Prof. Dr. Axel Bücher

Chair holder "Mathematical statistics"

Address:
Ruhr Uni­ver­si­ty Bochum
Faculty of Mathematics
Chair of Mathematical Statistics
Building IB 2/179
Uni­ver­si­täts­stra­ße 150
D-44780 Bo­chum

Te­le­fon:
+49 234/32-27548

E-Mail:
Axel(dot)Buecher(at)ruhr-uni-bochum(dot)de

Office hours

By appointment

About me

From 2003 to 2008, I studied mathematics at Ruhr-University Bochum and subsequently completed my Ph.D. under the supervision of Prof. Holger Dette. My research focus during that time was on statistical methods for copula functions. Since then, I have been working on various topics in mathematical statistics. Initially, I worked as a research assistant, and later, I became a subproject leader in a collaborative research center funded by the German Research Foundation (DFG) in Bochum.

After a PostDoc stay at the Université catholique de Louvain in Belgium in 2013 and two interim professorships in Heidelberg and Dortmund, I was appointed to a W3 professorship in Mathematical Statistics at Heinrich-Heine-University Düsseldorf in 2018. Since October 2023, I have returned to Ruhr-University, where I also hold a position as a Professor of Mathematical Statistics.

Research interests

  • Extreme value statistics
  • Nonparametric statistics, copulas
  • Empirical processes
  • Time series
  • Change point analysis
  • Statistics for stochastic processes

Publications

Submitted for publication:

  1. Bücher, A. and Dette, H. (2024+):
    On the lack of weak continuity of Chatterjee's correlation coefficient.
    http://arxiv.org/abs/2410.11418
  2. Bücher, A. and Staud, T. (2024+):
    Bootstrapping Estimators based on the Block Maxima Method.
    https://arxiv.org/abs/2409.05529
  3. Bücher, A. and Staud, T. (2024+):
    On the maximal correlation coefficient for the bivariate Marshall Olkin distribution.
    https://arxiv.org/abs/2409.08661
  4. Bücher, A. and Pakzad, C. (2024+):
    The empirical copula process in high dimensions: Stute's representation and applications.
    https://arxiv.org/abs/2405.05597

In peer-reviewed journals:

  1. Bücher, A. and Staud, T. (2024):
    Limit theorems for non-degenerate U-statistics of block maxima for time series.
    Electronic Journal of Statistics, 18(2): 2850-2885.
    https://doi.org/10.1214/24-EJS2269
  2. Bücher, A. and Rosenstock, A. (2024):
    Combined modelling of micro-leveloutstanding claim counts and individualclaim frequencies in general insurance.
    European Actuarial Journal, Volume 14, 623-655.
    https://doi.org/10.1007/s13385-024-00383-7
  3. Bücher, A. and Jennessen T. (2024):
    Statistics for Heteroscedastic Time Series Extremes.
    Bernoulli, Vol. 30(1): 46-71.
    https://doi.org/10.3150/22-BEJ1560
  4. Bücher, A. and Pakzad, C. (2024):
    Testing for independence in high dimensions based on empirical copulas.
    Annals of Statistics, Vol. 52(1): 311-334.
    https://doi.org/10.1214/23-AOS2348
  5. Zanger, L., Bücher, A., Kreienkamp, F., Lorenz, P. and Tradowsky, J. (2024):
    Regional Pooling in Extreme Event Attribution Studies: an Approach Based on Multiple Statistical Testing.
    Extremes, Vol. 27, 1–32.
    https://doi.org/10.1007/s10687-023-00480-y
  6. Bücher, A. and Jennessen T. (2024):
    Weighted weak convergence of the sequential tail empirical process for heteroscedastic time series with an application to tail index estimation.
    Extremes, Vol. 27, 163–184.
    https://doi.org/10.1007/s10687-023-00476-8
  7. Bücher, A. and Zanger, L. (2023):
    On the Disjoint and Sliding Block Maxima method for piecewise stationary time series.
    Annals of Statistics, Vol. 51(2), 573-598.
    https://doi.org/10.1214/23-AOS2260
  8. Bücher, A., Dette, H. and Heinrichs, F. (2023):
    A Portmanteau-type test for detecting serial correlation in locally stationary functional time series.
    Statistical Inference for Stochastic Processes, Vol. 26, 255–278.
    https://doi.org/10.1007/s11203-022-09285-5
  9. Bücher, A., Genest, C., Lockhart, R., and Nešlehová, J. (2023):
    Asymptotic behavior of an intrinsic rank-based estimator of the Pickands dependence function constructed from B-splines.
    Extremes, Vol. 26, 101–138.
    https://doi.org/10.1007/s10687-022-00451-9
  10. Lilienthal, J., Zanger, L., Bücher, A. and Fried, R. (2022):
    A note on statistical tests for homogeneities in multivariate extreme value models for block maxima.
    Environmetrics, e2746.
    https://doi.org/10.1002/env.2746
  11. Bücher, A. and Rosenstock, A. (2023):
    Micro-level Prediction of Outstanding Claim Counts using Neural Networks.
    European Actuarial Journal, Vol. 13, 55–90.
    https://doi.org/10.1007/s13385-022-00314-4
  12. Bücher, A. and Jennessen T. (2022):
    Statistical analysis for stationary time series at extreme levels: new estimators for the limiting cluster size distribution.
    Stochastic Processes and their Applications, Vol. 149, 75-106.
    https://doi.org/10.1016/j.spa.2022.03.004
  13. Bücher, A., Dette, H. and Heinrichs, F. (2021):
    Are deviations in a gradually varying mean relevant? A testing approach based on sup-norm estimators.
    Annals of Statistics, Vol. 49, No. 6, 3583-3617.
    http://dx.doi.org/10.1214/21-AOS2098
  14. Bücher A. Jaser, M. and Min, A. (2021):
    Detecting departures from meta-ellipticity for multivariate stationary time series.
    Dependence Modeling, Vol. 9, No. 1, 121-140.
    https://doi.org/10.1515/demo-2021-0105
  15. Bücher, A. and Zhou, C. (2021):
    A horse race between the block maxima method and the peak-over-threshold approach.
    Statistical Science, Vol. 36, No. 3, 360-378.
    https://doi.org/10.1214/20-STS795
  16. Bücher, A., Fried, R., Kinsvater, P. and Lilienthal, J. (2021):
    Penalized Quasi-Maximum-Likelihood Estimation for Extreme Value Models with Application to Flood Frequency Analysis. Extremes, Vol. 24, 325–348.
    http://dx.doi.org/10.1007/s10687-020-00379-y
  17. Bücher, A., Volgushev, S. and Zou, N. (2021):
    Multiple block sizes and overlapping blocks for multivariate time series extremes.
    Annals of Statistics, Vol. 49, No. 1, 295-320.
    http://dx.doi.org/10.1214/20-AOS1957
  18. Bücher, A. and Jennessen T. (2020):
    Method of moments estimators for the extremal index of a stationary time series.
    Electronic Journal Of Statistics, Vol. 14, No. 2, 3103-3156.
    https://doi.org/10.1214/20-EJS1734
  19. Bücher, A., Dette, H. and Heinrichs, F. (2020):
    Detecting deviations from second-order stationarity in locally stationary functional time series.
    Annals of the Institute of Statistical Mathematics, Vol. 72(4), 1055-1094.
    https://doi.org/10.1007/s10463-019-00721-7
  20. Bücher, A., Posch, P. N. and Schmidtke, P. (2020):
    Using the Extremal Index for Value-at-Risk Backtesting.
    Journal of Financial Econometrics, Vol. 18 (3), 556–584.
    https://doi.org/10.1093/jjfinec/nbaa011
  21. Bücher, A., Volgushev, S. and Zou, N. (2019):
    On second order conditions in the multivariate block maxima and peak over threshold method.
    Journal of Multivariate Analysis, Vol. 173, 604-619.
    https://doi.org/10.1016/j.jmva.2019.04.011
  22. Bücher, A., Fermanian, J.-D. and Kojadinovic, I. (2019):
    Combining cumulative sum change-point detection tests for assessing the stationarity of univariate time series.
    Journal of Time Series Analysis, Vol. 40, 124-150.
    https://doi.org/10.1111/jtsa.12431
  23. Bücher, A. and Kojadinovic, I. (2019):
    A note on conditional versus joint unconditional weak convergence in bootstrap consistency results.
    Journal of Theoretical Probability, Vol. 32(3), 1145-1165.
    https://doi.org/10.1007/s10959-018-0823-3
  24. Berghaus, B. and Bücher, A. (2018):
    Weak Convergence of a Pseudo Maximum Likelihood Estimator for the Extremal Index.
    Annals of Statistics, Vol. 46(5), 2307-2335.
    https://doi.org/10.1214/17-AOS1621
  25. Bücher, A. and Segers, J. (2018):
    Inference for heavy tailed stationary time series based on sliding blocks.
    Electronic Journal of Statistics, Vol. 12(1), 1098–1125.
    https://doi.org/10.1214/18-EJS1415
  26. Bücher, A. and Segers, J. (2018):
    Maximum likelihood estimation for the Fréchet distribution based on block maxima extracted from a time series.
    Bernoulli Vol. 24(2), 1427–1462.
    https://doi.org/10.3150/16-BEJ903
  27. Bücher, A. and Segers, J. (2017):
    On the maximum likelihood estimator for the Generalized Extreme-Value distribution.
    Extremes, Vol. 20(4), 839–872.
    https://doi.org/10.1007/s10687-017-0292-6
  28. Bücher, A., Irresberger, F. and Weiß, G. (2017):
    Testing Asymmetry in Dependence with Copula-Coskewness.
    North American Actuarial Journal, Vol. 21, 267–280.
    https://doi.org/10.1080/10920277.2017.1282876
  29. Bücher, A., Kinsvater, P. and Kojadinovic, I. (2017):
    Detecting breaks in the dependence of multivariate extreme-value distributions.
    Extremes, Vol. 20(1), 53-89.
    https://doi.org/10.48550/arXiv.1505.00954
  30. Berghaus, B. and Bücher, A. (2017):
    Goodness-of-fit tests for multivariate copula-based time series models.
    Econometric Theory, Vol. 33(2), 292–330.
    https://doi.org/10.1017/S0266466615000419
  31. Berghaus, B., Bücher, A. and Volgushev, S. (2017):
    Weak convergence of the empirical copula process with respect to weighted metrics.
    Bernoulli, Vol. 23(1), 743–772.
    https://doi.org/10.3150/15-BEJ751
  32. Bücher, A., Hoffmann, M., Vetter, M. and Dette, H. (2017):
    Nonparametric tests for detecting breaks in the jump behaviour of a time-continuous process.
    Bernoulli, Vol. 23(2), 1335–1364.
    https://doi.org/10.3150/15-BEJ780
  33. Bücher, A. and Kojadinovic, I. (2016):
    A dependent multiplier bootstrap for the sequential empirical copula process under strong mixing.
    Bernoulli, Vol. 22(2), 927–968.
    https://doi.org/10.3150/14-BEJ682
  34. Bücher, A., Jäschke, S. and Wied, D. (2015):
    Nonparametric tests for constant tail dependence with an application to energy and finance.
    Journal of Econometrics, Vol. 187(1), 154–168.
    https://doi.org/10.1016/j.jeconom.2015.02.002
  35. Bücher, A. (2015):
    A note on weak convergence of the sequential multivariate empirical process under strong mixing.
    Journal of Theoretical Probability, Vol. 28(3), 1028–1037.
    https://doi.org/10.1007/s10959-013-0529-5
  36. Bücher, A. and Kojadinovic, I. (2015):
    Dependent multiplier bootstraps for nondegenerate U-statistics under mixing conditions with applications.
    Journal of Statistical Planning and Inference, Vol. 170, 83–105.
    https://doi.org/10.1016/j.jspi.2015.09.006
  37. Bücher, A., Segers, J. and Volgushev, S. (2014):
    When uniform weak convergence fails: empirical processes for dependence functions and residuals via epi- and hypographs.
    Annals of Statistics, Vol. 42, 1598–1634.
    https://doi.org/10.1214/14-AOS1237
  38. Bücher, A. and Segers, J. (2014):
    Extreme value copula estimation based on block maxima of a multivariate stationary time series.
    Extremes, Vol. 13, 495–528.
    https://doi.org/10.1007/s10687-014-0195-8
  39. Bücher, A. (2014):
    A note on nonparametric estimation of bivariate tail dependence.
    Statistics & Risk Modeling, Vol. 31, 151–162.
    https://doi.org/10.1515/strm-2013-1143
  40. Bücher, A., Kojadinovic, I., Rohmer, T. and Segers, J. (2014):
    Detecting changes in cross-sectional dependence in multivariate time series.
    Journal of Multivariate Analysis, Vol. 132, 111–128.
    https://doi.org/10.1016/j.jmva.2014.07.012
  41. Berghaus, B. and Bücher, A. (2014):
    Nonparametric tests for tail monotonicity.
    Journal of Econometrics, Vol. 180(2), 117–126.
    https://doi.org/10.1016/j.jeconom.2014.03.005
  42. Bücher, A. and Vetter, M. (2013):
    Nonparametric Inference on Lévy measures and copulas.
    Annals of Statistics, Vol. 41, 1485–1515.
    https://doi.org/10.1214/13-AOS1116
  43. Bücher, A. and Dette, H. (2013):
    Multiplier bootstrap of tail copulas – with applications.
    Bernoulli, Vol. 5(A), 1655–1687.
    https://doi.org/10.3150/12-BEJ425
  44. Bücher, A. and Ruppert, M. (2013):
    Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique.
    Journal of Multivariate Analysis, Vol. 116, 208–229.
    https://doi.org/10.1016/j.jmva.2012.12.002
  45. Bücher, A. and Volgushev, S. (2013):
    Empirical and sequential empirical copula processes under serial dependence.
    Journal of Multivariate Analysis, Vol. 119, 61–70.
    https://doi.org/10.1016/j.jmva.2013.04.003
  46. Berghaus, B., Bücher, A. and Dette H. (2013):
    Minimum distance estimators of the Pickands dependence function and related tests of multivariate extreme-value dependence.
    Journal de la Societé Francaise de Statistique, Vol. 154, 116– 137.
    http://www.numdam.org/item/JSFS_2013__154_1_116_0/
  47. Bücher, A., Dette, H. and Volgushev, S. (2012):
    A test for Archimedeanity in bivariate copula models.
    Journal of Multivariate Analysis, Vol. 110, 121–132.
    https://doi.org/10.1016/j.jmva.2012.01.026
  48. Bücher, A., Dette, H. and Volgushev, S. (2011):
    New estimators of the Pickands dependence function and a test for extreme-value dependence.
    Annals of Statistics, Vol. 39, No. 4, 1963–2006.
    https://doi.org/10.1214/11-AOS890
  49. Bücher, A., Dette, H. and Wieczorek, G. (2011):
    Testing model assumptions in functional regression models.
    Journal of Multivariate Analysis, Vol. 102, 1472– 1488.
    https://doi.org/10.1016/j.jmva.2011.05.014
  50. Bücher, A. and Dette, H. (2010):
    A note on bootstrap approximations for the empirical copula process.
    Statistics and Probability Letters, Vol. 80, 1925–1932.
    https://doi.org/10.1016/j.spl.2010.08.021
  51. Bücher, A. and Dette, H. (2010):
    Some comments on goodness-of-fit tests for the parametric form of the copula based on L2-distances.
    Journal of Multivariate Analysis, Vol. 101, 749–763.
    https://doi.org/10.1016/j.jmva.2009.09.014

Refereed Book Chapters:

  1. Bücher, A., El Ghouch, A. and Van Keilegom, I. (2021):
    Single-index quantile regression models for censored data. In: Daouia A., Ruiz-Gazen A. (eds)Advances in Contemporary Statistics and Econometrics.
    Springer, Cham,
    177–196.
    https://link.springer.com/chapter/10.1007/978-3-030-73249-3_10
  2. Bücher, A. and Kojadinovic, I. (2015):
    An overview of nonparametric tests of extremevalue dependence. In: Dey, D. and Yan, J: Extreme Value Modeling and Risk Analysis: Methods and Applications.
    Crc Press Inc
    , 2015, 377–398.
    https://arxiv.org/abs/1410.6784

Academic functions

To Top