COHOMOLOGICAL REPRESENTATIONS OF PARAHORIC SUBGROUPS

CHARLOTTE CHAN AND ALEXANDER IVANOV

ABSTRACT. We give a geometric construction of representations of parahoric subgroups P of a
reductive group G over a local field which splits over an unramified extension. These represen-
tations correspond to characters 6 of unramified maximal tori and, when the torus is elliptic,
are expected give rise to supercuspidal representations of G. We calculate the character of
these P-representations on a special class of regular semisimple elements of G. Under a certain
regularity condition on 0, we prove that the associated P-representations are irreducible. This
generalizes a construction of Lusztig from the hyperspecial case to the setting of an arbitrary
parahoric.

1. INTRODUCTION

Let k£ be a non-archimedean local field with finite residue field. Let G be a reductive group
over k, and let T C GG be a maximal torus defined over k£ and split over an unramified extension
of k. Let P be a parahoric model of G, defined over the integers O;. Then P is attached to a
point x in the Bruhat—Tits building %}, of the adjoint group of GG over k, lying in the apartment
of T. We denote the schematic closure of T' in P again by 7. We will construct and study a
tower of varieties over an algebraic closure of the residue field [F, of k¥ whose cohomology realizes
interesting representations of P(Qy) parametrized by characters of T'(Oy). This construction
generalizes classical Deligne-Lusztig theory [DL76| (for reductive groups over finite fields), as
well as the work of Lusztig [Lus04] and Stasinski [Sta09] (for reductive groups over henselian
rings). Further, we give an explicit formula for the character on certain very regular elements,
generalizing a special case of the character formula for representations of reductive groups over
finite fields [DL76, Theorem 4.2].

More precisely, we work with a Moy—Prasad filtration quotient G = G, (r > 1) of P, regarded
as (the perfection of) a smooth affine group scheme of finite type over F,. We normalize this
quotients such that Gq is canonically isomorphic to the reductive quotient of the special fiber
of P. As such, one has a Frobenius 0: G — G and the corresponding Lang map G — G,
g — g 'o(g). Choose a Borel subgroup of G containing 7' (defined over some unramified
extension of k) with unipotent radical U. In G we have the subgroups T and U, corresponding
to the closures of T' and U in P. Consider the subscheme Sty = Sty, C G defined as the
preimage of U under the Lang map. By construction, St 17 has a natural action of P(O) xT'(Oy)
given by left and right multiplication. It factors through an action of G(F,) x T(F,). For a
smooth character 6: T(F,) — Q, (£ # char F,), we define R%U to be the #-isotypic component
of the alternating sum of the cohomology groups of S,y with Qg-coefficients. This is a virtual
P(Oy)-representation.

In [Lus04, 1.5] the notion of regularity of a character 0: T,(F,) — Q, is defined for r > 2.

We recall this notion (adapted to our situation) in Section below. Roughly speaking, a
1
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character is regular if it is “very non-trivial” on ker(T,(F;) — T,—1(F,)). Our first main result
is the following generalization of [Lus04, 2.4, 2.5].

Theorem 1.1. Fiz anr > 1 and let (T,U) and (T',U’) be two pairs as above, such that x lies
in the intersection of apartments of T and T'. Let 0: T(F,) — Q,, 6': T'(F,) — Q, be two
characters and assume that at least one of 0,0 is reqular if r > 2. Then

(R 1 R p)ery) = #{w € Wx(T,T')7: 0 0 Ad(w) = 0/},

where Wy (T, T') = T1(F,)\{g € G1(F,): 9Ty = T}} is the transporter from Ty to T} in Gy (a
homogeneous space under the Weyl group of T1 in Gy, cf. Section @
Consequently, if 0 regular, then
(i) R%U is independent of the choice of U.
(ii) If additionally the stabilizer of 6 in W (T, T)? is trivial, then :l:RGT,U is an irreducible
representation of G(Fy) (and of P(Oy)).

The proof of Theorem [1.1] given in Section below, mainly follows the original method
of Lusztig [Lus04], who treated the special case when P is reductive over Of. The main idea
in [Lus04] is as follows: T heoremreduces to the computation of the T(F,) x T'(F,)-equivariant
(-adic Euler characteristic of ¥ = G(Fy)\S7,y x S 7. Then one partitions ¥ into locally
closed T(F,) x T'(F,)-stable varieties in a very subtle way, so that on each such piece, one can
construct by hand an action of a connected algebraic group which commutes with the action of
T(F,) x T'(F,). The construction of this action is remarkably delicate, and the subtleties here
are responsible for the regularity assumption on the character 6.

Let us now describe the technical issue we must tackle in generalizing Lusztig’s hyperspecial
setting to the general setting. For each 1 < s < r — 1, we have the unipotent group G =
ker(G, — Gs). Now, the above-mentioned locally closed decomposition comes from a very
particular filtration of G} by locally closed subschemes (not subgroups) with subtle properties
[Lus04} 1.7,1.8]. Its definition uses that the successive quotients G5~1 (1 < s < r) are abelian
if P is reductive. However, in general, the quotient G% need not be abelian (Remark . This
forces us to refine the filtration {G:}s of G} (Section by a filtration of each graded object
G5! (for fixed s) by certain subgroups H(g) (0 < e < 1). Roughly speaking, H(e) is generated
by the “G$~!-slices” of T (0y,) and of those root subgroups Uy, of T' in G for which the fractional
part of the distance of x to the closest affine root hyperplane with vector part a is < 1 — €.
The graded pieces of this new filtration are abelian (Lemma and moreover satisfy properties
(Sections similar to those in |Lus04} 1.7]. This in turn allows us to define an associated
stratification of ¥ for which we can construct an action of an algebraic group on each piece
(Section [4.6)).

Our second result is the computation of traces of unramified very regular elements of P(Oy)
acting on R%U (Definition . The proof is based on the Deligne-Lusztig fixed point formula
[DL76, Theorem 3.2] and adapts ideas of [DL76, Theorem 4.2].

Theorem 1.2. For any character 0: T(Of) — @Z and any unramified very regqular element
g9 € P(Ok),
Tr(g, Rfy) = Y (BoAd(w )(g).
weWx(T,Z°(g))”
When G is any inner form of GL,, over k and T is an unramified maximal elliptic torus, we
prove in |CI20] that the Deligne-Lusztig-type set considered by Lusztig in [Lus79] is a scheme
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and its cohomology realizes the compact inductions 7y to G(k) of (an extension of) the P(O)-
representations R9T7U. Furthermore, we show—crucially using specializations of both Theorems
and [I.2}—that on the locus of sufficiently generic characters, the correspondence 6 — my is
compatible with the composition of the local Langlands and Jacquet—Langlands correspondences.

As such, we expect this work to be closely related to the problem of geometrically constructing
representations of p-adic groups in general. More specifically, we expect that if T" is elliptic and
0: T(k) — Q, is a sufficiently generic character, then the compact induction to G(k) of (an
extension of) the P(Oy)-representation R%U is related to the supercuspidal representations
constructed by Yu [YuOl]. Both the irreducibility of and the character formula for R%U are
crucial ingredients to understanding the corresponding G(k)-representation within the context
of the local Langlands correspondence.

Finally, we make note of the importance of studying these varieties in the present setting of
general parahoric subgroups P. Already in the setting of inner forms of GL,, it is not enough
to study R%U for reductive P; for example, when G is an anisotropic modulo center inner form
of GL,,, and T unramified elliptic, then the apartment of T in %} consists of one point, x, and
the corresponding parahoric subgroup P is an Iwahori subgroup. This can occur even if G is
split: if G = Spy, then there is a conjugacy class of maximal elliptic tori in G, such that the
relevant P is non-reductive, with the reductive quotient of the special fiber being isomorphic to
SLQ X SL2
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2. PRELIMINARIES

2.1. Notation. We denote by k a non-archimedean local field with residue field F, of prime
characteristic p, and by k the completion of a maximal unramified extension of k. We denote
by Ok, pi (resp. O, p) the integers and the maximal ideal of k (resp. k). The residue field of &
is an algebraic closure F, of F,. We write o for the Frobenius automorphism of l::, which is the
unique k-automorphism of ]:5, lifting the F,-automorphism = — z7 of F,. Finally, we denote by
@ a uniformizer of k (and hence of k) and by ord = ord; the valuation of k, normalized such
that ord(w) = 1.

If k£ has positive characteristic, we let W denote the ring scheme over F, where for any IFy-
algebra A, W(A) = Afw]. If k has mixed characteristic, we let W denote the k-ramified Witt ring
scheme over F, so that W(F,) = Oy and W(F,) = O. As the Witt vectors are only well behaved
on perfect Fy-algebras, algebro-geometric considerations when k& has mixed characteristic are
taken up to perfection. We fix the following convention.

Convention. If k£ has mixed characteristic, whenever we speak of a scheme over its residue field
F,, we mean a perfect scheme, that is a set-valued functor on perfect F,-algebras.

For results on perfect schemes we refer to [Zhul7,BS17]. Note that passing to perfection does
not affect the f-adic étale cohomology; thus for purposes of this paper, we could in principle
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pass to perfection in all cases. However, in the equal characteristic case working on non-perfect
rings does not introduce complications, and we prefer to work in this slightly greater generality.

Fix a prime ¢ # p and an algebraic closure Q, of Q,. The field of coefficients of all repre-
sentations is assumed to be Q, and all cohomology groups throughout are compactly supported
f-adic étale cohomology groups.

2.2. Group-theoretic data. We let G be a connected reductive group over k, such that the
base change G, to k is split. Let T' be a k-rational, k-split maximal torus in G. Let %} and %y
denote the Bruhat—Tits building of the adjoint group of G over k and over k, and let o7 ; C %

denote the apartment of 7. Note that there is a natural action of o € Aut(k/k) on %), and on

”Q{TJE’ and that %), = %léU).

Let X*(T) and X,.(T') denote the group of characters and cocharacters of T. We denote
by (-,-): X*(T) x X.(T) — Z the natural Z-linear pairing between them. We extend it to the
uniquely determined R-linear pairing (-, ) : X*(T)r x X« (T)r — R, where we write Mr = M®zR
for a Z-module M.

Denote by ® the set of roots of T" in G} and for a root a € ® let U, C G} denote the
corresponding root subgroup. There is an action of (o) on ®. Fix a Chevalley system uq: G, —
Uy for Gy, (cf. e.g. [BT84, 4.1.3]). To any root a € ® we can attach the valuation ¢, : Un(k) = Z
given by ¢, (ua(y)) = ord(y). The set of valuations {¢q }ace defines a point xp in the apartment
. .- Moreover &7, ; is an affine space under X, (T)g and the point xo+v € @i for v € X,(T)r
corresponds to the valuations {@,}ace of the root datum given by @, (u) = @wq(u) + {(a,v)
(see |[BTT72, 6.2]).

We let U,U~ be the unipotent radicals of two opposite k-rational Borel subgroups of Gy,

containing 7.

2.3. Affine roots and filtration on the torus. We have the set @, of affine roots of T" in
Gy It is the set of affine functions of @7, ; defined as
P ={x— a(x—x9)+m: a€ b, mecZ}.

Denote the affine root (o, m): x — a(x —xp) +m and call « its vector part. We have the affine
root subgroups Uy m C Uy (k), defined by

ﬁoz,m = {’LL S Ua(E): u=1or SDa(U) > m}

They define a descending separated filtration of U, (k). There is a natural action of the Frobenius
o on the set of affine roots, determined by U, (4,m) = 0(Ua,m). We make it explicit:

Lemma 2.1. Let (a,m) € ®o5. Then o(a,m) = (o(a),m — (o, 0(x0) — X0))-

Proof. We have o(a,m) = (o(a), m’) for some m’ € Z. The evaluation of the affine-linear form
(a,m) on the apartment A, ; is o-linear, thus we have for all x € A.;:

o(a,m)(x) = (a,m) (07 (x)) = (, 07 (x) —x0) + m = ((a),x — x0) +m — (o(a), o(%0) — Xo)-

On the other side, (o(a),m’)(x) = (o(a),x — x0) + m’, hence the lemma. O

Let R = RU {r+:r € R} U {0} denote the ordered monoid as in [BT72, 6.4.1]. Let
0 C T'(k) be the maximal bounded subgroup. For r € R>o\ {oo}, we have a descending
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separated filtration of T given by
T ={t e T°: ord(x(t) —1) > r Vx € X*(T)}.

2.4. Parahoric subgroups, the Moy—Prasad filtration, and integral models. Fix a point
X € @ . Following Bruhat and Tits [BT84} 5.2.6], there is a parahoric group scheme Px over O

attached to x, with generic fiber G, and with connected special fiber. The group Py := P (O) is
generated by T and [?a’m for all (o, m) € @, such that (o, x —xg) > —m (that is, (o, m)(x) >
0). The schematic closure of T" in Py is the connected Néron model of 7. We denote it again
by T. We have T(0) = T°. (As G is split, condition (T) of [Yul5, 8.1] is satisfied. The claim
about the closure of 7" in Py follows e.g. from [Yul5, Corollary 8.6(ii)]. Again, because G} is
split, it also follows [BT84, 4.6.1] that the connected Néron model of T is equal to the maximal
subgroup scheme of finite type of the Ift model of T'. The O-points of the latter are equal to TO,
hence we indeed have T'(0) = T°.)

The Moy—Prasad filtration on Py is given by the series of normal subgroups ]532 C Py (r €
@20 ~ {00}), generated by T and U,,, for all (a,m) € @,z such that (a,x — xq) > r — m.
By [Yul5, 8.6 Corollary], there is a unique smooth O-model P! of G, such that PI(O) = Pr.
Moreover, part (ii) of the same corollary describes the schematic closures of Uy, T in Py, and
in particular, we have

]5; N Ua(/v{) = ﬁa,[r—(a,x—XOH and p; N T(/vf) = TT. (2.1)
Note that for » € R>o, we have 15;+ = User s>r ]5,§ . For further properties of the Moy—Prasad

filtration we refer to [MP94, §2.6] and for further properties of the smooth models Py we refer
to [Yulh|.

Assume now that x € JZ%T,]} N PBy.. Then all group schemes Py, P descend to smooth group
schemes over Oy, again denoted by Py, PL (cf. [Yulb, §9.1]). In particular, all groups PZ (r > 0)
are o-stable (this can also be deduced from Lemma which shows that ¢ maps lu]a,(r_<a7x_,(0ﬂ
isomorphically onto (70(01)7(,,_@(0{)7,(_,(0)1), and Py(O}) = P2 and PL(Oy) = (Pr)°.

2.5. Moy—Prasad quotients. For a scheme X over Oy, (resp. over O), the functor of positive
loops LT X is the functor on F,-algebras (resp. F,-algebras) given by

L*X(R) = X(W(R)).

If X is affine and of finite type, then L*X is represented by an affine scheme (cf. [PRO8, §1.a] if
char k > 0 and |Zhul7, §1] if char k = 0; for the truncated versions of LT, see |Gre61,Gre63|).

Let x € ﬂ/T’]; N %, be as in Section We have the infinite-dimensional affine F,-group
scheme Lt Py, and will now introduce convenient (perfectly) finitely presented quotients of
it. Let r € Z>1. We consider the fpqc quotient sheaf G, := L+PX/L+P,£T_1)+. By |CI20,
Proposition 4.2(ii)] it is representable by (the perfection of) a smooth affine group scheme over
[F, of finite type, which we again denote by G,. From [Yul5, Theorem 8.8], along with the fact
that LJFP,EPD+ is pro-unipotent, it follows by taking Galois cohomology,

G =G, (F,) = Po/PY V" and  G7 = G,.(F,) = (Po/PV V0.

For r > s > 1 we have natural surjections of Fy-groups LTP, — G, — G,. We write
GS = ker(G, —» Gg) and G := G:(F,). Moreover, we also have natural surjections Gy —
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Py ®0, Fq = (Px®o, Fq)re‘i = G identifying Gy with the reductive quotient of the special fiber
of Px.

2.6. Subgroups of G,. Let H C G} be a closed subgroup scheme. Let r € Z>;. We will
attach to H the subgroup H, C Grfq as follows. The schematic closure Hx of H in Py o is flat
(by [BT72} 1.2.6] as O-flat is equivalent to O-torsion free). It follows that Hx is a closed subgroup
scheme of Px o ( [BT72, 1.2.7]). Apply L; to the inclusion Hx C Px o to obtain the subgroup
scheme L Hx C L} Py . The last inclusion is a closed immersion (e.g. by |[Gre61, Corollary
2 on p. 639]). We define the closed subgroup scheme H, C Gr,Fq as the image of L} Hyx under
L} Pxo — G, 5, We write H} = ker(H, — H,) and Hy" := H} \ M+,

Suppose now additionally that Hy is smooth. Then L) Hy is reduced (one could e.g. use
[Gre63, Corollary 2 on p. 264]), and hence H, is too. If H is already defined over the finite
subextension of k /k of degree d, then Hy is defined over the integers of this subextension. This
implies that H,.(F,) is stable under the action of ¢%. Hence H, is defined over F a4 (here we use
that H, is (the perfection of) a reduced separated scheme of finite type over IF,).

Using the procedure described above we obtain the closed F,-subgroup T, C G, attached to
T C @. Analogously, we have the subgroups U,, U, C Gr,Fq corresponding to U, U~ C G}, and
for any root a@ € ® the subgroup U,, C Gr,Fq corresponding to U,. Note that all these are

reduced connected closed subgroups of Gr,?q' Moreover, U, , is defined over ]qu where d € Z>1
is the smallest positive integer such that o%(a) = « in ® (indeed the group U, x is smooth
by [Yul5l 8.3 Theorem (ii)]), and a similar statement holds for U,, U, .

For any reduced Fq—subscheme X, C Gr,E? we define X, := X, (Fq) C G, (Fq) = G,. Thus for
example we write [ufg,, =UZ . (F,) for « € ® and 1 < a < r—1. Following Lusztig, we denote by
T the groups TZ.~!. For a € ®, let T C T} C Gy, be the unique 1-dimensional torus contained
in the subgroup of G} generated by U, and U_,; let T} be the corresponding subgroup scheme
of Gr,Fq and write 79 := T 1,

Lemma 2.2. Letr € Z>1 and1 <a <7 —1.

(i) The group G, is generated by T, and all Uy, (o € ).
(ii) The group Got1 is generated by Tt and all U’gil (a € ®)

Proof. Both cases follow from [Yulb, Theorem 8.3] applied to the smooth models Py and P&t
of G respectively (note that with notations as in loc. cit., the group G(k)x s is by definition the
one generated by all U, (k)x, f(a))- O

Remark 2.3. Let U’ be the unipotent radical of some other Borel subgroup of G containing T'.
Although U and U’ are conjugate by an element of G(k), the groups U,(F,) and U.(F,) need
not be isomorphic. For example, let G be the anisotropic modulo center inner form of GL3 (it
splits over k and its k-points are isomorphic to the units of a division algebra over k). Let x

be the unique point in %By. Then G; = T is a torus and (after an appropriate choice of x)

— WQ(Fq)X Fq Fq —

one has Go(F,) = wF, WaF,)* F, , with the multiplication induced by identifying F,
@l wfy  Wa(Fq)*

with Wy (F,), @F, with the ideal wWs(F,) C Wy(F,), and noting that wWs(F,) is naturally

a W, (ﬁq)-module. Now, let U and U’ be the group of upper- and lower-triangular unipotent

. . . . 7,1 . .
matrices in G. Then Us = U} is non-abelian, whereas U) = Uy is abelian.
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2.7. The groups U, ,. We now give explicit formulas for U, , C G,.

Definition 2.4. Let x € MTI;. We call a root o € ®

reductive if (o, x —x0) €Z
non-reductive otherwise.
For any a € ®, we may uniquely write (a,x — Xo) = —mq + €4 With my € Z and 0 < g, < 1.

We have mq = —| (o, x — X0)].
Note that o € ® is reductive if and only if Uy,1 # 1.

Lemma 2.5. Let x € %Tv and let r € Z>1. Let o« € ®. We have

k
0 if a is reductive
Me +M_g = )
1 otherwise.

Moreover, the natural map Px — G.(F,) induces

— Ua,ma/(jama_i_r if a reductive,
Ua,r(Fq) = { o

Ua,ma/Ua7ma+r71 otherwise.

Thus for a € Z, r > a > 1, the same map induces

9

Ue (F,) = Uamata/Ua,ma+r if a reductive,
a,r\-q/ — o .
Uamata—1/Uamatr—1  otherwise.

Finally, we have T,(F,) = T°/T" and T¢ = T¢/T".

Proof. Noting that [—s] = —[s] for s € R, the lemma follows immediately from (2.1)) and the
definitions of U, ., Ugﬂ, and G,. O

We have the following elementary lemma will be useful later.

Lemma 2.6. Let o, € ® and assume that p,q € Z>1, such that pa+ qB € ®. Then pm, +
qMmg — MpatqB = Pea + GE8 — Epatqp = |PEa + qep]. In particular, pmq + gmg — Mpatqp > 0.

Proof. The first equality is immediate. In particular, pe, + geg — €pat¢s is an integer. This,
along with the fact that 0 < €443 < 1 by definition, implies the second equality. O

2.8. Weyl groups and the Bruhat decomposition. We have the group
Wi(T) := (Na(T)(k) N BY)/T°

(cf. [HRO8, Proposition 8]), and it coincides with the Weyl group W (T, Gy) of the torus T; in
the special fiber G; of Px ( [HRO8|, Proposition 12]). It follows that both natural maps in the
composition

Wx(T) = Ng, (T,)(Fq)/Tr(Fq) — Ng, (T1)(Fq)/T1(Fy)

are isomorphisms. Here Ng(H) denotes the scheme-theoretic normalizer of the subgroup H of
a group G (note that it might be non-reduced, but we have Ng(H)(F,) = Ng(H)wea(Fy) = {g €
G(F,): gHg™* = H}). We also note that Wy(T') coincides with the subgroup of the Weyl group

W = W(T,G) of T in G generated by the vector parts of all affine roots 1) € @, satisfying
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Y(x) = 0 (cf. [Tit79, 1.9, 3.5.1]). It depends only on the facet of % in which x lies, not on x
itself.

We will need a second k-rational, lvf—split maximal torus 7" of G whose apartment .7, i in Ay,
passes through the point x. Let Ng(T,T") = {g € G: gTg~' = T’} be the transporter from T
to 7" and analogously, let Ng, (T,, T’.) be the transporter from T, to T... (Again, these need not
be reduced, but we are interested in ?q—points only.) We then have the principal homogeneous
space

Wi, T) 1= TO\(NG(T, T') (k) 1 B2) = T, (Fy)\ N, (T, T,)(F,).
under Wx(T'). Indeed, this follows as T and T" are conjugate by an element of Px(O).

Let r > 1. For each w € Wx(T,T") choose a representative W € Ng, (T, T.)(F,), and denote
its image in G; again by w. We have the Bruhat decomposition G; = |_|w6Wx(T’T,) G1, of the
reductive quotient, where Gi,, = UjwT{U). For r > 1, define G,.,, to be the pullback of G ,,
along the natural projection G, —» G1. Thus G, = UweWX(T,T') Grw. Let K, :=U, N wUL_u')_l
and K! := K, NG,

Lemma 2.7. Forr > 1, we have G, ,, = U, KT, U,.

Proof. We compute
Gy = Ui T,GLU, = U,a T, (G N'T,) (G, NUT) (G NUL)) UL
= U, oT,(G; NU)UL = U, (w(G, NU )i~ ) wT, U,
=U, (U, Nw(G; NU w1t oT.U, = UKL, UL,

where the second equality follows from [BT72, 6.4.48]. O

2.9. Commutation relations. For two subgroups Hi, Ho of an abstract group H, we denote
by [Hi, Hs] their commutator. For z,y € H, we write [z,y] := 2~ 1y lay.
For a € &, let T C T denote the image of the coroot corresponding to a. It is a one-

dimensional subtorus. We also write 7" = T(k) N1".

Lemma 2.8. (i) Let o« € ® and r,m € R. Then [TT, [v]am] C [jva7m+r.
(i) If a, B € ®, a« # —fB, and my,my € Z, then [ﬁ'a ml’UB ms) @S contained in the group
generated by Upa+qﬂ7pm1+qm2 for all p,q € Z>1, such that pa +qp € d.
(iii) Let a € ® and myi,ma € Z. Then [Unm,,U—amy] € TO™™2. For any element
2 €U_amy~U_amyi1, the map € — [, x] induces an isomorphism (of abelian groups)

Ao Ua,m1/Ua,m1+1 = Ta,m1+m2/TOé7m1+m2+1‘

Proof. (ii) follows from [BT72, (6.2.1)]. (i), (iii): By considering a morphism from SLg to Gy,
whose image is generated by Uy, (as in [BT72, (6.2.3) b)]), and pulling back the valuation of
the root datum along this morphism, it suffices to prove the same statement for SLg(lz:). This is
an immediate computation. ]

For two smooth (connected) closed subgroups Hy, Hy of a connected linear algebraic group
G over a field, we denote by [H;,Hs] their commutator “in the sense of group varieties” as
in [Bor91, §2.3] (it would be more precise to consider the scheme-theoretic commutator, but for
our purposes this suffices).

Lemma 2.9. Letr>2and1<a<r—1. Leta € P.
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(a) If o is non-reductive, then [G¢T!, UL 9] =1
(b) If o is reductive, then [G},U; 0] = 1.

Proof. Tt suffices to prove the claims on Fy-points. (a): By Lemma it suffices to show to
show that [T0+1,U77% = 1 and that [U§1', U579 = 1 (V8 € ®) in G,. By Lemma [2.5 T2+
is the image in Gr of T““, Ugﬁ is the image of Ua7ma+r_a_1, and similar claims hold for all
5 € ®. But [T“+1,(7a7ma+r_a_1] C ﬁa,wma by Lemma (i), and (ja,,qrma maps to 1 in G,
so [T9+1,Ur~9] = 1 follows. Now assume that 3 = —a. Then —a is non-reductive as « is, and
by Lemma |2 iii ﬁ,a,m_aJra, ﬁaymaﬁn,a,l] - Tortmatm_a—1 — par maps to 1 in G,.. This
shows [Uler, Uhsr “] = 1. Thus we can assume 3 € &, § # —a. We have two cases.

Case: (8 is reductive. Then by Lemma U‘hLl is the image in G, of lufﬁ,mﬂJraH and by Lemma
2.8((ii) we have

[Uﬁ,m5+a+17 Ua,ma—l—r—a—l] - H Upa+qﬁ,p(ma+Tfa71)+q(m5+a+1)‘
P,qEL>1
pa+qBed

To ensure that this product maps to 1 in G,, it suffices to show that for all D,q € Z>1 with
pa+qB € ®, one has p(ma +7 —a— 1)+ q(mg + a+ 1) > mpqigp + 7, Or equivalently,

PMa + qmg — Mpatqp + (P —1)(r—a—1) + (¢ —1)(a+1) = 0.
But this follows from Lemma [2.6]

Case: 8 is non-reductive. By Lemma |2 U a+1 is the image in ér of ﬁg,mlﬁa and by Lemma
2.8|(ii) we have

[U,B,m5+aa Ua,moﬂr?’*afli - H Upa-{—qﬁ,p(ma—i—r—a—l)—i-q(mﬁ+a)-

P,9EL>1
po+qBed

To show that the image of this product vanishes in G,, we have to show that each single term
does. Assume that pa 4+ gf8 occurs in the product and is non-reductive. Then vanishing of

ﬁpaﬂg’p(ma+T,a,1)+q(m5+a) in GG, amounts to the inequality
PMa +qmg —Mparqg + (P —1)(r—a—1)+(¢—1)a >0,

which holds true by Lemma [2.6| - Assume finally that pa + qﬁ occurs in the product and is
reductive. Then vanishing of U, pataB,p(ma+r—a—1)+q(mg-+a) 1L G, amounts to the inequality

P +qmg — Mpaygs + (P —1)(r—a—1)+(¢—1)a>1,
or equivalently,
lpea +qepl + (p—1)(r—a—1)+ (¢ —1)a>1,
i.e. it suffices to show that pe, + qeg > 1. But as pa + ¢ is reductive,
Z 3 (pa+qB,x —x0) = p{a, X — X0) + ¢(B,X — X0) = —pa — qmg + pea +qep.  (2.2)

As —pmq — qgmpg € Z, we deduce pey + geg € Z. On the other side e4,e53 > 0 (as «, 3 non-
reductive), and hence pe, + geg > 0. Thus, pey + geg > 1. This finishes the proof of (a).
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(b): We have [T Upmptr—al € Un.ma+r by Lemma (i), and the latter group maps to 1 in
G,. Thus [T, (75_,,“] = 1. Further, Lemma (iii) shows

[U—a,m,a.m, Ua?ma‘i"f'—(z] C TMatMm—atr _ Ta’T,

which maps to 1 in G,.. Thus [U% l”]g;;a] = 1. Finally, let 8 € ®, 8 # —a. Again we have two

—a,T
cases.

Case: f3 is reductive. By Lemma [2.§](ii),

(Us.ms+as Unyma+r—al € H Upa+qB.p(ma-+r—a)+q(ms-+a):

P,9EL>1
pa+qBed

Now, by Lemma [2.6] we have
p(ma +r— a) + Q(mﬁ + CL) > Mpatqp T 1

So, regardless of whether pa + ¢f is reductive or not, it follows that ffpa +qB,p(ma-+r—a)+q(mg-+a)
maps to 1 in G, and hence [ﬁgr, ﬁg;“] =1.

Case: [ is non-reductive. By Lemma [2.8((ii),

[Uﬁ,m5+a717 Ua,ma—l-?"—a] C H Upa—i—qﬁ,p(ma+r—a)+q(m[3+a—1)7

P,9EL>1
pa+qBed

and the proof can be finished exactly as in the “8 non-reductive”-case of part (a). O

2.10. Regularity of characters. Recall the notation 7 from Section 2.6 Consider the norm
map NI : T(F,)°" — T(F,)° = T(F,) given by t > to(t)---0c™ (t). Let r € Z>1 be fixed.
Following Lusztig [Lus04} 1.5], we say a character x: T (F,) — Q, is regular if for any a € ®
and any m > 1 such that 0™ (a) = a, the restriction of y o NI to T%(F,)°" is non-trivial. A
character x of T,ﬁ’ is called regular if its restriction X|T(1Fq) is regular.

Let 0: T(k) — Q, be a character of level » — 1; that is, 6 is trivial on 7=+ 0 T(k)
but nontrivial on T0=2*. Tts restriction to T° N T'(k) can be viewed as a character x of
T = (T°/T—1+)7 . We say 0 is regular if y is.

Remark 2.10. When G is an inner form of GL,(K) and T is a maximal nonsplit unramified
torus, then T'(k) 2 L*, where L is the degree-n unramified extension of k. If 0: L* — Q, is a
smooth character trivial on (T’”)" = U] =1+ @"Or, then 0 being regular is the same as being
primitive in the sense of Boyarchenko—Weinstein [BW16|, Section 7.1]. This is closely related
to 6 being minimal admissible in the sense of Bushnell-Henniart [BHO5| Section 1.1]. We refer
to |CI20, Remark 12.1] for a more precise comparison.

3. REPRESENTATIONS OF PARAHORIC SUBGROUPS OF G/(k)

We use notation from Section [2| We fix a point x € %y, an integer r > 1, a maximal torus T’
of G defined over k, split over l::, and such that x € DQ/TJ;. Further, we fix the unipotent radicals
U,U™ of opposite Borels containing 7" in G;. By construction from Section this gives the
groups G,,T,,U,, U, over I, resp. F,.



COHOMOLOGICAL REPRESENTATIONS OF PARAHORIC SUBGROUPS 11

3.1. The schemes Sr . Let d be the smallest positive integer such that o?(U) = U. To this
data, we attach the F 4-subscheme of Gy,

Sx,T,U,r = {1’ € G, (Eilo'(l’) € [Ur}.
To match the notation of |[Lus04], we write S ¢ for Sx7.v,r.

Lemma 3.1. Sty is separated, and (the perfection of a) smooth scheme of finite type over I a,
which is of dimension (r — 1)#®+ + #dH 4 where dF and ®H°d are the roots and reductive
roots of T in U.

Proof. Indeed, Sty is the pullback of U, under the finite étale Lang map G, — G,, z —

r71o(z), and U, is isomorphic to (the perfection of) the affine space of dimension (r — 1)#®* +

#(I)—&—,red‘ N
The finite group GZ x T acts on Stu by (g9,t):  — gat.

Remark 3.2. Sty admits also a natural (free) action of U, N o~1(U,) by right multiplication.
If r = 1, the quotient of Sty by this action is (Fg-isomorphic to) a classical Deligne-Lusztig
variety for the reductive F-group G.

Lemma 3.3. Let (T,U), (T',U’) be two pairs as above (so that, in particular, X € oy y Ny, ).
Then
GIN(Sru x Spur) 32, (9,9") = (97 0(9).9" " o(d), 97",

is a T x T, -equivariant isomorphism, where G¢ acts diagonally on Sty X Spr .

By functoriality of cohomology, the Cv}f X TT“ -action on Sty induces for each i € Z a éf X TT" -
action on H(S7y, Q). For a character 6: T;,’ — @Z, let H(S7.1,Qy)g denote the f-isotypic
component. It is stable under the action of é?

Definition 3.4. We define the virtual é?—representation with Q-coefficients
RE = Z(_l)iHé(ST,Uv@Z)(?'
1€Z
By pullback, we can also consider R}ec,T,U,r a virtual representation of the parahoric subgroup

P7 of G(k). If x is clear from the context, we write RGT’UJ, for Rf{,T,U,r'
Moreover, by Theorem (i), R%U » does not depend on the choice of U, if 0 is regular. In
this case we denote R%’U’T by R(’T’T. For the dependence on r see Section

Recall the group Ng, (T, T.) from Section Now we generalize [Lus04, 2.2].

Proposition 3.5. Assume that r > 2. Let (T,U), (T",U’) be two pairs as above. Furthermore,
let 0: 77 - Q, , 0': T' — Q, be two characters.
(i) Let i,i" € Z. Assume that an irreducible Cv}f-representation appears in the dual space
(H (S0, Qp)g-1)Y of Hi (S, Qp)g and in HY (Sgvyr,Qp)g. Then there exists an in-
teger n > 1 and a g € Ng, (T}, T,)(Fqn) such that the adjoint action of g carries
n / n
00N Ly, 108" No" | g, )om- ,
(ii) Assume that an irreducible G -representation occurs in R%,U,r and R%’,U’,r' Then there
exist some n > 1 and g € Ng, (T, T,)(Fgn) such that the adjoint action of g carries
n / n
0 e} Ng |7~(Fq)a-n tO 9 (¢] Ng |T/(Fq)gn .
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Proof. The proof (using Lemma and Lemma below) is literally the same as the proof
of |Lus04, Proposition 2.2]. We omit the details. O

3.2. Change of level. One could hope that if § is a character of T (Or) = (T°)7 which is trivial
on (TT)U, then the representations RT7U’T and RT,U7 ; for all s > r coincide. In |[CI20, Proposition
7.6], it is shown that this holds when G is an inner form of GL, (k) and T is an elliptic torus.
We will show in subsequent work that for general G which split over /vf, this is true when T is
elliptic. However this fails for general 7. In some sense, the more T splits, the bigger is the
discrepancy between R%U,T and R%Uvr +1- We will explain the failure in an example.

Assume that G is quasi-split over k£ and let 7" C G be a maximal k-rational torus, which
contains a k-split maximal torus of G. Under these assumptions there is a k-rational Borel
subgroup of G containing T'. Let U be its unipotent radical. There is a hyperspecial vertex
x = Xq contained in &z N Ay Let r > 1, and let 6 be a character of (1T°)7, which factors

through the character (again denoted 6) of Tﬁ’ . For each s > r,
Sx,T,U,s/Us = (GS/US)U = Gg/Ug

is a discrete point set. For a surjection of groups H — K, let Infg denote the inflation functor
from virtual K-representations to virtual H-representations given by pullback. Since Sx 7 s
and Sx,7.v,s/Uy have the same cohomology groups up to an even degree shift, we then have

RS0 Ind‘S? Infff? 0,

B G’ro‘

Infv RXTUT—InfﬁInd H—Indv T(,Inf s 6,

where the last formula follows from a general commutatwlty fact for inflation and induction

(IndHN IanN/N X = Infg/N IndHGV/N x for an abstract group G, a subgroup H C G a normal

subgroup N C G, and a representation x of HN/N). Thus Rx T.U,s 18 bigger than Inf & Rx TUr

4. THE SCHEME X

Let the notation be as in the beginning of Section |3l Moreover, let 77 be another torus such
that x € @7, N o, ¢, and let U’',U"~ be the unipotent radicals of a pair of opposite Borels

containing 7”. Let T, U, Uy~ be the corresponding subgroups of G,..

4.1. Definition of ¥, ¥,,. Attached to (T,U), (T",U’), we consider the following locally closed
reduced subscheme of o(U,) x o(U.) x G, whose F,-points are given by
S(F,) = {(m,x',y) e o(U.) x o(U) x Gy: xo(y) = yaz'} .

Recalling the Bruhat decomposition discussed in Section the scheme ¥ decomposes into a
disjoint union of locally closed subsets ¥ = ]_[wewx(T,T,) >w, where Y, is the reduced subscheme

of 3 with Fq—points
Suw(Fq) i= {(z,2,y) € B(Fy): y € Grw(Fy)} .
The group ’ff X Tf’ acts on X and each ¥, by
(t,t): (z,2',y) — (txt L 2t~ eyt ).

The following lemma is completely analogous to [Lus04, Lemma 1.4].
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Lemma 4.1. Letr > 2 and let0: T7 — Q, , 0': T/ — Q, be characters such that Hg(Z)gfl’g/ #
0 for some j € Z. Then there exist n > 1 and g € Ng,(T.,T,)" such that Ad(g) carries
070 o NI to 0|70 o NZ".

Proof. The proof of [Lus04] applies. The only point where one must be careful is the claim that
T and T centralize G} (this is used to extend the action of T (F,) x T'(F,) on a covering of

Y to an action of a connected group). Passing to Fg-points, this is the claim that the sub-
groups T(=2+ =1+ — =1 )plr=1+ angq 7/0=2)+ /prr=1+ — 7rr=1) )p/r=1+ centralize
PO+ /P By [MP94| §2.6, end of p.396], we have [P2F, P Y] ¢ PU™U* | which verifies
the claim. O

4.2. EulAer characteristic of ¥. Fix some w € Wy(T,T’). Consider the locally closed sub-
scheme X! of o(U,) x o(U.) x U, x U\ x (KL~ {1}) x T, determined by
SF,) = {(z, 2, u, i, 2,7') € o(Uy) x o(UL) x Upx UL x (K}~ {1}) x T7:
ro(uzit'v') = uzwr'u'z'},
and define an action of 79 x T'? on it by
(t,t): (2 u, ), 2, 7) = (et T tut ™ T et o . (4.1)

Generalizing [Lus04}, 1.9(c)], we will show the following proposition, which is the main technical
result of Section [4]

Proposition 4.2. Let 6 and 8 be characters of T;’ and T;" respectively, and assume that 0 or
0’ is regular. For each w € Wx(T,T"), we have

Y (=1) dim H(S,,, @)1 4 = 0. (4.2)
1€EZ
We prove Proposition in Section after the necessary preparations. As a corollary to
Proposition we deduce the following analogue of [Lus04, Lemma 1.9] and use it to prove
Theorem [L.1]

Corollary 4.3. With assumptions as in Proposition [[.9, we have
> dim H(S, Qo100 = #{w € Wy(T,T')7: 60 Ad(ib) = 6'}.

€L
Proof. The proof goes along the lines of the proof of [Lus04, 1.9] (all arguments except for the
proof of Proposition are literally the same). ]

Proof of Theorem[I.1l The case r = 1 is equivalent to the classical Deligne-Lusztig orthogo-
nality relations [DL76, Theorem 6.8] for the reductive group G; over F,. Suppose now that
r > 2. For the first statement of Theorem [I.I] observe that a standard computation using
Lemma and the Kiinneth formula shows that (R%U,R%I,7U,> = Y iepdim HL (S, Qp)p-19-
Now apply Corollary . Now statements (i) and (ii) follow from the already proven part as
in |Lus04} 2.4]. O

4.3. Filtration of G?,,. The main difference between the present article and [Lus04] is that if
Py is not reductive (i.e. if x is not a hyperspecial point), then G% may not be abelian. This is
significant because Lusztig’s construction of a stratification of 3, and a corresponding action of
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a connected algebraic group [Lus04, 1.7,1.8] depend on the abelianness of GZ, ;. To deal with
this problem, we need a refinement of the filtration of G by its subgroups G for 1 < a < r — 1.

For a > 1, we define a filtration of G7,  as follows: let

H(1) := subgroup of Gg, generated Ty, and Ug ,; for all reductive a € ®,
and for all 0 < e < 1, let
H(g) := subgroup of Gy, generated by H(1) and all Uy ., for a € @, satisfying e, > ¢.

Note that T¢,, C H(1) C H(¢') € H(e) C G4 for all 1 > &’ > & > 0. Moreover, there are
only finitely many values of e (“jumps”) satisfying H(e) 2 .~ H(¢'). We denote these jumps
by 1 =t es541 > 65> -+ > 1 > 0 for some s > 0 (thus 1 is a jump by definition). The jumps
are independent of a. We have H(e1) = G§_ ;. For a <r —1, let p: G} — G{_,; be the natural
projection, and for s +1 > ¢ > 1, put

G» = p~l(H(g)).

For convenience, we put G272 := G2*L. This defines a refinement {G7"'},_1>4>1 of the filtration
s+2>i>1

{G}r—1>a>1 of G, decreasing with respect to the lexicographical ordering on pairs (a,7). For
s+1>i>1,let ®; be the set of roots “appearing” in H(g;)/H (gi41):

o {{aefb:aazo} ifi=s41,
{a€ed:ecy=¢;} ifs>i>1.
Lemma 4.4. Letr>2 andr—1>a > 1.
(i) Let a > 2. Then G%/Go¢H = G& .y is abelian, and in particular, for s +1 > i > 1,
Gﬁ’i/G?’Hl 1s abelian.
(ii) Let a =1 and s+ 1>1i>1. Then G}«’i is normal in GL and the quotient (G,ln’i/G}JHl 18
abelian.

Proof. 1t suffices to prove the assertions on F,-points. To show (i), notice that if a > 2, then
[P)Ea—l)—l-’p)((a—l)—ﬁ—] c pa-t ¢ Pt so it follows that égﬂ = éﬁ“‘”*/ﬁ? is abelian. To
establish (ii), it is enough to show that (with a = 1) for any s+ 1 >4 > 1, H(g;) is normal in
G} and that H(e;)/H(g;4+1) is abelian. We spend the rest of the proof establishing these two
claims. Recall that for s +1 >4 > 1, H(g;) is generated by Tj and all U}, , with o € Uj;l ;.
We start with i = s + 1, i.e. the case H(esy1) = H(1). By Lemma [Tg,(j’;ﬂ = 1. Let
a € ®,4q (thus a is reductive) and let 5 € ® be any non-reductive root. Then [lu]lg, (7612] is the

[0}

image in G3 of

[Ua,ma-S-laUﬂ,ms]g H Upa+qﬁ,p(ma+1)+qmg' (4.3)
P:qEL>1
pa+qBeP

Using Lemma along with p > 1, we see that p(mq + 1) + gmg > Mpayep + 1. Thus
the contribution of pa + ¢S to the commutator lies in Iv]paJrqg’mm +qs+1- From this we deduce
[UQZ,UEQ] C H(1). Thusif z € [U}i? for any 8 € ®, and y € U, 5, then zyz™! = [z71,y ]y €
H (1), which shows that H(1) is normal in Gi. A computation analogous to for o, 8 €
both reductive, shows immediately that [U,, Uéﬁ] =1 and [T}, U} ,] =1, so H(1) is abelian.
Next, pick some s > i > 1. We show that H(e;) is normal in G3. Since we have already
established that H(s,41) is normal in G, it suffices to check as above that for all (non-reductive)
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a € ® with e, > ¢; and all non-reductive 8 € ®, we have [U}, Q’U}?Q] C H(e;). Now, [U},, Uég]

(e

is the image in G of

Uame: Usms] € T1 Upataspmactams-

P,qEL>1
pa+qped

Now, if €payqs = €, then the contribution of pa + ¢B to the commutator is contained in
[UpaJrqﬁz C H(g;). If pa + ¢B is reductive, the same computation as in shows that
Upa+q5,pma+qm5 - Upa+q5 Mpatas (v];a+q572. It remains to handle the case that pa + gf
is non-reductive with ep0448 < &;. If peo + geg < 1, then by Lemma PEq + qEB — EpatqB =
|pea + qep) = 0, ie. € > €patqs = PEa + qep > pe;, which is a contradiction. Thus we must
have peq + geg > 1, hence pmq + gmpg — Mpa+q8 = |Pa + qep| > 1. Thus lvfpaJrqg,pmaJrqu -
Upa+qﬂ,mm q5+1> Whose image in G2 vanishes. We may finally conclude that [U}, 25 U}a’,z] C H(e),
which finishes the proof of normality of H(g;) in Gi.

For a and 3 non-reductive with e, = g = ¢;, a similar computation shows that [U}m, Ué,Q] -

H(gi+1). Thus H(e;)/H (gi4+1) is abelian. O

4.4. Pairings induced by the commutator. Let N, N~ be the unipotent radicals of any two
opposite Borel subgroups of G which contain 7" and are defined over k. (We will specify N to
suit our needs in Section ) Forr—1>a>1,let N, N and N% N, be the corresponding
subgroups of G, and G¢. Let &7 = {a € ®: Uy, CN,} and @~ = &\ d" = {a € ¢: U,, C
N;}. For s4+1>i> 1, set ® = ®;N®+ and &, = &;Nd~, and let N* = G NN,. We study
some pairings induced by the commutator map. Note that the targets of the maps in Lemma

are abelian by Lemma
(.3 y

Lemma 4.5. Letr >2 andr—1>a>1. Let o« € ® be a non-reductive root.

(i) Let a > 2. The commutator map induces a bilinear pairing of abelian groups,
U, /U AT NG /NP = G, (6,7) = (6, 3.

(ii) Let @ = 1 and s+ 1 > i > 1. Assume that e_, = &; (thus e = 1 — ;). We have
[Ur-L Ny € GE Yt and [UZSE, NPT = 1. The commutator map induces a bilinear

a,r ) a,r
pairing of abelian groups,

Ur 1 % Nl z/Nl ji+1 N Gr ls+1 (f,f') s [5_7 j}

Proof. (i): By Lemma [2.9) applied three times, the commutator map Uy * x NI — G, induces
the claimed pairing. It is linear in Z: if 1,29 € N7, then

(€, m120] = €My oy awg = € a tay Maomy = € o [, wo)my = [€, 2] [, 2],

where the second equality follows from Lemma and N%/N¢*+! being abelian, and the fourth
follows from Lemma as [€,xo] € é’:fl, the assumption a > 2, and the subsequent fact that
Ng . is generated by root subgroups contained in it. The linearity in ¢ is shown similarly.

(ii): We work on F -points. To show the first claim, we observe that U’ ;! commutes with N2

by Lemma [2.9) As Nl g generated by N2 along with Mﬁ for all 8 Wthh are either reductive

or satisfy g5 > &;, we have to show that [U, ', Up ] C G;~ L5t for all such 8. We have two
cases:
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Case: [ is non-reductive. We have to show that [ﬁa,ma+7«_g,(jﬁ7m5] maps to va’;_l’sﬂ inside
C:}r. Using Lemma (ii), it is eno%gh to show that for all p,q € Z>1 such t}u1at pa+qp € ®,
UpatqB,p(ma-+r—2)+qmg Maps to 1in G, if pa+¢p is non-reductive and maps to U;;iqﬁ,r if pa+¢qp
is reductive. In both cases, this amounts to the claim that

p(ma +1 —2) +qgmg > Mpqyqp +7 — 1,
which in turn by Lemma [2.6|is equivalent to

|pea +qeg| + (p—1)(r—2) > 1,

which is true as eg > ¢ =e_o =1 —&,.

Case: 3 is reductive. This case is shown similarly (in fact, slightly simplier) to the above, and
we omit the details. This finishes the proof of the first claim, i.e., [U7 ! Ni’z] c Grbstt

a,r

We now show the second claim, i.e., [Ug;l,Ni’iH] = 1. Proceeding analogously as in the

proof of the first claim, we need only to show that for all 5 € ® either reductive or satisfying
€3 > €i+1, one has [U7 ! Ué .| = 1. We again have two cases:

a,r

Case: [ is non-reductive. We have to show that [ﬁa’maﬂ,g,f]@mﬁ] maps to 1 in C?T. Us-
ing Lemma (ii), it is enough to show that for all p,q € Z>; such that pa + ¢8 € @,

Up

similar statement in the proof of the first claim, as ;41 > ;. If pa + ¢f is reductive, it amounts

atqB p(ma-+r—2)+qms Maps to 1 in G,. If pa + gB is non-reductive, this follows from the

to claim that
p(ma +r— 2) + qmp > Mpa+qp + 7,

which by Lemma [2.6]is equivalent to

lpea +qep] + (p—1)(r —2) 2 2,
But this is true, as |peq + geg) > 2. Indeed, as pa + ¢ is reductive, epq4q3 = 0. Hence by
Lemma 2.6) [pea + geg] = pea +qes > ca + €5 > 1. Being an integer, [peq + ge3] must be > 2.

Case: [ is reductive. This case is shown similarly (in fact, slightly simpler) to the above, and
we omit the details. This finishes the proof of the second claim.

We are now ready to show that the claimed pairing is well-defined. Indeed, let & € ﬁc’;;l and
let 2,2/ € Ny with the same image 7 = &' € N}’Z/N,}’Hl. Then there is an y € N such
that ' = xy. We compute:

(€, 2] = [yl =&y e ay = y € 2]y = €2,

where for the third equality we use that [U7-!, Ny*t!] = 1 and for the last we use that [¢,2] €

a,r

Gyt and [Gr YT N = 1 (indeed, for any reductive root v we have (U7 L,N}] =1 by

Lemma [2.9). Now we show that this pairing is linear in the second variable. Therefore, let
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S 175;1 and 1,22 € Np'. We compute:
—1l,=1,-1 - -1,.—1
(6, m1wo] = €y Nemiwg = € [mo, wa]ay Tay My my

= [$2,$1]€71x1_1562_1§1}1x2 = [.732,.7,’1]5711,‘1_11‘2_16332%1[331,1‘2]

= [wa, m1]¢ 2y (S, molan [w1, o] = [ma, 21][€, 21][€, wa] [1, 2]
= [57 1‘1] [57 2172]-
The third equality follows as [z2, 21] € N (as NF* /N is abelian) and as o, NpH) = 1.

The sixth equality follows as [{, z2] € G5 commutes with z; € NTl The last equality follows
as [€,21], [€, 22] € Gr~ 1! commute with [z1, 2] € N1, and as |29, z1][21, 2] = 1. An analogous
(slightly simplier) computation shows the linearity in the first variable. O

Remark 4.6. Lemma (ii) can certainly be generalized. As we will not use the following
generalization, we state it without proof. As for any root @ € ®, —a is a root too, and
€_oq = 1 — g4, we have a symmetry between the jumps €;. Concretely, we have ¢; =1 — 5414
for 1 <i<ws Foreachl < a<r—1,let G be the subgroup of G% generated by Gt
Ty, Ug,, (o reductive or e, > ;). Then Lemma extends to the following general duality
statement: Fix 1 <a <r —1and 1 <i <s. Then the commutator induces a bilinear pairing,

r—a,s+1—1 r—a,s+2—1 a,i a,i+1 r—1,s+1
G’ /G x G& /Gt 5 Gr-le+l,

4.5. Stratification on (subgroups of) Nl. Recall that for any subgroup H C G and associ-
ated subgroups H, C G,, we have the notation Hy* = H% \ H¢*! (open subscheme) and hence
the corresponding set H;"" of Fy-valued points.

Lemma 4.7. Letr > 2 andletr—1>a > 1. Forz € ]\vfﬂ*, write z = Hﬁeqﬁ xg with x% S ﬁgT
for a fized (but arbitrary) order on ®*. For f € ®T, let a < a(B,z) < r be the integer such that
wZ e ﬁa(ﬁvz)7*
ﬁ 7T .
(i) If a > 2, then the set
A, :={Be€®" :a(B 2)=a}

is non-empty and independent of the chosen order on o,
(ii) Let a =1 and let s+ 1 >1i > 1 be such that z € N} Then the set

A, ={p € CID;F: a(B,z) =1}

is non-empty and independent of the chosen order on ®*. Moreover, a(8,2z) > 1 for all

BelUZ @
Proof. (i): As a > 2, the quotient N?/N?2*! is abelian by Lemma Thus its F,-points are
simply tuples (Zg)geco+ With Tg € (?g7a+1 with entry-wise multiplication. If z = (Z) is the
image of z in this quotient, then A, identifies with the set of those 8 for which T # 1 (which
is obviously independent of the order).

(ii): Assume that the last claim of (ii) is not true. Then let 1 <1y < i be the smallest integer
such that a(f,z) = 1 for some ( € <I>;g. Then from Lemma it follows that z € Ny which
contradicts the assumption. This shows the last claim. The first claim follows by the same
argument as in (i). O

Using Section we can now prove the following generalization of [Lus04, Lemma 1.7].
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Definition 4.8. For o € 1 define its height ht(c) (relative to N) to be the largest integer
m > 1 such that « = > o with oy € @7

Proposition 4.9. Letr > 2 andletr—1>a > 1. Let z = Hﬁeq)Jr xé S Nﬁ* for xé S ffgr and
let A, be as in Lemma[{. 7
(i) If A, contains a non-reductive root, let —a € A, be a non-reductive root of mazimal
height and a € ®~ its opposite. Then for any & € Uy %, we have [€, 2] € TN, "L
Moreover, projecting [£, z] into T® induces an isomorphism
A UL /U et 57
(ii) If A, contains only reductive roots, let —aw € A, be a root of maximal height and o € ®~

r—a—1
a,r

€, 2] into T induces an isomorphism

its opposite. Then for any £ € U , we have [€, 2] € TN Moreover, projecting

~

A UL U e 5 7
Proof. Parts (i) and (ii) can be proven in the same way. We give the full proof of (i) only.

Proof of (i) when a > 2. We work on F -points. Assume that A, contains a non-reductive root
and let —a be such a root of maximal height and o € ®~ its opposite. Let £ € U, ,* and let
£e (?g*a/ffg;;aﬂ and z € N%/No1 be the images of & and z respectively. By Lemma [4.4] we

,T
=22, [[ % 11 5,

BedT red. BEPT non-red., f#—«
ho(8)<ht(—a)

may write

where 77 € U 5 / Ut and where the products are taken in any order. Lemma shows that

T

[€, z] is the product of [¢, 77 ] with all the [€, fg] for B € ®T, the product taken in any order. If
(3 is reductive, then [€, fé} € [(77'_“ ﬁgr] = 1 by Lemma If 8 # —a is non-reductive, then

a,r

by assumption ht(3) < ht(—a). The commutator [€, z3] is the image of an element of

[Ua,ma—l-(r—a)—lv Uﬁ,mg-l-a—l] - H Upa+q6,pma+qm@+p(r—a—1)+q(a—1) (44)
D,qE€L>1
pa+qBeP

Lemma 4.10. The image of the right hand side of (4.4)) in G, lies in Ny "L

Proof. Tt is enough to show that for each (p,q) occurring in the product, the corresponding
factor is either contained in N, "' or vanishes in G,. If p > ¢, then ht(8) < ht(—«) implies
pa+qB & ®T. So, we may assume that ¢ > p and in particular ¢ > 2. It is enough to show that

UpatqB,mpasqps+r if pa 4+ ¢f reductive

UpatqB pma-+amatp(r—a—1)+q(a—1) S U herwi
Pa+qBmpatqs+r—1 Otherwise,

v

as both map to 1 in G,. Equivalently, we have to show that

1 if pa + g8 reductive
PMa + qmg — Mpatqp +p(r —a—1) +qla—1) = (r—1) > .

0 otherwise.
But this holds as by Lemma PMa+qMg —Mpatqs = |Pea+qep] is > 1if pa+¢f is reductive
and is > 0 otherwise, and as ¢ > 2 and a > 2. O
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Finally, [€,2,] = [¢,2%,] € T*(F,) by Lemma [2.8(iii). Thus [£, 2] € T(F,)N;""'. More-
over, if we project onto 7°(F,), then only [£,Z% ] survives and Lemma (iii) proves the desired
isomorphism A,. This finishes the proof of (i) in the case a > 2.

Proof of (i) when a = 1. Let s >4 > 1 denote the integer such that z € N'** (Note that
i # s+ 1 as A, contains a non-reductive root by assumption). We have £ € (?g;l, and we let z
denote the image of z in N}Z/N}ZH By Lemma we may write

,BG@;F: B#—«a
ht(8)<ht(—a)

(product are taken in any order). By Lemma [€, Z] is the product of [¢,z% ] with all the
[ﬁ,fé] taken in any order. By assumption eg = ¢; = e_4 = 1 — 4. In particular, all 8’s are

ol

non-reductive. Now, [{, 23] is the image in Gy bt of an element of
[Ua,ma—i-r—Qa Uﬁ,mg] C H Upa+qﬁ,pma+qmﬁ+p(7"_2) (45)
P,9EL>1
pa+qBed

Lemma 4.11. The image of the right hand side of (4.5)) in G, lies in Ny "L

Proof. Note that the right hand side of (&.5) is contained in Gy~ "*™' (exactly as in the proof
of Lemma [4.5[ii)). Now the same arguments as in the proof Lemma apply. If p > ¢, then
ht(8) < ht(—«) implies pa+qB ¢ ®*, thus the corresponding factor of the product is contained

v

in N- NGt € Nyl Thus we may assume that ¢ > p and in particular ¢ > 2. It is
enough to show that
vaa+q,8,mpa+qﬁ+7‘ if pa + gf is reductive

Upa+qﬁ,pma+qm3+p(r72) C {[j' o '
pa+qBmpatqptr—1 OULLETWISE,

v

as both map to 1 in ér. Equivalently, we have to show that

1 if pa + g8 is reductive

DM + qMpg — Mpat+qp + p(T - 2) - (T - 1) > .
0 otherwise.

By Lemma this follows from |peq +qeg] > 2 if pa+¢f3 is reductive, resp. to |peqa+q¢eg] >1
if pa + ¢ is non-reductive. But in any case we have peq +qeg > €0 +2(1 —€4) =2 —¢e4 > 1 by
assumptions. In particular, we are done in the case when pa + g8 is non-reductive. If pa + g8
is reductive, then pe, + geg must also be an integer (by Lemma and hence > 2, and we are
done in this case too. O

Finally, [¢,2%,] € T*(F,) by Lemma [2.8(iii). Thus [¢,z] € T*(F,)N, "~ '. Moreover, if we
project onto T%(F,), then only €, 7% ,] survives and Lemma (iii) proves the desired isomor-
phism A,. This finishes the proof of (i). O

Remark 4.12. We note that in the proof of [Lus04, Lemma 1.7] there is an (easily correctable)
mistake. It is claimed that whenever —«, 8 € ®1 with —a # 3 and ht(—«a) > ht(8), then
pa + qB € @t for all p,q € Z>1. This is not true. For example, let ® be of type Cy, let
€1, €2 denote a basis for X*(T) such that the ®t = {e; — €2,€1 + €2,2€1,269}. Then taking
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a = —2€e, B =€ + €. Then ht(—a) = 3 > 2 = ht(8). But a +28 = 2e5 € &F. Observe
here that a + 3 ¢ ®*, which contradicts the parenthetical assertion at the end of the proof
of |Lus04, Lemma 1.7].

Surely, the statement of [Lus04, Lemma 1.7] remains true. The place in its proof, where the
abovementioned claim is used, can be corrected as follows: if pa+ g3 € ®* for some p, q € Z>1,
then ¢ > 2 and the part of the commutator (as in the proof of Proposition inside Upq4¢8,r
vanishes, since all roots are reductive and r > 2.

Let K, = U, NN,. Let ® = {8 € ®7: U, C K,}. Let X denote the set of all non-empty
subsets I C @' satisfying

(i) the restriction of ht: ®+ — Zx( to I is constant, and
(ii) I contains either only reductive or only non-reductive roots.

To z € K}~ {1} we attach a pair (as,.) with 1 < a, < r —1 and I, € X. Define a, by
z € Iv(?z* Let A, be as in Lemma If A, contains a non-reductive root, let I, C A, be
the subset of all non-reductive roots of maximal height. If A, contains only reductive roots, let
I, C A, be the subset of all roots of maximal height. We have a stratification into locally closed
subsets

Kis {1} = UK?’*’I, where K&*I(F,) = {z € K} < {1}: (a., L) = (a,I)}. (4.6)

4.6. Cohomology of 5. We now prove Proposition Using the stratification and
Proposition 4.9, the proof of Proposition is very Slmllar to the proof of [Lus04, 1 9 (c)].
We sketch the arguments here. It is enough to show that HY (E’ o0 = 0 for all j > 0. For a
T'(Fg)7-module M and a character x of T'(F,)?, write M, for the x-isotypic component of

M. Note that 7'(FF;)? acts on S/ by

X)

' (z, 2! w2, 7)) = (T T 2 .

Hence HI(3) is a T'(Fy)-module. It is enough to show that Hg(f]iu)(x) = 0 for any regular
character y of 7'(F,). Fix such a x. Set N = wU'~w ™!, N~ = w@U"~!. The stratification (4.6)
of K! \ {1} induces a stratification of ¥/, into locally closed subsets indexed by 1 < a < r — 1
and [ € X:

= uigf’l where iif’I(Fq) ={(z,2",u,u,2,7") € ﬁiu(ﬁq): z € IU(;”I}

Note that each S;*' is stable under 7" (Fy). Thus (4.2) follows from
Hg(f]:j“l,@g)(x) =0 for any fixed a, 1. (4.7)

To show ([4.7), choose a root « such that —a € I. Then Uy, C U, NwU,w~!. By Proposition
for any z € K ’*’I, we have an isomorphism

Az Ut/ UG, ot Ty e if v is non-reductive,
Ay Ug;“—l/tua;“ — T, if «v is reductive.

Let 7 denote the natural projection Ug * — Ug " / TU”*““ if a is non-reductive and the natural
projection Ug}a_l — U™ 1/IU & if a is reductlve Let 1) be a section to 7 such that 7y =1



COHOMOLOGICAL REPRESENTATIONS OF PARAHORIC SUBGROUPS 21

and ¥(1) = 1. Let
H o ={t' eT:t o(t) e w ' T}.
This is a closed subgroup of 77. For any ¢ € 7' define f,r: Sa®! — S5a1 by

fo(z, 2 u ' 2, 7)) = (ma(f),:i"/,u,J(t/)_lu/a(t’),z,T'J(t/)),

where

Ur-e=! C U, NwU.w~!  if a is reductive

§= YA (wo(t) )y e q ’

U¢ C U Nl otherwise,

and 2’ € G, is defined by the condition that
zo(Exir'o(t') € uzir'oc()o (') o (t)i.

To check that fy is well-defined we have to show #’ € o(U.). This is done with exactly the
same computation as in the proof of |Lus04, Lemma 1.9], and we omit this. It is clear that
fur: shal _ Shad is an isomorphism for any ¢' € H'. Moreover, since 7'(Fy) € H’ and since for
any t' € T'(F4) the map fy coincides with the action of ¢ in the 7'(FF,)-action on St (we use
¥(1) = 1 here), it follows that we have constructed an action f of H’' on S extending the
T'(F,)-action.

If a connected group acts on a scheme, the induced action in the cohomology is constant.
Thus for any ¢ € H’°, the induced map f3: HI(Su"", Q,) — HI(S4™",Qy) is constant when ¢’
varies in H'°. Hence T'(F,) N H° acts trivially on HZ(S3"", Q).

We can find some m > 1 such that o™ (1w~ T %) = w17 %i. Then

t' = to)o*(t)--- o™ (H)
defines a morphism w=!7%b — H’'. Since T is connected, its image is also connected and
hence contained in H°. If ' € (W !T*F,)w)°", then NZ"(#') € T'(F,)° and hence also
Ne™ () € T'(Fq)” NH'°(F,). Thus the action of N2" (') € T'(F,)? on HI(Su") is trivial for
any t' € (b T*(F,)w)’™".

Finally, observe that if H? (Zﬁba’l,@g)(x) # 0, then the above shows that ¢’ +— x(NZ" (#')) must
be the trivial character, which contradicts the regularity assumption on x. This establishes (4.7)),
finishing the proof of Propositon [4.2

5. TRACES OF VERY REGULAR ELEMENTS

Let the notation be as in the beginning of Section [4 The finale of this section is the proof of
Theorem [1.2

Definition 5.1. We say that s € Py is unramified very reqular with respect to x if the following
conditions hold:

(i) s is a regular semisimple element of Gy,
(ii) the connected centralizer Z°(s) of s is a k-split maximal torus of Gy, whose apartment
contains x, and
(iii) a(s) # 1 modulo p for all roots « of Z°(s) in Gy.

For r > 2, we say that s € G, is unramified very regular, if s is the image of an unramified very
regular element of Px.
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Note that condition (ii) implies condition (i). Note that in condition (iii) the character
a: Z°(s) = G, ; induces a homomorphism of maximal bounded subgroups: a: Z°(s) — O,
and hence the condition makes sense.

Remark 5.2. When G is an inner form of GL,, and T is the maximal nonsplit unramified torus
in G, Definition [5.1]says that z € (17°)7 = O;f (here k D L D k is the degree-n-subextension) is
unramified very regular if and only if the image of z in (O /U}) = o has trivial Gal(Fgn /Fy)-
stabilizer. This is not equivalent to (though is implied by) the condition that the image of
z in F;n is a generator although this last condition is sometimes also associated to the same
terminology [Hen92, BW13,|CI20].

Note that if s € Py is unramified very regular, then we may consider the Wx(T')-homogeneous
space Wx (T, Z°(s)) (see Section [2.8).
Before proving Theorem we point out the following corollary.

Corollary 5.3. Let T C G be a k-rational l?:—split mazximal torus whose apartment contains
x. If T and T' are not conjugate by an element of ]5;(’, then for any s € T'(k) unramified very
regqular with respect to X,

Tr(s, R} y,) = 0.

Proof. We need to show that for two such tori, Wy (7T,7")° = &. Suppose there is an element
w € Wx(T,T")?. Then its preimage in Ng, (T, T/.) form a Fg-rational T,-torsor, which by Lang’s
theorem has a rational point. Doing this for all » and using that the inverse limit of a family of
non-empty compact sets is non-empty, we can find an element n € P:‘Z , which conjugates T'(O)

into T"(O). The centralizer of T(©O) in G(k) is T(k) (and similarly for T"), so n also conjugates
T(k) into T'(k), and so it conjugates T into 7", which contradicts the assumption. O

We now make some preparations that we will use to prove Theorem Let B denote
the Borel subgroup of G whose unipotent radical is the fixed subgroup U, and let B, be the
corresponding subgroup of G,. The following result shows that B, behaves in certain aspects
like a Borel subgroup of G, (although it is not a Borel subgroup if » > 2). Similar results in the
case that Py is reductive are shown in [Stal2].

Proposition 5.4. Let s € G, be an unramified very reqular element. If x € G, is such that
s € xB,x™1, then there exists a unique w € Wy (T, Z%(s)) such that for any lift W € G, we have
S wér.

Proof. The maximal l?:—split tori T and Z°(s) are conjugate by an element y € Py, as x is
contained in the intersection of their apartments. Conjugating by y we thus may reduce to the
special case that Z°(s) =T.

We first prove the assertion in the case r = 1. The image of s in the reductive group G is
regular semisimple and By C Gy is a Borel subgroup. By [DL76, Proposition 4.4(ii)], we see
that there is an element w € G4 normalizing T, and satisfying B2 ~! = ™ 'By1w. Since Borel
subgroups are self-normalizing, W~ 'z € Bl, and we are done.

We now prove the assertion for r > 2. By the above, we see that there exists a unique
w € Wx(T) such that = € wéTéi. We proceed by induction; to this end, it suffices to prove
that if z € wéréfl, then z € WB,.

Since G’~! is normal in G,, we may write = whb for some h € G'~! and b € B,. By
[MP96, Theorem 4.2], é;_l has an Iwahori decomposition, so we may write h = h_h, with
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h_ € U-"' and hy € B, Replacing b by hyb and h by h_, we now have h € Uy """
Since z~1sz € B, by assumption, we have h=tAd(w=Y)(s)h € B,.. Writing ¢ for the very regular
element Ad(w™1)(s) € Tp, we deduce h™'(tht )t € B,, and thus h~'(tht™') € B,. Since
heU " ! by construction, h=1(tht=!) € B, only if h = tht~!, which holds only when h =1
by Lemma [5.5 ]

Lemma 5.5. Let r > 2 and let t € T, C G, be unramified very reqular. If tht~' = h for some
h € U,, then h = 1.

Proof. Fixing an order on the roots ®* = ®(T,U), we may write h uniquely as [[,co+ Ya(ha),
where 1), is an isomorphism of U,, with a framing object coming from the Chevalley system.
Then [, cor Ya(ha) = h = (T'h¢ = [ o+ Ya(a(¢1)ha), and hence (by uniqueness of the
presentation as a product) hy = a(¢"!)h,. We have naturally h, € pe/p™2e for appropriate
T < T2 € Z. As (71 is very regular, «(¢™!) 21 mod p, and hence the above equality forces

ho = 0 for all . Thus h =1. O
By Proposition
Sgi}r) ={re G,z to(x) €U, and gx € 2T°} = I_l S(ng{]m(w)’ (5.1)
weWx(T,Z°(g))

where
Sg’[}r)(’w) ={rcwb,: afla(x) € U, and gz € 2T/},

for some (any) lift @ € G, of w. For any k-rational k-split maximal torus 77 C G whose
apartment contains x, the preimage of any w € Wi (T,T")? in G, is an Fy-rational T,-torsor, so
by Lang’s theorem, it contains a Fg-rational point w. For any w € W(T,T")? we fix such a w.

Proposition 5.6. Let g € é? be an unramified very regular element. Then

@n, \  JuTe ifwe Wi(T, 2%4g))",
ST,U (w) = .
%} otherwise.

Proof. Let w € Wy (T, Z%(g)) and let i be any lift of w to G,. Assume that Srf,ff’[}r) (w) # @ and

let x € S%]’[}T)(w). Then % 'z € B, and we may write x = wiv with ¢ € T, and v € U,. We
=Ly gritv = v tsvs™ls € T9, where s := W 'gw € T is unramified very
regular. Then v~!svs™ € T, hence necessarily v = svs~!, which forces v = 1 by Lemma

We now have x = 1wt € wT}. By construction, '~ o (w)o(t) € U,. Since the left-hand side

have 7 lgz = v~

is semisimple, we have @t = o (1it), thus forcing w € Wy (T, Z°(g))? and Séﬂ SD (w) =wl?. O
Proof of Theorem[1.3. For any k-split maximal torus 7" C G, we have a short exact sequence
1— (TN =T - T17 -1

of finite abelian groups with (771)? of p-power order and T7% of order prime to p. (The sur-
jectivity on the right holds as 77° — H'(Gal(F,/F,), T.') must be the zero morphism, as the
latter is a p-group). This sequence is split.

Applying the above to 7" = Z°(g), we may write g = st; where t; € (T’!)° has p-power order
and s is in the image of the splitting and hence of order prime to p. It is easy to see that t; and s

are both powers of g. Note that s is still very regular and Z°(s) = Z%(g). Analogously, applying
the above to 7" = T, for any 7 € T, we may write 7 = (71 with 71 € (T})?, and ¢ in the image



24 CHARLOTTE CHAN AND ALEXANDER IVANOV

of the splitting. Thus (g, 7) € C?f X T;’ has the decomposition (g,7) = (s,() - (t1,71), where (s, ()
and (t1,71) are both powers of (g, 7) such that (s, () has prime-to-p order and (¢, 71) has p-power
order. Averaging over T;’ and applying the Deligne-Lusztig trace formula [DL76, Theorem 3.2]
(which we may do by Lemma , we deduce

1 . _
Telo. Fho,) = 2 3 00T ((0)" -0 S0, @) )
r TETﬁ !
-5 X0 I () SV S T) . 52)
" orele !

where Sgé) = {r € G,: 27 'o(x) € U,, sx¢ = x} is the set of fixed points of St under (s, ().
We obviously have Séf; ’5) C S(T“(f 2}1‘ ), and it now follows easily from Proposition that

s0)  JwTg if ¢ = Ad(w™1)(s™!) for some (unique) w € Wi (T, Z°(g))°,

S =
v o) otherwise.

Now (t1,71) acts on a point wa € WwT by (t1,71): wa + t1war = wAd(w™1)(t;)ar, and thus

T <<t1,ﬁ>*; z<—1>in<s§i§>,@e>) T (0, )" HO(6T9))

7

#T7 if 7 = Ad(w™1)(t7Y),

0 otherwise,
and Theorem now follows from (5.2)). O
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