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Abstract. To any connected reductive group G over a non-archimedean local �eld F and to any

maximal torus T of G, we attach a family of extended a�ne Deligne-Lusztig varieties (and families

of torsors over them) over the residue �eld of F . This construction generalizes a�ne Deligne-Lusztig

varieties of Rapoport, which are attached only to unrami�ed tori of G. Via this construction, we can

attach to any maximal torus T of G and any character of T a representation of G. This procedure

should conjecturally realize the automorphic induction from T to G.

For G � GL2 in the equal characteristic case, we prove that our construction indeed realizes

the automorphic induction from at most tamely rami�ed tori. Moreover, if the torus is purely

tamely rami�ed, then the varieties realizing this correspondence turn out to be (quite complicate)

combinatorial objects: they are zero-dimensional and reduced, i.e., just disjoint unions of points.

1. Introduction

Let G be a connected reductive group over a �nite �eld Fq and let σ be the Frobenius over Fq.
Then there is a natural correspondence, which to any pair pT, χq consisting of a maximal Fq-torus
T of G and a character χ of T pFqq in general position, associates an irreducible representation �RχT
of GpFqq. Moreover, �RχT is cuspidal, whenever T is anisotropic modulo the center of G. This was

conjectured in 1968 by MacDonald and proven in 1976 by Deligne and Lusztig in their celebrated

paper [DL76]. They de�ned RχT as the alternating sum of the `-adic cohomology with compact

support of an étale cover of a Deligne-Lusztig variety. This last is just the variety of all Borel

subgroups of G, which are in a �xed relative position with their σ-translates.

Let now G be a connected reductive group over a non-archimedean local �eld F with residue �eld

Fq and let ` � charpFqq be a prime. For simplicity (to avoid dealing with endoscopy phenomena,

etc.) let us assume here that G � GLn. The local Langlands correspondence states that there is

a natural bijection between irreducible admissible representations of GpF q and a certain class of

n-dimensional representations of the Weil group of F . It was shown by geometric methods in [HT99]

and [LRS93]. In a series of papers, Bushnell, Henniart and Kutzko could make this correspondence

more explicit in the tamely rami�ed case by parametrizing both sides by admissible pairs, see for

example [BH06], [BK93] and [BH05]. To give an admissible pair is essentially the same as to give a

maximal F -torus T of G, which is anisotropic modulo center and a smooth Q�
` -character χ of T pF q,

satisfying certain conditions. Thus, basically, this explicit construction associates a supercuspidal

representation RχT to the given pair pT, χq, like in the classical Deligne-Lusztig theory. This is a

special case of the more general principle of automorphic induction for G.

Let G again be arbitrary. Roughly, there are two types of geometric objects attached to G, in

the cohomology of which one tried to realize the automorphic induction:

(i) Varieties (or rigid or adic spaces) over SpecF equipped with integral models over SpecOF

and special �bers over Fq.
(ii) Reduced varieties over Fq.
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Constructions of type (ii) are purely in characteristic p, i.e., over Fq, and only the reduced struc-

ture is relevant. Up to now, constructions of type (ii) only existed for unrami�ed tori of G (except

for a construction by Stasinski for GLn and SLn, see below), which was a serious drawback. This

article contributes to the automorphic induction over local �elds by introducing a new construction

of type (ii), which works for all tori and all reductive groups (in the equal characteristic case). For

G � GL2 in the equal characteristic case we prove that our construction indeed realizes the `-adic

automorphic induction for all at most tamely rami�ed tori. Here a very intriguing phenomenon oc-

curs: the constructed varieties attached to the totally tamely rami�ed torus of GL2 turn out to be

zero-dimensional and reduced, more precisely, they are just discrete unions of Fq-rational points and
the automorphic induction is realized in their zeroth cohomology groups H0

cp�,Q`q with coe�cients

in the constant sheaf Q`.

We recall some of the existing unrami�ed constructions of type (ii). A �rst such construction

was suggested in 1977 by Lusztig [Lus79]. Its variants were studied by Boyarchenko, Boyarchenko-

Weinstein and Chan in [Boy12], [BW16], [Cha16]. A di�erent, but apparently related approach via

higher level covers of Rapoport's a�ne Deligne-Lusztig varieties was studied by the author in [Iva16].

The nature of all these constructions is strongly related to the classical Deligne-Lusztig construction

explained in the beginning. In particular, if F̆ denotes the completion of the unrami�ed closure of

F , σ the Frobenius of F̆ {F , and b P GpF̆ q is some element, then an a�ne Deligne-Lusztig variety

attached to these data can be seen as the subvariety of the a�ne �ag manifold of G, consisting of

all Iwahori subgroups of GpF̆ q being in a �xed relative position with their bσ-translates.

Main construction. We will de�ne the extended a�ne Deligne-Lusztig varieties and torsors nat-

urally attached to them in Section 2 below. Roughly, the construction goes as follows. Let F be

a non-archimedean local �eld. Let G be a connected reductive group over F . Let T be a maximal

F -torus of G. Let Ĕ{F be the completion of the maximal unrami�ed extension of the splitting

�eld E of T and let Σ be a set of continuous F -automorphisms of Ĕ, such that ĔΣ � F . Let w

be a map from Σ to the set of all possible relative positions of Iwahori subgroups of GpĔq and let

b P GpĔq. Then the extended a�ne Deligne-Lusztig set attached to w and b is the subset Xwpbq

of the a�ne �ag manifold F of GĔ consisting of all Iwahori subgroups, whose relative position to

their bγ-translate is equal to wpγq for all γ P Σ.

Now we turn to torsors over Xwpbq. Let I be some Σ-stable Iwahori subgroup of GpĔq (as G is

residually quasi-split over F by [BT87], such I always exists). By a level f we essentially mean a

congruence subgroup If of I. Attached to such f , there is a natural cover F f � F of the a�ne

�ag manifold. Then to any lift wf of w to a function into an appropriate space of relative positions

of level f , we naturally attach a subset Xf
wf pbq of F f , which lies over Xwpbq. In many cases, Xwpbq

and Xf
wf pbq can be given a scheme structure, turning them into reduced schemes locally of �nite

type over a �nite extension of Fq. Moreover, we obtain two natural commuting group actions

JbpF q

÷

Xf
wf
pbq ö Ĩf,wf � TpF q.

Here Jb is the Σ-stabilizer of b, i.e., the algebraic group over F de�ned by

JbpRq :� tg P GpRbF Ĕq : g
�1bγpgq � b @γ P Σu

for an F -algebra R, and Ĩf,wf is a certain subgroup of GpĔq, which depends on wf (but not on b)

and admits TpF q as a natural quotient, if wf is appropriate. Further, Xf
wf pbq is in a natural way
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a torsor over Xwpbq under a certain subquotient of Ĩf,wf , which is an algebraic group of �nite type

over a �nite extension of Fq.
Comment of the scheme structure. The a�ne �ag manifold F and its covers F f are Ind-schemes

resp. Ind perfect algebraic spaces if F has equal resp. mixed characteristics by [PR08] Theorem 1.4

resp. [Zhu14] Theorem 1.4. Thus Xwpbq and its covers Xf
wf pbq can be given structures of sub-Ind-

schemes resp. sub-Ind perfect algebraic spaces, whenever they can be shown to be locally closed in

F or F f . In either case one can attach to them `-adic cohomology groups with compact support.

The construction explained above generalizes the unrami�ed construction from [Iva16], i.e., if

one chooses T to be an unrami�ed maximal torus of G (i.e., Ĕ � F̆ ) and Σ to be the set with one

element containing only the Frobenius of F̆ {F , then the corresponding Iwahori-level variety Xwpbq

will be just the a�ne Deligne-Lusztig variety of Rapoport, and the torsors Xf
wf pbq over it will be

precisely the torsors de�ned in [Iva16].

We wish to point out that in 2011 Stasinski made in [Sta11] the �rst attempt to de�ne some vari-

eties (of type (ii)) attached to rami�ed tori. He worked over �nite rings Fqrts{ptrq and was interested

in the representation theory of the �nite group GpFqrts{ptrqq. For G � GLn,SLn, he constructed

extended Deligne-Lusztig varieties (hence our choice of terminology) attached to GpFqrts{ptrqq and
any maximal torus in G � GLn, SLn. This construction is technically involved, and, in particular,

works a priori only for G � GLn, SLn. Also, there are issues about de�ning higher-level torsors.

Nevertheless, the main ideas of his and our constructions seem to coincide: in both cases, one de-

�nes a variety by �xing the relative position with respect to many automorphisms of an extension

of F , and not only with respect to the Frobenius. Moreover, the �rst example of a zero-dimensional

variety (attached to GL2pFqrts{pt2qq), realizing interesting representations occurs in [Sta11].

A�ne Deligne-Lusztig induction. We can use the `-adic cohomology of Xf
wf pbq to de�ne the

following map, which we call the a�ne Deligne-Lusztig induction:

R � Rf,wf ,b : RepQ`
pĨf,wf {I

f q Ñ RepQ`
pJbpF qq, χ ÞÑ

¸
i

p�1qiHi
cpX

f
wf
pbq,Q`qrχs (1.1)

between the categories of smooth Q`-representations. In particular, whenever wf is such that TpF q

is a quotient of Ĩf,wf , characters of TpF q (of level bounded by f) induce, after in�ation to Ĩf,wf ,

representations of JbpF q. We formulate the following conjecture here only for GLn and b � 1, in

which case J1pF q � GpF q. For more general reductive groups G we expect that a similar statement

is true, but that some endoscopy phenomena occur.

Conjecture 1.1. Let G � GLn and b � 1. The collection of maps (1.1) satis�es the following

properties:

(A) If T is anisotropic modulo the center of G, and χ is a character of TpF q in su�ciently general

position, then there are f, wf , such that Ĩf,wf � TpF q and Rf,wf ,1pχq is an irreducible

supercuspidal representation of GpF q.

(B) The map χ ÞÑ Rf,wf ,1pχq in (A) is injective up to Galois conjugation.

(C) The map χ ÞÑ Rf,wf ,1pχq in (A) coincides with the realization of the automorphic induction

constructed via cuspidal types by Bushnell, Kutzko and others (see [BK93]).

Further, we expect the following two facts to be true:
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(D) If T is unrami�ed, then Xf
wf p1q is isomorphic (up to a possible unessential defect) to the

reduction of the open a�noid in the Lubin-Tate perfectoid space constructed by Boyarchenko

and Weinstein in [BW16].

(E) If T is purely tamely rami�ed, then wf can be chosen such that Xf
wf p1q is a zero-dimensional

reduced scheme (disjoint union of points).

The evidence for Conjecture 1.1 and expectations (D) and (E) is build up mainly on the at most

tamely rami�ed GL2-case (see Theorem 1.2 below), and the analogy with the classical Deligne-

Lusztig induction. We discuss some further evidence below in this introduction.

Case GL2 in characteristic p ¡ 0. Assume now charF � p ¡ 0. Let P2pF q be the set of all

isomorphism classes of admissible pairs pE{F, χq attached to at most tamely rami�ed quadratic

extensions E{F . Note that if T � G is a torus with TpF q � E�, then characters of TpF q in general

position up to Galois conjugation are in 1:1-correspondence with the subset of minimal pairs. Let

A tame
2 pF q be the set of isomorphism classes of irreducible supercuspidal representations of GpF q,

which are additionally assumed to be unrami�ed if charF � 2. Then the tame parametrization

theorem ( [BH06] 20.2 Theorem) shows the existence of a certain well-behaved bijection

P2pF q
�
Ñ A tame

2 pF q, pE{F, χq ÞÑ πχ. (1.2)

The following theorem shows Conjecture 1.1 and expectation (E) for GL2 in the positive character-

istic case for all at most tamely rami�ed tori in GL2.

Theorem 1.2 (rough statement; cf. Theorem 4.2 and [Iva16] Theorem 4.3). Let G � GL2. Let T be

a non-split maximal torus of G. Let Ĕ{F be the completion of the unrami�ed closure of the splitting

�eld E of T. Then there are choices of Σ, f, wf such that the corresponding maps R � Rf,wf ,1 from

(1.1) realize the automorphic induction from T to G. Moreover, they induce a bijection

P2pF q
�
Ñ A tame

2 pF q, pE{F, χq ÞÑ Rχ, (1.3)

and one has Rχ � πχ, i.e., the maps (1.3) and (1.2) coincide. In the case of the rami�ed torus, wf
can be chosen such that the varieties Xf

wf p1q are disjoint unions of Fq-points.

If T is tamely rami�ed with splitting �eld E, it su�ces to work with E instead of Ĕ to obtain

the same results (see Remark 3.11(i)). A similar statement is not true if T is unrami�ed.

Rami�ed torus in GL2. Besides the construction explained above, the main result of this article

is Theorem 4.2 (the tamely rami�ed case of Theorem 1.2; the unrami�ed case was proven in [Iva16]).

Its proof is analogous to the proof in the unrami�ed case [Iva16] Theorem 4.3. Roughly speaking,

there are three instruments used in the proof:

(1) a trace formula, which in the present case reduces, due to zero-dimensionality, to (quite

involved) point-counting arguments.

(2) the theory of elementary modi�cations of characters of E�, developed in Section 4.4. It

allows to prove our second main result, Theorem 4.18. It gives a precise description of the

restriction of a certain cuspidal type (from which Rχ is induced) to an E�-representation.

From this we deduce the injectivity of (1.3)

(3) the theory of cuspidal types of Bushnell, Kutzko, Henniart and others. We need it to

compare Rχ with πχ and, in particular, to show surjectivity of (1.3).
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Some evidence for Conjecture 1.1. Let now G � GLn and let T be a maximal F -torus of G.

Here are some heuristic reasons, justifying Conjecture 1.1 and the expectations (D) and (E):


 If G � GL2 and T is at most tamely rami�ed, (A),(B),(C),(E) hold in the positive charac-

teristic case (see Theorem 4.2 below and [Iva16] Theorem 4.3)


 The construction is completely analogous to the classical Deligne-Lusztig induction.


 (D) becomes evident for G � GL2, b superbasic by looking at the explicit de�ning equations

(see [Iva16] Section 3.6).


 Assume T is unrami�ed, and let Σ :� tσu consist only of the Frobenius, i.e., the correspond-

ing varieties are torsors of level f over the usual a�ne Deligne-Lusztig varietiesXwp1q, where

w is an element of the extended a�ne Weyl group W̃ of G. By [GH15] Proposition 2.2.1, if w

is contained in a �nite Weyl subgroup of W̃ , then essentially, Xwp1q �
²
gPGpF q{GpOF q gXw,

where the union is taken over translates of classical Deligne-Lusztig varieties Xw. This im-

plies a similar decomposition for level-f -covers Xf
wf p1q �

²
gPGpF q{GpOF q gY

f
wf with Y f

wf of

�nite type. If Z denotes the center of GpF q, we deduce

H�
c pX

f
wf
p1q,Q`qrχs � c� Ind

GpF q
ZGpOF q H�

c pY
f
wf
,Q`qrχs.

On the other side, it follows from the theory of cuspidal types (see [BK93]) that any su-

percuspidal representation is compactly induction from a cuspidal type, thus we have, in

particular, a natural family of supercuspidal representations of GpF q, which are all of the

form c� Ind
GpF q
ZGpOF q Ξ, where Ξ is some cuspidal inducing datum. Thus if the torus is un-

rami�ed, the conjecture should boil down to statements about smooth representations of

the group ZGpOF q, which is compact modulo center. For n � 2, this holds also for the

tamely rami�ed torus and is part of our strategy of the proof of Theorem 1.2.


 Concerning expectation (E), we remark that if E{F is tamely rami�ed and some lift σ1 of

the Frobenius of F̆ {F lies in Σ and wpσ1q � 1, then the extended a�ne Deligne-Luszstig

variety Xwp1q of Iwahori level is a disjoint union of points (for any G).

Outline. In Section 2 we de�ne the extended a�ne Deligne-Lusztig varieties and their covers for

arbitrary connected reductive groups. In Section 3 we compute certain of those varieties forG � GL2

explicitly. Based on these computations, in Section 4, we state and prove our main results about

tamely rami�ed automorphic induction for GL2. The proofs of all results from Section 4, which

contain any trace computations, are postponed to Section 5.
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2. Extended affine Deligne-Lusztig varieties of higher level

2.1. Preliminaries.

2.1.1. Basic notation. Let F be a non-archimedean local �eld with residue �eld k with q elements.

Let F̆ be the completion of a maximal unrami�ed extension of F with residue �eld k̄, which is an

algebraic closure of k. Let E{F be a �nite separable extension of F , such that Ĕ :� EF̆ is the
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completion of a Galois extension of F . We denote by u a uniformizer of E and by kE � k̄ its residue

�eld. For a Galois extension M{L we denote by GalM{L its Galois group.

2.1.2. Group theoretic data. Let G be a connected reductive group over F . Let S0 be a maximal

split torus in GF̆ . By [BT84] 5.1.12, S0 can be chosen to be de�ned over F . Let T0 :� ZGF̆
pS0q be

the centralizer of S0. By Steinberg's theorem, GF̆ is quasi-split, hence T0 is a maximal torus. Then

the base change T :� T0 bF̆ Ĕ is a maximal torus of GĔ . Let S
1 be a maximal Ĕ-split subtorus of

T , containing S :� S0 bF̆ Ĕ. We consider the root system Φ :� ΦpGĔ , S
1q. For a P Φ, we write Ua

for the corresponding root subgroup of GĔ . Moreover, we write U0 :� T .

2.1.3. Bruhat-Tits buildings. For any �nite extension L of F or F̆ , let BL denote the Bruhat-Tits

building of G over L. It always exists by [BT72], [BT84]�4, [Rou77] Chap. 5 and [MSVM14]. If

L � M are two such extensions such that M{L is Galois, then GalM{L acts on BM . Moreover,

there is a unique embedding of BL into BM in the sense of [Rou77] De�nition 2.5.1. Indeed, the

centralizer T of S0 is a maximal torus, hence abelian, and its derived group is trivial. This allows

to apply [Rou77] Theorem 2.5.6, to show that there is a unique such embedding. Note that if M{L

is rami�ed, then BL, B
GalM{L

M are not equal as simplicial complexes. However, if M{L is Galois

tamely rami�ed, then BL � B
GalM{L

M as subsets, as follows from [Rou77] 5.1.1 (see also [Pra01]).

2.1.4. Apartments and Galois-stable alcoves. Let AS1 be the apartment of BĔ corresponding to S1.

Via the embedding BF̆ ãÑ BĔ it contains the apartment AS0 of BF̆ corresponding to S0. The

restriction of any root a in Φ to S is non-trivial (indeed, otherwise Ua would lie in the centralizer

ZGĔ
pSq of S, but taking the centralizer commutes with base change, hence ZGĔ

pSq � ZGF̆
pS0qbF

F̆ � T . This leads to a contradiction). This means that AS0 is not contained in a wall of AS1 .

Further, by [BT87] Theorem 4.1, G is residually quasi-split over F , i.e., there exists an alcove a0 in

AS0 , which is �xed by all continuous automorphisms of F̆ {F . Let now a be some alcove of AS1 which

contains a point x0 of a0 in its interior. As x0 is GalĔ{F -stable, and as a is the unique alcove of BĔ

containing x0, it follows that a is also GalĔ{F -stable. Let I denote the associated GalĔ{F -stable

Iwahori subgroup of GpĔq.

2.1.5. Filtrations on root subgroups. Let x be a vertex of a. Let R̃ :� R Y tr� : r P Ru Y t8u be

the ordered monoid as in [BT72] 6.4.1. Bruhat-Tits theory (see [BT72] 6.2.1, 6.4.1 and especially

6.2.3 e)) provides a �ltration (depending on x) on root subgroups UapĔq for all a P Φ: for r P R̃,
we denote the r-th �ltration step by UapĔqx,r. If Ua � Ga, then this �ltration is up to some shift

(depending on x) equal to the usual valuation �ltration on UapĔq � Ĕ.

2.1.6. Filtration on the torus. We choose an admissible schematic �ltration on tori in the sense of

Yu [Yu02] �4. This gives a �ltration U0pĔqr � T pĔqr on T pĔq. If G satis�es the condition (T)

from [Yu02] 4.7.1 (in particular, if G is either simply connected or adjoint or split over a tamely

rami�ed extension), then this �ltration is independent of the choice of the admissible schematic

�ltration and coincides with the Moy-Prasad �ltration [Yu02] Lemma 4.7.4.

2.1.7. Smooth models of root subgroups. Let f : Φ Y t0u Ñ R̃¥0 r t8u be a concave function, i.e.,

fp
°
i aiq ¥

°
i fpaiq, for all ai P ΦYt0u, such that

°
i ai P ΦYt0u (see [BT72] 6.4). Following [Yu02],

let GpĔqx,f be the subgroup of GpĔq generated by UapĔqx,fpaq for a P ΦY t0u. We refer to f as a

level and to GpĔqx,f as the corresponding level subgroup. By [Yu02] Theorem 8.3, there is a unique

smooth model Gx,f of GĔ over OĔ such that Gx,f pOĔq � GpĔqx,f . Moreover, if GpĔqx,f is stable
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under the Frobenius of Ĕ{E, then Gx,f descends to a group scheme over OE (see [Yu02] Section

9.1).

For a concave function f , we write If :� GpĔqx,f . Let fI denote the concave function such that

GpĔqx,fI � I. If f ¥ fI , then I
f � I.

2.1.8. Loop groups and covers of the a�ne �ag variety. To have a common notation for the equal

and mixed characteristic cases, for a kE-algebra R set

WpRq :�

#
R pbkE OE if charpF q ¡ 0

W pRq bW pkEq OF if charpF q � 0,

where W pRq denotes the p-typical Witt-ring of R. The ring W pRq behaves well in the mixed

characteristic case only if R is a perfect k-algebra. Let LG be the loop group of G, i.e., the functor

on the category of kE-algebras,

LG : R ÞÑ GpWpRqru�1sq.

Let f ¥ fI be some level, such that If is stable under the Frobenius of Ĕ{E. Let L�Gx,f be the

functor on the category of kE-algebras,

L�Gx,f : R ÞÑ Gx,f pWpRqq.

Let

F f :� LG{L�Gx,f

be the quotient of fpqc-sheaves on the category of kE-algebras in the equal characteristic case resp.

on the category of perfect kE-algebras in the mixed characteristic case. By [PR08] Theorem 1.4

resp. [Zhu14] Theorem 1.4 it is represented by an Ind-kE-scheme resp. Ind-perfect algebraic space

of Ind-�nite type over kE . Its k̄-points are F f pk̄q � GpĔq{GpĔqx,f . Moreover, if g ¥ f are two

concave functions satisfying the above assumptions, then there is a natural projection F g � F f .

We write F instead of F fI . This is just the a�ne �ag manifold of G.

2.1.9. Actions on F f . Let f ¥ fI be some level. By construction, LG acts on F f by left multipli-

cation. In particular, GpĔq � LGpk̄q acts on the k̄-valued points F f pk̄q � GpĔq{GpĔqx,f . Assume

now that If is normal in I and let Z be the center of G. Then ZpĔqI acts by right multiplication

on F f pk̄q.

2.1.10. Extended a�ne Weyl group and Iwahori-Bruhat decomposition. Let NS1 be the normalizer

of S1 in G. Let W̃ :� NS1pĔq{pNS1pĔq X Iq be the extended a�ne Weyl group of GĔ associated

with S1. LetW :� NS1pĔq{T pĔq be the �nite Weyl group. Then W̃ sits in the short exact sequence

0 Ñ X�pTĔqGalĔ
Ñ W̃ ÑW Ñ 0

(here GalĔ denotes the absolute Galois group of Ĕ). The Iwahori-Bruhat decomposition states that

GpĔq �
º
wPW̃

I 9wI,

where 9w is any lift of w to NT pĔq.
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2.1.11. Double coset decomposition at level f . Let f ¥ fI be some �xed level. Consider the set of

double cosets

DGĔ ,f
:� IfzGpĔq{If .

If g ¥ f , then there is a natural projection DGĔ ,g
� DGĔ ,f

. In particular, we have the natural

projection DGĔ ,f
� DGĔ ,fI

� IzGpĔq{I � W̃ . For many w, f the �ber DG,f pwq of this projection

can be given the structure of a �nite-dimensional a�ne variety over k̄. This will be discussed in

detail in a future work. Below we only need the case G � GL2, where an explicit parametrization

can be given (see Section 3.1.8).

2.1.12. Relative position. Let f be as in Section 2.1.11. We de�ne the map

invf : F f pk̄q �F f pk̄q Ñ DGĔ ,f

on k̄-points by invf pxIf , yIf q � wf , where wf is the unique double If -coset containing x�1y.

2.2. Extended a�ne Deligne-Lusztig varieties of higher level.

2.2.1. Main de�nition.

De�nition 2.1. Let G be a connected reductive group over F . Fix the following data:


 a �nite separable extension E{F , such that Ĕ � EF̆ is the completion of a Galois extension

of F


 a set Σ of continuous F -automorphisms of Ĕ such that ĔΣ � F .


 a concave function f : ΦY t0u Ñ R̃¥0 r t8u, such that If is Σ-stable


 a function wf : Σ Ñ DGĔ ,f


 an element b P GpĔq.

We de�ne the extended a�ne Deligne-Lusztig set Xf
wf pbq attached to pG,E{F, f,Σ, wf , bq as the

subset

Xf
wf
pbq :� tx P F f pk̄q : invf px, bγpxqq � wf pγq @γ P Σu � F f pk̄q.

2.2.2. Left action by the Σ-stabilizer of b. For b P GpĔq, let Jb be the Σ-stabilizer of b, i.e., the

algebraic group over F de�ned by

JbpRq :� tg P GpRbF Ĕq : g
�1bγpgq � b @γ P Σu

for any F -algebra R. Then JbpF q acts on X
f
wf pbq by left multiplication for any f and any wf . If

g ¥ f and wf equals wg composed with the natural projection DGĔ ,g
� DGĔ ,f

, then the natural

projection F g � F f restricts to a map Xg
wgpbq Ñ Xf

wf pbq and the JbpF q-actions are compatible.

2.2.3. Right action on Xf
wf pbq by the stabilizer of wf . If I

f is normal in I, then ZpĔqI{If acts on

DGĔ ,f
by left and right multiplication and we obtain a (right) action of ZpĔqI{If on the set of

maps ψ : Σ Ñ DGĔ ,f
by pψ, iq ÞÑ ψ.i, where pψ.iqpγq :� i�1ψpγqγpiq for any i P ZpĔqI{If , γ P Σ.

This in�ates to an action of ZpĔqI on the same set.

Lemma 2.2. Let pG,E{F,Σ, f, wf , bq be as in De�nition 2.1. Assume that f ¥ fI and that If is

normal in I. For i P ZpĔqI, the map xIf ÞÑ xiIf de�nes an isomorphism Xf
wf pbq

�
Ñ Xf

wf .i
pbq.

8



Proof. Since If is normal in I and ZpĔq is the center of GpĔq, we have iIf � If i. As a consequence,

the map F f Ñ F f given by xIf ÞÑ xiIf is well-de�ned. Let xIf P Xf
wf pbq. Then for each γ P Σ,

one has invf pxI
f , bγpxqIf q � wf pγq, or equivalently, x

�1bγpxq P Ifwf pγqI
f . We deduce for each

γ P Σ:

pxiq�1bγpxiq � i�1x�1bγpxqγpiq P i�1Ifwf pγqI
fγpiq � If i�1wf pγqγpiqI

f � If pwf .iqpγqI
f ,

where the second equality uses normality of If in I. Thus xiIf P Xf
wf .i

pbq. Hence xIf ÞÑ xiIf

de�nes a map Xf
wf pbq Ñ Xf

wf .i
pbq. Analogously, one shows that xIf ÞÑ xi�1If de�nes a map in

other direction. Obviously, these two maps are inverse to each other. �

Thus if If is normal in I, the group

Ĩf,wf :� ti P ZpĔqI : wf .i � wfu

acts on Xf
wf pbq by right multiplication. We have the subgroup If,wf :� Ĩf,wf X I. It is clear that

If,wf � If and that the right Ĩf,wf -action on Xf
wf pbq factors through an action of Ĩf,wf {I

f .

Lemma 2.3. Let w : Σ Ñ DG,fI be the composition of wf with the natural projection DG,f Ñ DG,fI .

Then Xf
wf pbq is a If,wf -torsor over the underlying Iwahori-level set (resp. variety, if a variety

structure is provided) XfI
w pbq.

Proof. Let p : Xf
wf pbq Ñ XfI

w pbq denote the natural projection. Pick a point xIf P Xf
wf pbq with

image ppxIf q � xI P XfI
w pbq. By Lemma 2.2, If,wf {I

f acts on Xf
wf pbq and this action stabilizes the

�bers of p, as If,wf � I. We have to show that i ÞÑ xiIf de�nes a bijection If,wf {I
f Ñ p�1pppxIf qq.

If xiIf � xjIf for i, j P If,wf , then iI
f � jIf , or with other words, the images of i, j in If,wf {I

f

are equal. This shows injectivity. Let yIf P p�1pppxIf qq, that is xI � yI. Then i :� x�1y P I and

it remains to show that i P If,wf . But yI
f � xiIf , and hence by Lemma 2.2, yIf P Xf

wf .i
pbq. But

by assumption yIf P Xf
wf pbq, hence wf .i � wf , that is i P If,wf . This �nishes the proof. �

2.2.4. Scheme structure. Being subsets of k̄-points of the Ind-schemes resp. Ind-perfect algebraic

spaces F f , the sets Xf
wf pbq can be equipped with the same kind of structure, when they can

be shown to be locally closed. This is for example done by Rapoport for a�ne Deligne-Lusztig

varieties, i.e., in the case E � F , Σ � tσu, where σ is the Frobenius automorphism of F̆ {F and

f � fI . Moreover, in that case he has shown that these varieties are also locally of �nite type over

k.

Here we investigate a su�cient condition, under which Xf
wf pbq is locally closed in F f and hence

can be endowed with the induced reduced sub-Ind-scheme resp. sub-Ind perfect algebraic space

structure. For a level subgroup If � I and 9w P GpĔq, the action of If on I 9wI{If by left multipli-

cation factors through the action of a quotient, which is a �nite-dimensional algebraic group over k

(indeed, any subgroup J � If X 9wIf 9w�1, which is normal in If acts trivially on Cmv ).

Proposition 2.4. Let pG,E{F,Σ, f, wf , bq be as in De�nition 2.1 with f ¥ fI . Assume that Σ is

�nite and contains a lift of a power of the Frobenius of F̆ {F . Assume that the action of a �nite-

dimensional quotient of If by left multiplication on I 9wf pγqI{I
f possesses a geometric quotient in the

sense of Mumford for any γ P Σ, where 9wf pγq is any preimage of wf pγq in GpĔq. Then the subset
9



Xf
wf pbq � F f is locally closed, and hence can be equipped with the induced reduced sub-Ind-scheme

resp. sub-Ind perfect algebraic space structure.

Proof. We write XΣ,f
wf pbq for X

f
wf pbq. Let w be the composition of wf with the projection DGĔ ,f

�

W̃ . If σ̃ is a lift of a power of the Frobenius of F̆ {F to a continuous F -automorphism of Ĕ,

then [HV11] Corollary 6.5 shows that X
tσ̃u,fI
wpσ̃q pbq is a locally closed subset of F . Moreover, it is a

scheme locally of �nite type over a �nite extension of kE . Now, X
Σ,fI
w pbq is the subset of X

tσ̃u,fI
wpσ̃q pbq

cut out by the �nitely many locally closed conditions x�1bγpxq P wpγq. This shows that XΣ,fI
w pbq

is locally closed and locally of �nite type over kE .

Consider the preimage X̃ of XΣ,fI
w pbq under F f � F . The projection β : LG � F f admits

sections locally for the étale topology. In the equal characteristic case this follows from [PR08]

Theorem 1.4 and in the mixed characteristic case it is contained in the proof of [Zhu14] Lemma 1.3.

Let U Ñ X̃ be étale, such that there is a section s : U Ñ β�1pUq of β. Consider the composition of

the two morphisms

ψ : U Ñ
¹
γPΣ

β�1pUq � U Ñ
¹
γPΣ

F f ,

where the �rst is given by x ÞÑ pspxq�1, bγpxqqγPΣ and the second is just the componentwise restric-

tion of the left multiplication action of GpĔq on F f . As U lies over X̃, this composed morphism

factors through the inclusion
±
γPΣ I 9wf pγqI{I

f �
±
γPΣ F f . Let πγ : I 9wf pγqI{I

f Ñ DGĔ ,f
pwpγqq

denote the geometric quotient with respect to the left multiplication action by If . Let π �
±
γPΣ πγ .

Then the composition

U
ψ
Ñ
¹
γPΣ

Iwf pγqI{I
f π
�
¹
γPΣ

DGĔ ,f
pwpγqq. (2.1)

is independent of the choice of the section s. Moreover, it sends a k̄-point x to the tuple pIfx�1bγpxqIf qγPΣ.

Thus, étale locally, XΣ,f
wf pbq is just the preimage of a k̄-point under the composite morphism (2.1).

This �nishes the proof. �

The condition about the existence of geometric quotients is satis�ed in many cases. This will be

studied in detail in a future work.

3. GL2, tamely ramified case: geometry

From here and until the end of the article we set G � GL2 and assume that charF � p ¡ 0 and

p � 2. After �xing some notation in Section 3.1, we study some extended a�ne Deligne-Lusztig

varieties of Iwahori level in Section 3.2 and of higher levels in Section 3.3.

3.1. Some preliminaries in the GL2-case.

3.1.1. Basic notation. Let t be an uniformizer of F , i.e., F � kpptqq and F̆ � k̄pptqq, with char k � 2.

Let E{F be a totally tamely rami�ed degree 2 extension and let Ĕ :� EF̆ . We can �nd an

uniformizer u P E such that u2 � t. Then E � kppuqq, Ĕ � k̄ppuqq. For an algebraic extension

M of F , we denote by OM resp. pM its ring of integers resp. its maximal ideal. We denote by

UM :� O�
M the units of OM , and for n ¥ 0 we denote by UnM the n-units ofM . We have OE � kJuK,

OĔ � k̄JuK. We denote by vt the t-adic valuation on F , normalized such that vtptq � 1 and extend

it to a valuation of Ĕ. Analogously, we denote by vu the u-adic valuation on Ĕ normalzed such
10



that vupuq � 1. The Galois group of Ĕ{F is generated by the two commuting elements σ, τ given

by σp
°
i aiu

iq �
°
i a
q
iui and τp

°
i aiu

iq �
°
ip�1qiaiu

i. We set Σ :� tσ, τu1.

3.1.2. Level subgroups. We use the standard Iwahori subgroup I � GpĔq and the �ltration of it

given for m ¥ 0 by

Im :�

�
1� pm�1

Ĕ
pm
Ĕ

pm�1

Ĕ
1� pm�1

Ĕ

�
� I :�

�
O�

Ĕ
OĔ

pĔ O�

Ĕ

�
.

We write F for the a�ne �ag manifold of GĔ and Fm for its cover corresponding to Im (see Section

2.1.8).

3.1.3. Subgroups of GpF q. Consider the OF -subalgebra

J :�

�
OF OF

pF OF



of M2pOF q. Then the units UJ of J form a compact subgroup of GpF q. Note that UJ � IΣ is the

Iwahori subgroup of GpF q. Further, we �x the embedding of F -algebras

ι : E ãÑM2pF q, ιpuq � $ :�

�
1

t



(here and further, omitted entries are zeros). Via ι we consider E� as a subgroup of GpF q. The

center of GpF q is ιpF�q. Usually we omit ι from the notation and write E� � GpF q, etc. We have

UE � UJ X E�.

3.1.4. Root subgroups. The extended set of roots Φ Y t0u consists of three elements. Denote by �

resp. � the positive resp. the negative root. For � P ΦY t0u, we denote by

e� : U� Ñ G

the embedding of the root subgroup. Thus, for a P Ĕ, e�paq �

�
1 a

1



, e0pc, dq �

�
c

d



, etc.

3.1.5. Slices of positive loops. Consider the additive group Ga over Ĕ. The group GapĔq has a

�ltration by subgroups GapĔqλ :� uλk̄JuK for λ P Z¥0. There is a unique smooth model Ga,λ

of Ga over OĔ , such that Ga,λpOĔq � GapĔqλ. For any µ ¤ λ, there exists a unique morphism

Ga,λ Ñ Ga,µ, inducing the natural embedding uλkJuK ãÑ uµkJuK (see [BT84] Section 1.7). Let L�

denote the positive loop group functor from k̄JuK-schemes to k̄-schemes. For non-negative integers

µ ¤ λ, we de�ne

Lrµ,λsGa :� L�Ga,µ{L
�Ga,λ�1.

This is a smooth k̄-group of �nite type and we have canonically Lrµ,λsGapk̄q � uµk̄rus{uλ�1k̄rus.

Replacing Ga by Gm and using the �ltration on GmpĔq � k̄ppuqq� given by GmpĔq0 � k̄JuK�,
GmpĔqλ � 1 � uλk̄JuK for λ ¡ 0, we obtain in exactly the same way the k̄-groups Lrµ,λsGm. All

these groups uniquely descend to smooth group schemes over k.

1the more canonical choice of all Frobenius lifts Σ1 :� tσ, στu was suggested to the author by P. Scholze. At least in
the cases we study in this article, this choice will lead to the same results as Σ from the text.
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Let now 0 ¤ µ ¤ λ ¤ λ1. We have the natural projection, which comes from reduction

mod uλ�1:

pλ,λ1 : Lrµ,λ1sGa Ñ Lrµ,λsGa.

Moreover, there are group-theoretic sections

sλ,λ1 : Lrµ,λsGa Ñ Lrµ,λ1sGa

of pλ,λ1 , sending
°λ
i�µ aiu

i to
°λ
i�µ aiu

i �
°λ1

i�λ�1 0ui. Then the image of sλ,λ1 is a closed subgroup

scheme of Lrµ,λ1sGa and we denote it by L¤λrµ,λ1sGa. For a P Lrµ,λ1sGa, we use the shortcut notation

a|λ :� sλ,λ1ppλ,λ1paqq.

3.1.6. Schubert cells. Let W̃ denote the extended a�ne Weyl group of GĔ relative to the diagonal

torus (as in Section 2.1.10). Let v P W̃ and let 9v P GpĔq be a lift. We denote by Cv � I 9vI{I � F

the Schubert cell attached to v. There is a parametrization (depending of 9v) of Cv given by:

ψ 9v : Lrµ,µ�`pvq�1sGa
�
Ñ Cv, a ÞÑ e�paq 9vI,

where µ P t0, 1u and the sign in e� depend on v, and `pvq is the length of v. E.g., for 9v ��
u�k

uk



resp. 9v �

�
u�k

uk�1



, this parametrization is given by:

ψ 9v : Lr1,`pvqsGa
�
Ñ Cv, a ÞÑ e�paq 9vI, (3.1)

where a �
°`pvq
i�1 aiu

i (note that `pvq � 2k � 1 resp. `pvq � 2k).

3.1.7. Schubert cells in higher levels. For m ¥ 0, let prm : Fm Ñ F be the natural projection. Let

v P W̃ with lift 9v to GpĔq. Let Cmv :� pr�1
m pCvq. We give a parametrization of Cmv for v, 9v as in

(3.1) (for other v P W̃ the parametrization is de�ned similarly). There is a well-de�ned injective

morphism Lr1,`pvq�msGa Ñ Cmv given by a ÞÑ e�paq 9vI. Using it we get a diagram

L
¤`pvq
r1,`pvq�msGa

� � // Lr1,`pvq�msGa
� � // Cmv

prm
����

Lr1,`pvqsGa
� //

�

gg

?�

OO

Cv

s

JJ

where the lower horizontal map is ψ 9v, the left vertical map is s`pvq,`pvq�m, and the section s to prm is

de�ned such that the diagram commutes. As Cmv � Cv is a I{I
m-torsor, s induces the trivialization

isomorphism Cv � I{Im
�
Ñ Cmv given by x, i ÞÑ spxqi. Using a parametrization of I{Im, we obtain

the following explicit parametrization of Cmv (depending on 9v):

ψm9v : L
¤`pvq
r1,`pvq�msGa � Lr0,msG2

m � Lr0,m�1sGa � Lr1,msGa
�
ÝÑ Cmv � I 9vI{Im

pa,C,D,A,Bq ÞÑ e�paq 9ve0pC,Dqe�pAqe�pBqI
m.(3.2)

3.1.8. Spaces of double cosets. Let m ¥ 0 be an integer and let 9w �

�
u�n

un



with n ¡ 0 with

image w P W̃ . An explicit parametrization of the set of double cosets DGĔ ,m
pwq � ImzIwI{Im is

given by
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φm9w : Lr0,msG2
mpk̄q � Lr1,msG2

apk̄q
�
ÝÑ DGĔ ,m

pwq � ImzIwI{Im

ppC,Dq, pE,Bqq ÞÑ Ime�pEq 9we0pC,Dqe�pBqI
m. (3.3)

We use this parametrization to give the set DGĔ ,m
pwq the structure of a smooth variety over k

(which is in fact isomorphic to an a�ne space).

Lemma 3.1. The natural projection p : Cmv � I 9wI{Im � ImzI 9wI{Im � DGĔ ,m
pwq is a geometric

quotient.

Proof. Let a,C,D,A,B be the coordinates on Cmv given by (3.2) and let C 1, D1, E1, B1 be the

coordinates on DGĔ ,m
pwq given by (3.3). Then p is given by E1 ÞÑ a � u2n�1CD�1A mod um�1,

C 1 ÞÑ C, D1 ÞÑ D, B1 ÞÑ B. In particular, p is a separable morphism of varieties.

The action of Im factors through an appropriate quotient, which is �nite dimensional over k

(indeed, any subgroup J � ImX 9wIm 9w�1, which is normal in Im acts trivially on Cmv ), thus taking

this quotient instead of Im, we may replace Im by some �nite-dimensional algebraic group over k.

Now p is surjective with �bers being precisely the orbits of the action, and both, Cmv and DGĔ ,m
pwq

are isomorphic to a�ne spaces. Now [Bor91] Proposition 6.6 �nishes the proof. �

3.1.9. Bruhat-Tits buildings. (cf. Section 2.1.3) For any �nite extension M of F or F̆ , the Bruhat-

Tits building BM of G over M is an one-dimensional simplicial complex and it carries a GalM{F -

action if M{F is Galois. We identify the subcomplex B
xσy

Ĕ
of BĔ with BE . Moreover, as Ĕ{F̆

is tamely rami�ed, the embedding BF̆ ãÑ BĔ identi�es BF̆ with B
xτy

Ĕ
as subsets. The simplicial

complex B
xτy

Ĕ
is obtained from BF̆ by adding an extra vertex in the middle of each alcove. Thus

any alcove of BF̆ 'contains' two alcoves of B
xτy

Ĕ
. Any vertex of BF̆ has an associated type in

Z{2Z � t0, 1u, which is de�ned as the t-valuation modulo 2 of the determinant of the lattice,

representing it. Similarly, we attach to any vertex of BĔ its relative type in 1
2Z{Z � vtpĔ

�q{vtpF̆
�q,

de�ned as the class modulo Z of the t-valuation of the determinant of the representing lattice. The

same considerations also apply to the relationship between the σ-stable subcomplexes BF ù

B
xτy
E � BE .

3.1.10. Vertex of departure. In the proofs below we have to use the simple combinatorics of the tree

BĔ . Therefore, following [Reu02] we introduce the notion of the vertex of departure. Let C � BĔ

be a connected non-empty subcomplex. For any alcove C of BĔ , which is not contained in C ,

there is a unique gallery Γ � pC0, C1, . . . , Cdq of minimal length d, such that C0 � C and Cd is

not contained in C and has a (unique) vertex which is contained in C . This vertex of Cd is called

the vertex of departure of C from C . The same considerations can also be applied to BE and a

connected subcomplex.

3.1.11. Connected components of F . It is well-known ( [PR08] Theorem 5.1) that vu �det : GpĔq Ñ

Z induces an isomorphism

π0pvu � detq : π0pF q
�
Ñ Z.

Denote the connected component of F corresponding to the integer i by F piq. Note that the alcoves

of BĔ can be identi�ed with k̄-points of F p0q and that there are (non-canonical) isomorphisms

F p0q �
Ñ F piq. Further, denote by F�i the preimage under vu � det in F of 2Z � i. This divides
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F in two disjoint sub-Ind-schemes F � F�0 9YF�1. Note that the subgroup GpF q of GpĔq acts

transitively (by left multiplication) on the set of connected components of F�i and that the action

of

�
1

u



P GpĔq interchanges the two parts F�0 and F�1 of F .

3.1.12. Commutation relations. We will need the following relations: for a, b P Ĕ with N :� 1�ab �

0, we have
e�paqe�pbq � e�pbN

�1qe�paNqe0pN,N
�1q

e�pbqe�paq � e0pN
�1, Nqe�paNqe�pbN

�1q.
(3.4)

3.2. Structure of Xwp1q at the Iwahori-level in some cases.

We write Xwp1q instead of XfI
w p1q.

Notation 3.2. Let w :�

�
u�n

un



P W̃ with some integer n ¡ 0 and let w : Σ Ñ W̃ be de�ned

by wpσq � 1 and wpτq � w. Further, we set

9v � 9vpwq :�

$''''&''''%

�
u�k

uk

�
if n � 2k � 1 ¡ 0 is odd,�

u�k

uk�1

�
if n � 2k ¡ 0 is even.

In both cases let v be the image of 9v in W̃ and let Dτ
w be the set of k-rational points of Cv lying

in the locus a1 � 0 with respect to the coordinates (3.1). In particular, Dτ
w is just a �nite discrete

union of k-rational points.

It will follow from the proof of Proposition 3.4 (or can be seen directly) that Dτ
w is stable under

the left multiplication action by UJ on F .

Remark 3.3. If in Notation 3.2, n is odd, then Cv is contained in the connected component F p0q

of F , i.e., its points can be seen as alcoves in BĔ . Moreover, they all are k-rational, hence lie in

BE . Let P1{2 be the vertex of the base alcove (= the alcove corresponding to I) of BE with relative

type 1
2 (see Section 3.1.9). Then Dτ

w corresponds to the set of the alcoves contained in BE , having

relative position v to the base alcove and having P1{2 as the vertex of departure from B
xτy
E .

Proposition 3.4. Let w be as in Notation 3.2. There is an isomorphism

Xwp1q �
º

gPGpF q{UJ

gDτ
w

equivariant for the left GpF q-action. In particular, Xwp1q is a zero-dimensional reduced k-variety,

containing only k-rational points.

Proof. Let �rst n be odd. The natural action of GpF q on Xwp1q induces a transitive action of GpF q

on the set

tXwp1q XF p2iq : i P Zu
of subsets of Xwp1q. This follows by taking any element g P GpF q with vupdetpgqq � 2. The

stabilizer of F p0q in GpF q is
14



H :� pvu � detq�1p0q � GpF q,

where vu � det is the map vu � det : GpĔq ÞÑ Z. We deduce

Xwp1q XF�0 �
º

gPGpF q{H

g.pXwp1q XF p0qq. (3.5)

The k̄-rational points of Xwp1q X F p0q can be identi�ed with alcoves in BĔ , which satisfy two

conditions (de�ned by wpσq � 1 and wpτq � w) on the relative position with respect to their σ-

resp. τ -translate. The σ-condition simply assures that each of the alcoves contained in Xwp1q is

σ-stable, i.e., is contained in BE . Let pB
xτy
E qp1{2q be the set of all vertices of B

xτy
E of relative type 1

2 .

For an alcove C of BE , which is not contained in B
xτy
E , let ΓC,τ denote the unique minimal gallery

connecting C with B
xτy
E . Taking into account the types of the involved vertices, we deduce (exactly

as in [Iva13]) that

Xwp1q XF p0q �
º

PPpB
xτy
E qp1{2q

#
C :

C is an alcove in BE with vertex of departure from

B
xτy
E equal to P and length of ΓC,τ equal to n� 1

+
, (3.6)

with n as in Notation 3.2. Let P1{2 be the vertex of type 1
2 of the base alcove of BE . Observe that

for P � P1{2, the set of alcoves C on the right hand side of (3.6) is simply Dτ
w (cf. Remark 3.3).

Now, pB
xτy
E qp1{2q can be canonically identi�ed with the set of alcoves in BF (see Section 3.1.9).

The natural action of H on BF induces a transitive action of H on the set of alcoves of BF , and the

stabilizer of the base alcove in BF is precisely UJ � H. Combining these observations, we obtain a

natural H-equivariant bijection

H{UJ � pB
xτy
E qp1{2q, hUJ ÞÑ hP1{2. (3.7)

Combining (3.5), (3.6) and (3.7), we deduce

Xwp1q XF�0 �
º

gPGpF q{H

g.
�
Xwp1q XF p0q

	
�

º
gPGpF q{H

g.

�� º
hPH{UJ

hDτ
w

�
� º
gPGpF q{UJ

gDτ
w.

It remains to show that Xwp1q XF�1 � H. This can be done as follows: let h �

�
1

u



. By

Lemma 2.2, the map xI ÞÑ xhI de�nes an isomorphism

Xyp1q XF�1 �
Ñ Xy.hp1q XF�0 (3.8)

for any y : Σ Ñ W̃ , where py.hqpγq :� h�1ypγqγphq for γ P Σ. Thus it is enough to show that

Xw.hp1q X F�0 � H, where pw.hqpσq � 1, pw.hqpτq � h�1wτphq �

�
un�1

u1�n



P W̃ . This

follows from (3.5) and Xw.hp1qXF p0q � H. This last follows from the combinatorics of BE as n�1

is even: one has to use the fact that a vertex P of BE of relative type 0 cannot be the vertex of

departure from B
xτy
E for a non-τ -stable alcove C of BE , as all alcoves having P as a vertex lie in

B
xτy
E .
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Let now n be even. Applying the isomorphism (3.8) with h replaced by h�1, we reduce to

determining Xyp1q with ypσq � 1 and ypτq �

�
un�1

u1�n



, where we can proceed exactly as in

the case n odd (after replacing n by �n). �

3.3. Structure of Xm
wm
p1q in some cases.

Continuing with notations from preceding sections, we now study higher level covers of Xwp1q.

For x P GpĔq we denote the image of x in DGĔ ,m
again by x, if no ambiguity can occur.

Notation 3.5. Let n, w, w be as in Notation 3.2. We de�ne the lift 9w P GpĔq of w by

9w :�

$''''&''''%

�
p�1qku1�2k

p�1qk�1u2k�1

�
if n � 2k � 1 ¡ 0 is odd,�

p�1qku�2k

p�1qku2k

�
if n � 2k ¡ 0 is even.

Moreover, let m ¥ 1 be an odd integer. Let wm : Σ Ñ DGĔ ,m
be the lift of w de�ned by

wmpσq :� 1, wmpτq :� 9w. (3.9)

We have J1pF q � GpF q and hence by Section 2.2 we obtain the group actions

GpF q

÷

Xm
wm
p1q ö Ĩm,wm{I

m. (3.10)

Lemma 3.6. Let m ¥ 1 be an odd integer. There is an isomorphism

Ĩm,wm{I
m �
Ñ

"�
i1 i2
0 τpi1q



: i1 P E

�{Um�1
E , i2 P E{p

m
E , vupi2q ¥ vupi1q

*
� ZpĔqI{Im.

In particular, there is a surjection induced by the projection onto the diagonal part

Ĩm,wm{I
m � E�{Um�1

E , (3.11)

under which Im,wm{I
m maps onto UE{U

m�1
E .

Proof. The proof is an easy computation. �

Recall from Section 3.1.3 that we see E� as a subgroup of GpF q. This de�nes a left multiplication

action of E� on Xm
wm
p1q (do not confuse this E� with the quotient E� of Ĩm,wm acting on the right).

De�nition 3.7. With notation from Notations 3.2,3.5, we de�ne the discrete subscheme Y m
9w of

Cmv � Fm as follows. Let a �
°`pvq
i�1 aiu

i P L
¤`pvq
r1,`pvq�msGapk̄q be as used in the parametrization (3.2)

of Cmv . Put R :� u�1pτpaq � aq mod um�1. We de�ne Y m
9w to be the subscheme of Cmv de�ned in

coordinates ψm9v from (3.2) by the following conditions:

a,A,C are k-rational

a1 � 0 (in particular, R is invertible) (3.12)

B � CτpCq�1un

D � R�1τpCqp1� CτpCq�1Aun � C�1τpCqτpAqunq
16



(both last equations take place in krus{pum�1q). In particular, Y m
9w is just a �nite discrete union of

k-rational points. Moreover, let yi :� e0pu
i, p�uqiq and de�ne Ỹ m

9w � Fm to be (disjoint) union

Ỹ m
9w :�

º
iPZ

Y m
9w � yi.

It will follow from the proof of Theorem 3.9 that the right multiplication action of I{Im on Cmv
restricts to an action of Im,wm{I

m on Y m
9w , which in turn extends to a right Ĩm,wm{I

m-action on Ỹ m
9w .

Remark 3.8. The varieties Y m
9w , Ỹ m

9w depend on 9w, not only on w, but the choice of the lift 9w of w

is not essential: another choices would give either empty varieties or varieties isomorphic to those

attached to 9w. The full study of these choices is not relevant for the goals of this article, so we

restrict our attention to our choice 9w.

Theorem 3.9. Let m ¥ 1 be an odd integer. With notation as in De�nition 3.7 assume that

m ¤ `pwq � 2n� 1. Then Ỹ m
9w (resp. Y m

9w ) is invariant under the left E�UJ- (resp. UJ-)action and

the right Ĩm,wm{I
m- (resp. Im,wm{I

m-)action and there is an isomorphism

Xm
wm
p1q �

º
gPGpF q{E�UJ

gỸ m
9w

equivariant for the left GpF q- and right Ĩm,wm{I
m-actions. In particular, Xm

wm
p1q is a zero-dimensional

reduced k-variety, containing only k-rational points.

Proof. We claim that Xm
wm
p1q �

²
gPGpF q{UJ

gY m
9w . As the natural projection Fm � F restricts to

a GpF q-equivariant projection pm : Xm
wm
p1q Ñ Xwp1q, Proposition 3.4 shows

Xm
wm
p1q �

º
gPGpF q{UJ

p�1
m pgDτ

wq �
º

gPGpF q{UJ

g.p�1
m pDτ

wq.

Now, Lemma 3.10 implies that p�1
m pDτ

wq � Xm
wm
p1qXCmv � Y m

9w , hence the isomorphism claimed in

the theorem. As p�1
m pDτ

wq � Xm
wm
p1q is stable under the right Im,wm- and left UJ-actions, the above

shows that Y m
9w also is. As Ĩm,wm �

²
i Im,wmyi, with yi :� e0pu

i, p�uqiq the theorem now follows

from Lemma 3.12. �

Lemma 3.10. Let 9xIm � ψm9v pa,C,D,A,Bq be a point of Cmv . Assume m ¤ `pwq � 2n� 1.

(i) Let R :� u�1pτpaq � aq mod um�1. Then

invmp 9xIm, τp 9xImqq � 9w ô

$''&''%
a1 � 0 (i.e., R is invertible)

B � unCτpCq�1

D � R�1τpCqp1� unCτpCq�1A� unp�1qnC�1τpCqτpAqq

(3.13)

(the equations on the right hand side take place in krus{um�1).

(ii) Suppose, 9xIm satis�es the equations on the right hand side of (3.13). Then:

invmp 9xIm, σp 9xImqq � 1 ô a,A,B,C,D are k-rational.

Proof. Choose some lifts of a,A,B,C,D to elements of kJuK. We denote them by the same letters.

(i): A computation shows that the I-double coset of 9x�1τp 9xq is equal to the I-double coset of the

element e�pu
�nRq, and 9w lies in this double coset if and only if R is invertible. This is clearly

17



necessary for the left hand side of part (i) to hold. Thus we can assume in the following that a1 � 0,

i.e., that R is invertible. In GpĔq one easily computes (independently of the parity of n):

9v�1e�p�aqe�pτpaqqτp 9vq � e�pu
nR�1qe0pR,R

�1q 9we�pp�1qn�1unR�1q. (3.14)

In the rest of the proof we write x � y to express that x, y lie in the same Im-double coset. Using

(3.14) we compute:

9x�1τp 9xq � e�p�Bqe�p�Aqe0pC
�1, D�1q � re�pu

nR�1qe0pR,R
�1q � 9w � e�pp�1qn�1unR�1qs � . . .

. . . �e0pτpCq, τpDqqe�pτpAqqe�pτpBqq

� e�p�Bqe�p�Aqe�pu
nCD�1R�1q � 9w � e0pD

�1R�1τpCq, C�1RτpDqq . . . (3.15)

. . . e�pp�1qn�1unτpCqτpDq�1R�1qe�pτpAqqe�pτpBqq.

Let N :� 1� unCD�1R�1A. We apply formulas (3.4) to deduce:

Ime�p�Bqe�p�Aqe�pu
nCD�1R�1q � Ime�p�B � unCD�1R�1N�1qe�p�ANqe0pN,N

�1q

(3.16)

� Ime�p�B � unCD�1R�1qe�p�ANqe0pN,N
�1q,

where the last equation is true, since unN�1 � un mod um�1, which in turn follows from 2n� 1 ¥

m. Noting that the product of the last three matrices in the last expression in (3.15) is equal to τ

applied to the inverse of the product of the �rst three (use τpRq � R), we deduce from (3.15) and

(3.16):

9x�1τp 9xq � e�p�pB � unCD�1R�1qqe�p�NAqe0pN,N
�1q � 9w � . . .

. . . e0pτpCqD
�1R�1, C�1τpDqRqe0pτpNq

�1, τpNqqe�pτpNAqq . . .

. . . e�pτpB � unCD�1R�1qq.

Now we bring the term e�p�NAq to the right side of 9w, without modifying the other terms and it

can be canceled there, as it lands in Im and Im is normal in I. Here we again used 2n � 1 ¥ m.

Analogously, we cancel the term e�pτpNAqq by bringing it to the left side of 9w. Now put the three

e0-terms together and obtain

9x�1τp 9xq � e�p�pB � unCD�1R�1qq � 9w � . . .

. . . e0pτpCqD
�1R�1N�1τpNq�1, C�1τpDqRNτpNqqe�pτpB � unCD�1R�1qq.(3.17)

The left hand side of (3.13) is equivalent to 9x�1τp 9xq � 9w, which by (3.17) and Section 3.1.8 is

equivalent to

B � unCD�1R�1 � 0 mod um�1

τpCqD�1R�1N�1τpNq�1 � 1 mod um�1 (3.18)

C�1τpDqRNτpNq � 1 mod um�1.
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Using τ2 � 1 and τpRq � R, we see that the second and the third equations are equivalent. Hence

the third can be ignored. Assume �rst n ¥ m� 1. Then it is trivial to see that (3.18) is equivalent

to the right hand side of (3.13). Assume now m ¥ n. Then, as n ¥ m � 1 � n ¡ 0 and N � 1

mod un, the second equation of (3.18) shows

D � τpCqR�1 mod um�1�n. (3.19)

Using this and N � 1 � unCD�1R�1A it is now easy to deduce the equivalence of (3.18) and the

right hand side of (3.13).

(ii): The implication 'ð' is immediate. We prove 'ñ'. Assume 9x�1σp 9xq P Im. In particular, the

I-double coset of 9x�1σp 9xq is I. This is equivalent to a being k-rational, and we deduce 9v�1e�pσpaq�

aqσp 9vq � 1. Setting G :� 1�AB, we compute

9x�1σp 9xq � e�p�Bqe�p�Aqe0pC
�1, D�1qe0pσpCq, σpDqqe�pσpAqqe�pσpBqq (3.20)

�

�
C�1σpCqσpGq �D�1σpDqσpBqA C�1σpCqσpAq �D�1σpDqA

D�1σpDqGσpBq � C�1σpCqBσpGq D�1σpDqG� C�1σpCqBσpAq



.

We have to show that B,C,D resp. A are σ-stable mod um�1 resp. mod um. If n ¥ m�1, we have

B � 0 mod um�1 and G � 1 mod um�1 by assumption and part (i), and the claimed equivalence

is trivial. Assume m ¥ n. By assumption and as n ¥ m� 1� n ¡ 0, we know that

G � 1�AB � 1� unCτpCq�1A mod um�1

B � unCτpCq�1 � 0 mod un,

and we deduce from (3.20)

C�1σpCqσp1� unCτpCq�1Aq � 1�D�1σpDqunσpCτpCq�1qA mod um�1 (3.21)

C�1σpCqσpAq � D�1σpDqA mod um (3.22)

D�1σpDqp1� unCτpCq�1Aq � 1� C�1σpCqunCτpCq�1σpAq mod um�1 (3.23)

D�1σpDqp1� unCτpCq�1AqσpunCτpCq�1q � . . .

� � � � C�1σpCqunCτpCq�1p1� unσpCqσpτpCqq�1σpAqq mod um�1. (3.24)

From (3.21), (3.23) and m ¥ n, we deduce C � σpCq mod un and D � σpDq mod un. Using

this and m ¥ n, we deduce from (3.22) that A � σpAq mod un. Using these congruences and

n ¥ m � 1 � n ¡ 0, we may replace σpAq, σpCq, σpDq by A,C,D in all terms which are � 0

mod un in equations (3.21)-(3.24). Then (3.21) simpli�es to C�1σpCq � 1 mod um�1 and (3.23)

to D�1σpDq � 1 mod um�1. Using this, we deduce σpAq � A mod um from equation (3.22). The

σ-stability of B follows by assumption and (3.13). This �nishes the proof of the lemma. �

Remark 3.11.

(i) Lemma 3.10(ii) shows, that one could have started directly with E{F and Σ � tτu, instead

of Ĕ{F and Σ � tσ, τu as in the text, to obtain the same results. However, the approach in

the text seems to the author to be more �exible.
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(ii) The computations in the proof of Lemma 3.10 get signi�cantly simpler under the stronger

assumption n ¥ m� 1. However, it is the 'hardest' case m � 2n� 1 of this theorem, which

is necessary to realize the automorphic induction in a pure way, see Theorems 4.2, 4.32.

Lemma 3.12. Ỹ m
9w is stable under the left action of E�UJ.

Proof. As Y m
9w is UJ-stable (see the proof of Theorem 3.9), Ỹ m

9w also is. As E�UJ is generated

by UJ and $ ($ as in Section 3.1.3), it is enough to show $Ỹ m
9w � Ỹ m

9w , which in turn follows

from $Y m
9w � Y m

9w y1. Let prm : Fm � F denote the natural projection. Lemma 3.13 shows

$Dτ
w � Dτ

wy1. Using $-(resp. y1-)equivariance of prm and $-(resp. y1-)invariance of X
m
wm
p1q, we

deduce from this

$Y m
9w � $ppr�1

m pDτ
wq XXm

wm
p1qq � pr�1

m p$Dτ
wq XXm

wm
p1q � pr�1

m pDτ
wy1q XXm

wm
p1q

� ppr�1
m pDτ

wq XXm
wm
p1qqy1 � Y m

9w y1. �

Lemma 3.13. Let ψ 9vpaq P Cv be a point. Write a � ua1 and assume that vupa
1q � 0. The point

$ψ 9vpaqy
�1
1 of F (with y1 as in De�nition 3.7) lies in Cv. Moreover,

$ψ 9vpaqy
�1
1 � ψ 9vpua

1,�1q.

Proof. A computation shows that the I-cosets $e�paq 9vy
�1
1 I and e�pua

1,�1qI coincide. �

4. Representation Theory

Recall that G � GL2 and char k � 2. We use the notation from Section 3. Further, we �x a

prime ` � char k. All representations considered below are smooth Q`-representations.

4.1. Some preparations.

4.1.1. Filtrations on UJ and UE. Recall the OF -algebra J from Section 3.1.3. Then

UnJ :� 1�$nJ �

�� 1� p
tn�1

2
u

F p
tn

2
u

F

p
tn

2
u�1

F 1� p
tn�1

2
u

F

�

for n ¥ 0 form a �ltration of U0

J :� UJ by open subgroups. Note that via ι we have UnJ XE
� � UnE .

4.1.2. Some notation. For a locally compact group H, we denote by H_ the set of all smooth

Q�
` -valued characters of H. For an additive character ψ of F , we let ψE :� ψ � trE{F be the

corresponding character of E, where trE{F is the trace of E{F . Let M :� M2pOF q. We denote by

ψM :� ψ � trM the corresponding character of M. For a character φ of F� we set φE :� φ � NE{F

be the corresponding character of E�, where NE{F is the norm of E{F . For a GpF q-representation

π we denote by φπ the GpF q-representation g ÞÑ φpdetpgqqπpgq.

4.1.3. Characters of UJ. Let ψ be an additive character of F of level 1 (i.e., ψppF q � 1, but ψ

non-trivial on OF ). Let 0 ¤ k   r ¤ 2k � 1 be integers. By [BH06] 12.5 Proposition we have

isomorphisms

$�rJ{$�kJ
�
ÝÑ pUk�1

J {U r�1
J q_, a�$�kJ ÞÑ ψM,a|Uk�1

J
, (4.1)

where ψM,a denotes the function x ÞÑ ψMpapx� 1qq and M is as in Section 4.1.2.
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4.1.4. Admissible pairs. Let χ be a character of E�. The level `pχq of χ is the least integer m ¥ 0,

such that χ|Um�1
E

is trivial. The pair pE{F, χq is said to be admissible ( [BH06] 18.2) if χ|U1
E
does

not factor through the norm map NE{F . An admissible pair pE{F, χq with χ of level m is called

minimal, if χ|UmE does not factor through NE{F . Note that if pE{F, χq is minimal, then `pχq is odd.

Two pairs pE{F, χq, pE{F, χ1q are said to be F -isomorphic if there is some γ P GalE{F such that

χ1 � χ � γ. We denote by Ptr
2 pF q the set of isomorphism classes of all admissible pairs attached to

the tamely rami�ed extension E{F .

4.1.5. Supercuspidal representations. Denote by A tr
2 pF q the set of all isomorphism classes of irre-

ducible supercuspidal representations of GpF q, which are not unrami�ed (i.e., are not attached to

an unrami�ed stratum. We use the de�nition of unrami�ed from [BH06] 20.1, see also 20.3 Lemma).

The rami�ed part of the tame parametrization theorem ( [BH06] 20.2 Theorem) states the existence

of a certain bijection

π : Ptr
2 pF q

�
Ñ A tr

2 pF q pE{F, χq ÞÑ πχ. (4.2)

4.1.6. Bushnell-Henniart construction of πχ. We recall the construction of πχ from [BH06]�15,19.

By twisting with a character of F�, it is enough to construct πχ for minimal pairs. Fix an additive

character ψ of F of level one. Let pE{F, χq be a minimal admissible pair with χ of odd level

m � 2n� 1 ¥ 1. Choose an element β P p�mE such that

χp1� xq � ψEpβxq for all x P pnE . (4.3)

Via ι we see β as an element of M2pF q. Then pJ,m, βq is a rami�ed simple stratum (see [BH06]

13.1). Via (4.1), β de�nes a character ψβ of UnJ , which is trivial on Um�1
J . Let Λ be the character

of Jβ :� E�UnJ de�ned by

Λ|UnJ :� ψβ, Λ|E� :� χ

(by (4.3) this is a consistent de�nition, as trM|OE � trE{F |OE and E X UnJ � UnE). Then pJ, Jβ,Λq

is a cuspidal type in GpF q attached to pE{F, χq (see [BH06] 15.5). The cuspidal inducing datum

attached to this cuspidal type is the pair pUJ,Θχq, where Θχ :� c� Ind
E�UJ

Jβ
Λ. Then πχ is de�ned

to be the compact induction

πχ :� c� Ind
GpF q
Jβ

Λ � c� Ind
GpF q
E�UJ

Θχ.

The isomorphism class of πχ is independent of the choices of ι, ψ and β. We work with the �xed

choice of ι, but ψ and β can be arbitrary.

4.1.7. Cohomology. For a scheme X over k we denote by H�
c pX,Q`q the `-adic cohomology of X

with compact support.

4.2. Automorphic induction from the rami�ed torus of GL2.

Let m ¥ 1 be an odd integer. Let χ be character of E� of level m. Let wm be as in Notation

3.5. By in�ation via (3.11), χ determines a character of Ĩm,wm{I
m and hence we can consider the

χ-isotypic subspace H�
c pX

m
wm
p1q,Q`qrχs of the cohomology of Xm

wm
p1q. Analogously, we can consider

the χ-isotypic subspace in the cohomology of Ỹ m
9w .
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De�nition 4.1. Let pE{F, χq be a minimal pair of odd level m ¥ 1. Let w, n, w be as in Notation

3.2 such that `pwq � 2n � 1 ¥ m and take wm as in Notation 3.5 lying over w. De�ne Rχ,n to be

the GpF q-representation

Rχ,n :� H0
cpX

m
wm
p1q,Q`qrχs

and Ξχ,n to be the E�UJ-representation

Ξχ,n :� H0
cpỸ

m
9w ,Q`qrχs.

For an arbitrary admissible pair pE{F, χq such that χ � φχ1 with pE{F, χ1q minimal we de�ne

Rχ,n :� φRχ1,n, Ξχ,n :� φΞχ1,n. If m � 2n� 1, write

Rχ :� Rχ,n and Ξχ :� Ξχ,n.

We also denote by Vχ the space in which Ξχ acts.

As Xm
wm
p1q is zero-dimensional, its cohomology in all positive degrees vanishes, and De�nition

4.1 is compatible with (1.1). The following theorem is our main result.

Theorem 4.2. Let pE{F, χq be an admissible pair. The representation Rχ is irreducible, cuspidal,

rami�ed, has level `pχq and central character χ|F� . Moreover, Rχ is isomorphic to πχ, i.e., the map

R : Ptr
2 pF q Ñ A tr

2 pF q pE{F, χq ÞÑ Rχ (4.4)

coincides with the map πχ from (4.2) and is, in particular, a bijection.

We believe that Rχ for non-minimal pairs also occurs naturally in the zeroth cohomology of

Xm
wm
p1q with m even. After necessary preparations, Theorem 4.2 is shown in Sections 4.6, 4.7. We

wish to point out, that the injectivity of (4.4) follows from the results of Section 4.5 and essentially

does not use cuspidal types and the isomorphism Rχ � πχ. We need them to prove surjectivity of

(4.4). From Theorem 3.9 we deduce:

Lemma 4.3. Let pE{F, χq be an admissible pair. Then

Rχ,n � c� Ind
GpF q
E�UJ

Ξχ,n.

Proof. It follows from Theorem 3.9 and the commutativity of the left and the right group actions

on Xm
wm
p1q. �

In Section 4.8 we also study the representations Rχ,n for n ¥ m�1, where m is the (odd) level of

χ. We determine the structure of Rχ,n and give a recipe how to reconstruct χ (up to τ -conjugacy)

from Rχ,n.

4.3. Unipotent traces.

From now on and until the end of Section 4.7 we assume 2n� 1 � m.

Lemma 4.4. The central character of Rχ is χ|F� . The subgroup Um�1
J acts trivially in Vχ and Vχ

has dimension pq � 1qqn�1.

Proof. Elements of F� act on Xm
wm
p1q in the same way from the left and from the right. As Rχ is

the χ-isotypic component of H0
cpX

m
wm
p1q,Q`q, the �rst statement of the lemma follows. The proof

of the second statement is given in Section 5.3. �
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By Lemma 4.4 we can consider Ξχ as a E
�UJ{U

m�1
J -representation. LetNn be the �nite subgroup

of E�UJ{U
m�1
J , equipped with a descending �ltration by subgroups N i

n for 1 ¤ i ¤ n � 1 de�ned

by

N i
n :�

�
1 0

piF 1


O�
1 0

pn�1
F 1



� Nn :�

�
1 0

pF 1


O�
1 0

pn�1
F 1



� UJ{U

m�1
J .

Proposition 4.5. As Nn-representations one has

Ξχ � IndNn1 1� IndNnNn
n

1 �
à
ψPN_

n
ψ|Nnn non-trivial

ψ.

In particular, Ξχ does not contain the trivial character on Nn
n .

Proof. If A is a �nite abelian group and B � A is a subgroup, then the traces of elements of ArB

in the induced representation IndAB1 are equal to 0 and the traces of elements of B are equal to the

index of B in A. This allows to compute the traces on the right hand side in the proposition. The

proposition follows from Lemma 4.6 by comparing the traces of Nn-representations on the left and

the right side. �

Lemma 4.6. For g P Nn we have:

trpg; Ξχq �

$''&''%
pq � 1qqn�1 if g � 1

�qn�1 if g P Nn
n r t1u

0 if g P NnrNn
n .

(4.5)

Proof. The proof is given in Section 5.3. �

Corollary 4.7. Ξχ is irreducible as B-representation, where B � UJ is the subgroup consisting of

lower triangular matrices.

Proof. The proof is the same as the proof of [Iva16] Corollary 4.12 (using Proposition 4.5 instead

of [Iva16] Proposition 4.10). �

4.4. Some character theory.

In this section we work relative to a �xed character χ of E� of the odd level m � 2n � 1 ¥ 1.

We write χτ :� χ � τ . Moreover, in this section (in the proof of Proposition 4.10 and in Lemma

4.17) it will be convenient to use the following notation: for two elements x, y P E and an integer a,

the writing x � y �Opuaq will just indicate that x � y mod ua (and the same notation with E, u

replaced by F, t).

4.4.1. Admissibility of pE{F, χq.

Lemma 4.8. The following hold:

(i) χ|UmE does not factor through the norm NE{F .

(ii) χ|UmE � χτ |UmE .

Proof. First we show (ii): Assume χp1 � umxq � χp1 � umxq for all x P k. As p1 � umxq�1 P

p1 � umxqU2m
E and as χ has level m ¥ 1, we deduce 1 � χpp1 � umxq2q � χp1 � um2xq for all

x P k. As charE � 2, we obtain a conradiction to our assumption `pχq � m. Now we deduce
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(i) from (ii): assume that χ|UmE factors through the norm, i.e., χ � χ1 � NE{F on UmE . Then

χτ pxq � χ1pNE{F ppτpxqqq � χ1pNE{F pxqq � χpxq, which contradicts (ii). �

4.4.2. Filtration on UE. We have the disjoint decomposition

UE � UFU
m�1
E Y

n�1¤
α�0

pUFU
2α�1
E rUFU

2α�3
E q.

Note that UFU
2α�1
E � UFU

2α
E .

4.4.3. Index of coincidence for characters.

De�nition 4.9. For a character θ of E�, which coincides with χ on F�Um�1
E , we de�ne the integer

ipθq � iχpθq to be the smallest integer i ¥ 0, such that θ|F�U iE
� χ|F�U iE

or θ|F�U iE
� χτ |F�U iE

.

Observe that 0 ¤ ipθq ¤ m� 1 and ipθq is always even.

4.4.4. Modi�cations of characters. Fix some integer 0 ¤ α   n. Consider the k-algebra

Rα :� OE{p
m�2α
E � krus{pum�2αq.

The τ -invariants of it are R
xτy
α � krts{ptn�αq. Consider the subset

Rxτy,1
α :� ts P Rxτy

α : s � �1 mod um�1�2p2α�1qu

of R
xτy
α (note that R

xτy,1
α � R

xτy
α if 2α� 1 ¥ n, or equivalently, α ¥ tn2 u).

Proposition 4.10. Let 0 ¤ α   n. Let s P R
xτy,1
α . There is a unique character χs of F�U2α�1

E ,

such that the following hold:

(i) χs coincides with χ on F�Um�1
E .

(ii) if α   tn2 u, then χs coincides on F
�U

2p2α�1q
E with χ � τ i, where s � p�1qi mod u.

(iii) χsp1� u2α�1hq � χp1� u2α�1hsq for all h P OF .

Conversely, let θ be a character of F�U2α�1
E , which coincides with χ or χτ on F�U

mintm�1,2p2α�1qu
E .

Then there is a unique s P R
xτy,1
α such that θ � χs.

Note that the expression χp1�u2α�1hsq in (iii) is well-de�ned: Indeed, χ is trivial on Um�1
E , and

on the other hand if s̃1, s̃2 P OF � kJtK � kJuK represent the same element s in R
xτy,1
α , then s̃1 � s̃2

mod um�2α, hence 1� u2α�1hs̃1 � 1� u2α�1hs̃2 mod um�1.

Proof. Consider the subset

U2α�1,1
E :� tx P U2α�1

E : Dh P OF with x � 1� u2α�1h mod Um�1
E u � U2α�1

E .

Lemma 4.11. Any element x P F�U2α�1
E can be written as x � zxx

1 with zx P UF , x
1 P U2α�1,1

E .

Moreover, modulo Um�1
E , zx, x

1 are uniquely determined by x and if x �
°
i¥0 xiu

i P U2α�1
E , then

zx �
°
i¥0 x2iu

2i mod um�1.

Proof. Multiplying by an element in F�, we can assume x P U2α�1
E . Write x � 1�

°m
i�2α�1 xiu

i �

Opum�1q. As x1 has to lie in U2α�1,1
E � U2α�1

E , also zx must lie in U2α�1
E . Thus we seek for two

elements zx :� 1�
°n�1
i�α�1 z2iu

2i � Opum�1q and x1 � 1�
°n�1
i�α y2i�1u

2i�1 � Opum�1q which have

to satisfy
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�
1�

n�1̧

i�α�1

z2iu
2i �Opum�1q

��
1�

n�1̧

i�α

y2i�1u
2i�1 �Opum�1q

�
� 1�

m̧

i�2α�1

xiu
i �Opum�1q.

Comparing the parity of the degrees we see that z2i � x2i. Further, a computation shows that yi's

satisfying this equation exist and are uniquely determined by the xi's. �

Let now s P R
xτy,1
α . For x P F�U2α�1

E with decomposition x � zxx
1 according to Lemma 4.11, set

χspxq :� χpzxqχp1� u2α�1shq where x1 � 1� u2α�1h mod Um�1
E with h P OF .

We show that χs is a character of F�U2α�1
E . Let x, y P F�U2α�1

E with decompositions x � zxx
1,

y � zyy
1 as in Lemma 4.11 and let x1 � 1 � u2α�1hx, y

1 � 1 � u2α�1hy (up to some elements in

Um�1
E ). Write A :� u2α�1phx � hyq, B :� u2p2α�1qhxhy. We compute

χspxqχspyq � χpzxzyp1� u2α�1shxqp1� u2α�1shyqq

� χpzxzyp1� sA� s2Bqq

� χpzxzyp1� sA�Bqq,

the last equation being true, as s2 � 1 mod um�1�2p2α�1q. We have

x1y1 � 1�A�B.

As hx, hy P OF , Lemma 4.11 implies zx1y1 � 1�B (up to elements in Um�1
E ). We deduce

px1y1q1 � x1y1z�1
x1y1 � 1�A�ABp1�Bq�1.

Now, xy � zxzyzx1y1px
1y1q1 is the decomposition of xy according to Lemma 4.11 and we compute

χspxyq � χpzxzyzx1y1qχp1� spA�ABp1�Bq�1qq.

If 2α � 1 ¥ n, we have B P pum�1q, hence all terms containing B can be ignored and we deduce

χspxqχspyq � χspxyq. Assume 2α � 1   n. Let sgnpsq :� �1, if s � �1 mod u. From the above,

s � p�1qsgnpsq mod um�1�2p2α�1q and B � 0 mod u2p2α�1q we deduce

χspxyq � χpzxzyp1�Bqp1� sA� p�1qsgnpsqABp1�Bq�1qq

� χpzxzyp1� sA�B � sAB � p�1qsgnpsqABqq

� χpzxzyp1� sA�Bqq.

This shows that χs is a character. Now, χs satis�es (i) and (iii) by de�nition. Let us show (ii).

Therefore, assume α   tn2 u. As s P R
xτy,1
α , we may write s � p�1qsgnpsq � um�1�2p2α�1qs1 for some

s1 P R
xτy
α . Let x P F�U

2p2α�1q
E . Write x � zxx

1 with zx P F
�, x1 P U

2p2α�1q
E . To compute χspxq, we

write x1 � 1� u2α�1h mod Um�1
E for some h P OF . As x

1 P U
2p2α�1q
E , we have further h � u2α�1h1

for some h1 P OE . By de�nition of χs we compute:
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χspxq � χpzxqχp1� u2α�1shq

� χpzxqχp1� u2α�1pp�1qsgnpsq � um�1�2p2α�1qs1qh1u2α�1q

� χpzxqχp1� u2p2α�1qpp�1qsgnpxq � um�1�2p2α�1qs1qh1q

� χpzxqχp1� p�1qsgnpxqu2p2α�1qh1q

� χpzxqχp1� p�1qsgnpxqu2α�1hq � χpzxqχpτ
sgnpsqpx1qq � pχ � τ sgnpsqqpxq,

where the fourth equality follows as χ is trivial on Um�1
E . This �nishes the proof of the �rst part

of the proposition. For the converse statement, one shows by a simple computation that the map

s ÞÑ χs from R
xτy,1
α to characters of F�U2α�1

E is injective. This completes the proof, as the number

of elements in R
xτy,1
α coincides with the number of characters θ of F�U2α�1

E , which are equal to

χ or χτ on F�U
mintm�1,2p2α�1qu
E (if 2α � 1 ¥ n, then there are qn�α those, otherwise there are

2qα�1). �

4.4.5. Compatibility with changing α. Let 0 ¤ α   n. Let θ be a character of E�, coinciding on

F�U
mintm�1,2p2α�1qu
E with χ or χτ . By Proposition 4.10, there is some spθ, αq P R

xτy,1
α such that

θ|F�U2α�1
E

� χspθ,αq. This construction is compatible with changing the level α.

Lemma 4.12. Let 0 ¤ α1 ¤ α2   n. Let θ be a character of E� coinciding on F�U
mintm�1,2p2α1�1qu
E

with χ or χτ . Under the natural projection R
xτy
α1 Ñ R

xτy
α2 , spθ, α1q maps to spθ, α2q.

Proof. Write si :� spθ, αiq. Let s1 denote the image of s1 in R
xτy,1
α2 . On F�U2α2�1

E we have

θp1� u2α2�1hq � χs1p1� u2α2�1hq � χp1� u2α2�1s1hq.

Thus on F�U2α2�1
E we have χs2 � θ � χs1 . By the uniqueness statement in Proposition 4.10 we

have s1 � s2. �

4.4.6. Elementary modi�cations and distances.

De�nition 4.13. For s P R
xτy,1
α , we call the character χs of F

�U2α�1
E constructed in Proposition

4.10 an elementary modi�cation of χ. Let θ be character of E� coinciding with χ on F�Um�1
E . Set

αθ :� mintα : 0 ¤ α   n, 2p2α� 1q ¥ ipθqu,

i.e., αθ is the smallest integer such that θ restricted to F�U2αθ�1
E is an elementary modi�cation of

χ. We de�ne the distance from χ to θ to be the (uniquely determined by Proposition 4.10) element

spθq :� spθ, αθq P R
xτy,1
αθ , such that θ coincides on F�U2αθ�1

E with χspθq.

As ipθq is an even integer ¤ m� 1 � 2n, it follows easily that in any case αθ ¤ tn2 u. (Moreover,

one has αθ � t ipθq4 u, but we will not use this). Further, αχ � αχτ � 0 and spχq � 1 and spχτ q � �1.

4.4.7. Quadratic distance. Let 0 ¤ α   n. There is the norm map

Nτ,α : Rα Ñ Rxτy
α s ÞÑ sτpsq.

Lemma 4.14. The image impNτ,αq of Nτ,α consists of precisely such elements s P R
xτy
α for which

p�1qvtpsq � svtpsq is a square in k�, where svtpsq denotes the leading coe�cient of s.
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Proof. This follows immediately from Lemma 4.15. �

Lemma 4.15. Let x P kJtKr t0u with leading coe�cient xvtpxq P k
�. Then x is

- a square of an element of kJtK if and only if vtpxq is even and xvtpxq is a square in k�,

- a square of an element of kJuK if and only if xvtpxq is a square in k�,

- in the image of the norm map NE{F if and only if p�1qvtpxqxvtpxq is a square in k�.

Proof. This is well-known. �

Consider the following subset of R
xτy,1
α :

Qα :� ts P Rxτy,1
α : s2 � 1 P impNτ,αqur t�1u.

De�nition 4.16. Let θ be a character of E� coinciding with χ on F�Um�1
E . We say that the

distance from χ to θ is properly quadratic if spθq P Qαθ , with spθq as in De�nition 4.13.

4.4.8. Structure of Qα. Set R
xτy
n :� t1u. Let prα be the natural projection

prα : Rxτy
α � krts{tn�α Ñ krts{tn�α�1 � R

xτy
α�1.

Lemma 4.17. Let 0 ¤ α ¤ n� 1. An element s P R
xτy
α r t�1u lies in Qα if and only if either

- α ¥ tn2 u, s � �1 mod u and s2 � 1 mod u is a square in k�, or

- s � �1 mod u, i.e., s � �1� tjs0�Opt
j�1q for some s0 P k

�, maxt1, n�p2α� 1qu ¤ j ¤

n� α� 1 and �p�1qj2s0 is a square in k�.

Moreover, the following hold:

(i) Let 0 ¤ α ¤ n � 2. The preimage of 1 (resp. �1) under the composed map Qα ãÑ R
xτy
α Ñ

R
xτy
α�1 contains precisely q�1

2 elements.

(ii) Assume 0 ¤ α ¤ n � 2. Let s0 P R
xτy,1
α with prαps0q � �1. Then 7pr�1

α pprαps0qq � q and

we have the equivalence s0 P Qα ô pr�1
α pprαps0qq � Qα.

(iii) We have 7Qn�1 �
q�3

2 .

Proof. The description of Qα follows by an easy computation from Lemma 4.15. (i),(ii) follow from

this description (along with 7k�,2 � q�1
2 ).

(iii): Note that Qn�1 � ts P k : s2 � 1 is a square in kur t�1u. Consider the a�ne curve C :

s2� 1 � y2 over k and let C be the unique smooth projective curve over k containing C as an open

subset. We have 7pCpkqrCpkqq � 2. Further, C is a smooth quadric in P2 over a �nite �eld, hence

isomorphic to P1, i.e., 7Cpkq � q�1. We deduce 7Cpkq � q�1. Now (iii) follows from the fact that

the map Cpkqr tp�1, 0qu Ñ Qn�1 given by ps, yq ÞÑ s is surjective and two-to-one. �

4.5. Restriction to the rami�ed torus E� � GpF q.

For a �nite �nite group H, let x, yH denote the inner product on the set of class functions of H. For

a character θ let xθ,ΞχyE� denote the multiplicity of θ in Ξχ.

Theorem 4.18. Let pE{F, χq be a minimal pair of odd level m ¥ 1. A character θ of E� can only

occur in Ξχ, if θ coincides with χ on F�Um�1
E . In this case we have

xθ,ΞχyE� �

#
1 if θ � χ or θ � χτ or the distance from χ to θ is properly quadratic

0 otherwise.
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We prove this theorem below. First we investigate the restriction of Ξχ to UE . Note that spθq

from De�nition 4.13 is in exactly the same way also de�ned for characters θ of UE , which coincide

with χ on UFU
m�1
E .

Proposition 4.19. Let pE{F, χq be a minimal pair of odd level m ¥ 1. A character θ of UE can

only occur in Ξχ|UE , if θ coincides with χ on UFU
m�1
E . In this case we have

xθ,ΞχyUE �

$''&''%
1 if θ � χ or χτ

2 if θ � χ, χτ and spθq P Qαθ

0 otherwise.

The main ingredient in the proof of Proposition 4.19 is the following trace computation.

Proposition 4.20. Let 0 ¤ α   n. Let g P UFU
2α�1
E rUFU

2α�3
E . Then

trpg; Ξχq � 2qα
¸
sPQα

χspgq � qαpχpgq � χτ pgqq.

Proof. We can write g � zg1 for z P UFU
m�1
E and g1 � ιp1 � u2α�1yq with y P UF . We have the

following computation, where the �rst equality follows from Lemma 4.4, which shows that z acts in

Ξχ as the scalar χpzq, and the second equality follows from Proposition 5.12 applied to g1:

trpg; Ξχq � χpzqtrpg1; Ξχq

� χpzq

�
qαpχpg1q � χτ pg1qq � 2qα

¸
sPQα

χp1� u2α�1syq

�
� qαpχpgq � χτ pgqq � 2qα

¸
sPQα

χpzqχp1� u2α�1syq,

Now, χpzqχp1� u2α�1syq � χspgq with χs as in Proposition 4.10 and hence we are done. �

Proof of Proposition 4.19. As UFU
m�1
E acts in Vχ by χ|UFUm�1

E
, the �rst statement is clear. Assume

θ|UFUm�1
E

� χ|UFUm�1
E

. Now, Um�1
E acts trivially in Vχ, thus we can equivalently consider Vχ as a

UE{U
m�1
E -representation. The �ltration from Section 4.4.2 induces a disjoint decomposition

UE{U
m�1
E � Z Y

n�1¤
α�0

pHαrHα�1q,

where Hα :� UFU
2α�1
E {Um�1

E and Z :� Hn � UFU
m�1
E {Um�1

E . We have 7Hα � pq � 1qqm�α for

0 ¤ α ¤ n. For 0 ¤ α   n set

Sα :�
¸

gPHα rHα�1

θpg�1qtrpg; Ξχq.

Then the trace computation Proposition 4.20 shows that Sα � pq � 1qqm�1S1α with

S1α :� 2
¸
sPQα

pqxθ, χsyHα � xθ, χsyHα�1q � qxθ, χ� χτ yHα � xθ, χ� χτ yHα�1 ,

and using Lemma 4.4 we deduce (H0 � UE{U
m�1
E )
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xθ,ΞχyH0 �
1

7H0

�¸
gPZ

θpg�1qtrpg; Ξχq �
n�1̧

α�0

Sα

�
�

1

7H0

�
7Z � dimVχ �

n�1̧

α�0

Sα

�

�
1

q

�
q � 1�

n�1̧

α�0

S1α

�
.

Now the proposition follows from Lemma 4.21, by considering the �ve cases ipθq � 0, 0   ipθq  

m� 1 and spθq P Qαθ , 0   ipθq   m� 1 and spθq R Qαθ , ipθq � m� 1 and spθq P Qαθ , ipθq � m� 1

and spθq R Qαθ . �

Lemma 4.21. (i) Assume 0 ¤ α ¤ n� 2. Then

S1α �

$''''&''''%
0 if ipθq ¤ 2α� 1

q if ipθq � 2α� 2 and spθ, αq P Qα

�q if ipθq � 2α� 2 and spθ, αq R Qα

0 if ipθq ¥ 2α� 3.

(ii) For α � n� 1 we have

S1n�1 �

$''&''%
1 if ipθq ¤ m � 2n� 1

q � 1 if ipθq � m� 1 � 2n and spθ, n� 1q P Qn�1

�q � 1 if ipθq � m� 1 � 2n and spθ, n� 1q R Qn�1.

Proof. Let prα be as in Section 4.4.8. (i): Assume 0 ¤ α ¤ n� 2.

Case ipθq ¤ 2α � 1. Then on Hα resp. on Hα�1 the character θ is equal to exactly one of the

characters χ or χτ (as α ¤ n�2 and χ � χτ on Hn�1 by Lemma 4.8). Assume that this character is

χ (the other case is similar). Thus xθ, χsyHα � 0 for all s P Qα, xθ, χ�χ
τ yHα � xθ, χ�χτ yHα�1 � 1

and by Lemma 4.12 we have

xθ, χsyHα�1 �

#
1 if prαpsq � 1

0 otherwise.
(4.6)

By Lemma 4.17(i), the �rst case happens for exactly pq � 1q{2 elements in s P Qα. Altogether we

obtain S1α � 2p0� q�1
2 q � q � 1 � 0.

Case ipθq � 2α � 2. The character θ coincides on Hα neither with χ nor with χτ , hence

xθ, χ�χτ yHα � 0. As 2α�3 ¤ 2pn�2q�3 � m by assumption, θ coincides on Hα�1 with precisely

one of the characters χ or χτ and hence xθ, χ � χτ yHα�1 � 1. As 2p2α � 1q ¥ 2α � 2 � ipθq, the

quantity spθ, αq P R
xτy,1
α is well-de�ned. Thus

¸
sPQα

qxθ, χsyHα �

#
q if spθ, αq P Qα

0 otherwise.

Moreover, (4.6) holds also in this case, and again there are precisely pq � 1q{2 elements of Qα with

image 1 in R
xτy
α�1. From this we deduce the result.

Case ipθq ¥ 2α � 3. Then xθ, χ� χτ yHα � xθ, χ� χτ yHα�1 � 0. Assume �rst 2p2α � 1q ¥ ipθq

(in particular, α ¡ 0). By Proposition 4.10 there is a unique spθ, αq P R
xτy,1
α such that θ coincides
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with χspθ,αq on H
α. Hence ¸

sPQα

qxθ, χsyHα �

#
q if spθ, αq P Qα

0 otherwise.

On the other hand, note that θ coincides with χs on Hα�1 if and only if s P pr�1
α pprαpspθ, αqqq.

Thus using Lemma 4.17(ii) we deduce¸
sPQα

xθ, χsyHα�1 �

#
q if spθ, αq P Qα

0 otherwise.

In any case we compute S1α � 0. Finally, assume that ipθq ¡ 2p2α� 1q, i.e., ipθq ¥ 2p2α� 2q as ipθq

is even. Thus θ does not coincide with χ or χτ on UFU
mintm�1,2p2α�1qu
E {Um�1

E � H2α�1. On the

other hand, for s P R
xτy,1
α , the character χs coincides by de�nition with χ or χτ on H2α�1. Thus θ

does not coincide with any of the characters χs on H
2α�1 and from 2α � 1 ¤ 2α � 3 ¤ 4α � 3 we

deduce

xθ, χsyHα � xθ, χsyHα�1 � 0,

and hence also S1α � 0.

(ii): Case ipθq ¤ m. Then θ coincides with exactly one of the characters χ, χτ on Hn�1. Thus

xθ, χ � χτ yHn�1 � 1, xθ, χ � χτ yZ � 2, and xθ, χsyHn�1 � 0, xθ, χsyZ � 1 for all s P Qα. Using

Lemma 4.17(iii) we compute

S1n�1 � 2pq � 0�
q � 3

2
q � pq � 1� 2q � 1.

Case ipθq � m � 1. Then xθ, χ � χτ yHn�1 � 0, xθ, χ � χτ yZ � 2, xθ, χsyZ � 1 for all s P Qn�1.

Moreover, spθ, n� 1q is well-de�ned and

¸
sPQn�1

qxθ, χsyHn�1 �

#
q if spθ, n� 1q P Qn�1

0 otherwise.

Again we conclude by Lemma 4.17(iii). �

Proof of Theorem 4.18. Let φ be any one of the two characters of E� satisfying φpUEq � 1 and

φptq � χptq�1. Consider the E�-representation φΞχ given by pφΞχqpeq � φpeqΞχpeq. By construc-

tion, it is trivial on the subgroup xt, Um�1
E y of E�, and we consider it as a representation of the �nite

group E�{xt, Um�1
E y � UE{U

m�1
E � xuy{xu2y. Let θ be a character of E�. Then xθ,ΞχyE� � 0,

unless θ coincides with χ on F�Um�1
E . Assume this holds. Then φθ also factors through a character

of UE{U
m�1
E � xuy{xu2y and its multiplicity in Ξχ can be computed as follows:

xθ,ΞχyE� � xφθ, φΞχyUE{Um�1
E �xuy{xu2y �

1

2pq � 1qqm

¸
gPUE{U

m�1
E �xuy{xu2y

θpg�1qtrpg;φΞχq.

Let λpθq P t0, 1u be such that θpuq � p�1qλpθqχpuq and let sgnpχq be 0 if χ is even, and 1 otherwise.

We deduce from the above and from Proposition 4.22:

xθ,ΞχyE� �
1

2
pxθ,ΞχyUE{Um�1

E
� p�1qλpθqxθ, χ� p�1qsgnpχqχτ yUE{Um�1

E
q.
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Now Theorem 4.18 follows from Proposition 4.19 by a simple case-by-case study. For example, if

θ � χ, then xθ,ΞχyUE � 1 by Proposition 4.19, λpθq � 0 and xθ, χτ yUE � 0. Hence the above

computation shows

xθ,ΞχyE� �
1

2
p1� p�1q0xθ, χ� p�1qsgnpχqχτ yUE{Um�1

E
q �

1

2
p1� 1q � 1.

If θ � χτ , then xθ,ΞχyUE � 1 by Proposition 4.19, θpuq � χτ puq � χp�uq � p�1qsgnpχqχpuq, i.e.,

λpθq � sgnpχq, and xθ, χyUE � 0. Hence the above computation shows

xθ,ΞχyE� �
1

2
p1� p�1qλpθqxθ, χ� p�1qsgnpχqχτ yUE{Um�1

E
q �

1

2
p1� 1q � 1.

The other cases, i.e., θ coincides with χ (resp. with χτ ) on UE , but not on E
�, θ does not coincide

with χ or χτ on UE and the distanse from χ to θ is properly quadratic (resp. is not properly

quadratic), follow by similar computations. �

Proposition 4.22. Let g P E� with vupgq � 1. Then

trpg; Ξχq � χpgq � χτ pgq.

Proof. The proof is given in Section 5.5. �

Corollary 4.23. The character χ can be reconstructed from the E�-representation Ξχ|E� .

Proof. By Lemma 4.4, Ξχ|E� determines χ|F�Um�1
E

uniquely. Consider the map

f : A :� tθ P pE�q_ : θ|F�Um�1
E

� χ|F�Um�1
E

u� tθ1 P U_
E : θ1|UFUm�1

E
� χ|UFUm�1

E
u,

given by restricting characters of E� to UE . It is surjective and 2-to-1. By Proposition 4.19 and

Theorem 4.18, χ and χτ are the two unique elements among all elements θ P A, with the following

property: θ occurs in Ξχ, but the unique element of f�1pfpθqqr tθu does not occur in Ξχ. �

4.6. Relation to strata, cuspidality.

Using the unipotent traces computed in Section 4.3, we show the �rst part of Theorem 4.2.

We use the terminology of intertwining and strata from [BH06]�11 and Chapter 4. The following

is analogous to [Iva16] Proposition 4.22 and Corollary 4.23. Recall the notation Nn, N
n
n from

Section 4.3. Let N resp. Nn denote the preimage of Nn resp. Nn
n under the natural projection

UJ � UJ{U
m�1
J .

Proposition 4.24. Let m ¥ 0. Let Ξ be an irreducible E�UJ-representation, which is triv-

ial on Um�1
J and does not contain the trivial character on Nn. Then the GpF q-representation

ΠΞ � c� Ind
GpF q
E�UJ

Ξ is irreducible, cuspidal and admissible. Moreover, it contains a rami�ed simple

stratum pJ,m, αq for some α P $�mJ. One has `pΠΞq �
m
2 . For any character φ of F� one has

0   `pΠΞq ¤ `pφΠΞq.

From this we can deduce the �rst statement of Theorem 4.2.

Corollary 4.25. Let pE{F, χq be a minimal pair. The representation Rχ is irreducible, cuspidal

and admissible. It contains a rami�ed simple stratum and is, in particular, rami�ed. Moreover,

`pRχq �
`pχq

2 and for any character φ of F� one has 0   `pRχq ¤ `pφRχq.

Proof. The assumptions of Proposition 4.24 are satis�ed for the E�UJ-representation Ξχ by Corol-

lary 4.7 and Proposition 4.5. �
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Proof of Proposition 4.24. Irreducibility and cuspidality of Ξ follow from [BH06] Theorem 11.4,

which assumptions are satis�ed due to Lemma 4.26. To contain a stratum is de�ned with respect to

an additive character. So �x some character ψ of F of level 1. Make the isomorphism (4.1) explicit

for k � m� 1, r � m:

$�mJ{$1�mJ
�
ÝÑ pUmJ {U

m�1
J q_.

An element of $�mJ{$1�mJ resp. of UmJ {U
m�1
J is represented by a matrix a �

�
a2t

�n

a3t
1�n



resp. x �

�
x2t

n�1

x3t
n



with a2, a3, x2, x3 P k and ψM,apxq � ψpa2x3 � a3x2q. The restriction

of Ξ to UmJ factors through a representation of the abelian group UmJ {U
m�1
J , thus it decomposes as

a sum of characters, each of which is of the form ψM,a|UmJ for some a P $�mJ. With other words,

for each a, such that ψM,a|UmJ is contained in Ξ, the rami�ed stratum pJ,m, aq occurs in ΠΞ. By

de�nition, a rami�ed stratum is simple, if and only it is fundamental, i.e., the coset a�$1�mJ does

not contain a nilpotent element of M. Thus to show that ΠΞ contains a rami�ed simple stratum it

is enough to show the following claim.

Claim. Let a P $�mJ. Assume ψM,a|UmJ occurs in Ξ. Then a � $1�mJ does not contain

nilpotent elements of M, or with other words a2, a3 � 0 (with notations as above).

Proof of the claim. Assume a2 � 0, then the restriction of ψM,a to the subgroup Nn of UmJ is

the trivial character, which contradicts our assumptions on Ξ. Thus a2 � 0. Assume a3 � 0.

As $ P E�UJ, the character ψ$a$�1 also occurs in Ξ (proof as in [Iva16] Lemma 4.25). But

$a$�1 �

�
a3t

�n

a2t
1�n



and we deduce a contradiction as in the already proven part. �

Thus we have shown that ΠΞ contains a rami�ed fundamental stratum of the form pJ,m, aq.

Then [BH06] Theorem 12.9 shows that `pΠΞq �
m
2 . Furthermore, if an essentially scalar stratum

would be contained in ΠΞ, then by [BH06] Section 12.9, it would have to intertwine with pJ,m, aq.

But by [BH06] 13.2 Proposition, no fundamental stratum of the form pM, r, bq can intertwine with

the fundamental rami�ed stratum pJ,m, aq. Thus no essentially scalar stratum is contained in ΠΞ

and [BH06] 13.3 Theorem shows the last statement of the proposition. �

Lemma 4.26. Let Ξ be an irreducible E�UJ-representation, which is trivial on Um�1
J and does not

contain the trivial character on Nn. An element g P GpF q intertwines Ξ if and only if g P E�UJ.

Proof. The double E�UJ-cosets in GpF q are represented by diagonal matrices with entries tα, 1 for

α ¥ 0. The rest of the proof works exactly as in [Iva16] Lemma 4.24. �

4.7. Relation to cuspidal inducing data.

We relate the representations Rχ, πχ to each other. The following proposition �nishes the proof

of Theorem 4.2.

Proposition 4.27. Let pE{F, χq be an admissible pair. Then Rχ � πχ.

Proof. By twisting both sides with a character of F�, we can assume that pE{F, χq is a minimal

pair. By construction of πχ and Lemma 4.3, it is enough to show that Ξχ � Θχ (Θχ is as in Section

4.1.6). From Corollary 4.25 and the proof of Proposition 4.24 it follows that there is a simple

(rami�ed) stratum pJ,m, βq such that Ξχ|UmJ contains ψβ . By [BH06] 15.8 Exercise it follows that
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pE�UJ,Ξχq is a cuspidal inducing datum in GpF q, i.e., there is some χ1 with Ξχ � Θχ1 . By the last

statement of Corollary 4.25, pE{F, χ1q has to be minimal. By Lemma 4.28, Θχ1 |E� � Ξχ1 |E� . Thus

Ξχ1 |E� � Ξχ|E� . Now, by Corollary 4.23, χ is (up to τ -conjugacy) uniquely determined by Ξχ, and

we deduce χ1 � χ or χ1 � χτ . As Θχ � Θχτ , the proposition follows. �

Lemma 4.28. Let pE{F, χq be a minimal pair. We have Θχ|E� � Ξχ|E� .

Proof. The proof is given in Section 5.6. �

4.8. Small level case.

Let χ be a character of E� of (odd) level m ¥ 1. Let n ¥ m� 1 be an integer. Then χ de�nes a

character χ̃ of the group E�UnJ by composition

χ̃ : E�UnJ � E�UnJ {U
n
J � E�{UnE � E�{Um�1

E

χ
Ñ Q�

` . (4.7)

Proposition 4.29. Let χ be a character of E� of odd level m ¥ 1 and let n ¥ m� 1. Then

Rχ,n � c� Ind
GpF q
E�UnJ

χ̃.

Proof of Proposition 4.29. By Lemma 4.3 it is enough to show Ξχ,n � c� Ind
E�UJ

E�UnE
χ̃. To do so, it

is enough to show that the traces of each element of E�UJ in both spaces agree. Modulo center,

which acts by χ|F� in both spaces, any element of E�UJ is represented by an element in UJY$UJ,

thus we can restrict to elements lying in this union. The required trace computations are covered

by Lemmas 4.30 and 4.31. �

Lemma 4.30. Let g P UJ. Precisely one of the following cases occurs:

(i) g P UFU
n
J . Then trpg; Ξχ,nqrχsq � pq�1qqn�1χ̃pgq. In particular, UnJ acts trivial in Ξχ,nqrχs

and UF acts through the character χ|F� .

(ii) g P UJrUFU
n
J is conjugate to an element x of UFU

2α�1
E UnJ rUFU

2α�3
E UnJ , such that 2α�

2 ¤ n. Then

trpg; Ξχ,nqrχsq � q2α�1pχ̃pxq � χ̃τ pxqq.

(iii) g P UJrUFU
n
J is not conjugate to an element of UEU

n
J . Then trpg; Ξχ,nqrχsq � 0.

Let g P $UJ. Precisely one of the following two cases can occur:

(i)1 g is not conjugate to an element of E�UnJ . Then trpg; Ξχ,nqrχsq � 0.

(ii)1 g is conjugate to an element x of E�UnJ . Then trpg; Ξχ,nqrχsq � χ̃pxq � χ̃τ pxq.

Proof. The proof is given in Section 5.7. �

Lemma 4.31. Lemma 4.30 holds with Ξχ,n replaced by c� Ind
E�UJ

E�UnE
χ̃.

Proof. The lemma follows by an explicit computation using the Mackey-formula in a way very

similar to the proof of Lemma 4.28. We omit the details. �

Using notations from De�nition 4.16 we have the following structure result.

Theorem 4.32. Let χ be a character of E� of odd level m ¥ 1 and let n ¥ m � 1. Let θ be a

character of level ¥ m. There are no non-zero maps from Rχ,n to Rθ, unless θ coincides with χ on

F�Um�1
E . In this case, we have
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HomGpF qpRχ,n, Rθq �

#
Q` if θ � χ, or θ � χτ , or the distance from θ to χ is properly quadratic

0 otherwise.

In particular, the character χ can be reconstructed from Rχ,n.

Proof. By Lemma 4.33 we may assume that θ and χ coincide on F�Um�1
J . Thus by our assumption

on θ, pE{F, χq is a minimal pair and we compute

HomGpF qpRχ,n, Rθq � HomE�UJ
pΞχ,n,Ξθq

� HomE�UnJ
pχ̃,Ξθq

� HomE�pχ̃,Ξθq

� HomE�pχ̃,
à

θ1
θ1q,

where θ1 runs through the set of all characters of E� coinciding with θ on F�Um�1
E , such that either

θ1 � θ, or θ1 � θτ , or the distance from θ to θ1 is properly quadratic. Above, the �rst equality follows

from Lemma 4.33. The second is Frobenius reciprocity and Proposition 4.29. The third follows, as

n ¥ m�1 and hence χ̃, Ξθ are trivial on U
n
J . Finally, the forth equality follows from Theorem 4.18.

The above computation shows the statement of the theorem about HomGpF qpRχ,n, Rθq. It remains

to show that χ can be reconstructed from Rχ,n. First, the above considerations characterize m as

the greatest odd integer, such that there are non-zero maps from Rχ,n to Rθ for some θ of level m.

The rest follows as in the proof of Corollary 4.23. �

Lemma 4.33. Let θ be a character of E� of odd level `pθq ¥ m. If θ does not coincide with χ on

F�Um�1
E , then there are no non-zero morphisms between Rχ,n and Rθ. Assume θ coincides with χ

on F�Um�1
E (in particular, `pθq � m). Then

HomGpF qpRχ,n, Rθq � HomE�UJ
pΞχ,n,Ξθq.

Proof. Applying twice the Frobenius reciprocity and once the Mackey formula, we see by Lemma

4.3

HomGpF qpRχ,n, Rθq �
à

gPE�UJzGpF q{E�UJ

HomE�UJXgpE�UJqp
gΞχ,n,Ξθq,

where gpE�UJq � gpE�UJqg
�1 and gΞχ,npxq � Ξχ,npg

�1xgq. The set E�UJzGpF q{E
�UJ is repre-

sented by the diagonal matrices e0pt
α, 1q for α ¥ 0. Let g � e0pt

α, 1q with α ¡ 0. We show that

the summand on the right side corresponding to g vanish. Note that E�UJX
gpE�UJq � e�pp

m�1
2

F q.

On the one hand, Proposition 4.5 shows that Ξθ does not contain the trivial character on e�pp
m�1

2
F q.

On the other hand, e�pp
m�1

2
�α

F q � Um�1
J as α ¡ 0. As Um�1

J is normal in E�UJ, and χ̃ is trivial on

Um�1
J , we see by Proposition 4.29 that Ξχ,n is trivial on Um�1

J and, in particular, on e�pp
m�1

2
�α

F q.

As

gΞχ,npe�pxqq � Ξχ,npe�pt
αxqq,

we deduce that gΞχ,n is trivial on e�pp
m�1

2
F q. The claim follows, and hence

HomGpF qpRχ,n, Rθq � HomE�UJ
pΞχ,n,Ξθq.
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It remains to show that this space is 0, unless θ coincides with χ on F�Um�1
E . Asssume HomE�UJ

pΞχ,n,Ξθq �

0. By comparing central characters, we see that θ|F� � χ|F� . As above, we see that Ξχ,n is trivial

on Um�1
J . Hence Ξθ is too. We deduce `pθq � m. This shows our claim. �

5. Trace computations

In this section we use notations from Sections 3 and 4, especially from Notations 3.2, 3.5 and

De�nition 3.7. For g P GpF q we always write g �

�
g1 g2

g3 g4



.

5.1. Left and right group actions on Xm
wm
p1q.

To apply a trace formula in what follows, we make here the actions (3.10) explicit using the

coordinates ψm9v from (3.2). It is clear that I acts on Cmv � Fm by left multiplication. The

following proposition describes this action.

Proposition 5.1. Let 9v,v,n be as in Notation 3.2 and m ¥ 1 odd (we do not assume 2n� 1 ¥ m

here). Let 9xIm � ψm9v pa,C,D,A,Bq be a point of Cmv . Then g P I acts on 9xIm by

g. 9xIm � ψm9v pg.a|n,
detpgq

g2a� g1
CN�1, pg2a� g1qDN, . . .

. . . AN � hpg, aq
pg2a� g1q

2DN2

detpgqC
,B � un�1 g2

pg2a� g1q
CD�1N�1q,

where

g.a :�
g4a� g3

g2a� g1
P Lr1,n�msGapk̄q and �|n is as in Section 3.1.5

N :� 1� un�1 g2

g2a� g1
CD�1A

hpg, aq :� u�pn�1qpg.a� g.a|nq P Lr0,m�1sGapk̄q.

Proof. First, observe that the expressions in the proposition are well-de�ned, as vupg1q � vupg4q � 0,

vupg2q ¥ 0, vupg3q ¡ 0 and vupaq ¡ 0. We compute in GpĔq (with a, g.a, C,D replaced by some

representatives in k̄JuK):

ge�paq 9ve0pC,Dq � e�pg.aq 9ve0p
detpgqC

g2a� g1
, pg2a� g1qDqe�pu

n�1 g2CD
�1

g2a� g1
q.

Further, using (3.4) we see that

e�pu
n�1 g2CD

�1

g2a� g1
qe�pAqe�pBq � e0pN

�1, Nqe�pANqe�pB � un�1 g2CD
�1

g2a� g1
N�1q,

with N as in the proposition. Combining the two last computations we see:

g. 9xIm � ge�paq 9ve0pC,Dqe�pAqe�pBq

� e�pg.aq 9ve0p
detpgqC

g2a� g1
, pg2a� g1qDqe�pu

n�1 g2CD
�1

g2a� g1
qe�pAqe�pBq (5.1)

� e�pg.aq 9ve0p
detpgqC

g2a� g1
, pg2a� g1qDqe0pN

�1, Nqe�pANqe�pB � un�1 g2CD
�1

g2a� g1
q.
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Now the only thing we have to do, is to replace g.a P Lr1,n�msGapk̄q in the last expression by an

element in L¤nr1,n�msGapk̄q. Therefore, note that g.a and g.a|n have the same image in Lr1,nsGapk̄q,

i.e., g.a � g.a|n is divisible by un�1 and hpg, aq is well-de�ned as an element of Lr0,m�1sGapk̄q and

that

e�pg.aq 9v � e�pg.a|nqe�pg.a� g.a|nq 9v � e�pg.a|nq 9ve�phpg, aqq.

Combining this and (5.1) �nishes the proof of the proposition. �

We compute hpg, aq from Proposition 5.1 in some cases of interest for us. We point out, that

later we need to know hpg, aq only modulo un (cf. Proposition 5.6).

Lemma 5.2. Let n,m be as in Proposition 5.1. Assume m ¤ 2n � 1. Let g P UJ and a P

L¤nr1,n�msGapkq with a1 � 0.

(i) For g P Um�1
J we have vuphpg, aqq ¥ n.

Let g � ιp1� yu2α�1q with 0 ¤ α ¤ n� 1 and y P UF . Write a � ua1

(ii) If α ¥ tn2 u, then hpg, aq � u2α�1�nyp1� a1,2qp1� u2α�1ya1q.

(iii) If 0 ¤ α   tn2 u and a
1 � �1 � un�2α�1b for some b P L¤2α

r0;m�2α�1sGapkq, then hpg, aq �
yp	2b�un�2α�1b2q

1�u2α�1y�unyb
.

Proof. In any of the three cases, a simple calculation shows g.a|n � a (only this case is of interest

for us, cf. (5.2)). Now (i) is an easy computation. For (ii) and (iii) we compute

un�1hpg, aq � g.a� g.a|n � g.a� a �
a� u2α�2y

1� u2αya
� a �

u2α�2yp1� a1,2q

1� u2α�1ya1
.

From this the lemma follows. �

Let $ be as in Section 3.1.3 and y1 :� e0pu,�uq. Left multiplication by $ composed with right

multiplication by y�1
1 de�nes an automorphism β̃$ of Ỹ m

9w . By (the proof of) Lemma 3.12, β̃$
restricts to an automorphism

β$ : Y m
9w

�
Ñ Y m

9w given by 9xIm ÞÑ $ 9xy�1
1 Im.

Proposition 5.3. Let 9v, v, n, Dτ
w be as in Notation 3.2 and 2n�1 ¥ m ¥ 1 odd. Let ψm9v p�u,C,D,A,Bq

be a point of Y m
9w lying over �u P Dτ

w. Then

β$pψ
m
9v p�u,C,D,A,Bqq � ψm9v p�u,	CM

�1,	DM,�AM,Bq,

where M :� 1� 2unCτpCq�1A.

Proof. Write 9xIm � ψm9v p�u,C,D,A,Bq. Using formulas (3.4) we compute

β$p 9xI
mq � e�p�uq 9ve0p	1,	1qe�p	u

nqe0pC,Dqe�p�Aqe�p�BqI
m �

� e�p�uq 9ve0p	CM
1,�1,	DM 1qe�p�AM

1qe�p	u
nCD�1 �Bq,

where M 1 :� 1� unCD�1A. Now a � �u gives R � u�1pτpaq � aq � u�1p	u� p�uqq � 	2 and as

9xIm P Y m
9w , we have D�1 � RτpCq�1 � 	2τpCq�1 mod un and B � unCτpCq�1. This shows on

the one hand M 1 �M , and on the other hand 	unCD�1 �B � 2B �B � B. �

Now we make the right Im,wm{I
m-action on Y m

9w explicit.
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Proposition 5.4. Let 9v,v, n be as in Notation 3.2 and m ¥ 1 odd (we do not assume 2n� 1 ¥ m

here). Let ψm9v pa,C,D,A,Bq be a point of C
m
v . Then i �

�
i1

τpi1q


�
1 i2

1



P Im,wm{I

m acts

on ψm9v pa,C,D,A,Bq by

ψm9v pa,C,D,A,Bq.i � ψm9v pa,Ci1H
�1, Dτpi1qH, i

�1
1 τpi1qH

2A� i2H, i1τpi1q
�1BH�1q,

where H � 1 � i1τpi1q
�1i2B P k̄rus{um�1 (note that i2 is only determined mod um, but B � 0

mod u).

Proof. The proof is a computation similar to (and simpler as) the proof of Proposition 5.1. �

5.2. Generalities on the trace formula.

We use the following trace formula due to Boyarchenko.

Lemma 5.5 ( [Boy12] Lemma 2.12). Let X be a separated scheme of �nite type over a �nite �eld FQ
with Q elements, on which a �nite group A acts on the right. Let g : X Ñ X be an automorphism

of X, which commutes with the action of A. Let ψ : A Ñ Q�
` be a character of A. Assume that

Hi
cpXqrψs � 0 for i � i0 and FrobQ acts on Hi0

c pXqrψs by a scalar λ P Q�
` . Then

Trpg�,Hi0
c pXqrψsq �

p�1qi0

λ � 7A

¸
aPA

ψpaq � 7Sg,a,

where Sg,a � tx P XpFqq : gpFrobQpxqq � x � au.

We adapt Lemma 5.5 to our situation.

Proposition 5.6. Let n ¥ 1, m ¥ 1 two integers with m ¤ 2n� 1. Let χ be a character of E� of

level m. Let g P UJ. Then

trpg; H0
cpỸ

m
9w qrχsq �

¸
i1PUE{U

m�1
E

7Sg,i1χpi1q,

where Sg,i1 is empty, unless detpgq � i1τpi1q mod um�1, in which case it is the set of solutions of

the equations

g2a
2 � pg1 � g4qa� g3 � 0 mod un�1 (5.2)

τpi1qp1� unhpg, aqR�1q � g2a� g1 mod um�1 (5.3)

in a P L¤nr1,n�msGapkq (with a1 � 0), where

hpg, aq � u�pn�1qpg.a� g.a|unq P Lr0,m�1sGapk̄q

R � u�1pτpaq � aq. (5.4)

Lemma 5.7. Let χ be a character of E�. We have H0
cpỸ

m
9w qrχs � H0

cpY
m
9w qrχ|UE s.

Proof. The proof is the same as in [Iva16] Lemma 4.5. �

Lemma 5.8. Let n ¤ s ¤ 2n be positive integers. Let f P krus{pusq and let h : krus{punq Ñ

krus{pus�nq be some map. Then for x P krus{pusq we have
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x � f � unhpx mod unq ô x � f � unhpf mod unq

(both equalities take place in krus{pusq).

Proof. This is trivial. �

Proof of Proposition 5.6. The action of g on Ỹ m
9w �xes Y m

9w . By Lemma 5.7 we have

trpg; H0
cpỸ

m
9w qrχsq � trpg; H0

cpY
m
9w qrχ|UE sq.

We have 7Im,wm{I
m � pq�1qq2m. Applying Lemma 5.5 to the left action of UJ and the right action

of Im,wm{I
m on Y m

9w and Frobq (this is possible, as only the zeroth cohomology is non-vanishing,

and as the Frobenius acts as a scalar in H0
c), we deduce

trpg; H0
cpỸ

m
9w qrχsq �

1

pq � 1qq2m

¸
iPIm,wm{Im

7Sg,iχpiq,

where Sg,i is the set of points y P Y m
9w with g.y � y.i (note that any point in Y m

9w has coordinates

in k, hence Frobenius acts trivial). Further, note that a point of Y m
9w is uniquely determined by its

coordinates a,C,A (cf. De�nition 3.7). Write i �

�
i1

τpi1q


�
1 i2

1



with i1 P UE{U

m�1
E ,

i2 P krus{u
m. As the determinant is multiplicative, we see that Sg,i � H, unless detpgq � detpiq �

i1τpi1q mod um�1. Assume this holds. By Propositions 5.1 and 5.4, we see that 7Sg,i is equal to

the number of solutions of the equations

g.a|n � a mod un�1 (5.5)

detpgq

g2a� g1
CN�1 � Ci1H

�1 mod um�1 (5.6)

AN � hpg, aq
pg2a� g1q

2DN2

detpgqC
� i�1

1 τpi1qH
2A� i2H mod um (5.7)

in the variables a �
°n
i�1 aiu

i �
°m
i�n�1 0ui P L¤nr1,n�msGapkq (with a1 � 0), C P pkrus{um�1q� and

A P krus{um, where

B � unCτpCq�1

D � R�1τpCqp1� unCτpCq�1A� unC�1τpCqτpAqq

(as we are in Y m
9w ; here R � u�1pτpaq � aq) and hpg, aq and

N � 1� un�1 g2

g2a� g1
CD�1A � 1� un�1 g2

g2a� g1
RCτpCq�1A mod um�1

H � 1� i1τpi1q
�1i2B � 1� uni1τpi1q

�1i2CτpCq
�1

are as in Propositions 5.1 and 5.4. As the character χ of Im,wm{I
m is in�ated from a character of

UE{U
m�1
E (again denoted by χ), we see that¸

i ÞÑi1

7Sg,iχpiq � 7S1g,i1χpi1q,

where i varies through all elements of Im,wm{I
m lying over i1 and 7S1g,i1 is the number of solutions

of equations (5.5), (5.6), (5.7) in the variables a,C,A, i2. It is enough to show that 7S1g,i1 �
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pq � 1qq2m7Sg,i1 . If n ¥ m � 1, then N,H � 1 mod um�1 and the proof is immediate. Assume

n ¤ m ¤ 2n. We cancel C in (5.6) and insert the condition on the determinant to bring it to the

form

τpi1q

g2a� g1
H � N mod um�1. (5.8)

By replacing N by τpi1q
g2a�g1

H in (5.7) and canceling the invertible term H we see that the equations

(5.5), (5.6), (5.7) are equivalent to the three equations (5.5), (5.8) and

i2 �
hpg, aqτpi1qHD

i1C
�

τpi1qA

g2a� g1
�
τpi1qHA

i1
mod um. (5.9)

Using H � 1 mod un and D � R�1τpCq mod un equation (5.9) implies:

i2 �
hpg, aqτpi1qτpCq

i1RC
�

τpi1q

g2a� g1
A�

τpi1qA

i1
mod un (5.10)

(the right hand side does not depend on i2). We can replace i2 occurring in the term H in (5.8) by

the right hand side of (5.10) and hence our three original equations (5.5), (5.6), (5.7) are equivalent

to (5.5),

τpi1qp1� unp
hpg, aq

R
�

i1
g2a� g1

CτpCq�1A� CτpCq�1Aqq � (5.11)

� pg2a� g1q � un�1g2RCτpCq
�1A mod um�1

and (5.9). By Lemma 5.8 applied to x � i2, equation (5.9) is just an expression of i2 in terms of

g, i1, a, C,A, hence it can be ignored and we see that 7S1g,i1 is the number of solutions of (5.5) and

(5.11) in the variables a,C,A.

Now, (5.11) implies τpi1q � g2a � g1 mod un. Applying Lemma 5.8 to x � τpi1q, we see that

(5.11) is equivalent to

τpi1q � unppg2a� g1qhpg, aqR
�1 � pg2τpaq � g1qCτpCq

�1A� pg2a� g1qCτpCq
�1Aq �

� pg2a� g1q � un�1g2RCτpCq
�1A mod um�1. (5.12)

Inserting on the right hand side R � u�1pτpaq � aq, we immediately see that (5.12) is equivalent

to (5.3). Moreover, (5.5) is immediately seen to be equivalent to (5.2). As in (5.2), (5.3) neither

C, nor A occur, and as C lives in pkrus{um�1q� and A lives in krus{um, we deduce that 7S1g,i1 �

pq � 1qq2m7Sg,i1 . �

We now examine solutions of the equation (5.2) in a P L¤nr1,n�msGapkq (with a1 � 0). Recall that

via the embedding ι (see Section 3.1.3) we have the subgroups UFU
n
J � UEU

n
J � UJ.

Lemma 5.9. Let g P UJ. Precisely one of the following cases occur:

(i) g P UFU
n
J . Then (5.2) has precisely pq � 1qqn�1 solutions.

(ii) g P UJrUFU
n
J is conjugate in UJ to an element of UEU

n
J . In this case (5.2) has precisely

2qvupg3q�1 solutions.

(iii) g P UJrUFU
n
J is not conjugate in UJ to an element of UEU

n
J . Then (5.2) has no solutions.
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Proof. Assume (5.2) has a solution a. As g P UJ, the integers vupg2q, vupg3q, vupg1 � g4q are even.

As a1 � 0, we have vupaq � 1. We deduce that vuppg1 � g4qaq is odd and vupg2a
2q, vupg3q are even.

Thus by Lemma 5.10 we are either in the case g P UFU
n
J of the lemma, where each of these three

integers is ¥ n � 1 and each element of L¤nr1,n�msGapkq solves equation (5.2), or we are forced to

have vupg3q � vupg2q � 2   n� 1 and vupg3q ¤ vupg1 � g4q � 1 (this last is, using parity, equivalent

to vupg3q ¤ vupg1 � g4q). In the last case write g2 � g12u
vupg2q, g3 � g13u

vupg2q�2, a � a1u and

g1 � g4 � g11,4u
vupg2q�2 with g12, g

1
3, a

1 P kJtK� and g11,4 P kJtK. After canceling uvupg3q � uvupg2q�2,

(5.2) is equivalent to

g12a
1,2 � g11,4a

1u� g13 � 0 mod un�1�vupg3q, (5.13)

where n � 1 � vupg3q ¥ 1. Reducing modulo u, we deduce a2
1 �

g13
g12

mod u, which shows that
g13
g12

mod u must be a square of an element of k�, or, equivalently (cf. Lemma 4.15), that g3

tg2
P kJtK� is

a square. Thus by Lemma 5.10 we deduce that we must be in case (ii) of the lemma and that in case

(iii) there are no solutions. In case (ii) with notations as above, we have to determine how many

solutions in a1 � a1�a2u�� � ��anu
n�1 equation (5.13) has. Using induction, one now easily deduces

that there are exactly two possibilities for a1, exactly 1 possibility for each a2, . . . , an�1�vupg3q and

exactly q possibilities for each an�2�vupg3q, . . . , an. �

Lemma 5.10. Let g P UJ and n ¥ 1. Then

(i) g P UFU
n
J ô vupg2q ¥ n� 1, vupg3q ¥ n� 1, vupg1 � g4q ¥ n.

(ii) g P UJrUFU
n
J and g is conjugate to an element of UEU

n
J if and only if vupg3q � vupg2q�2  

n� 1, vupg3q ¤ vupg1 � g4q and
g3

tg2
P kJtK� is a square of an element in kJuK�

Proof. (i): is an easy computation (use that vupgjq is always even). (ii): In the OF -algebra J

the subset $nJ form a two-sided ideal and UJ{U
n
J � pJ{$nJq�. Assume g P UJrUFU

n
J and

vupg3q � vupg2q � 2   n � 1, vupg3q ¤ vupg1 � g4q and
g3

tg2
P kJtK� is a square of an element in

kJuK�. We replace UJ (resp. J) by UJ{U
n
J (resp. J{$nJ) and g by its image there. We show that

g is conjugate to an element of UE{U
n
E � UE{UE X UnJ . Replace g by the di�erence of g and the

scalar matrix with entries 1
2pg1 � g4q. Thus we can assume that g has trace zero and we must show

that there is some b P OF such that g is conjugate in J{$nJ to the image of

�
b

tb



. Consider

ry,λ from Lemma 5.15. Note that

ry,λ

�
b

tb



r�1
y,λ �

�
bλt by�1p1� λ2tq

byt �bλt



By our assumptions we can write g2 � tαg12, g3 � tα�1g13, g1 � �g4 � tα�1g11 with α � 1 ¤ tn2 u

and g12, g
1
3 P kJtK

�. Thus we can conclude, if we �nd appropriate y P UF {U
tn�1

2
u

F , λ P OF {O
tn

2
u

F and

b � b0t
α P OF with b0 P UF such that

b0λ � g11 mod tt
n�1

2
u�pα�1q

b0y � g13 mod tt
n
2
u�α (5.14)

b0y
�1p1� λ2tq � g12 mod tt

n
2
u�α

Using the �rst and the second equations to eliminate b0 and λ, the only remaining equation is

y2 � g13g
1,�1
2 p1� g1,21 g1,�2

3 y2tq mod tt
n
2
u�α
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This equation has a solution in y by Hensel's lemma and our assumption on g3

tg2
. The other direction

in (ii) is an immediate computation. �

5.3. Traces of unipotent elements.

In Sections 5.3-5.6 we assume m � 2n� 1.

Proof of Lemma 4.4. We use notations of Proposition 5.6. Let g P Um�1
J . Thus vupg1�1q, vupg2q, vupg4�

1q ¥ 2n � m � 1 and vupg3q ¥ m � 3. This, Proposition 5.6 and Lemma 5.2(i) show that

7Sg,i1 � 0 for i1 P UE{U
m�1
E r t1u. Lemma 5.9 implies 7Sg,1 � pq � 1qqn�1. Proposition 5.6 shows

trpg; Ξχq � pq � 1qqn�1. �

Proof of Lemma 4.6. We use notations from Proposition 5.6. The case g � 1 of Lemma 4.6 follows

from Lemma 4.4. Write δ :� tn�1
2 u� tn2 u. For 0 ¤ α ¤ tn�1

2 u� 1 consider the subgroup

Aα :� t1� upn�δq�2α�1y : y is τ -invariantu

of U
pn�δq�2α�1
E {Um�1

E , and let Atn�1
2

u :� t1u � UE{U
m�1
E .

Lemma 5.11. Let g P Nnr t1u. If g R N
tn

2
u�1

n , then Sg,i1 � H for all i1 P UE{U
m�1
E . Otherwise,

let g P N
tn

2
u�1�α

n rN
tn

2
u�2�α

n for some 0 ¤ α ¤ tn�1
2 u� 1 and i1 P UE{U

m�1
E . Then

7Sg,i1 �

#
cpαq if i1 P AαrAα�1

0 otherwise,

where cpαq depends only on α, not on i1. Moreover, cptn�1
2 u� 1q � qn�1.

Proof. If g P NnrN
tn

2
u�1

n , then g is not conjugate to an element of UEU
n
J by Lemma 5.10, so

Sg,i1 � H for all i1 P UE{U
m�1
E by Lemma 5.9, and the �rst statement of the lemma follows from

Proposition 5.6 (alternatively, look at equation (5.2) for g). Let g P N
tn

2
u�1�α

n rN
tn

2
u�2�α

n for some

0 ¤ α ¤ tn�1
2 u�1 and i1 P UE{U

m�1
E . Write g �

�
1

tt
n
2
u�1�αx 1



with vtpxq � 0. Then equation

(5.2) is trivially satis�ed for each a and equation (5.3) takes the form

i1 � 1� upn�δq�2α�1xR�1 mod um�1 (5.15)

(one easily computes hpg, aq � u2α�1�δx). Write a �
°n
i�1 aiu

i. Then R � u�1pτpaq � aq �

�2pa1 � a3u
2 � . . . q and x are τ -invariant and we have vtpRq � vtpxq � 0. Hence Sg,i1 � H

unless i1 P AαrAα�1. On the other hand, from the explicit form of R, it is clear that for any

i1 P AαrAα�1 the set Sg,i1 of solutions a of (5.15) has the same cardinality. The second statement

of the lemma follows. To see the last statement, put α � tn�1
2 u�1. Then pn�δq�2α�1 � 2n�1 � m

and for a �xed i1 P Atn�1
2

u�1 rAtn�1
2

u � UmE {U
m�1
E r t1u equation (5.15) amounts to a condition on

R mod u, or, which is the same, on a1. It determines a1 uniquely and a2, a3, . . . , an can be chosen

arbitrarily. Thus (5.15) has exactly qn�1 solutions. �

Now we can �nish the proof of the Lemma 4.6. Let g P NnrNn
n . If g R N

tn
2
u�1

n , then Proposition

5.6 and the �rst statement in Lemma 5.11 immediately show trpg; Ξχq � 0. Otherwise, there is some

α with 0 ¤ α   tn�1
2 u � 1, such that g P N

tn
2
u�1�α

n rN
tn

2
u�2�α

n , and we deduce from Proposition

5.6 and Lemma 5.11
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trpg; Ξχq �
¸

i1PAα rAα�1

cpαqχpi1q � cpαq
¸
i1PAα

χpi1q � cpαq
¸

i1PAα�1

χpi1q � 0,

as Aα, Aα�1 both are subgroups containing U
m
E {U

m�1
E and χ is a non-trivial character on UmE {U

m�1
E .

Now assume g P Nn
n r t1u. This corresponds to α � tn�1

2 u � 1 and Atn�1
2

u�1 � UmE {U
m�1
E . By

Proposition 5.6 and Lemma 5.11 we compute

trpg; Ξχq �
¸

i1PUmE {Um�1
E r t1u

qn�1χpi1q � �qn�1,

as χ is non-trivial on UmE {U
m�1
E . This �nishes the proof of Lemma 4.6. �

5.4. Traces of some non-split elements.

Proposition 5.12. Let 0 ¤ α ¤ n� 1. Let g � ιp1� u2α�1hq for some h P UF . Then

trpg; Ξχq � qαpχpgq � χτ pgqq � 2qα �
¸

i1�1�u2α�1hs
sPQα

χpi1q, (5.16)

with Qα as in Section 4.4.7.

Proof. This follows immediately from Proposition 5.6 and Lemma 5.13. �

Lemma 5.13. Let α, g, h be as in Proposition 5.12. Then Sg,i1 � H, unless i1 � 1� u2α�1hs for

some s P Rα. Assume this holds. Then

Sg,i1 �

$''&''%
2qα if s P Qα

qα if s � �1

0 otherwise.

Proof. Assume �rst α ¥ tn2 u, or equivalently 2α � 1 ¥ n. In this case 7Sg,i1 is equal to the

number of solutions of (5.3) in the variable a. Using Lemma 5.2(ii), we see that Sg,i1 � H, unless

i1 � 1 � u2α�1hs for some s P Rα. Assume this holds. As h is τ -invariant, it follows that the

condition detpgq � i1τpi1q mod um�1 (necessary for the non-emptiness of Sg,i1) is equivalent to

s P R
xτy
α . Thus we can assume that i1 � 1 � u2α�1hs with s P R

xτy
α . Then, using Lemma 5.2(ii),

(5.3) is seen to be equivalent to

s � p1� a1,2qp1� u2α�1ha1qR�1 � a1 mod um�2α,

where we write a � ua1. By assumption 2α � 1 ¥ m � 2α, and moreover, R � u�1pτpaq � aq �

�pτpa1q � a1q. Hence (5.3) is equivalent to

s � �
1� a1τpa1q

a1 � τpa1q
mod um�2α. (5.17)

Assume this equation has a solution in a1. Then we deduce

sτpsq � 1 � s2 � 1 �

�
1� a1τpa1q

a1 � τpa1q


2

� 1 � Nτ,α

�
1� a1,2

a1 � τpa1q



in Rα. This shows that if Sg,i1 � H, then s P Qα Y t�1u. Conversely, assume that s P Qα Y t�1u.

Write a1 � a1 � a2u� � � � � anu
n�1. We di�er between three cases.

42



Case 1. s � �1 mod u. Let s0 :� s mod u. By Lemma 4.17, s2
0 � 1 is a square in k�. We can

rearrange the equation (5.17) and bring it to the form

p1� a2
1q � p2a1a3 � a2

2qu
2 � � � � � p2

i�1̧

j�0

p�1qjaj�1a2i�j�1 � p�1qia2
i�1qu

2i � . . .

. . . � p2a1a2tn�1
2

u�1 � . . . qu2tn�1
2

u�2 � �2spa1 � a3u
2 � � � � � a2tn�1

2
u�1u

2tn�1
2

u�2q mod um�2α.

Taking this equation modulo u, we obtain the equation a2
1�2s0a1�1 � 0 in k. It has precisely two

di�erent solutions in a1 as s2
0 � 1 is a square in k�. Note that both solutions satisfy a1 � �s0 due

to s0 � �1. Taking the above equation iteratively modulo u3, . . . , um�2α and using a1 � �s0, we

see that there are exactly q possibilities to choose any of the pairs pa2, a3q, . . . , pam�2α�1, am�2αq

and we obtain q possibilities for each of the remaining variables am�2α, . . . , an (note that m� 2α ¤

2tn�1
2 u� 1). Altogether we obtain 2qn�α�1qn�pm�2αq � 2qα solutions.

Case 2. vups � 1q � 2j or vups � 1q � 2j with 0   2j   m � 2α (note that the vups � 1q has

to be even, as s is τ -invariant). We assume vups� 1q � 2j (the other case is similar). Then we can

write s � 1� u2js1 for some τ -invariant unit s1. Then (5.17) is equivalent to

p1� a1qp1� τpa1qq � �u2js1pa1 � τpa1qq mod um�2α,

and we deduce that a solution a1 must satisfy vup1 � a1q � j (as s1, a1 � τpa1q are necessarily units

and vup1� a
1q � vup1� τpa

1qq). Set a1 � �1� ujb with some b �
°n�j�1
i�0 biu

i P pkrus{un�jq�. The

number of solutions of (5.17) in a1 is equal to the number of solutions of

p�1qjbτpbq � s1p2� ujpb� p�1qjτpbqqq mod um�2α�2j (5.18)

in the variable b P pkrus{un�jq�. Taking this equation modulo u we get the equation p�1qjb20 � 2s1

mod u. As s � 1 � u2js1 P Qα, Lemma 4.17 shows that p�1qj2s1 mod u is a square in k�, and

thus this equation has exactly two solutions in b0. Similarly as in case 1 above, taking (5.18)

iteratively modulo u3, u5, . . . , um�2α�2j , we get per step exactly one condition which determines

b2, b4, . . . , bm�2α�2j�1 uniquely (note: the set of these conditions also can be empty). For each bi
with i R t0, 2, 4, . . . ,m� 2α� 2j � 1u there are q possible choices. Thus the number of solutions of

(5.18) in b is equal to 2qpn�j�1q�pn�α�j�1q � 2qα.

Case 3. s � �1. Assume s � 1 (the other case is similar). Then (5.17) is equivalent to

p1� a1qp1� τpa1qq � 0 mod um�2α,

which in turn is equivalent to vup1� a1q ¥ m�2α�1
2 � n� α. We easily deduce that the number of

solutions of this equation in a1 is equal to qα. This �nishes the case α ¥ tn2 u.

Assume now 0 ¤ α   tn2 u. Then 2α � 1   n. The quantity 7Sg,i1 is equal to the number of

solutions of (5.2) and (5.3) in a. We again write a � ua1. Equation (5.2) is immediately seen to

be equivalent to a1 � �1 mod un�2α�1 and we write a1 � �1 � un�2α�1b for b P krus{u2α�1. We

deduce

R � �pa1 � τpa1qq � 	2� un�2α�1pb� p�1qn�1τpbqq mod um�1. (5.19)

Let us denote the 'automorphic factor' g2a� g1 by

f :� g2a� g1 � 1� u2α�1h� unhb. (5.20)
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By Lemma 5.2(iii), the quantity 7Sg,i1 is equal to the number of solutions in the variable b P

krus{u2α�1 of the equation

τpi1qp1� unR�1hp	2b� un�2α�1b2q

f
q � f mod um�1,

or equivalently,

τpi1q � f � unR�1hp	2b� un�2α�1b2q mod um�1. (5.21)

Taking this equation modulo um�2α � u2n�2α�1 and using (5.19) and (5.20), we deduce that

Sg,i1 � H, unless i1 � 1	 u2α�1h mod um�2α, or with other words, i1 � 1� u2α�1hs with s P Rα
satisfying s � 	1 mod um�4α�1. Assume that this holds. An easy computation shows now that

detpgq � i1τpi1q mod um�1 is equivalent to s P R
xτy,1
α , so we also can assume this (otherwise,

Sg,i1 � H). Let us write s � 	1 � um�4α�1 � pu2js0q, with s0 P pkrus{u
2α�2j�1q� τ -invariant with

0 ¤ j ¤ α � 1 (j � α � 1 corresponds to s � �1). Straightforward rearrangements of terms show

that (5.21) is equivalent to

p	2� pb� p�1qn�1τpbqqun�2α�1qu2js0 � p�1qn�1bτpbq mod u2α�1. (5.22)

If j � α � 1, then s � �1 and (5.22) is equivalent to bτpbq � 0 mod u2α�1. This is equivalent

to b � 0 mod uα�1, and hence (5.22) has precisely qα solutions in b. Assume j ¤ α. A potential

solution b of (5.22) must satisfy b � 0 mod uj , hence we can write b � ujb1 for a b1 P krus{u2α�1�j

and rewrite (5.22) as

p	2� pb1 � p�1qn�j�1τpb1qqun�2α�1�jqs0 � p�1qn�j�1b1τpb1q mod u2α�1�2j . (5.23)

Assume �rst Sg,i1 � H, i.e., (5.23) has at least one solution. Taking (5.23) modulo u, we deduce

that �p�1qn�j2s0 mod u is a square in k�, which is by Lemma 4.17 equivalent to s P Qα. Thus

Sg,i1 � H implies s P Qα. Conversely, if s P Qα, we can deduce that 7Sg,i1 � 2qα in the same way

as in the case α ¥ tn2 u. �

We are convinced that there must be a more elegant proof of Lemma 5.13, but we still can not

�nd it.

5.5. Traces of elements in E� with u-valuation 1.

Proof of Proposition 4.22. Put y1 :� e0pu,�uq. Consider the automorphism β̃g : Ỹ m
9w Ñ Ỹ m

9w given

by β̃gp 9xIq � g 9xy�1
1 Im. Then β̃g induces an automorphism of H0

cpỸ
m
9w q and hence also an automor-

phism β̃�g : Vχ Ñ Vχ of its χ-isotypic quotient. As y1 acts in Vχ as the scalar multiplication2 with

χpuq, we have trpg; Ξχq � χpuqtrpβ̃�g ;Vχq. We determine trpβ̃�g ;Vχq. As vupgq � 1, Lemma 3.13

shows that gY m
9w � Y m

9w y1. With other words, β̃g restricts to an automorphism βg of Y
m
9w . Further,

βg induces an automorphism β�g of H0
cpY

m
9w qrχ|UE s. Moreover, the isomorphism from Lemma 5.7

induces a commutative diagram

2A subtlety: we suppressed our choice of an identi�cation of E� with the diagonal quotient of Ĩm,w, for which we
silently have chosen that u corresponds to y1. This choice determines on the one hand that y1 acts in Vχ by χpuq,
and on the other hand, that we have to evaluate the trace formula using the identi�cations $ Ø uØ y1 � e0pu,�uq.
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H0
cpY

m
9w qrχ|UE s

� //

β�g
��

H0
cpỸ

m
9w qrχs

β̃�g
��

H0
cpY

m
9w qrχ|UE s

� // H0
cpỸ

m
9w qrχs

from which we deduce trpβ̃�g ;Vχq � trpβ�g ; H0
cpY

m
9w qrχ|UE sq. Lemma 5.14 �nishes the proof. �

Lemma 5.14. Let g P E� with vupgq � 1. Let βg be the automorphism of Y m
9w de�ned by βgp 9xI

mq �

g 9xy�1
1 Im. Write g � g0u. Then

trpβ�g ; H0
cpY

m
9w qrχ|UE sq � χpg0q � χτ p�g0q.

Proof. Multiplying with some central element in UF � UE (those act as scalars in Vχ) we can

assume that g0 � 1 � u2α�1h for some h P UF (and 0 ¤ α   n). We proceed analogously as in

the proof of Proposition 5.6. Let i P Im,wm{I
m. A point 9xI P Y m

9w can lie in the set Sβg ,i � t 9xI P

Y m
9w : βgp 9xI

mq � 9xiImu from Lemma 5.5 only if βg �xes its a-coordinate. By Lemma 3.13, βu acts

on the coordinate a by a � ua1 ÞÑ ua1,�1. From this and Proposition 5.1 one easily deduces that

β�g paq � a is equivalent to a � �u (for any g0) and that hpg,�uq � 0. Apply Propositions 5.1, 5.3,

5.4 to determine the actions of βg and i on Y
m
9w . Exactly as in the proof of Proposition 5.6 we see

that

trpβ�g ; H0
cpY

m
9w qrχ|UE sq �

1

pq � 1qq2m

¸
i1PUE{U

m�1
E

7Sβg ,i1χpi1q,

where Sβg ,i1 is the set of all solutions of the equations

p1	 u2α�1hqp	CqM�1N�1 � Ci1H
�1 mod um�1 (5.24)

�AMN � i�1
1 τpi1qH

2A� i2H mod um (5.25)

in the variables C P pkrus{um�1q�, A, i2 P krus{u
m (the sign � corresponds to the two possibilities

a � �u), where

M � 1� 2unCτpCq�1A as in Proposition 5.3, and

N � 1� un�1 g2

g2p�1q � g1
p	CM�1qp	DMq�1p�AMq � 1� 2un

u2α�1h

1� u2α�1h
CτpCq�1A

H � 1� i1τpi1q
�1i2B � 1� uni1τpi1q

�1i2CτpCq
�1.

Canceling C in (5.24) we see that it is equivalent to

MNi1 � 	p1	 u2α�1hqH mod um�1. (5.26)

Taking (5.26) modulo un, we see that Sβg ,i � H, unless i1 � 	p1	 u2α�1hq mod un. Assume the

last holds. Taking equation (5.25) modulo un and insertingMN from (5.26) and i1 � 	p1	u2α�1hq

mod un we deduce

i2 � �A
2

1	 u2α�1h
mod un.

This allows to compute
45



H � 1� 2un
1

1� u2α�1h
CτpCq�1A. (5.27)

As in the proof of Proposition 5.6 we eliminate i2 and ignore equation (5.25). Thus 7Sβg ,i1 is

equal to the number of solutions of (5.26) in C and A. Finally, we compute MN � H (this uses

i1 � 	p1	u2α�1hq mod un and (5.27)) and canceling these terms in (5.26) shows that Sβg ,i1 � H,

unless i1 � 	p1	 u2α�1hq, in which case 7Sβg ,i1 � pq � 1qq2m, �nishing the proof. �

5.6. Traces on the induced side.

Proof of Lemma 4.28. In Ξχ and Θχ the central characters are χ|F� and Um�1
E acts trivial. Thus

it is enough to show

trpg; Ξχq � trpg; Θχq @ g � ιp1� u2α�1hq with h P UF and 0 ¤ α ¤ n� 1, (5.28)

trpg; Ξχq � trpg; Θχq @ g P $UE . (5.29)

Lemma 5.15. Let n ¥ 1. For y P UF {U
tn�1

2
u

F , λ P OF {O
tn

2
u

F the matrices

ry,λ :�

�
1

y


�
1 λ

1



P UJ{U

n
J (5.30)

for a system of representatives for the left (and right) cosets of UEU
n
J in UJ and hence also of

Jβ � E�UnJ in E�UJ.

Proof. We have UJ{UEU
n
J � E�UJ{E

�UnJ . The rest is an immediate computation. �

We use notations from Section 4.1.6 and compute the traces trpg; Θχq. Let g � ιp1� u2α�1hq be as

in (5.28). Applying the Mackey formula to Θχ � Ind
E�UJ

Jβ
Λ we see

trpg; Θχq �
¸
y,λ

Λpry,λgr
�1
y,λq, (5.31)

where the sum is taken over all representatives ry,λ of E�UJ{Jβ (from Lemma 5.15), such that

ry,λgr
�1
y,λ P Jβ � E�UnJ . We compute:

ry,λgr
�1
y,λ �

�
1� λhtα�1 y�1hp1� λ2tqtα

yhtα�1 1� λhtα�1



.

Write β � pb � ucqu�m with some b, c P OF . Assume �rst α ¥ tn2 u. Then ry,λgr
�1
y,λ P U

n
J � UEU

n
J

for all ry,λ and we compute:

trpg; Θχq �
¸
y,λ

ψM,βpry,λgr
�1
y,λq �

¸
y,λ

ψptα�1�nbhpy � y�1p1� λ2tqqq.

Taking some lifts of y, λ to E and setting n :� 1
2hpy � y�1p1 � λ2tqqu2α�1 P E, we see that

βn� τpβnq � tα�1�nbhpy � y�1p1� λ2tqq, i.e., using (4.3), we deduce

trpg; Θχq �
¸
y,λ

ψEpβnq �
¸
y,λ

χp1�
1

2
hpy � y�1p1� λ2tqqu2α�1q.

This does not depend on the choice of the lifts y, λ to E, as χ is of level m. Interpreting 1 �
1
2hpy � y�1p1 � λ2tqqu2α�1 as an element of UE{U

m�1
E , we have to show that the summand χpi1q
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for i1 P UE{U
m�1
E occurs in this sum if and only if and with the same multiplicity as it occurs in

the sum (5.16). Therefore, writing i1 � 1� u2α�1hs, it is enough to show that for a �xed s P R
xτy
α

the equation

1

2
py � y�1p1� λ2tqq � s mod tn�α (5.32)

in the variables y P UF {U
tn�1

2
u

F , λ P OF {O
tn

2
u

F is equivalent to the equation (5.17) in the variable

a1 � a1 � a2u� � � � � anu
n�1 P pkrus{unq�. Indeed, write a1 � �b1 � c1u with b1 � �1

2pτpa
1q � a1q �°tn�1

2
u�1

j�0 bjt
j and c1u � 1

2pτpa
1q � a1q � u

°tn
2
u�1

j�0 cjt
j with b1, c1 τ -invariant. Then (5.17) can be

rewritten as

s �
1� b1,2 � c1,2t

2b1
mod tn�α,

which is evidently equivalent to (5.32) (replace b1 by y and c1 by λ). The case α   tn2 u can be done

similarly. This shows (5.28).

To show (5.29), we let g � ιpup1� huqq for some h P OF (restriction to this case is possible after

multiplication with a central element). We compute

$�1ry,λgr
�1
y,λ �

�
y h� λ

ph� λqt y�1p1� λ2tq



. (5.33)

Notice that ry,λgr
�1
y,λ P Jβ � E�UnJ if and only if $�1ry,λgr

�1
y,λ P E

�UnJ X UJ � UEU
n
J . By (5.33),

this is the case if and only if λ � 0, y � �1. Thus trpg; Θχq � χpgq � χτ pgq. Together with

Proposition 4.22 it shows (5.29) and thus the lemma. �

5.7. Computation of traces in the small level case.

In this section we assume n ¥ m� 1.

Proof of Lemma 4.30. Let g P UJ. We apply Proposition 5.6. Observe �rst that equation (5.3)

reduces to

τpi1q � g2a� g1 mod um�1. (5.34)

(i): Then we are exactly in the case (i) of Lemma 5.9. As vupaq � 1 and vupg2q ¥ 2tn2 u, we see that

g2a � g1 � g1 mod un and hence also g2a � g1 � g1 mod um�1. Let i1 P pkrus{u
m�1q�. Then

(5.34) simply says that either i1 is g1 mod um�1 or Sg,i1 � H. By Proposition 5.6 we deduce

trpg; H0
cpỸ 9wqrχsq � pq � 1qqn�1χpg1q � pq � 1qqn�1χ̃pgq,

showing the �rst statement of (i). The last statement of (i) follows immediately from the �rst, as χ̃

is trivial on UnJ .

(ii): Conjugating g into UEU
n
J and multiplying with an element of UFU

n
J (these elements act by

part (i) as scalars), we can without loss of generality assume that g � ιp1 � u2α�1hq with some

h P UF and with 2α� 2 � vupg3q ¤ n. Let i1 P UE{U
m�1
E . We determine 7Sg,i1 . First of all (5.2) is

equivalent to

ptαhqa2 � tα�1h � 0 mod un�1.

Write a � a1u with a1 invertible. This equation is equivalent to
47



a1 � �1 mod un�1�p2α�2q. (5.35)

Equation (5.34) takes the form

τpi1q � 1� u2α�1ha1 mod um�1.

Thus (5.35) and n ¥ m � 1 shows that either Sg,i1 � H, or i1 � 1 � u2α�1h. Moreover, for each

of this two choices of i1, there are exactly q
vupg3q�1 � q2α�1 possible a's satisfying equations (5.35)

and (5.34) (cf. Lemma 5.9(ii)). We obtain

trpg; H0
cpỸ 9wqrχsq � qvupg3q�1 � pχ̃pgq � χ̃τ pgqq.

(iii): By Lemma 5.9(iii) it is clear that Sg,i1 � H for all i1 in this case.

Let now g � g0$ P $UE . As in the proof of Proposition 4.22 we have the automorphism β̃g of

Ỹ m
9w de�ned by β̃gp 9xI

mq � g 9xy�1
1 Im, where y1 � e0pu,�uq and its restriction βg to Y

m
9w . Again, we

have

trpg; H0
cpỸ

m
9w qrχsq � χpuqtrpβ̃�g ; H0

cpỸ
m
9w qrχsq � χpuqtrpβ�g ; H0

cpY
m
9w qrχsq.

The right action of Im,wm{I
m does not a�ect the a-coordinate of a point 9xI P Y m

9w , thus we see from

the Lemma 5.5 that trpβ�g ; H0
cpY

m
9w qrχsq � 0, unless β�g paq � a. A simple computation shows that

this can only be the case if g is conjugate to an element in E�UnJ . This shows (ii)
1. If g is conjugate

to an element of E�UJ, then we can assume g P E�UJ and (i)1 can be shown as in the proof of

Proposition 4.22. �
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