. Introduction

Let k be a non-archimedean local field with finite residue field. Let G be a reductive group

over k, and let T ⊆ G be a maximal torus defined over k and split over an unramified extension

of k. Let P be a parahoric model of G, defined over the integers Ok. Then P is attached to a

point x in the Bruhat–Tits building Bk of the adjoint group of G over k, lying in the apartment

of T . We denote the schematic closure of T in P again by T . We will construct and study a

tower of varieties over an algebraic closure of the residue field Fq of k whose cohomology realizes

interesting representations of P (Ok) parametrized by characters of T (Ok). This construction

generalizes classical Deligne–Lusztig theory [DL76] (for reductive groups over finite fields), as

well as the work of Lusztig [Lus04] and Stasinski [Sta09] (for reductive groups over henselian

rings). Further, we give an explicit formula for the character on certain very regular elements,

generalizing a special case of the character formula for representations of reductive groups over

finite fields [DL76, Theorem 4.2].

More precisely, we work with a Moy–Prasad filtration quotient G = Gr (r ≥ 1) of P , regarded

as (the perfection of) a smooth affine group scheme of finite type over Fq. We normalize this

quotients such that G1 is canonically isomorphic to the reductive quotient of the special fiber

of P . As such, one has a Frobenius σ : G → G and the corresponding Lang map G → G,

g 7→ g−1σ(g). Choose a Borel subgroup of G containing T (defined over some unramified

extension of k) with unipotent radical U . In G we have the subgroups T and U, corresponding

to the closures of T and U in P . Consider the subscheme ST,U = ST,U,r ⊂ G defined as the

preimage of U under the Lang map. By construction, ST,U has a natural action of P (Ok)×T (Ok)
given by left and right multiplication. It factors through an action of G(Fq) × T(Fq). For a

smooth character θ : T(Fq)→ Q×` (` 6= charFq), we define RθT,U to be the θ-isotypic component

of the alternating sum of the cohomology groups of ST,U with Q`-coefficients. This is a virtual

P (Ok)-representation.

In [Lus04, 1.5] the notion of regularity of a character θ : Tr(Fq) → Q×` is defined for r ≥ 2.

We recall this notion (adapted to our situation) in Section 2.10 below. Roughly speaking, a
1
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character is regular if it is “very non-trivial” on ker(Tr(Fq)→ Tr−1(Fq)). Our first main result

is the following generalization of [Lus04, 2.4, 2.5].

Theorem 1.1. Fix an r ≥ 1 and let (T,U) and (T ′, U ′) be two pairs as above, such that x lies

in the intersection of apartments of T and T ′. Let θ : T(Fq) → Q×` , θ′ : T′(Fq) → Q×` be two

characters and assume that at least one of θ, θ′ is regular if r ≥ 2. Then

〈RθT,U , Rθ
′
T ′,U ′〉G(Fq) = #{w ∈Wx(T, T ′)σ : θ ◦Ad(w) = θ′},

where Wx(T, T ′) = T1(Fq)\{g ∈ G1(Fq) : gT1 = T′1} is the transporter from T1 to T′1 in G1 (a

homogeneous space under the Weyl group of T1 in G1; cf. Section 2.8).

Consequently, if θ regular, then

(i) RθT,U is independent of the choice of U .

(ii) If additionally the stabilizer of θ in Wx(T, T )σ is trivial, then ±RθT,U is an irreducible

representation of G(Fq) (and of P (Ok)).

The proof of Theorem 1.1, given in Section 4.2 below, mainly follows the original method

of Lusztig [Lus04], who treated the special case when P is reductive over Ok. The main idea

in [Lus04] is as follows: Theorem 1.1 reduces to the computation of the T(Fq)×T′(Fq)-equivariant

`-adic Euler characteristic of Σ = G(Fq)\ST,U × ST ′,U ′ . Then one partitions Σ into locally

closed T(Fq)× T′(Fq)-stable varieties in a very subtle way, so that on each such piece, one can

construct by hand an action of a connected algebraic group which commutes with the action of

T(Fq) × T′(Fq). The construction of this action is remarkably delicate, and the subtleties here

are responsible for the regularity assumption on the character θ.

Let us now describe the technical issue we must tackle in generalizing Lusztig’s hyperspecial

setting to the general setting. For each 1 ≤ s ≤ r − 1, we have the unipotent group Gs
r =

ker(Gr → Gs). Now, the above-mentioned locally closed decomposition comes from a very

particular filtration of G1
r by locally closed subschemes (not subgroups) with subtle properties

[Lus04, 1.7,1.8]. Its definition uses that the successive quotients Gs−1
s (1 < s ≤ r) are abelian

if P is reductive. However, in general, the quotient G1
2 need not be abelian (Remark 2.3). This

forces us to refine the filtration {Gs
r}s of G1

r (Section 4.3) by a filtration of each graded object

Gs−1
s (for fixed s) by certain subgroups H(ε) (0 < ε ≤ 1). Roughly speaking, H(ε) is generated

by the “Gs−1
s -slices” of T (Ok̆) and of those root subgroups Uα of T in G for which the fractional

part of the distance of x to the closest affine root hyperplane with vector part α is ≤ 1 − ε.
The graded pieces of this new filtration are abelian (Lemma 4.4) and moreover satisfy properties

(Sections 4.4, 4.5) similar to those in [Lus04, 1.7]. This in turn allows us to define an associated

stratification of Σ for which we can construct an action of an algebraic group on each piece

(Section 4.6).

Our second result is the computation of traces of unramified very regular elements of P (Ok)
acting on RθT,U (Definition 5.1). The proof is based on the Deligne–Lusztig fixed point formula

[DL76, Theorem 3.2] and adapts ideas of [DL76, Theorem 4.2].

Theorem 1.2. For any character θ : T (Ok) → Q×` and any unramified very regular element

g ∈ P (Ok),
Tr(g,RθT,U ) =

∑
w∈Wx(T,Z◦(g))σ

(θ ◦Ad(w−1))(g).

When G is any inner form of GLn over k and T is an unramified maximal elliptic torus, we

prove in [CI20] that the Deligne–Lusztig-type set considered by Lusztig in [Lus79] is a scheme
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and its cohomology realizes the compact inductions πθ to G(k) of (an extension of) the P (Ok)-
representations RθT,U . Furthermore, we show—crucially using specializations of both Theorems

1.1 and 1.2—that on the locus of sufficiently generic characters, the correspondence θ 7→ πθ is

compatible with the composition of the local Langlands and Jacquet–Langlands correspondences.

As such, we expect this work to be closely related to the problem of geometrically constructing

representations of p-adic groups in general. More specifically, we expect that if T is elliptic and

θ : T (k) → Q×` is a sufficiently generic character, then the compact induction to G(k) of (an

extension of) the P (Ok)-representation RθT,U is related to the supercuspidal representations

constructed by Yu [Yu01]. Both the irreducibility of and the character formula for RθT,U are

crucial ingredients to understanding the corresponding G(k)-representation within the context

of the local Langlands correspondence.

Finally, we make note of the importance of studying these varieties in the present setting of

general parahoric subgroups P . Already in the setting of inner forms of GLn, it is not enough

to study RθT,U for reductive P ; for example, when G is an anisotropic modulo center inner form

of GLn, and T unramified elliptic, then the apartment of T in Bk consists of one point, x, and

the corresponding parahoric subgroup P is an Iwahori subgroup. This can occur even if G is

split: if G = Sp4, then there is a conjugacy class of maximal elliptic tori in G, such that the

relevant P is non-reductive, with the reductive quotient of the special fiber being isomorphic to

SL2×SL2.
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which have improved the exposition of this paper. The first author was partially supported by

an NSF Postdoctoral Research Fellowship (DMS-1802905) and by the DFG via the Leibniz Prize

of Peter Scholze. The second author was supported by the DFG via the Leibniz Prize of Peter

Scholze.

2. Preliminaries

2.1. Notation. We denote by k a non-archimedean local field with residue field Fq of prime

characteristic p, and by k̆ the completion of a maximal unramified extension of k. We denote

by Ok, pk (resp. O, p) the integers and the maximal ideal of k (resp. k̆). The residue field of k̆

is an algebraic closure Fq of Fq. We write σ for the Frobenius automorphism of k̆, which is the

unique k-automorphism of k̆, lifting the Fq-automorphism x 7→ xq of Fq. Finally, we denote by

$ a uniformizer of k (and hence of k̆) and by ord = ordk̆ the valuation of k̆, normalized such

that ord($) = 1.

If k has positive characteristic, we let W denote the ring scheme over Fq where for any Fq-
algebra A, W(A) = A[[$]]. If k has mixed characteristic, we let W denote the k-ramified Witt ring

scheme over Fq so that W(Fq) = Ok and W(Fq) = O. As the Witt vectors are only well behaved

on perfect Fq-algebras, algebro-geometric considerations when k has mixed characteristic are

taken up to perfection. We fix the following convention.

Convention. If k has mixed characteristic, whenever we speak of a scheme over its residue field

Fq, we mean a perfect scheme, that is a set-valued functor on perfect Fq-algebras.

For results on perfect schemes we refer to [Zhu17,BS17]. Note that passing to perfection does

not affect the `-adic étale cohomology; thus for purposes of this paper, we could in principle
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pass to perfection in all cases. However, in the equal characteristic case working on non-perfect

rings does not introduce complications, and we prefer to work in this slightly greater generality.

Fix a prime ` 6= p and an algebraic closure Q` of Q`. The field of coefficients of all repre-

sentations is assumed to be Q` and all cohomology groups throughout are compactly supported

`-adic étale cohomology groups.

2.2. Group-theoretic data. We let G be a connected reductive group over k, such that the

base change Gk̆ to k̆ is split. Let T be a k-rational, k̆-split maximal torus in G. Let Bk̆ and Bk

denote the Bruhat–Tits building of the adjoint group of G over k̆ and over k, and let AT,k̆ ⊆ Bk̆

denote the apartment of T . Note that there is a natural action of σ ∈ Aut(k̆/k) on Bk̆ and on

AT,k̆, and that Bk = B
〈σ〉
k̆

.

Let X∗(T ) and X∗(T ) denote the group of characters and cocharacters of T . We denote

by 〈·, ·〉 : X∗(T ) ×X∗(T ) → Z the natural Z-linear pairing between them. We extend it to the

uniquely determined R-linear pairing 〈·, ·〉 : X∗(T )R×X∗(T )R → R, where we writeMR = M⊗ZR
for a Z-module M .

Denote by Φ the set of roots of T in Gk̆ and for a root α ∈ Φ let Uα ⊆ Gk̆ denote the

corresponding root subgroup. There is an action of 〈σ〉 on Φ. Fix a Chevalley system uα : Ga
∼→

Uα for Gk̆ (cf. e.g. [BT84, 4.1.3]). To any root α ∈ Φ we can attach the valuation ϕα : Uα(k̆)→ Z
given by ϕα(uα(y)) = ord(y). The set of valuations {ϕα}α∈Φ defines a point x0 in the apartment

AT,k̆. Moreover AT,k̆ is an affine space under X∗(T )R and the point x0+v ∈ AT,k̆ for v ∈ X∗(T )R
corresponds to the valuations {ϕ̃α}α∈Φ of the root datum given by ϕ̃α(u) = ϕα(u) + 〈α, v〉
(see [BT72, 6.2]).

We let U,U− be the unipotent radicals of two opposite k̆-rational Borel subgroups of Gk̆
containing T .

2.3. Affine roots and filtration on the torus. We have the set Φaff of affine roots of T in

Gk̆. It is the set of affine functions of AT,k̆ defined as

Φaff = {x 7→ α(x− x0) +m : α ∈ Φ,m ∈ Z}.

Denote the affine root (α,m) : x 7→ α(x−x0) +m and call α its vector part. We have the affine

root subgroups Ŭα,m ⊆ Uα(k̆), defined by

Ŭα,m = {u ∈ Uα(k̆) : u = 1 or ϕα(u) ≥ m}

They define a descending separated filtration of Uα(k̆). There is a natural action of the Frobenius

σ on the set of affine roots, determined by Ŭσ(α,m) = σ(Ŭα,m). We make it explicit:

Lemma 2.1. Let (α,m) ∈ Φaff . Then σ(α,m) = (σ(α),m− 〈α, σ(x0)− x0〉).

Proof. We have σ(α,m) = (σ(α),m′) for some m′ ∈ Z. The evaluation of the affine-linear form

(α,m) on the apartment AT,k̆ is σ-linear, thus we have for all x ∈ AT,k̆:

σ(α,m)(x) = (α,m)(σ−1(x)) = 〈α, σ−1(x)−x0〉+m = 〈σ(α),x−x0〉+m−〈σ(α), σ(x0)−x0〉.

On the other side, (σ(α),m′)(x) = 〈σ(α),x− x0〉+m′, hence the lemma. �

Let R̃ = R ∪ {r+: r ∈ R} ∪ {∞} denote the ordered monoid as in [BT72, 6.4.1]. Let

T̆ 0 ⊆ T (k̆) be the maximal bounded subgroup. For r ∈ R̃≥0 r {∞}, we have a descending
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separated filtration of T̆ 0 given by

T̆ r = {t ∈ T̆ 0 : ord(χ(t)− 1) ≥ r ∀χ ∈ X∗(T )}.

2.4. Parahoric subgroups, the Moy–Prasad filtration, and integral models. Fix a point

x ∈ AT,k̆. Following Bruhat and Tits [BT84, 5.2.6], there is a parahoric group scheme Px over O
attached to x, with generic fiber G, and with connected special fiber. The group P̆x := Px(O) is

generated by T̆ 0 and Ŭα,m for all (α,m) ∈ Φaff such that 〈α,x−x0〉 ≥ −m (that is, (α,m)(x) ≥
0). The schematic closure of T in Px is the connected Néron model of T . We denote it again

by T . We have T (O) = T̆ 0. (As Gk̆ is split, condition (T) of [Yu15, 8.1] is satisfied. The claim

about the closure of T in Px follows e.g. from [Yu15, Corollary 8.6(ii)]. Again, because Gk̆ is

split, it also follows [BT84, 4.6.1] that the connected Néron model of T is equal to the maximal

subgroup scheme of finite type of the lft model of T . The O-points of the latter are equal to T̆ 0,

hence we indeed have T (O) = T̆ 0.)

The Moy–Prasad filtration on P̆x is given by the series of normal subgroups P̆ rx ⊆ P̆x (r ∈
R̃≥0 r {∞}), generated by T̆ r and Ŭα,m for all (α,m) ∈ Φaff such that 〈α,x − x0〉 ≥ r − m.

By [Yu15, 8.6 Corollary], there is a unique smooth O-model P rx of G, such that P rx(O) = P̆ rx .

Moreover, part (ii) of the same corollary describes the schematic closures of Uα, T in P rx , and

in particular, we have

P̆ rx ∩ Uα(k̆) = Ŭα,dr−〈α,x−x0〉e and P̆ rx ∩ T (k̆) = T̆ r. (2.1)

Note that for r ∈ R≥0, we have P̆ r+x =
⋃
s∈R,s>r P̆

s
x. For further properties of the Moy–Prasad

filtration we refer to [MP94, §2.6] and for further properties of the smooth models P rx we refer

to [Yu15].

Assume now that x ∈ AT,k̆ ∩Bk. Then all group schemes Px, P rx descend to smooth group

schemes over Ok, again denoted by Px, P rx (cf. [Yu15, §9.1]). In particular, all groups P̆ rx (r ≥ 0)

are σ-stable (this can also be deduced from Lemma 2.1, which shows that σ maps Ŭα,dr−〈α,x−x0〉e
isomorphically onto Ŭσ(α),dr−〈σ(α),x−x0〉e), and Px(Ok) = P̆ σx and P rx(Ok) = (P̆ rx)σ.

2.5. Moy–Prasad quotients. For a scheme X over Ok (resp. over O), the functor of positive

loops L+X is the functor on Fq-algebras (resp. Fq-algebras) given by

L+X(R) = X(W(R)).

If X is affine and of finite type, then L+X is represented by an affine scheme (cf. [PR08, §1.a] if

char k > 0 and [Zhu17, §1] if char k = 0; for the truncated versions of L+, see [Gre61,Gre63]).

Let x ∈ AT,k̆ ∩ Bk be as in Section 2.4. We have the infinite-dimensional affine Fq-group

scheme L+Px, and will now introduce convenient (perfectly) finitely presented quotients of

it. Let r ∈ Z≥1. We consider the fpqc quotient sheaf Gr := L+Px/L
+P

(r−1)+
x . By [CI20,

Proposition 4.2(ii)] it is representable by (the perfection of) a smooth affine group scheme over

Fq of finite type, which we again denote by Gr. From [Yu15, Theorem 8.8], along with the fact

that L+P
(r−1)+
x is pro-unipotent, it follows by taking Galois cohomology,

Ğr := Gr(Fq) = P̆x/P̆
(r−1)+
x and Ğσr = Gr(Fq) = (P̆x/P̆

(r−1)+
x )σ.

For r ≥ s ≥ 1 we have natural surjections of Fq-groups L+Px → Gr → Gs. We write

Gs
r = ker(Gr � Gs) and Ğsr := Gs

r(Fq). Moreover, we also have natural surjections G2 →
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Px⊗Ok Fq → (Px⊗Ok Fq)red = G1 identifying G1 with the reductive quotient of the special fiber

of Px.

2.6. Subgroups of Gr. Let H ⊆ Gk̆ be a closed subgroup scheme. Let r ∈ Z≥1. We will

attach to H the subgroup Hr ⊆ Gr,Fq as follows. The schematic closure Hx of H in Px,O is flat

(by [BT72, 1.2.6] as O-flat is equivalent to O-torsion free). It follows that Hx is a closed subgroup

scheme of Px,O ( [BT72, 1.2.7]). Apply L+
r to the inclusion Hx ⊆ Px,O to obtain the subgroup

scheme L+
r Hx ⊆ L+

r Px,O. The last inclusion is a closed immersion (e.g. by [Gre61, Corollary

2 on p. 639]). We define the closed subgroup scheme Hr ⊆ Gr,Fq as the image of L+
r Hx under

L+
r Px,O � Gr,Fq . We write Hs

r := ker(Hr → Hs) and Hs,∗
r := Hs

r rHs+1
r .

Suppose now additionally that Hx is smooth. Then L+
r Hx is reduced (one could e.g. use

[Gre63, Corollary 2 on p. 264]), and hence Hr is too. If H is already defined over the finite

subextension of k̆/k of degree d, then Hx is defined over the integers of this subextension. This

implies that Hr(Fq) is stable under the action of σd. Hence Hr is defined over Fqd (here we use

that Hr is (the perfection of) a reduced separated scheme of finite type over Fq).
Using the procedure described above we obtain the closed Fq-subgroup Tr ⊆ Gr attached to

T ⊆ G. Analogously, we have the subgroups Ur,U−r ⊆ Gr,Fq corresponding to U,U− ⊆ Gk̆ and

for any root α ∈ Φ the subgroup Ur,α ⊆ Gr,Fq corresponding to Uα. Note that all these are

reduced connected closed subgroups of Gr,Fq . Moreover, Ur,α is defined over Fqd where d ∈ Z≥1

is the smallest positive integer such that σd(α) = α in Φ (indeed the group Uα,x is smooth

by [Yu15, 8.3 Theorem (ii)]), and a similar statement holds for Ur,U−r .

For any reduced Fq-subscheme Xr ⊆ Gr,Fq , we define X̆r := Xr(Fq) ⊆ Gr(Fq) = Ğr. Thus for

example we write Ŭaα,r = Uaα,r(Fq) for α ∈ Φ and 1 ≤ a ≤ r−1. Following Lusztig, we denote by

T the groups Tr−1
r . For α ∈ Φ, let Tα ⊂ Tk̆ ⊂ Gk̆ be the unique 1-dimensional torus contained

in the subgroup of Gk̆ generated by Uα and U−α; let Tαr be the corresponding subgroup scheme

of Gr,Fq and write T α := Tα,r−1
r .

Lemma 2.2. Let r ∈ Z≥1 and 1 ≤ a ≤ r − 1.

(i) The group Ğr is generated by T̆r and all Ŭα,r (α ∈ Φ).

(ii) The group Ğa+1
r is generated by T̆ a+1

r and all Ŭa+1
β,r (α ∈ Φ)

Proof. Both cases follow from [Yu15, Theorem 8.3] applied to the smooth models Px and P a+
x

of G respectively (note that with notations as in loc. cit., the group G(k)x,f is by definition the

one generated by all Ua(k)x,f(a)). �

Remark 2.3. Let U ′ be the unipotent radical of some other Borel subgroup of Gk̆ containing T .

Although U and U ′ are conjugate by an element of G(k̆), the groups Ur(Fq) and U′r(Fq) need

not be isomorphic. For example, let G be the anisotropic modulo center inner form of GL3 (it

splits over k̆ and its k-points are isomorphic to the units of a division algebra over k). Let x

be the unique point in Bk. Then G1 = T1 is a torus and (after an appropriate choice of x0)

one has G2(Fq) =

(
W2(Fq)× Fq Fq
$Fq W2(Fq)× Fq
$Fq $Fq W2(Fq)×

)
, with the multiplication induced by identifying Fq

with W1(Fq), $Fq with the ideal $W2(Fq) ⊂ W2(Fq), and noting that $W2(Fq) is naturally

a W1(Fq)-module. Now, let U and U ′ be the group of upper- and lower-triangular unipotent

matrices in G. Then U2 = U1
2 is non-abelian, whereas U′2 = U′,12 is abelian.
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2.7. The groups Uα,r. We now give explicit formulas for Uα,r ⊆ Gr.

Definition 2.4. Let x ∈ AT,k̆. We call a root α ∈ Φ

reductive if 〈α,x− x0〉 ∈ Z
non-reductive otherwise.

For any α ∈ Φ, we may uniquely write 〈α,x − x0〉 = −mα + εα with mα ∈ Z and 0 ≤ εα < 1.

We have mα = −b〈α,x− x0〉c.

Note that α ∈ Φ is reductive if and only if Uα,1 6= 1.

Lemma 2.5. Let x ∈ AT,k̆ and let r ∈ Z≥1. Let α ∈ Φ. We have

mα +m−α =

{
0 if α is reductive

1 otherwise.

Moreover, the natural map P̆x � Gr(Fq) induces

Uα,r(Fq) =

{
Ŭα,mα/Ŭα,mα+r if α reductive,

Ŭα,mα/Ŭα,mα+r−1 otherwise.

Thus for a ∈ Z, r ≥ a ≥ 1, the same map induces

Uaα,r(Fq) =

{
Ŭα,mα+a/Ŭα,mα+r if α reductive,

Ŭα,mα+a−1/Ŭα,mα+r−1 otherwise.

Finally, we have Tr(Fq) = T̆ 0/T̆ r and Tar = T̆ a/T̆ r.

Proof. Noting that d−se = −bsc for s ∈ R, the lemma follows immediately from (2.1) and the

definitions of Uα,r, Uaα,r and Gr. �

We have the following elementary lemma will be useful later.

Lemma 2.6. Let α, β ∈ Φ and assume that p, q ∈ Z≥1, such that pα + qβ ∈ Φ. Then pmα +

qmβ −mpα+qβ = pεα + qεβ − εpα+qβ = bpεα + qεβc. In particular, pmα + qmβ −mpα+qβ ≥ 0.

Proof. The first equality is immediate. In particular, pεα + qεβ − εpα+qβ is an integer. This,

along with the fact that 0 ≤ εpα+qβ < 1 by definition, implies the second equality. �

2.8. Weyl groups and the Bruhat decomposition. We have the group

Wx(T ) := (NG(T )(k̆) ∩ P̆ 0
x)/T̆ 0

(cf. [HR08, Proposition 8]), and it coincides with the Weyl group W (T1,G1) of the torus T1 in

the special fiber G1 of Px ( [HR08, Proposition 12]). It follows that both natural maps in the

composition

Wx(T )→ NGr(Tr)(Fq)/Tr(Fq)→ NG1(T1)(Fq)/T1(Fq)
are isomorphisms. Here NG(H) denotes the scheme-theoretic normalizer of the subgroup H of

a group G (note that it might be non-reduced, but we have NG(H)(Fq) = NG(H)red(Fq) = {g ∈
G(Fq) : gHg−1 = H}). We also note that Wx(T ) coincides with the subgroup of the Weyl group

W = W (T,G) of T in G generated by the vector parts of all affine roots ψ ∈ Φaff satisfying
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ψ(x) = 0 (cf. [Tit79, 1.9, 3.5.1]). It depends only on the facet of Bk̆ in which x lies, not on x

itself.

We will need a second k-rational, k̆-split maximal torus T ′ of G whose apartment AT ′,k̆ in Bk̆

passes through the point x. Let NG(T, T ′) = {g ∈ G : gTg−1 = T ′} be the transporter from T

to T ′ and analogously, let NGr(Tr,T′r) be the transporter from Tr to T′r. (Again, these need not

be reduced, but we are interested in Fq-points only.) We then have the principal homogeneous

space

Wx(T, T ′) := T̆ 0\(NG(T, T ′)(k̆) ∩ P̆ 0
x) = Tr(Fq)\NGr(Tr,T′r)(Fq).

under Wx(T ). Indeed, this follows as T and T ′ are conjugate by an element of Px(O).

Let r ≥ 1. For each w ∈ Wx(T, T ′) choose a representative ẇ ∈ NGr(Tr,T′r)(Fq), and denote

its image in G1 again by ẇ. We have the Bruhat decomposition G1 =
⊔
w∈Wx(T,T ′) G1,w of the

reductive quotient, where G1,w = U1ẇT′1U′1. For r ≥ 1, define Gr,w to be the pullback of G1,w

along the natural projection Gr � G1. Thus Gr =
⊔
w∈Wx(T,T ′) Gr,w. Let Kr := U−r ∩ ẇU′−r ẇ−1

and K1
r := Kr ∩G1

r .

Lemma 2.7. For r ≥ 1, we have Gr,w = UrK1
rẇT′rU′r.

Proof. We compute

Gr,w = UrẇT′rG1
rU′r = UrẇT′r

(
(G1

r ∩ T′r)(G1
r ∩ U′−r )(G1

r ∩ U′r)
)
U′r

= UrẇT′r(G1
r ∩ U′−r )U′r = Ur

(
ẇ(G1

r ∩ U′−r )ẇ−1
)
ẇT′rU′r

= Ur
(
U−r ∩ ẇ(G1

r ∩ U′−r )ẇ−1
)
ẇT′rU′r = UrK1

rẇT′rU′r,

where the second equality follows from [BT72, 6.4.48]. �

2.9. Commutation relations. For two subgroups H1, H2 of an abstract group H, we denote

by [H1, H2] their commutator. For x, y ∈ H, we write [x, y] := x−1y−1xy.

For α ∈ Φ, let Tα ⊆ T denote the image of the coroot corresponding to α. It is a one-

dimensional subtorus. We also write T̆α,r = Tα(k̆) ∩ T̆ r.

Lemma 2.8. (i) Let α ∈ Φ and r,m ∈ R̃. Then [T̆ r, Ŭα,m] ⊆ Ŭα,m+r.

(ii) If α, β ∈ Φ, α 6= −β, and m1,m2 ∈ Z, then [Ŭα,m1 , Ŭβ,m2 ] is contained in the group

generated by Ŭpα+qβ,pm1+qm2 for all p, q ∈ Z≥1, such that pα+ qβ ∈ Φ.

(iii) Let α ∈ Φ and m1,m2 ∈ Z. Then [Ŭα,m1 , Ŭ−α,m2 ] ⊆ T̆α,m1+m2. For any element

x ∈ Ŭ−α,m2 r Ŭ−α,m2+1, the map ξ 7→ [ξ, x] induces an isomorphism (of abelian groups)

λx : Ŭα,m1/Ŭα,m1+1
∼→ T̆α,m1+m2/T̆α,m1+m2+1.

Proof. (ii) follows from [BT72, (6.2.1)]. (i), (iii): By considering a morphism from SL2 to Gk̆,

whose image is generated by U±α (as in [BT72, (6.2.3) b)]), and pulling back the valuation of

the root datum along this morphism, it suffices to prove the same statement for SL2(k̆). This is

an immediate computation. �

For two smooth (connected) closed subgroups H1, H2 of a connected linear algebraic group

G over a field, we denote by [H1,H2] their commutator “in the sense of group varieties” as

in [Bor91, §2.3] (it would be more precise to consider the scheme-theoretic commutator, but for

our purposes this suffices).

Lemma 2.9. Let r ≥ 2 and 1 ≤ a ≤ r − 1. Let α ∈ Φ.
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(a) If α is non-reductive, then [Ga+1
r ,Ur−aα,r ] = 1.

(b) If α is reductive, then [Ga
r ,Ur−ar,α ] = 1.

Proof. It suffices to prove the claims on Fq-points. (a): By Lemma 2.2 it suffices to show to

show that [T̆ a+1
r , Ŭ r−aα,r ] = 1 and that [Ŭa+1

β,r , Ŭ
r−a
α,r ] = 1 (∀β ∈ Φ) in Gr. By Lemma 2.5 T̆ a+1

r

is the image in Ğr of T̆ a+1, Ŭ r−aα,r is the image of Ŭα,mα+r−a−1, and similar claims hold for all

β ∈ Φ. But [T̆ a+1, Ŭα,mα+r−a−1] ⊆ Ŭα,r+mα by Lemma 2.8(i), and Ŭα,r+mα maps to 1 in Gr,

so [T̆ a+1
r , Ŭ r−aα,r ] = 1 follows. Now assume that β = −α. Then −α is non-reductive as α is, and

by Lemma 2.8(iii), [Ŭ−α,m−α+a, Ŭα,mα+r−a−1] ⊆ T̆α,r+mα+m−α−1 = T̆α,r maps to 1 in Gr. This

shows [Ŭa+1
−α,r, Ŭ

r−a
α,r ] = 1. Thus we can assume β ∈ Φ, β 6= −α. We have two cases.

Case: β is reductive. Then by Lemma 2.5, Ŭa+1
β,r is the image in Ğr of Ŭβ,mβ+a+1 and by Lemma

2.8(ii) we have

[Ŭβ,mβ+a+1, Ŭα,mα+r−a−1] ⊆
∏

p,q∈Z≥1

pα+qβ∈Φ

Ŭpα+qβ,p(mα+r−a−1)+q(mβ+a+1).

To ensure that this product maps to 1 in Ğr, it suffices to show that for all p, q ∈ Z≥1 with

pα+ qβ ∈ Φ, one has p(mα + r − a− 1) + q(mβ + a+ 1) ≥ mpα+qβ + r, or equivalently,

pmα + qmβ −mpα+qβ + (p− 1)(r − a− 1) + (q − 1)(a+ 1) ≥ 0.

But this follows from Lemma 2.6.

Case: β is non-reductive. By Lemma 2.5, Ŭa+1
β,r is the image in Ğr of Ŭβ,mβ+a and by Lemma

2.8(ii) we have

[Ŭβ,mβ+a, Ŭα,mα+r−a−1] ⊆
∏

p,q∈Z≥1

pα+qβ∈Φ

Ŭpα+qβ,p(mα+r−a−1)+q(mβ+a).

To show that the image of this product vanishes in Gr, we have to show that each single term

does. Assume that pα + qβ occurs in the product and is non-reductive. Then vanishing of

Ŭpα+qβ,p(mα+r−a−1)+q(mβ+a) in Ğr amounts to the inequality

pmα + qmβ −mpα+qβ + (p− 1)(r − a− 1) + (q − 1)a ≥ 0,

which holds true by Lemma 2.6. Assume finally that pα + qβ occurs in the product and is

reductive. Then vanishing of Ŭpα+qβ,p(mα+r−a−1)+q(mβ+a) in Ğr amounts to the inequality

pmα + qmβ −mpα+qβ + (p− 1)(r − a− 1) + (q − 1)a ≥ 1,

or equivalently,

bpεα + qεβc+ (p− 1)(r − a− 1) + (q − 1)a ≥ 1,

i.e. it suffices to show that pεα + qεβ ≥ 1. But as pα+ qβ is reductive,

Z 3 〈pα+ qβ,x− x0〉 = p〈α,x− x0〉+ q〈β,x− x0〉 = −pmα − qmβ + pεα + qεβ. (2.2)

As −pmα − qmβ ∈ Z, we deduce pεα + qεβ ∈ Z. On the other side εα, εβ > 0 (as α, β non-

reductive), and hence pεα + qεβ > 0. Thus, pεα + qεβ ≥ 1. This finishes the proof of (a).
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(b): We have [T̆ a, Ŭα,mα+r−a] ⊆ Ŭα,mα+r by Lemma 2.8(i), and the latter group maps to 1 in

Ğr. Thus [T̆ ar , Ŭ
r−a
α,r ] = 1. Further, Lemma 2.8(iii) shows

[Ŭ−α,m−α+a, Ŭα,mα+r−a] ⊆ T̆α,mα+m−α+r = T̆α,r,

which maps to 1 in Ğr. Thus [Ŭa−α,r, Ŭ
r−a
α,r ] = 1. Finally, let β ∈ Φ, β 6= −α. Again we have two

cases.

Case: β is reductive. By Lemma 2.8(ii),

[Ŭβ,mβ+a, Ŭα,mα+r−a] ⊆
∏

p,q∈Z≥1

pα+qβ∈Φ

Ŭpα+qβ,p(mα+r−a)+q(mβ+a),

Now, by Lemma 2.6 we have

p(mα + r − a) + q(mβ + a) ≥ mpα+qβ + r.

So, regardless of whether pα + qβ is reductive or not, it follows that Ŭpα+qβ,p(mα+r−a)+q(mβ+a)

maps to 1 in Ğr, and hence [Ŭaβ,r, Ŭ
r−a
α,r ] = 1.

Case: β is non-reductive. By Lemma 2.8(ii),

[Ŭβ,mβ+a−1, Ŭα,mα+r−a] ⊆
∏

p,q∈Z≥1

pα+qβ∈Φ

Ŭpα+qβ,p(mα+r−a)+q(mβ+a−1),

and the proof can be finished exactly as in the “β non-reductive”-case of part (a). �

2.10. Regularity of characters. Recall the notation T from Section 2.6. Consider the norm

map Nσm
σ : T (Fq)σ

m → T (Fq)σ = T (Fq) given by t 7→ tσ(t) · · ·σm−1(t). Let r ∈ Z≥1 be fixed.

Following Lusztig [Lus04, 1.5], we say a character χ : T (Fq) → Q×` is regular if for any α ∈ Φ

and any m ≥ 1 such that σm(α) = α, the restriction of χ ◦Nσm
σ to T α(Fq)σ

m
is non-trivial. A

character χ of T̆ σr is called regular if its restriction χ|T (Fq) is regular.

Let θ : T (k) → Q×` be a character of level r − 1; that is, θ is trivial on T̆ (r−1)+ ∩ T (k)

but nontrivial on T̆ (r−2)+. Its restriction to T̆ 0 ∩ T (k) can be viewed as a character χ of

T̆ σr = (T̆ 0/T̆ (r−1)+)σ. We say θ is regular if χ is.

Remark 2.10. When G is an inner form of GLn(K) and T is a maximal nonsplit unramified

torus, then T (k) ∼= L×, where L is the degree-n unramified extension of k. If θ : L× → Q×` is a

smooth character trivial on (T̆ r)σ = U rL = 1 +$rOL, then θ being regular is the same as being

primitive in the sense of Boyarchenko–Weinstein [BW16, Section 7.1]. This is closely related

to θ being minimal admissible in the sense of Bushnell–Henniart [BH05, Section 1.1]. We refer

to [CI20, Remark 12.1] for a more precise comparison.

3. Representations of parahoric subgroups of G(k)

We use notation from Section 2. We fix a point x ∈ Bk, an integer r ≥ 1, a maximal torus T

of G defined over k, split over k̆, and such that x ∈ AT,k̆. Further, we fix the unipotent radicals

U,U− of opposite Borels containing T in Gk̆. By construction from Section 2.6, this gives the

groups Gr,Tr,Ur,U−r over Fq resp. Fq.
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3.1. The schemes ST,U . Let d be the smallest positive integer such that σd(U) = U . To this

data, we attach the Fqd-subscheme of Gr,

Sx,T,U,r := {x ∈ Gr : x−1σ(x) ∈ Ur}.

To match the notation of [Lus04], we write ST,U for Sx,T,U,r.

Lemma 3.1. ST,U is separated, and (the perfection of a) smooth scheme of finite type over Fqd,

which is of dimension (r − 1)#Φ+ + #Φ+,red, where Φ+ and Φ+,red are the roots and reductive

roots of T in U .

Proof. Indeed, ST,U is the pullback of Ur under the finite étale Lang map Gr → Gr, x 7→
x−1σ(x), and Ur is isomorphic to (the perfection of) the affine space of dimension (r−1)#Φ+ +

#Φ+,red. �

The finite group Ğσr × T̆ σr acts on ST,U by (g, t) : x 7→ gxt.

Remark 3.2. ST,U admits also a natural (free) action of Ur ∩ σ−1(Ur) by right multiplication.

If r = 1, the quotient of ST,U by this action is (Fq-isomorphic to) a classical Deligne–Lusztig

variety for the reductive Fq-group G1.

Lemma 3.3. Let (T,U), (T ′, U ′) be two pairs as above (so that, in particular, x ∈ AT,k̆∩AT ′,k̆).

Then

Ğσr \(ST,U × ST ′,U ′)
∼→ Σ, (g, g′) 7→ (g−1σ(g), g′−1σ(g′), g−1g′),

is a T̆ σr × T̆ ′σr -equivariant isomorphism, where Ğσr acts diagonally on ST,U × ST ′,U ′.

By functoriality of cohomology, the Ğσr × T̆ σr -action on ST,U induces for each i ∈ Z a Ğσr × T̆ σr -

action on H i
c(ST,U ,Q`). For a character θ : T̆ σr → Q×` , let H i

c(ST,U ,Q`)θ denote the θ-isotypic

component. It is stable under the action of Ğσr .

Definition 3.4. We define the virtual Ğσr -representation with Q`-coefficients

Rθx,T,U,r :=
∑
i∈Z

(−1)iH i
c(ST,U ,Q`)θ.

By pullback, we can also consider Rθx,T,U,r a virtual representation of the parahoric subgroup

P̆ σx of G(k). If x is clear from the context, we write RθT,U,r for Rθx,T,U,r.

Moreover, by Theorem 1.1(i), RθT,U,r does not depend on the choice of U , if θ is regular. In

this case we denote RθT,U,r by RθT,r. For the dependence on r see Section 3.2.

Recall the group NGr(Tr,T′r) from Section 2.8. Now we generalize [Lus04, 2.2].

Proposition 3.5. Assume that r ≥ 2. Let (T,U), (T ′, U ′) be two pairs as above. Furthermore,

let θ : T̆ σr → Q×` , θ′ : T̆ ′σr → Q×` be two characters.

(i) Let i, i′ ∈ Z. Assume that an irreducible Ğσr -representation appears in the dual space

(H i
c(ST,U ,Q`)θ−1)∨ of H i

c(ST,U ,Q`)θ and in H i′
c (ST ′,U ′ ,Q`)θ′. Then there exists an in-

teger n ≥ 1 and a g ∈ NGr(T′r,Tr)(Fqn) such that the adjoint action of g carries

θ ◦Nσn
σ |T (Fq)σn to θ′ ◦Nσn

σ |T ′(Fq)σn .

(ii) Assume that an irreducible Ğσr -representation occurs in RθT,U,r and Rθ
′
T ′,U ′,r. Then there

exist some n ≥ 1 and g ∈ NGr(T′r,Tr)(Fqn) such that the adjoint action of g carries

θ ◦Nσn
σ |T (Fq)σn to θ′ ◦Nσn

σ |T ′(Fq)σn .
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Proof. The proof (using Lemma 3.3 and Lemma 4.1 below) is literally the same as the proof

of [Lus04, Proposition 2.2]. We omit the details. �

3.2. Change of level. One could hope that if θ is a character of T (Ok) = (T̆ 0)σ which is trivial

on (T̆ r)σ, then the representations RθT,U,r and RθT,U,s for all s ≥ r coincide. In [CI20, Proposition

7.6], it is shown that this holds when G is an inner form of GLn(k) and T is an elliptic torus.

We will show in subsequent work that for general G which split over k̆, this is true when T is

elliptic. However this fails for general T . In some sense, the more T splits, the bigger is the

discrepancy between RθT,U,r and RθT,U,r+1. We will explain the failure in an example.

Assume that G is quasi-split over k and let T ⊆ G be a maximal k-rational torus, which

contains a k-split maximal torus of G. Under these assumptions there is a k-rational Borel

subgroup of G containing T . Let U be its unipotent radical. There is a hyperspecial vertex

x = x0 contained in AT,k̆ ∩Bk. Let r ≥ 1, and let θ be a character of (T̆ 0)σ, which factors

through the character (again denoted θ) of T̆ σr . For each s ≥ r,

Sx,T,U,s/Us = (Gs/Us)σ = Gσ
s /Uσs

is a discrete point set. For a surjection of groups H � K, let InfHK denote the inflation functor

from virtual K-representations to virtual H-representations given by pullback. Since Sx,T,U,s
and Sx,T,U,s/Ur have the same cohomology groups up to an even degree shift, we then have

Rθx,T,U,s = Ind
Ğσs
B̆σs

Inf
B̆σs
B̆σr
θ,

Inf
Ğσs
Ğσr
Rθx,T,U,r = Inf

Ğσs
Ğσr

Ind
Ğσr
B̆σr
θ = Ind

Ğσs
B̆σs Ğ

r,σ
s

Inf
B̆σs Ğ

r,σ
s

B̆σr
θ,

where the last formula follows from a general commutativity fact for inflation and induction

(IndGHN InfHNHN/N χ = InfGG/N Ind
G/N
HN/N χ for an abstract group G, a subgroup H ⊆ G, a normal

subgroup N ⊆ G, and a representation χ of HN/N). Thus Rθx,T,U,s is bigger than Inf
Ğσs
Ğσr
Rθx,T,U,r.

4. The scheme Σ

Let the notation be as in the beginning of Section 3. Moreover, let T ′ be another torus such

that x ∈ AT,k̆ ∩ AT ′,k̆, and let U ′, U ′,− be the unipotent radicals of a pair of opposite Borels

containing T ′. Let T′r,U′r,U
′,−
r be the corresponding subgroups of Gr.

4.1. Definition of Σ, Σw. Attached to (T,U), (T ′, U ′), we consider the following locally closed

reduced subscheme of σ(Ur)× σ(U′r)×Gr whose Fq-points are given by

Σ(Fq) :=
{

(x, x′, y) ∈ σ(Ŭr)× σ(Ŭ ′r)× Ğr : xσ(y) = yx′
}
.

Recalling the Bruhat decomposition discussed in Section 2.8, the scheme Σ decomposes into a

disjoint union of locally closed subsets Σ =
∐
w∈Wx(T,T ′) Σw, where Σw is the reduced subscheme

of Σ with Fq-points

Σw(Fq) :=
{

(x, x′, y) ∈ Σ(Fq) : y ∈ Gr,w(Fq)
}
.

The group T̆ σr × T̆ ′σr acts on Σ and each Σw by

(t, t′) : (x, x′, y) 7→ (txt−1, t′x′t′−1, tyt′−1).

The following lemma is completely analogous to [Lus04, Lemma 1.4].



COHOMOLOGICAL REPRESENTATIONS OF PARAHORIC SUBGROUPS 13

Lemma 4.1. Let r ≥ 2 and let θ : T̆ σr → Q×` , θ′ : T̆ ′σr → Q×` be characters such that Hj
c (Σ)θ−1,θ′ 6=

0 for some j ∈ Z. Then there exist n ≥ 1 and g ∈ NGr(T′r,Tr)σ
n

such that Ad(g) carries

θ|T σ ◦Nσn
σ to θ′|T ′σ ◦Nσn

σ .

Proof. The proof of [Lus04] applies. The only point where one must be careful is the claim that

T and T ′ centralize G1
r (this is used to extend the action of T (Fq) × T ′(Fq) on a covering of

Σw to an action of a connected group). Passing to Fq-points, this is the claim that the sub-

groups T̆ (r−2)+/T̆ (r−1)+ = T̆ (r−1)/T̆ (r−1)+ and T̆ ′(r−2)+/T̆ ′(r−1)+ = T̆ ′(r−1)/T̆ ′(r−1)+ centralize

P̆ 0+
x /P̆

(r−1)+
x . By [MP94, §2.6, end of p.396], we have [P 0+

x , P
(r−1)
x ] ⊆ P

(r−1)+
x , which verifies

the claim. �

4.2. Euler characteristic of Σ. Fix some w ∈ Wx(T, T ′). Consider the locally closed sub-

scheme Σ̂′w of σ(Ur)× σ(U′r)× Ur × U′r × (K1
r r {1})× T′r, determined by

Σ̂′w(Fq) = {(x, x′, u, u′, z, τ ′) ∈ σ(Ŭr)× σ(Ŭ ′r)× Ŭr×Ŭ ′r × (K̆1
r r {1})× T̆ ′r :

xσ(uzẇτ ′u′) = uzẇτ ′u′x′},

and define an action of T̆ σr × T̆ ′σr on it by

(t, t′) : (x, x′, u, u′, z, τ ′) 7→ (txt−1, t′x′t′−1, tut−1, t′u′t′−1, tzt−1, ẇ−1tẇτ ′t′−1). (4.1)

Generalizing [Lus04, 1.9(c)], we will show the following proposition, which is the main technical

result of Section 4.

Proposition 4.2. Let θ and θ′ be characters of T̆ σr and T̆ ′σr respectively, and assume that θ or

θ′ is regular. For each w ∈Wx(T, T ′), we have∑
i∈Z

(−1)i dimH i
c(Σ̂
′
w,Q`)θ−1,θ′ = 0. (4.2)

We prove Proposition 4.2 in Section 4.6 after the necessary preparations. As a corollary to

Proposition 4.2, we deduce the following analogue of [Lus04, Lemma 1.9] and use it to prove

Theorem 1.1.

Corollary 4.3. With assumptions as in Proposition 4.2, we have∑
i∈Z

dimH i
c(Σ,Q`)θ−1,θ′ = #{w ∈Wx(T, T ′)σ : θ ◦Ad(ẇ) = θ′}.

Proof. The proof goes along the lines of the proof of [Lus04, 1.9] (all arguments except for the

proof of Proposition 4.2 are literally the same). �

Proof of Theorem 1.1. The case r = 1 is equivalent to the classical Deligne–Lusztig orthogo-

nality relations [DL76, Theorem 6.8] for the reductive group G1 over Fq. Suppose now that

r ≥ 2. For the first statement of Theorem 1.1 observe that a standard computation using

Lemma 3.3 and the Künneth formula shows that 〈RθT,U , Rθ
′
T ′,U ′〉 =

∑
i∈Z dimH i

c(Σ,Q`)θ−1,θ′ .

Now apply Corollary 4.3. Now statements (i) and (ii) follow from the already proven part as

in [Lus04, 2.4]. �

4.3. Filtration of Ga
a+1. The main difference between the present article and [Lus04] is that if

Px is not reductive (i.e. if x is not a hyperspecial point), then G1
2 may not be abelian. This is

significant because Lusztig’s construction of a stratification of Σ̂w and a corresponding action of
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a connected algebraic group [Lus04, 1.7,1.8] depend on the abelianness of Ga
a+1. To deal with

this problem, we need a refinement of the filtration of G1
r by its subgroups Ga

r for 1 ≤ a ≤ r− 1.

For a ≥ 1, we define a filtration of Ga
a+1 as follows: let

H(1) := subgroup of Ga
a+1 generated Taa+1 and Uaα,a+1 for all reductive α ∈ Φ,

and for all 0 ≤ ε < 1, let

H(ε) := subgroup of Ga
a+1 generated by H(1) and all Uaα,a+1 for α ∈ Φ, satisfying εα ≥ ε.

Note that Taa+1 ⊆ H(1) ⊆ H(ε′) ⊆ H(ε) ⊆ Ga+1
a for all 1 > ε′ ≥ ε > 0. Moreover, there are

only finitely many values of ε (“jumps”) satisfying H(ε) )
⋃
ε′>εH(ε′). We denote these jumps

by 1 =: εs+1 > εs > · · · > ε1 > 0 for some s ≥ 0 (thus 1 is a jump by definition). The jumps

are independent of a. We have H(ε1) = Ga
a+1. For a ≤ r − 1, let p : Ga

r � Ga
a+1 be the natural

projection, and for s+ 1 ≥ i ≥ 1, put

Ga,i
r := p−1(H(εi)).

For convenience, we put Ga,s+2
r := Ga+1

r . This defines a refinement {Ga,i
r }r−1≥a≥1

s+2≥i≥1
of the filtration

{Ga
r}r−1≥a≥1 of G1

r , decreasing with respect to the lexicographical ordering on pairs (a, i). For

s+ 1 ≥ i ≥ 1, let Φi be the set of roots “appearing” in H(εi)/H(εi+1):

Φi :=

{
{α ∈ Φ : εα = 0} if i = s+ 1,

{α ∈ Φ : εα = εi} if s ≥ i ≥ 1.

Lemma 4.4. Let r ≥ 2 and r − 1 ≥ a ≥ 1.

(i) Let a ≥ 2. Then Ga
r/Ga+1

r = Ga
a+1 is abelian, and in particular, for s + 1 ≥ i ≥ 1,

Ga,i
r /Ga,i+1

r is abelian.

(ii) Let a = 1 and s+ 1 ≥ i ≥ 1. Then G1,i
r is normal in G1

r and the quotient G1,i
r /G1,i+1

r is

abelian.

Proof. It suffices to prove the assertions on Fq-points. To show (i), notice that if a ≥ 2, then

[P̆
(a−1)+
x , P̆

(a−1)+
x ] ⊆ P̆

2(a−1)+
x ⊆ P̆ a+

x , so it follows that Ğaa+1 = P̆
(a−1)+
x /P̆ a+

x is abelian. To

establish (ii), it is enough to show that (with a = 1) for any s + 1 ≥ i ≥ 1, H(εi) is normal in

G1
2 and that H(εi)/H(εi+1) is abelian. We spend the rest of the proof establishing these two

claims. Recall that for s+ 1 ≥ i ≥ 1, H(εi) is generated by T1
2 and all U1

α,2 with α ∈
⊔s+1
j=i Φj .

We start with i = s + 1, i.e. the case H(εs+1) = H(1). By Lemma 2.8, [T̆ 1
2 , Ŭ

1
α,2] = 1. Let

α ∈ Φs+1 (thus α is reductive) and let β ∈ Φ be any non-reductive root. Then [Ŭ1
α,2, Ŭ

1
β,2] is the

image in Ğ1
2 of

[Ŭα,mα+1, Ŭβ,mβ ] ⊆
∏

p,q∈Z≥1

pα+qβ∈Φ

Ŭpα+qβ,p(mα+1)+qmβ . (4.3)

Using Lemma 2.6 along with p ≥ 1, we see that p(mα + 1) + qmβ ≥ mpα+qβ + 1. Thus

the contribution of pα + qβ to the commutator lies in Ŭpα+qβ,mpα+qβ+1. From this we deduce

[U1
α,2,U1

β,2] ⊆ H(1). Thus if x ∈ U1
β,2 for any β ∈ Φ, and y ∈ U1

α,2, then xyx−1 = [x−1, y−1]y ∈
H(1), which shows that H(1) is normal in G1

2. A computation analogous to (4.3) for α, β ∈ Φ+

both reductive, shows immediately that [U1
α,2,U1

β,2] = 1 and [T1
2,U1

α,2] = 1, so H(1) is abelian.

Next, pick some s ≥ i ≥ 1. We show that H(εi) is normal in G1
2. Since we have already

established that H(εs+1) is normal in G1
2, it suffices to check as above that for all (non-reductive)
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α ∈ Φ with εα ≥ εi and all non-reductive β ∈ Φ, we have [U1
α,2,U1

β,2] ⊆ H(εi). Now, [Ŭ1
α,2, Ŭ

1
β,2]

is the image in Ğ1
2 of

[Ŭα,mα , Ŭβ,mβ ] ⊆
∏

p,q∈Z≥1

pα+qβ∈Φ

Ŭpα+qβ,pmα+qmβ .

Now, if εpα+qβ ≥ εi, then the contribution of pα + qβ to the commutator is contained in

U1
pα+qβ,2 ⊆ H(εi). If pα + qβ is reductive, the same computation as in (2.2) shows that

Ŭpα+qβ,pmα+qmβ ⊆ Ŭpα+qβ,mpα+qβ � Ŭ1
pα+qβ,2. It remains to handle the case that pα + qβ

is non-reductive with εpα+qβ < εi. If pεα + qεβ < 1, then by Lemma 2.6, pεα + qεβ − εpα+qβ =

bpεα + qεβc = 0, i.e. εi > εpα+qβ = pεα + qεβ ≥ pεi, which is a contradiction. Thus we must

have pεα + qεβ ≥ 1, hence pmα + qmβ −mpα+qβ = bpεα + qεβc ≥ 1. Thus Ŭpα+qβ,pmα+qmβ ⊆
Ŭpα+qβ,mpα+qβ+1, whose image in Ğ1

2 vanishes. We may finally conclude that [U1
α,2,U1

β,2] ⊆ H(εi),

which finishes the proof of normality of H(εi) in G1
2.

For α and β non-reductive with εα = εβ = εi, a similar computation shows that [U1
α,2,U1

β,2] ⊆
H(εi+1). Thus H(εi)/H(εi+1) is abelian. �

4.4. Pairings induced by the commutator. Let N,N− be the unipotent radicals of any two

opposite Borel subgroups of G which contain T and are defined over k̆. (We will specify N to

suit our needs in Section 4.6.) For r− 1 ≥ a ≥ 1, let Nr, N−r and Nar , N
−,a
r be the corresponding

subgroups of Gr and Ga
r . Let Φ+ = {α ∈ Φ: Uα,r ⊆ Nr} and Φ− = ΦrΦ+ = {α ∈ Φ: Uα,r ⊆

N−r }. For s+1 ≥ i ≥ 1, set Φ+
i = Φi∩Φ+ and Φ−i = Φi∩Φ−, and let N1,i

r = G1,i
r ∩Nr. We study

some pairings induced by the commutator map. Note that the targets of the maps in Lemma

4.5 are abelian by Lemma 4.4.

Lemma 4.5. Let r ≥ 2 and r − 1 ≥ a ≥ 1. Let α ∈ Φ be a non-reductive root.

(i) Let a ≥ 2. The commutator map induces a bilinear pairing of abelian groups,

Ur−aα,r /Ur−a+1
α,r × Nar/Na+1

r → Gr−1
r , (ξ̄, x̄) 7→ [ξ̄, x̄].

(ii) Let a = 1 and s + 1 ≥ i ≥ 1. Assume that ε−α = εi (thus εα = 1 − εi). We have

[Ur−1
α,r ,N

1,i
r ] ⊆ Gr−1,s+1

r and [Ur−1
α,r ,N

1,i+1
r ] = 1. The commutator map induces a bilinear

pairing of abelian groups,

Ur−1
α,r × N1,i

r /N1,i+1
r → Gr−1,s+1

r , (ξ, x̄) 7→ [ξ̄, x̄].

Proof. (i): By Lemma 2.9 applied three times, the commutator map Ur−aα,r × Nar → Gr induces

the claimed pairing. It is linear in x̄: if x1, x2 ∈ N̆a
r , then

[ξ, x1x2] = ξ−1x−1
2 x−1

1 ξx1x2 = ξ−1x−1
1 x−1

2 ξx2x1 = ξ−1x−1
1 ξ[ξ, x2]x1 = [ξ, x1][ξ, x2],

where the second equality follows from Lemma 2.9 and Nar/Na+1
r being abelian, and the fourth

follows from Lemma 2.9 as [ξ, x2] ∈ Ğr−1
r , the assumption a ≥ 2, and the subsequent fact that

Naa+1 is generated by root subgroups contained in it. The linearity in ξ̄ is shown similarly.

(ii): We work on Fq-points. To show the first claim, we observe that Ur−1
α,r commutes with N2

r

by Lemma 2.9. As N1,i+1
r is generated by N2

r along with U1
β,r for all β which are either reductive

or satisfy εβ ≥ εi, we have to show that [Ur−1
α,r ,U1

β,r] ⊆ Gr−1,s+1
r for all such β. We have two

cases:
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Case: β is non-reductive. We have to show that [Ŭα,mα+r−2, Ŭβ,mβ ] maps to Ğr−1,s+1
r inside

Ğr. Using Lemma 2.8(ii), it is enough to show that for all p, q ∈ Z≥1 such that pα + qβ ∈ Φ,

Ŭpα+qβ,p(mα+r−2)+qmβ maps to 1 in Ğr if pα+qβ is non-reductive and maps to Ŭ r−1
pα+qβ,r if pα+qβ

is reductive. In both cases, this amounts to the claim that

p(mα + r − 2) + qmβ ≥ mpα+qβ + r − 1,

which in turn by Lemma 2.6 is equivalent to

bpεα + qεβc+ (p− 1)(r − 2) ≥ 1,

which is true as εβ ≥ εi = ε−α = 1− εα.

Case: β is reductive. This case is shown similarly (in fact, slightly simplier) to the above, and

we omit the details. This finishes the proof of the first claim, i.e., [Ur−1
α,r ,N

1,i
r ] ⊆ Gr−1,s+1

r .

We now show the second claim, i.e., [Ur−1
α,r ,N

1,i+1
r ] = 1. Proceeding analogously as in the

proof of the first claim, we need only to show that for all β ∈ Φ either reductive or satisfying

εβ ≥ εi+1, one has [Ur−1
α,r ,U1

β,r] = 1. We again have two cases:

Case: β is non-reductive. We have to show that [Ŭα,mα+r−2, Ŭβ,mβ ] maps to 1 in Ğr. Us-

ing Lemma 2.8(ii), it is enough to show that for all p, q ∈ Z≥1 such that pα + qβ ∈ Φ,

Ŭpα+qβ,p(mα+r−2)+qmβ maps to 1 in Ğr. If pα + qβ is non-reductive, this follows from the

similar statement in the proof of the first claim, as εi+1 ≥ εi. If pα+ qβ is reductive, it amounts

to claim that

p(mα + r − 2) + qmβ ≥ mpα+qβ + r,

which by Lemma 2.6 is equivalent to

bpεα + qεβc+ (p− 1)(r − 2) ≥ 2,

But this is true, as bpεα + qεβc ≥ 2. Indeed, as pα + qβ is reductive, εpα+qβ = 0. Hence by

Lemma 2.6 bpεα + qεβc = pεα + qεβ ≥ εα + εβ > 1. Being an integer, bpεα + qεβc must be ≥ 2.

Case: β is reductive. This case is shown similarly (in fact, slightly simpler) to the above, and

we omit the details. This finishes the proof of the second claim.

We are now ready to show that the claimed pairing is well-defined. Indeed, let ξ ∈ Ŭ r−1
α,r and

let x, x′ ∈ N̆1,i
r with the same image x̄ = x̄′ ∈ N̆1,i

r /N̆1,i+1
r . Then there is an y ∈ N̆1,i+1

r such

that x′ = xy. We compute:

[ξ, x′] = [ξ, xy] = ξ−1y−1x−1ξxy = y−1[ξ, x]y = [ξ, x],

where for the third equality we use that [Ur−1
α,r ,N

1,i+1
r ] = 1 and for the last we use that [ξ, x] ∈

Ğr−1,s+1
r and [Gr−1,s+1

r ,N1
r ] = 1 (indeed, for any reductive root γ we have [Ur−1

γ,r ,N1
r ] = 1 by

Lemma 2.9). Now we show that this pairing is linear in the second variable. Therefore, let
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ξ ∈ Ŭ r−1
α,r and x1, x2 ∈ N̆1,i

r . We compute:

[ξ, x1x2] = ξ−1x−1
2 x−1

1 ξx1x2 = ξ−1[x2, x1]x−1
1 x−1

2 ξx1x2

= [x2, x1]ξ−1x−1
1 x−1

2 ξx1x2 = [x2, x1]ξ−1x−1
1 x−1

2 ξx2x1[x1, x2]

= [x2, x1]ξ−1x−1
1 ξ[ξ, x2]x1[x1, x2] = [x2, x1][ξ, x1][ξ, x2][x1, x2]

= [ξ, x1][ξ, x2].

The third equality follows as [x2, x1] ∈ N̆1,i+1
r (as N1,i

r /N1,i+1
r is abelian) and as [Ur−1

α,r ,N
1,i+1
r ] = 1.

The sixth equality follows as [ξ, x2] ∈ Ğr−1,s+1
r commutes with x1 ∈ N̆1

r . The last equality follows

as [ξ, x1], [ξ, x2] ∈ Ğr−1,s+1
r commute with [x1, x2] ∈ N̆1

r , and as [x2, x1][x1, x2] = 1. An analogous

(slightly simplier) computation shows the linearity in the first variable. �

Remark 4.6. Lemma 2.8(ii) can certainly be generalized. As we will not use the following

generalization, we state it without proof. As for any root α ∈ Φ, −α is a root too, and

ε−α = 1− εα, we have a symmetry between the jumps εi. Concretely, we have εi = 1− εs+1−i
for 1 ≤ i ≤ s. For each 1 ≤ a ≤ r − 1, let Ga,i

r be the subgroup of Ga
r generated by Ga+1

r ,

Tar , Uaα,r (α reductive or εα ≥ εi). Then Lemma 2.8 extends to the following general duality

statement: Fix 1 ≤ a ≤ r − 1 and 1 ≤ i ≤ s. Then the commutator induces a bilinear pairing,

Gr−a,s+1−i
r /Gr−a,s+2−i

r ×Ga,i
r /Ga,i+1

r → Gr−1,s+1
r .

4.5. Stratification on (subgroups of) N1
r. Recall that for any subgroup H ⊂ G and associ-

ated subgroups Hr ⊂ Gr, we have the notation Ha,∗
r = Ha

r rHa+1
r (open subscheme) and hence

the corresponding set H̆a,∗
r of Fq-valued points.

Lemma 4.7. Let r ≥ 2 and let r−1 ≥ a ≥ 1. For z ∈ N̆a,∗
r , write z =

∏
β∈Φ+ xzβ with xzβ ∈ Ŭaβ,r

for a fixed (but arbitrary) order on Φ+. For β ∈ Φ+, let a ≤ a(β, z) ≤ r be the integer such that

xzβ ∈ Ŭ
a(β,z),∗
β,r .

(i) If a ≥ 2, then the set

Az := {β ∈ Φ+ : a(β, z) = a}

is non-empty and independent of the chosen order on Φ+.

(ii) Let a = 1 and let s+ 1 ≥ i ≥ 1 be such that z ∈ N̆1,i,∗
r . Then the set

Az := {β ∈ Φ+
i : a(β, z) = 1}

is non-empty and independent of the chosen order on Φ+. Moreover, a(β, z) > 1 for all

β ∈
⋃i−1
j=1 Φ+

j .

Proof. (i): As a ≥ 2, the quotient Nar/Na+1
r is abelian by Lemma 4.4. Thus its Fq-points are

simply tuples (x̄β)β∈Φ+ with x̄β ∈ Ŭaβ,a+1 with entry-wise multiplication. If z̄ = (x̄zβ) is the

image of z in this quotient, then Az identifies with the set of those β for which x̄zβ 6= 1 (which

is obviously independent of the order).

(ii): Assume that the last claim of (ii) is not true. Then let 1 ≤ i0 < i be the smallest integer

such that a(β, z) = 1 for some β ∈ Φ+
i0

. Then from Lemma 4.4 it follows that z ∈ N̆1,i0,∗
r , which

contradicts the assumption. This shows the last claim. The first claim follows by the same

argument as in (i). �

Using Section 4.4 we can now prove the following generalization of [Lus04, Lemma 1.7].
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Definition 4.8. For α ∈ Φ+ define its height ht(α) (relative to N) to be the largest integer

m ≥ 1 such that α =
∑m

i=1 αi with αi ∈ Φ+.

Proposition 4.9. Let r ≥ 2 and let r− 1 ≥ a ≥ 1. Let z =
∏
β∈Φ+ xzβ ∈ N̆

a,∗
r for xzβ ∈ Ŭaβ,r and

let Az be as in Lemma 4.7.

(i) If Az contains a non-reductive root, let −α ∈ Az be a non-reductive root of maximal

height and α ∈ Φ− its opposite. Then for any ξ ∈ Ur−aα,r , we have [ξ, z] ∈ T αN−,r−1
r .

Moreover, projecting [ξ, z] into T α induces an isomorphism

λz : Ur−aα,r /Ur−a+1
α,r

∼→ T α

(ii) If Az contains only reductive roots, let −α ∈ Az be a root of maximal height and α ∈ Φ−

its opposite. Then for any ξ ∈ Ur−a−1
α,r , we have [ξ, z] ∈ T αN−,r−1

r . Moreover, projecting

[ξ, z] into T α induces an isomorphism

λz : Ur−a−1
α,r /Ur−aα,r

∼→ T α

Proof. Parts (i) and (ii) can be proven in the same way. We give the full proof of (i) only.

Proof of (i) when a ≥ 2. We work on Fq-points. Assume that Az contains a non-reductive root

and let −α be such a root of maximal height and α ∈ Φ− its opposite. Let ξ ∈ Ŭ r−aα,r and let

ξ̄ ∈ Ŭ r−aα,r /Ŭ
r−a+1
α,r and z̄ ∈ N̆a

r /N̆
a+1
r be the images of ξ and z respectively. By Lemma 4.4 we

may write

z̄ = x̄z−α
∏

β∈Φ+ red.

x̄zβ ·
∏

β∈Φ+ non-red., β 6=−α
ht(β)≤ht(−α)

x̄zβ,

where x̄zβ ∈ Ŭaβ,r/Ŭ
a+1
β,r and where the products are taken in any order. Lemma 4.5 shows that

[ξ, z] is the product of [ξ̄, x̄z−α] with all the [ξ̄, x̄zβ] for β ∈ Φ+, the product taken in any order. If

β is reductive, then [ξ̄, x̄zβ] ∈ [Ŭ r−aα,r , Ŭ
a
β,r] = 1 by Lemma 2.9. If β 6= −α is non-reductive, then

by assumption ht(β) ≤ ht(−α). The commutator [ξ̄, x̄zβ] is the image of an element of

[Ŭα,mα+(r−a)−1, Ŭβ,mβ+a−1] ⊆
∏

p,q∈Z≥1

pα+qβ∈Φ

Ŭpα+qβ,pmα+qmβ+p(r−a−1)+q(a−1) (4.4)

Lemma 4.10. The image of the right hand side of (4.4) in Ğr lies in N̆−,r−1
r .

Proof. It is enough to show that for each (p, q) occurring in the product, the corresponding

factor is either contained in N̆−,r−1
r or vanishes in Ğr. If p ≥ q, then ht(β) ≤ ht(−α) implies

pα+ qβ 6∈ Φ+. So, we may assume that q > p and in particular q ≥ 2. It is enough to show that

Ŭpα+qβ,pmα+qmβ+p(r−a−1)+q(a−1) ⊆

{
Ŭpα+qβ,mpα+qβ+r if pα+ qβ reductive

Ŭpα+qβ,mpα+qβ+r−1 otherwise,

as both map to 1 in Ğr. Equivalently, we have to show that

pmα + qmβ −mpα+qβ + p(r − a− 1) + q(a− 1)− (r − 1) ≥

{
1 if pα+ qβ reductive

0 otherwise.

But this holds as by Lemma 2.6, pmα+qmβ−mpα+qβ = bpεα+qεβc is ≥ 1 if pα+qβ is reductive

and is ≥ 0 otherwise, and as q ≥ 2 and a ≥ 2. �
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Finally, [ξ̄, x̄z−α] = [ξ, xz−α] ∈ T α(Fq) by Lemma 2.8(iii). Thus [ξ, z] ∈ T α(Fq)N̆−,r−1
r . More-

over, if we project onto T α(Fq), then only [ξ̄, x̄z−α] survives and Lemma 2.8(iii) proves the desired

isomorphism λz. This finishes the proof of (i) in the case a ≥ 2.

Proof of (i) when a = 1. Let s ≥ i ≥ 1 denote the integer such that z ∈ N̆1,i,∗. (Note that

i 6= s+ 1 as Az contains a non-reductive root by assumption). We have ξ ∈ Ŭ r−1
α,r , and we let z̄

denote the image of z in N̆1,i
r /N̆1,i+1

r . By Lemma 4.4 we may write

z̄ = x̄z−α

 ∏
β∈Φ+

i : β 6=−α
ht(β)≤ht(−α)

x̄zβ

 ,

(product are taken in any order). By Lemma 4.5, [ξ, z̄] is the product of [ξ, x̄z−α] with all the

[ξ, x̄zβ] taken in any order. By assumption εβ = εi = ε−α = 1 − εα. In particular, all β’s are

non-reductive. Now, [ξ, x̄zβ] is the image in Ğr−1,s+1
r of an element of

[Ŭα,mα+r−2, Ŭβ,mβ ] ⊆
∏

p,q∈Z≥1

pα+qβ∈Φ

Ŭpα+qβ,pmα+qmβ+p(r−2) (4.5)

Lemma 4.11. The image of the right hand side of (4.5) in Ğr lies in N̆−,r−1
r .

Proof. Note that the right hand side of (4.5) is contained in Ğr−1,s+1
r (exactly as in the proof

of Lemma 4.5(ii)). Now the same arguments as in the proof Lemma 4.10 apply. If p ≥ q, then

ht(β) ≤ ht(−α) implies pα+ qβ 6∈ Φ+, thus the corresponding factor of the product is contained

in N̆−r ∩ Ğ
r−1,s+1
r ⊆ N̆−,r−1

r . Thus we may assume that q > p and in particular q ≥ 2. It is

enough to show that

Ŭpα+qβ,pmα+qmβ+p(r−2) ⊆

{
Ŭpα+qβ,mpα+qβ+r if pα+ qβ is reductive

Ŭpα+qβ,mpα+qβ+r−1 otherwise,

as both map to 1 in Ğr. Equivalently, we have to show that

pmα + qmβ −mpα+qβ + p(r − 2)− (r − 1) ≥

{
1 if pα+ qβ is reductive

0 otherwise.

By Lemma 2.6, this follows from bpεα+qεβc ≥ 2 if pα+qβ is reductive, resp. to bpεα+qεβc ≥ 1

if pα+ qβ is non-reductive. But in any case we have pεα + qεβ ≥ εα + 2(1− εα) = 2− εα > 1 by

assumptions. In particular, we are done in the case when pα + qβ is non-reductive. If pα + qβ

is reductive, then pεα + qεβ must also be an integer (by Lemma 2.6) and hence ≥ 2, and we are

done in this case too. �

Finally, [ξ, x̄z−α] ∈ T α(Fq) by Lemma 2.8(iii). Thus [ξ, z] ∈ T α(Fq)N̆−,r−1
r . Moreover, if we

project onto T α(Fq), then only [ξ̄, x̄z−α] survives and Lemma 2.8(iii) proves the desired isomor-

phism λz. This finishes the proof of (i). �

Remark 4.12. We note that in the proof of [Lus04, Lemma 1.7] there is an (easily correctable)

mistake. It is claimed that whenever −α, β ∈ Φ+ with −α 6= β and ht(−α) ≥ ht(β), then

pα + qβ 6∈ Φ+ for all p, q ∈ Z≥1. This is not true. For example, let Φ be of type C2, let

ε1, ε2 denote a basis for X∗(T ) such that the Φ+ = {ε1 − ε2, ε1 + ε2, 2ε1, 2ε2}. Then taking
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α = −2ε1, β = ε1 + ε2. Then ht(−α) = 3 > 2 = ht(β). But α + 2β = 2ε2 ∈ Φ+. Observe

here that α + β /∈ Φ+, which contradicts the parenthetical assertion at the end of the proof

of [Lus04, Lemma 1.7].

Surely, the statement of [Lus04, Lemma 1.7] remains true. The place in its proof, where the

abovementioned claim is used, can be corrected as follows: if pα+ qβ ∈ Φ+ for some p, q ∈ Z≥1,

then q ≥ 2 and the part of the commutator (as in the proof of Proposition 4.9) inside Upα+qβ,r

vanishes, since all roots are reductive and r ≥ 2.

Let Kr = U−r ∩ Nr. Let Φ′ = {β ∈ Φ+ : Uβ,r ⊆ Kr}. Let X denote the set of all non-empty

subsets I ⊆ Φ′ satisfying

(i) the restriction of ht : Φ+ → Z≥0 to I is constant, and

(ii) I contains either only reductive or only non-reductive roots.

To z ∈ K̆1
r r {1} we attach a pair (az, Iz) with 1 ≤ az ≤ r − 1 and Iz ∈ X . Define az by

z ∈ K̆az ,∗
r . Let Az be as in Lemma 4.7. If Az contains a non-reductive root, let Iz ⊆ Az be

the subset of all non-reductive roots of maximal height. If Az contains only reductive roots, let

Iz ⊆ Az be the subset of all roots of maximal height. We have a stratification into locally closed

subsets

K1
r r {1} =

⊔
a,I

Ka,∗,I
r , where Ka,∗,I

r (Fq) = {z ∈ K̆1
r r {1} : (az, Iz) = (a, I)}. (4.6)

4.6. Cohomology of Σ̂′. We now prove Proposition 4.2. Using the stratification (4.6) and

Proposition 4.9, the proof of Proposition 4.2 is very similar to the proof of [Lus04, 1.9 (c)].

We sketch the arguments here. It is enough to show that Hj
c (Σ̂′w)θ,θ′ = 0 for all j ≥ 0. For a

T ′(Fq)σ-module M and a character χ of T ′(Fq)σ, write M(χ) for the χ-isotypic component of

M . Note that T ′(Fq)σ acts on Σ̂′w by

t′ : (x, x′, u, u′, z, τ ′) 7→ (x, t′x′t′−1, u, t′u′t′−1, z, τ ′t′−1).

Hence Hj
c (Σ̂′w) is a T ′(Fq)-module. It is enough to show that Hj

c (Σ̂′w)(χ) = 0 for any regular

character χ of T ′(Fq). Fix such a χ. Set N = ẇU ′−ẇ−1, N− = ẇU ′ẇ−1. The stratification (4.6)

of K1
r r {1} induces a stratification of Σ̂′w into locally closed subsets indexed by 1 ≤ a ≤ r − 1

and I ∈ X :

Σ̂′w =
⊔
a,I

Σ̂′,a,Iw where Σ̂′,a,Iw (Fq) = {(x, x′, u, u′, z, τ ′) ∈ Σ̂′w(Fq) : z ∈ K̆a,∗,I
r }.

Note that each Σ̂′,a,Iw is stable under T ′(Fq). Thus (4.2) follows from

Hj
c (Σ̂′,a,Iw ,Q`)(χ) = 0 for any fixed a, I. (4.7)

To show (4.7), choose a root α such that −α ∈ I. Then Uα,r ⊆ Ur ∩ ẇU′rẇ−1. By Proposition

4.9 for any z ∈ K̆a,∗,I
r , we have an isomorphism

λz : Ur−aα,r /Ur−a+1
α,r

∼−→ T α, if α is non-reductive,

λz : Ur−a−1
α,r /Ur−aα,r

∼−→ T α, if α is reductive.

Let π denote the natural projection Ur−aα,r → Ur−aα,r /Ur−a+1
α,r if α is non-reductive and the natural

projection Ur−a−1
α,r → Ur−a−1

α,r /Ur−aα,r if α is reductive. Let ψ be a section to π such that πψ = 1
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and ψ(1) = 1. Let

H′ := {t′ ∈ T ′ : t′−1σ(t′) ∈ ẇ−1T αẇ}.
This is a closed subgroup of T ′. For any t′ ∈ T ′ define ft′ : Σ̂′,a,Iw → Σ̂′,a,Iw by

ft′(x, x
′, u, u′, z, τ ′) = (xσ(ξ), x̂′, u, σ(t′)−1u′σ(t′), z, τ ′σ(t′)),

where

ξ = ψλ−1
z (ẇσ(t′)−1t′ẇ−1) ∈

{
Ur−a−1
α,r ⊆ Ur ∩ ẇU′rẇ−1 if α is reductive,

Ur−aα,r ⊆ Ur ∩ ẇU′rẇ−1 otherwise,

and x̂′ ∈ Gr is defined by the condition that

xσ(ξzẇτ ′σ(t′)) ∈ uzẇτ ′σ(t′)σ(t′)−1u′σ(t′)x̂′.

To check that ft′ is well-defined we have to show x̂′ ∈ σ(U′r). This is done with exactly the

same computation as in the proof of [Lus04, Lemma 1.9], and we omit this. It is clear that

ft′ : Σ̂′,a,Iw → Σ̂′,a,Iw is an isomorphism for any t′ ∈ H′. Moreover, since T ′(Fq) ⊆ H′ and since for

any t′ ∈ T ′(Fq) the map ft′ coincides with the action of t′ in the T ′(Fq)-action on Σ̂′,a,Iw (we use

ψ(1) = 1 here), it follows that we have constructed an action f of H′ on Σ̂′,a,Iw extending the

T ′(Fq)-action.

If a connected group acts on a scheme, the induced action in the cohomology is constant.

Thus for any t′ ∈ H′◦, the induced map f∗t′ : H
j
c (Σ̂′,a,Iw ,Q`) → Hj

c (Σ̂′,a,Iw ,Q`) is constant when t′

varies in H′◦. Hence T ′(Fq) ∩H′◦ acts trivially on Hj
c (Σ̂′,a,Iw ,Q`).

We can find some m ≥ 1 such that σm(ẇ−1T αẇ) = ẇ−1T αẇ. Then

t′ 7→ t′σ(t′)σ2(t′) · · ·σm−1(t′)

defines a morphism ẇ−1T αẇ → H′. Since T α is connected, its image is also connected and

hence contained in H′◦. If t′ ∈ (ẇ−1T α(Fq)ẇ)σ
m

, then Nσm
σ (t′) ∈ T ′(Fq)σ and hence also

Nσm
σ (t′) ∈ T ′(Fq)σ ∩ H′◦(Fq). Thus the action of Nσm

σ (t′) ∈ T ′(Fq)σ on Hj
c (Σ̂′,a,Iw ) is trivial for

any t′ ∈ (ẇ−1T α(Fq)ẇ)σ
m

.

Finally, observe that if Hj
c (Σ̂′,a,Iw ,Q`)(χ) 6= 0, then the above shows that t′ 7→ χ(Nσm

σ (t′)) must

be the trivial character, which contradicts the regularity assumption on χ. This establishes (4.7),

finishing the proof of Propositon 4.2.

5. Traces of very regular elements

Let the notation be as in the beginning of Section 4. The finale of this section is the proof of

Theorem 1.2.

Definition 5.1. We say that s ∈ P̆x is unramified very regular with respect to x if the following

conditions hold:

(i) s is a regular semisimple element of Gk̆,

(ii) the connected centralizer Z◦(s) of s is a k̆-split maximal torus of Gk̆ whose apartment

contains x, and

(iii) α(s) 6≡ 1 modulo p for all roots α of Z◦(s) in Gk̆.

For r ≥ 2, we say that s ∈ Gr is unramified very regular, if s is the image of an unramified very

regular element of P̆x.
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Note that condition (ii) implies condition (i). Note that in condition (iii) the character

α : Z◦(s) → Gm,k̆ induces a homomorphism of maximal bounded subgroups: α : Z̆◦(s) → O×,

and hence the condition makes sense.

Remark 5.2. When G is an inner form of GLn and T is the maximal nonsplit unramified torus

in G, Definition 5.1 says that x ∈ (T̆ 0)σ = O×L (here k̆ ⊇ L ⊇ k is the degree-n-subextension) is

unramified very regular if and only if the image of x in (OL/U1
L) ∼= F×qn has trivial Gal(Fqn/Fq)-

stabilizer. This is not equivalent to (though is implied by) the condition that the image of

x in F×qn is a generator although this last condition is sometimes also associated to the same

terminology [Hen92,BW13,CI20].

Note that if s ∈ P̆x is unramified very regular, then we may consider the Wx(T )-homogeneous

space Wx(T,Z◦(s)) (see Section 2.8).

Before proving Theorem 1.2, we point out the following corollary.

Corollary 5.3. Let T ′ ⊂ G be a k-rational k̆-split maximal torus whose apartment contains

x. If T and T ′ are not conjugate by an element of P̆ σx , then for any s ∈ T ′(k) unramified very

regular with respect to x,

Tr(s,RθT,U,r) = 0.

Proof. We need to show that for two such tori, Wx(T, T ′)σ = ∅. Suppose there is an element

w ∈Wx(T, T ′)σ. Then its preimage in NGr(Tr,T′r) form a Fq-rational Tr-torsor, which by Lang’s

theorem has a rational point. Doing this for all r and using that the inverse limit of a family of

non-empty compact sets is non-empty, we can find an element n ∈ P̆ σx , which conjugates T (O)

into T ′(O). The centralizer of T (O) in G(k̆) is T (k̆) (and similarly for T ′), so n also conjugates

T (k̆) into T ′(k̆), and so it conjugates T into T ′, which contradicts the assumption. �

We now make some preparations that we will use to prove Theorem 1.2. Let B denote

the Borel subgroup of G whose unipotent radical is the fixed subgroup U , and let Br be the

corresponding subgroup of Gr. The following result shows that Br behaves in certain aspects

like a Borel subgroup of Gr (although it is not a Borel subgroup if r ≥ 2). Similar results in the

case that Px is reductive are shown in [Sta12].

Proposition 5.4. Let s ∈ Ğr be an unramified very regular element. If x ∈ Ğr is such that

s ∈ xB̆rx−1, then there exists a unique w ∈Wx(T,Z0(s)) such that for any lift ẇ ∈ Ğr, we have

x ∈ ẇB̆r.

Proof. The maximal k̆-split tori T and Z◦(s) are conjugate by an element y ∈ P̆x, as x is

contained in the intersection of their apartments. Conjugating by y we thus may reduce to the

special case that Z◦(s) = T .

We first prove the assertion in the case r = 1. The image of s in the reductive group Ğ1 is

regular semisimple and B1 ⊆ G1 is a Borel subgroup. By [DL76, Proposition 4.4(ii)], we see

that there is an element ẇ ∈ Ğ1 normalizing T , and satisfying xB1x
−1 = ẇ−1B1ẇ. Since Borel

subgroups are self-normalizing, ẇ−1x ∈ B̆1, and we are done.

We now prove the assertion for r ≥ 2. By the above, we see that there exists a unique

w ∈ Wx(T ) such that x ∈ ẇB̆rĞ1
r . We proceed by induction; to this end, it suffices to prove

that if x ∈ ẇB̆rĞr−1
r , then x ∈ ẇB̆r.

Since Gr−1
r is normal in Gr, we may write x = ẇhb for some h ∈ Ğr−1

r and b ∈ B̆r. By

[MP96, Theorem 4.2], Ğr−1
r has an Iwahori decomposition, so we may write h = h−h+ with
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h− ∈ Ŭ−,r−1
r and h+ ∈ B̆r−1

r . Replacing b by h+b and h by h−, we now have h ∈ Ŭ−,r−1
r .

Since x−1sx ∈ B̆r by assumption, we have h−1Ad(w−1)(s)h ∈ B̆r. Writing t for the very regular

element Ad(w−1)(s) ∈ T̆r, we deduce h−1(tht−1)t ∈ B̆r, and thus h−1(tht−1) ∈ B̆r. Since

h ∈ Ŭ−,r−1
r by construction, h−1(tht−1) ∈ B̆r only if h = tht−1, which holds only when h = 1

by Lemma 5.5. �

Lemma 5.5. Let r ≥ 2 and let t ∈ T̆r ⊂ Ğr be unramified very regular. If tht−1 = h for some

h ∈ Ŭr, then h = 1.

Proof. Fixing an order on the roots Φ+ = Φ(T,U), we may write h uniquely as
∏
α∈Φ+ ψα(hα),

where ψα is an isomorphism of Uα,r with a framing object coming from the Chevalley system.

Then
∏
α∈Φ+ ψα(hα) = h = ζ−1hζ =

∏
α∈Φ+ ψα(α(ζ−1)hα), and hence (by uniqueness of the

presentation as a product) hα = α(ζ−1)hα. We have naturally hα ∈ pr1,α/pr2,α for appropriate

r1,α ≤ r2,α ∈ Z. As ζ−1 is very regular, α(ζ−1) 6≡ 1 mod p, and hence the above equality forces

hα = 0 for all α. Thus h = 1. �

By Proposition 5.4,

S
(g,T)
T,U := {x ∈ Ğr : x−1σ(x) ∈ Ŭr and gx ∈ xT̆ σr } =

⊔
w∈Wx(T,Z0(g))

S
(g,T)
T,U (w), (5.1)

where

S
(g,T)
T,U (w) := {x ∈ ẅB̆r : x−1σ(x) ∈ Ŭr and gx ∈ xT̆ σr },

for some (any) lift ẅ ∈ Gr of w. For any k-rational k̆-split maximal torus T ′ ⊂ G whose

apartment contains x, the preimage of any w ∈Wx(T, T ′)σ in Gr is an Fq-rational Tr-torsor, so

by Lang’s theorem, it contains a Fq-rational point ẇ. For any w ∈W(T, T ′)σ we fix such a ẇ.

Proposition 5.6. Let g ∈ Ğσr be an unramified very regular element. Then

S
(g,T)
T,U (w) =

{
ẇT̆ σr if w ∈Wx(T,Z0(g))σ,

∅ otherwise.

Proof. Let w ∈Wx(T,Z0(g)) and let ẅ be any lift of w to Ğr. Assume that S
(g,T)
T,U (w) 6= ∅ and

let x ∈ S(g,T)
T,U (w). Then ẅ−1x ∈ B̆r and we may write x = ẅtv with t ∈ T̆r and v ∈ Ŭr. We

have x−1gx = v−1t−1ẅ−1gẅtv = v−1svs−1s ∈ T σr , where s := ẅ−1gẅ ∈ T σr is unramified very

regular. Then v−1svs−1 ∈ T σr , hence necessarily v = svs−1, which forces v = 1 by Lemma 5.5.

We now have x = ẅt ∈ ẅT̆r. By construction, t−1ẅ−1σ(ẅ)σ(t) ∈ Ŭr. Since the left-hand side

is semisimple, we have ẅt = σ(ẅt), thus forcing w ∈Wx(T,Z0(g))σ and S
(g,T)
T,U (w) = ẇT̆ σr . �

Proof of Theorem 1.2. For any k̆-split maximal torus T ′ ⊂ G, we have a short exact sequence

1→ (T̆ ′r
1)σ → T̆ ′r

σ → T̆ ′1
σ → 1

of finite abelian groups with (T̆ ′r
1)σ of p-power order and T̆ ′1

σ of order prime to p. (The sur-

jectivity on the right holds as T̆ ′1
σ → H1(Gal(Fq/Fq), T̆ ′r1) must be the zero morphism, as the

latter is a p-group). This sequence is split.

Applying the above to T ′ = Z0(g), we may write g = st1 where t1 ∈ (T̆ ′r
1)σ has p-power order

and s is in the image of the splitting and hence of order prime to p. It is easy to see that t1 and s

are both powers of g. Note that s is still very regular and Z0(s) = Z0(g). Analogously, applying

the above to T ′ = T , for any τ ∈ T̆ σr , we may write τ = ζτ1 with τ1 ∈ (T̆ 1
r )σ, and ζ in the image
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of the splitting. Thus (g, τ) ∈ Ğσr × T̆ σr has the decomposition (g, τ) = (s, ζ) ·(t1, τ1), where (s, ζ)

and (t1, τ1) are both powers of (g, τ) such that (s, ζ) has prime-to-p order and (t1, τ1) has p-power

order. Averaging over T̆ σr and applying the Deligne–Lusztig trace formula [DL76, Theorem 3.2]

(which we may do by Lemma 3.1), we deduce

Tr(g,RθT,U,r) =
1

#T̆ σr

∑
τ∈T̆σr

θ(τ)−1 Tr

(
(g, τ)∗;

∑
i

(−1)iH i
c(ST,U ,Q`)

)

=
1

#T̆ σr

∑
τ∈T̆σr

θ(τ)−1 Tr

(
(t1, τ1)∗;

∑
i

(−1)iH i
c(S

(s,ζ)
T,U ,Q`)

)
, (5.2)

where S
(s,ζ)
T,U := {x ∈ Gr : x−1σ(x) ∈ Ur, sxζ = x} is the set of fixed points of ST,U under (s, ζ).

We obviously have S
(s,ζ)
T,U ⊆ S

(g,T)
T,U , and it now follows easily from Proposition 5.6 that

S
(s,ζ)
T,U =

{
ẇTσr if ζ = Ad(w−1)(s−1) for some (unique) w ∈Wx(T,Z0(g))σ,

∅ otherwise.

Now (t1, τ1) acts on a point ẇa ∈ ẇTσr by (t1, τ1) : ẇa 7→ t1ẇaτ1 = ẇAd(w−1)(t1)aτ1, and thus

Tr

(
(t1, τ1)∗;

∑
i

(−1)iH i
c(S

(s,ζ)
T,U ,Q`)

)
= Tr

(
(t1, τ1)∗;H0

c (ẇTσr )
)

=

{
#T̆ σr if τ1 = Ad(w−1)(t−1

1 ),

0 otherwise,

and Theorem 1.2 now follows from (5.2). �
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