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1 Introduction

The Schur P-functions and Schur Q-functions are well known families of symmetric func-
tions. Each of them are a basis of the space of symmetric functions, have applications in
respresentation theory and algebraic combinatorics and they generate a ring with non-
negative structure constants. The latter fact was also conjectured for their K-theoretic
analogues GPλ and GQλ by Ikeda and Naruse in 2013 in [1]. In 2014, Clifford, Thomas
and Yong proved this for GPλ in [2]. However, it is still unproven for GQλ.

In this thesis we look onto the symplectic Hecke insertion and a semistandard variant
of it, which was introduced by Eric Marberg in [5]. In this thesis we present some of the
properties of the symplectic Hecke insertion and use them to proof its bijectivity. With
this bijection we are able to understand the bijective approach to proof that K-theoretic
Schur P-functions GPλ generate a ring, which was outlined by Eric Marberg in [4]. The
main contribution of this thesis is the correction of an error in the definition of weakly
admissible tableaux [5, Definition 3.5].

In a former version of it a tableau with an outer row box was weakly admissible, if
either i = 1 or there exists a column x ≥ i with Ti−1,x ≤ Tin < Tix. So the last part of
the definition was missing. As a result, the first statement of Lemma 3.6 was wrong and
as a result also Theorem 3.8.

A closer look onto the details of the proof of Lemma 3.6 reveals the problem: in the
case where we have the outer box not in the first row, we are not able to imply that
c2 ̸= b if k = 0. We are not able to evade this, since there are counterexamples, where
the lemma is wrong with the former definition, for example:

· · · 2
1 2 · · →(R2) 1 2

with row reading word 212 and 12 respectively, but 212 ̸
K
≈ 12, which contradicts the

lemma.
Eric Marberg and I looked for a solution to this and corrected the definition by includ-

ing the missing condition from the definition of admissibility to the definition for weakly
admissibility. With the new version of weakly admissibility, the former proof holds. In
our example, the first insertion state is not weakly admissible anymore, so the lemma
holds. Also, the other parts of [5], where weakly admissibility is used, still hold.

In Chapter 2, we introduce the objects we need to understand the symplectic Hecke
insertion. The main contribution of this thesis is Chapter 3, where we introduce the
algorithm for symplectic Hecke insertion. Therein, Definition 3.3 describes the main
algorithm while Theorem 3.1 is the main result of this thesis. In section 3.3 we introduce
a semistandard variant of the insertion algorithm and prove its most important properties
in Theorem 3.29. In Chapter 4, we use the previous results to proof that the K-theoretic
Schur P-functions have positive structure constants in Theorem 4.1. The last chapter 5
of this thesis presents Sage code that implements the insertion algorithms, their inverses,
and other methods introduced in the previous chapters.
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2 Preliminaries

In this paper we refer to the positive integers as N and to the non-negative integers as
N0. Let Sn be the group of permutations on [n] := {i ∈ N : i ≤ n}. We define S∞ as the
group of permutations with finite support, that means S∞ =

⋃
n∈N Sn. The group Sn is

generated by {(i, i+ 1) : 1 ≤ i ≤ n− 1}, the set of permutations, which swap adjacency
positions. We denote si = (i, i+ 1), so Sn = ⟨s1, s2, . . . , sn−1⟩ and S∞ := ⟨s1, s2, . . . ⟩.

We use this chapter to define the fundamental objects we require later. Especially, we
introduce symplectic Hecke words, equivalences on words and tableaux.

2.1 Words

A word w is a finite sequence of numbers w = w1w2 . . . wk with wi ∈ N. The numbers wi

are called letters. The length of w is len(w) = k.
We define now the set of Hecke words. Although, we do not use them in this paper,

we need their related symplectic anaglogue. Define a map ◦ : S∞ × {s1, s2, . . . } −→ S∞
by

π ◦ si =

{
πsi, if π(i) < π(i+ 1),

π, if π(i) > π(i+ 1).

We define a Hecke word for a permutation σ as a word w = w1w2 . . . wk, such that
σ = w1 ◦ w2 ◦ . . . wk. A Hecke word for σ with minimal length is called reduced word
for σ. The set of reduced words for σ is called R(σ).

In this paper, we work with fix-point-free involutions. We define the set of fix-point-
free involutions as F∞ := {π−1Θπ : π ∈ S∞}, where Θ is the permutation Θ : N −→ N,
Θ(n) = n − (−1)n. Note, that neither Θ nor any element of F∞ is in S∞, because
they do not have finite support, since Θ =

∏
i odd si = (12)(34)(56)(78) . . . . We define

Fn := {z ∈ F∞ : z(i) = Θ(i) for i > n}, so F∞ =
⋃

n∈NFn.
We define a map ⊙ : F∞ × {s1, s2, . . . } −→ F∞ ∪ {0} by

z ⊙ si =


sizsi , if z(i) < z(i+ 1),

z , if i+ 1 ̸= z(i) > z(i+ 1) ̸= i,

0 , if i+ 1 = z(i) > z(i+ 1) = i.

A symplectic Hecke word for z ∈ F∞ is a word w1w2 . . . wk, such that it holds
that z = Θ ⊙ sw1 ⊙ sw2 ⊙ · · · ⊙ swk

. We denote the set of all symplectic Hecke words
for a fix-point-free involution z ∈ F∞ as HSp(z). A symplectic Hecke word in HSp(z)
of minimal length is called FPF-involution word for z and the set of FPF-involution
words for z is called RFPF (z).

Remark 2.1. Since Θ⊙ si = 0 if i is odd, every symplectic Hecke word begins with an
even letter. If w = w1w2 . . . wk is a symplectic Hecke word, then w = w1w2 . . . wiwi . . . wk

is also one.
We can conclude from the definition, that every subword wiwi+1 . . . wi+k of an FPF-

involution word w has to be an FPF-involution word, or else the former word w would
not be an FPF-involution word.
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Example 1. Let w = 26542. It holds, that

θ ⊙ s2 ⊙ s6 ⊙ s5 ⊙ s4 ⊙ s2 = (23)θ(23)⊙ s6 ⊙ s5 ⊙ s4 ⊙ s2

= (67)(23)θ(23)(67)⊙ s5 ⊙ s4 ⊙ s2

= (56)(67)(23)θ(23)(67)(56)⊙ s4 ⊙ s2

= (45)(56)(67)(23)θ(23)(67)(56)(45)⊙ s2

= (45)(56)(67)(23)θ(23)(67)(56)(45)

= (13)(25)(48)(67)(9, 10)(11, 12) · · · =: ž,

So 26542 ∈ HSp(ž) und ž ∈ F8. Furthermore, 2654 ∈ RFPF(ž) ⊂ HSp(ž).
We know, that 526 is not a symplectic Hecke word for any fix-point-free involution,

since it starts with an odd letter. With 26542, there is also 265542 ∈ HSp(ž). Since
265 is a subword of 2654, it follows that 265 is an FPF-involution word. And indeed,
256 ∈ RFPF((56)(67)(23)θ(23)(67)(56)).

Let w = w1w2 . . . wm be a word of length m. A weakly increasing factorisation of
w is a weakly increasing sequence of positive integers i = (i1 ≤ i2 ≤ · · · ≤ im) ∈ Nm with
ij ≤ ij+1 if wj > wj+1. The weight of such a factorisation is the map wt(w,i) : N→ N0

with wt(w,i)(a) = |{j ∈ [m] : ij = a}| for a ∈ N.
The set of all pairs (w, i), where i is a weakly increasing factorisation of w, is called

Incr(w). If W is a set of words, we denote Incr(W ) =
⋃

w∈W Incr(w).

Example 2. Every symplectic Hecke word of length n has (1, 2, 3, 4, . . . , n) as weakly
increasing factorisation.

We already saw some symplectic Hecke words in the previous example, so we can now
define weakly increasing factorisations for them:

(26542, 11234), (26542, 12345), (26542, 22578), (2654, 1137) ∈ Incr(HSp(ž)).

We take the first of them and calculate

wt(26542,11234)(2) = wt(26542,11234)(3) = wt(26542,11234)(4) = 1

and
wt(26542,11234)(1) = 2.

A weakley increasing factorisation splits a word into increasing parts. We can sum-
marize the notation of a word with a weakly increasing factorisation as follows: we write
(w1, w2, w3, . . . ), where w = w1w2w3 . . . and wi = wkwk+1 . . . wk+l is the subword with
all the indices, so that ik = ik+1 = · · · = ik+l. By the definition of weakly increasing
factorisations, the words wi has to be increasing. We also use the term “weakly increasing
factorisation” for these tuples (w1, w2, w3, . . . ) of possible empty increasing subwords of
w, with w = w1w2w3 . . . , whereby all but finitely many wi has to be empty. Moreover,
we abuse the introduced notation and write (w, i) = (w1, w2, w3, . . . ) ∈ Incr(w). By the
definition, we can see that wt(w,i)(j) = len(wj).
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Example 3. With the notation of the previous examples, we can write now

(26542, 11234) = (26, 5, 4, 2) ∈ Incr(HSp(ž)).

Let y ∈ Fm, z ∈ Fn be two fix-point-free involutions. We define another fix-point-free
involution y× z ∈ Fm+n by y× z : i 7→ y(i),m+ j 7→ z(j) +m for 1 ≤ i ≤ m, 1 ≤ j ≤ n,
and also a bijection

Incr(HSp(y))× Incr(HSp(z)) −→ Incr(HSp(y × z))

(v1, v2, . . . )× (w1, w2, . . . ) := (v1w̌1, v2w̌2, . . . ),

where w̌i is formed by adding m to every letter of wi.
We can see directly, that wt(v1,v2,... )+wt(w1,w2,... ) = wt(v1w̌1,v2w̌2,... ) .

2.2 Equivalences

We define some useful and known relations on words:
Define Br

=, the braid relation, as the equivalence relation on words generated by the
following rules: for every word a, b and all X,Y ∈ N with |X − Y | > 1 it holds that

• a(X + 1)X(X + 1)b
Br
= aX(X + 1)Xb and

• aXY b
Br
= aY Xb.

The equivalence relation
Br≡ is defined similarly as the equivalence relation generated

by the rules: for all words a, b, and all X,Y, Z ∈ N with |X − Y | > 1 it holds that

• aXZXb
Br≡ aZXZb,

• aXY b
Br≡ aY Xb and

• aXb
Br≡ aXXb

Define the symplectic variant Sp
= to be the equivalence relation on words generated by

v
Sp
= w, if v

Br
= w, and X(X − 1)a

Sp
= X(X + 1)a for all words a, v, w and all X ≥ 2.

Similarly, define
Sp
≡ to be the equivalence relation on words, with v

Sp
≡ w, if v

Br≡, and

X(X − 1)a
Sp
≡ X(X + 1)a for all words a, v, w and X ∈ N with X ≥ 2

Lemma 2.2. If z ∈ F∞ is a fix-point-free involution, then RFPF(z) is an equivalence

class under Sp
=, while HSp(z) is an equivalence class under

Sp
≡. A word is a symplectic

Hecke word, if and only if its equivalence class under
Sp
≡ does not contain a word that

begins with an odd leter. A symplectic Hecke word is an FPF-involution word, if and
only if its equivalence class under Sp

= contains no word with equal adjacent letters.
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Example 4. Starting with the word 26542 ∈ HSp(ž), which we found in Example 1. We
can find other symplectic Hecke words for ž by the following computing:

26542
Br
= 62542

Br
= 65242

Br
= 65422

Br≡ 6542
Sp
≡ 6742

Br
= 6472

Br
= 6427,

so {2654, 6254, 6524, 6542, 6742, 6472, 6427} ⊂ HSp(ž).
Starting with 265 ∈ RFPF((56)(67)(23)θ(23)(67)(56)), which we found in the same

example, we get
265

Br
= 625

Br
= 652

Sp
= 672

Br
= 627

Br
= 267

and since there is no other word which is Sp
=-equivalent to any of this words, we get

{265, 625, 652, 672, 627, 267} = RFPF((56)(67)(23)θ(23)(67)(56)).

Another family of relations is based on the Coxeter-Knuth equivalence K∼ (resp.

on the K-Knuth equivalence
K
≈). This are the equivalence relations, generated by

aZXY b
K∼ aXZY b, aY ZXb

K∼ aY XZb, aXY Xb
K∼ aY XY b,

resp.

aZXY b
K
≈ aXZY b, aY ZXb

K
≈ aY XZb, aXY Xb

K
≈ aY XY b, aXb

K
≈ aXXb.

for all words a, b and every X,Y, Z ∈ N with X < Y < Z.

Remark 2.3. The first two rules for each of the latter equivalences state the following:
in a sequence of three distinct letters, we can swap the lowest and the greatest, if they
are adjacent.

To define a symplectic version of these equivalences we want to add another kind of
rule: We say that two words are connected by a symplectic Coxeter-Knuth move, if
one word is obtained from the other in one of these ways:

• By interchanging the first two letters, when they have the same parity.

• By changing the first two letters from X(X − 1) to X(X + 1) for an X ∈ N with
X ≥ 2.

We define the symplectic Coxeter-Knuth equivalence Sp∼ as the strongest equiv-
alence relation that has v

Sp∼ w, if v K∼ W , or if v and w are connected by a symplectic

Coxeter-Knuth move. Analogue, we define the symplectic K-Knuth equivalence
Sp
≈

as the strongest equivalence relation with v
Sp
≈ w, if v

K
≈ w, or if v and w are connected

by a symplectic Coxeter-Knuth move.
By looking onto the definitions of the equivalece relations, we can see that the following

lemma holds.

Lemma 2.4. Let v, w be two words, z ∈ F∞ a fix-point-free involution. If v ∈ HSp(z)

and v
Sp
≈ w, then w ∈ HSp(z). If v ∈ RFPF(z) and v

Sp∼ w, then w ∈ RFPF(z).
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Example 5. We can see, that

62467
Sp∼ 26467

K∼ 24647
K∼ 24674

Sp∼ 42674
K∼ 46274

K∼ 46724

Sp∼ 64724
K∼ 67424

Sp∼ 65424
K∼ 65242

K∼ 62542
Sp∼ 26542.

And since the last word is the word, we took in Example 1, all the listed words are
symplectic Hecke words in HSp(ž).

2.3 Tableaus

In this part we introduce a few definitions about partitions, Young diagrams and tableaux.
Let n be a non-negative integer. A tupel λ = (λ1, λ2, . . . , λk) of positive integers λi ∈ N

with
∑

λi = n and λ1 ≥ λ2 ≥ · · · ≥ λk is a partition of n. The length of a partition
len((λ1, λ2, . . . , λk)) is k. A partition λ is strict, if λ1 > λ2 > · · · > λk.

Example 6. A partiton of 5 is (2, 2, 1), while a strict partition of 5 is (3, 2).
All possible strict partitions of 6 are (6), (5, 1) and (4, 2).

A Young diagram is a subset of N × N. The Young diagram of a partition λ is the
subset Dλ = {(i, j) : 1 ≤ j ≤ λi}. The shifted Young diagram of a strict partition λ is
the subset SDλ = {(i, j) : i ≤ j ≤ i− 1 + λi}.
To visualise a Young diagram we use a lattice of boxes: for every (i, j) ∈ Y we draw a
box in the i-th row and the j-th column. For this paper we use the French notation, so
we start counting the rows from bottom to top and the rows from left to right.

Example 7. The shifted Young diagram for the partition (4, 2) is

SD(4,2) = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3)},

so the visualization is

.

A tableau T is a map from a Young diagram Y to N. We write (i, j) ∈ T , if (i, j) ∈ Y
and set Tij = T (i, j) for every (i, j) ∈ Y . The shape of a tableau is the underlying
Young diagram. A shifted tableau is a tableau, which shape is a shifted Young diagram
SDλ for any strict partition λ. To visualise a tableau we take the visualisation of the
underlying Young diagram and write Tij in the box at position (i, j).

Example 8. We take a shifted tableau and its visualisation:

T : SD(4,2) −→ N,
(1, 1) 7−→ 2,

(1, 2) 7−→ 4,

(1, 3) 7−→ 5,

(1, 4) 7−→ 6,

(2, 2) 7−→ 6,

(2, 3) 7−→ 7.

T=
6 7

2 4 5 6

8



We identify tableaux and Young diagramms with their visualisations.
The main diagonal of a tableau T are the boxes at the positions (i, i) (or the restric-

tion of T to {(i, i) : i ∈ N} ∩ Y ).
For a tableau T we define the row reading word by concatenating the entries in the

tableau, starting at first entry in the topmost row and continuing (“like reading”) from
left to right and from top to bottom. For the column reading word we start at the
highest entry in the first column and continuing from top to bottom and from left to
right.

Example 9. We take the tableau from the previous example and see, that

row(T ) = 672456, col(T ) = 264756

and the main diagonal are the first boxes of each row.

A tableau is called increasing, if for two distinct boxes (x, y) ̸= (a, b) it holds that
Txy < Tab if and only if x ≤ a and y ≤ b.

Example 10. We take a look onto the following two tableaux:

6 7

2 4 5 6

6 7

2 2 5 6

The first tableau is increasing, the second one is not, since T11 = T12.

The length |T | of a tableau T is the number of boxes it occupies. We call a tableau
a standard tableau, if it is increasing and its range is [|T |].

Example 11. We list all the shifted standard tableaux of shape (4, 2):

5 6

1 2 3 4

4 6

1 2 3 5

4 5

1 2 3 6

3 5

1 2 4 6

3 6

1 2 4 5

Since tableaux were defined onto arbitrary subsets of N × N, we take a short look
onto tableaux, which are not defined on Young diagrams of a partition. Especially, their
visualisation could have holes. A tableau is called row-column-closed, if for every
(a, b), (x, y) ∈ T with a ≤ x and b ≤ y, it holds that (a, y) ∈ T . The following picture
illustrates this condition.

· ·
· · ·
· ·

=⇒
· ·
· · ·
·

Lemma 2.5. If T is an increasing row-column-closed tableau, then row(T )
K∼ col(T ).

Proof. By induction over the number of columns of T :
If T has only one column, row(T ) = col(T ).
So let T be an increasing row-column-closed tableau with j columns.
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Form the word w by reading the last column of T in reverse order (so from highest to
lowest entry). Form U from T by removing the last column. Then U is also increasing
and shifted and col(T ) = col(U)w. By induction, row(U)

K∼ col(U), so we have to show
now, that row(T )

K∼ row(U)w. Let us say, that w is the j-th column and the highest
entry in this column is the i-th, so w = wiwi−1 . . . w2w1 with wr = Trj .

So T has the form ...
...

...
...

...
...

...
...

...

Ti1 Ti2 . . . Tii · · · · · · · · · · · · · · · Tij
...

...
...

...
...

...
...

...
...

...

T21T22T23 · · · · · · · · · · · · · · · · · · T2j

T11T12T13 · · · · · · · · · · · · · · · · · · T1j

,

but with possible several entries missing. Since T has to be row-column-closed, we
know that for any non -empty row k, with k < i, (k, j) has to be occupied by T .

We get

row(T ) = . . . Ti1Ti2 . . . Ti,j−1wiTi−1,1 . . . Ti−1,j−1wi−1 . . . T11T12 . . . T1,j−1w1,

while

row(U)w = . . . Ti1Ti2 . . . Ti,j−1Ti−1,1 . . . Ti−1,j−1 . . . T11T12 . . . T1,j−1wi . . . w2w1.

We only have to sort the letters of w from row(U)w to their place in row(T ). So we
have to show, that for every k < i we can swap the k-th row for of the tableau with
every wl, where l > k. Since T is increasing, we know that, if the entries are existing,
Tkk < Tk,k+1 < · · · < Tk,j−1 < ws for all k ≤ s and w1 < w2 < · · · < wi−1 < wi.

So Tkswtwt−1
K∼ wtTkswt−1 for every t > k. By using this, we can pull T1,j−1 through

the letters of w to his place in row(T ):

row(U)w = . . . T22T23 . . . T2,j−1T11T12 . . . T1,j−3T1,j−2T1,j−1wiwi−1 . . . w2w1

K∼ . . . T22T23 . . . T2,j−1T11T12 . . . T1,j−3T1,j−2wiT1,j−1wi−1 . . . w2w1

K∼ . . . T22T23 . . . T2,j−1T11T12 . . . T1,j−3T1,j−2wiwi−1 . . . w2T1,j−1w1

Since every entry in the first row is lower than T1,j−1, the same holds for every entry in
the first row, so

row(U)
K∼ . . . T22T23 . . . T2,j−1wiwi−1 . . . w2T11T12 . . . T1,j−3T1,j−2T1,j−1w1.

Now we can apply this to the other rows, by swapping the r-th row and every wt with
r < t.

row(U)w
K∼ . . . wiwi−1 . . . w3T22T23 . . . T2,j−1w2T11T12 . . . T1,j−3T1,j−2T1,j−1w1

K∼ . . . TiiTi,i+1 . . . Ti,j−1Ti−1,i−1 . . . Ti−1,j−1wiwi−1 . . . w2T11T12 . . . w1.
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We can repeat this, till we reach the (i−1)-th row. First we use again Ti−1,j−1wiwi−1
K∼

wiTi−1,j−1wi−1. Now we need a slightly different argument, since we only have one ele-
ment of w left. We can swap the other entries of the first row Ti−1,r and wi anyway, since
Ti−1,r < Ti−1,r+1 < wi, and so Ti−1,rwiTi−1,r+1

K∼ wiTi−1,rTi−1,r+1 for every r < j − 1.
By using this repeatedly, we can swap now wi with every entry of the (i− 1)-th row and
get

row(U)w
K∼ . . . TiiTi,i+1 . . . Ti,j−1Ti−1,i−1 . . . Ti−1,j−2wiTi−1,j−1wi−1 . . .

K∼ . . . TiiTi,i+1 . . . Ti,j−1Ti−1,i−1 . . . Ti−1,j−3wiTi−1,j−2Ti−1,j−1wi−1 . . .

K∼ . . . TiiTi,i+1 . . . Ti,j−1wiTi−1,i−1 . . . Ti−1,j−2Ti−1,j−1wi−1 · · · = row(T ).

This completes the proof.

Example 12. If we take a tableau, which is not row-column-closed, the statement can
be wrong. If we take T as

· · 3

1 2 ·

then row(T ) = 312
K∼ 132. But col(T ) = 123.

Since shifted tableaux are row-column-closed, we can conclude the following lemma.

Theorem 2.6. If T is an increasing shifted tableau, then

col(T )
K∼ row(T ).

We define for every number n ∈ N a primed number n′ := n− 1
2 . So we get the primed

alphabet P = {1′ < 1 < 2′ < 2 < . . . }. A map from a Young diagram Y to P is called
marked. A map from a Young diagram Y to the power set of the primed numbers P
is called a set-valued tableau. A map from a Young diagram Y to the set of finite,
non-empty multisubsets of P is called a weak set-valued tableau.

Example 13. We look onto the following tableaux:

T =
3

1 2′ 4′
S =

36

1 3 4′
U =

33

1′ 1 4′4′

The first one is marked, the second one is set-valued and the third one is weak set-valued.

Many definitions for tableaux remain intuitively the same for (weak) set-valued tableaux,
especially the ones which refer to the underlying Young diagram; so the shape of a set-
valued tableau is also the underlying Young diagram and it is also shifted, if the shape
is any SDλ.
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The length of a (weak) set-valued tableau is the sum of the cardinality of all the sets
in the tableau and it is denoted by |T | :=

∑
i,j |Tij |. The weight of a weak set-valued

tableau T is the map wt(T ) : N→ N0, whose value at i ∈ N is the number of times i or i′

appears in T .

Example 14. By taking the tableaux of the previous example, we get |S| = 5, |U | = 6
and the weight of U is

wtU (j) =

{
2, if j = 1, 3, 4,

0, else.

A (weak) set-valued shiftedtableau T is

• increasing, if for two distinct boxes (x, y) ̸= (a, b) it holds that x ≤ a and y ≤ b
if and only if max(Txy) ≤ min(Tab).

• diagonally-unprimed, if its main diagonal contains no (multi-)set with a primed
entry.

• standard, if it is increasing, diagonally-unprimed and for every i ∈ [|T |] exactly
one of i and i′ appears in the tableau.

• semistandard, if it is increasing, diagonally unprimed, each unprimed number
appears in at most one box in each column of T and each primed number appears
in at most one box in each row of T .

Example 15. We take a look onto the following tableaux.

22

1 12′
2

1 2′2′
1

2′ 12′

The first two are semistandard, while the last one is not: it is not increasing, since
max(T11) = 2′ > 1 = min(T12), the box T11 on the diagonal has a primed entry, the
unprimed 1 appears in two boxes of the second column and the primed 2 appears in two
boxes of the first row.

If T is a tableau, we define the monomial xT =
∏

i x
wtT (i)
i and for a set of tableaux T

we define the generating function of T as
∑

T∈T xT .
We define the polynomials KPλ for a partition λ as generating function over all semi-

standard weak set-valued shifted tableaux of shape λ.

Example 16. We want to calculate a few factors of KP(2,1). To get the factor of a
monomial

∏
xaii , we need to check the number of possible semistandard weak set-valued

tableaux T of shape (2, 1) with wtT (i) = ai, so we try to fill the shifted Young diagram
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with numbers, such that i or i′ appear exactly ai times:

KP(2,1) =1 · x21x2 +1 · x1x22 +2 · x31x2 +2 · x1x32 +3 · x21x22 + . . .

2

1 1

2

1 2′
2

11 1

2

1 2′2′
2

11 2′

2

1 11

22

1 2′
2

1 12′

22

1 1

3 Insertion algorithm

In this main chapter of the thesis, we introduce the symplectic Hecke insertion, learn
about its important properties, and work out its inverse. This follows primarily from the
third chapter of [5]. In the final section of this chapter, we refine the insertion to obtain
a semistandard version of the symplectic Hecke insertion. This refinement is based on
section 4.1 of [5]. The semistandard version is the bijection we need in the next chapter
to prove the main result of the thesis.

For a given strict partition λ we define the K-theoretic Schur P-function GPλ as the
generating function of all semistandard set-valued shifted tableaux of shape λ.

In Chapter 4 we see a bijective approach of a proof, that the K-theoretic Schur P-
functions generating a ring with non-negative structure constants, outlined in [4]. That
means, that we have to show, that GPλ ·GPµ =

∑
ν e

ν
λµGPν for some non-negative

integers eνλµ ∈ N0. The first objective is to proof the following theorem, which we
accomplish at the end of section 3.2.

Theorem 3.1. Let z ∈ F∞. There is a bijection HSp(z) −→ (P,Q) between the set
of symplectic Hecke words for z and the set of pairs of tableaux (P,Q), where P is an
increasing shifted tableau with row(P ) ∈ HSp(z) and Q is a standard shifted set-valued
tableau with length |Q| = len(z) and the same shape as P . Additionally, if we take an
FPF-involution word w ∈ RFPF(z), then row(P ) ∈ RFPF and Q is marked.

3.1 Symplectic Hecke insertion

In this section, we introduce the forward transition graph, which is the core of the
symplectic Hecke insertion. We collect some arguments for why the insertion produces
exactly one tableau for any input and prove some useful properties that we need in the
next section. This follows primarily from section 3.1 and 3.2 of [5].

Definition 3.2. A shifted insertion state is a tableau that is either

• increasing, shifted and nonempty (then it is called terminal) or

13



• formed from an increasing shifted tableau with m− 2 rows and n− 2 columns by
adding an extra box in either {m} × [n − 1] or [m − 1] × {n}, which is called its
outer box.

If the outer box is in [m− 1]× {n}, we call it an outer row box, since it is behind the
rows. If it is in {m} × [n − 1], we call it an outer column box, since it is above the
columns.

Example 17.

· 6
2 5

· · · 6
2 5 · ·

· · 6 ·
· · · ·
· 5 7 ·
2 4 6 7

· 6 · · ·
2 5 · · 4

The first three tableaux are shifted insertion states. The first tableau is terminal, the
second one has an outer row box, while the third one has an outer column box. The last
tableau is not a shifted insertion state, since the outer box for an tableau with 2 rows
and 2 columns has to be either in the fourth column or in the fourth row.

We define now three families of weighted directed edges, to get a weighted directed
graph. The knots for this graph are the terminal insertion states.

1. Row transitions

Let U be a non-terminal shifted insertion state with m− 2 rows and n− 2 columns
when its outer box is removed and let the outer box of U be in (i, n), so it is an
outer row box. If the outer box is maximal in its row, let j ∈ N be minimal with
i ≤ j and (i, j) /∈ U , so it is the first free position in the row of the outer box.

R1: If moving the outer box of U to position (i, j) yields an increasing shifted

tableau V , then there is an edge U
(i,j)−→ V .

· · · 6
2 5 · ·

(2,2)−→
R1

· 6
2 5

· 2
(1,1)−→
R1

2

R2: If moving the outer box of u to position (i, j) does not yield an increasing

shifted tableau, then there is an edge U
(i,j)−→ V , where V is formed from U by

removing the outer box.

· 6 · · · 6
2 4 6 7 · ·

(2,3)−→
R2

· 6 · ·
2 4 6 7

· 6 · · · ·
2 4 6 7 · 7

(1,5)−→
R2

· 6 · ·
2 4 6 7

If the outer box is not maximal in its row, there must exist a minimal x ∈ N with
(i, x) ∈ U and Uin < Uix. Assume i < x.

R3: If moving the outer box to position (i, x) does not yield an increasing tableau,
and i + 1 < x or the i + 1-th row of U is non-empty, then there is an edge
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U
(i,x)−→ V , where V is formed from U by moving the outer box to position

(i+ 1, n) and changing its value to Uix.

· 6 · · ·
2 4 7 · 2

(1,2)−→
R3

· 6 · · 4
2 4 7 · · · 6 · · · ·

2 4 6 7 · 6

(1,4)−→
R3

· 6 · · · 7
2 4 6 7 · ·

R4: If moving the outer box of U to position (i, x) yields an increasing tableau,

then there is an edge U
(i,x)−→ V , where V is formed from U by moving box

(i, x) to (i+ 1, n) and the outer box to (i, x).

· 6 · ·
2 5 · 4

(1,2)−→
R4

· 6 · 5
2 4 · · · 6 · · · ·

2 4 6 7 · 5

(1,3)−→
R4

· 6 · · · 6
2 4 6 7 · ·

2. Diagonal transitions

D1: If x = i+ 1 and the i+ 1-th row of U is empty, but moving the outer box to
position (i, i + 1) does not yield an increasing tableau, then there is an edge

U
(i,i+1)−→ V , where V is formed from U by moving the outer box to (m, i+ 1)

and changing its value to Ui,i+1.

· 6 7 · · 6
2 4 6 7 · ·

(2,3)−→
D1

· · 7 ·
· · · ·
· 6 7 ·
2 4 6 7

For the next three cases, suppose that the i-th row is not empty and that the entry
in the outer box Uin is lower than the entry at the main-diagonal in this row Uii.
(So, we handle the case with x = i.)
D2: If Uin and Uii have the same parity but moving the outer box to position (i, i)

does not yield an increasing tableau, then there is an edge U
(i,i)−→ V , where

V is formed from U by moving the outer box to (m, i + 1) and changing its
value to Uii.

6 7 · · 4
2 4 6 7 · ·

(2,2)−→
D2

· · 6 ·
· · · ·
· 6 7 ·
2 4 6 7

· 6 · · 4
2 4 7 · ·

(2,2)−→
D2

· · 6
· · ·
· 6 ·
2 4 7

D3: If Uin and Uii have the same parity and moving the outer box to position

(i, i) yields an increasing tableau, then there is an edge U
(i,i)−→ V , where V is

formed from U by moving box (i, i) to (m, i + 1) and then the outer box to
(i, i).

6 · 2
(1,1)−→
D3

· 6
· ·
2 ·

6 7 · · 4
2 3 6 7 · ·

(2,2)−→
D2

· · 6 ·
· · · ·
· 4 7 ·
2 3 6 7
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D4: If Uin and Uii have different parities, then there is an edge U
(i,i)−→ V , where

V is formed from U by moving the outer box to (m, i + 1) and changing its
value to Uii + 1.

· 6 · 5
2 4 · ·

(2,2)−→
D4

· · 7 ·
· · · ·
· 6 · ·
2 4 · ·

· 6 7 · · 6
2 4 6 7 · ·

(2,2)−→
D4

· · 7 ·
· · · ·
· 6 7 ·
2 4 6 7

3. Column transitions

Now assume, that the outer box of U is in (m, j), so it is an outer column box. If
the outer box is maximal in its column, let i ∈ N be minimal with (i, j) /∈ U , so it
is the first free box in the column of the outer box.

C1: If moving the outer box to position (i, j) yields an increasing shifted tableau

V , then there is an edge U
(i,j)−→ V .

· · 7
· · ·
· 6 ·
2 4 ·

(1,3)−→
C1

· 6 ·
2 4 7

· · · 7
· · · ·
· 6 · ·
2 4 6 ·

(1,4)−→
C1

· 6 · ·
2 4 6 7

C2: If moving the outer box to position (i, j) does not yield an increasing shifted

tableau V , then there is an edge U
(i,j)−→ V , where V is formed from U by

removing the outer box.

· · 7 ·
· · · ·
· 6 7 ·
2 4 6 7

(3,3)−→
C2

· 6 7 ·
2 4 6 7

· · · 7
· · · ·
· 6 7 ·
2 4 6 7

(2,4)−→
C2

· 6 7 ·
2 4 6 7

If the outer box is not maximal in its column, then there is a minimal x ∈ N with
(x, j) ∈ U and Umj < Uxj .

C3: If moving the outer box to position (x, j) does not yield an increasing tableau,

then there is an edge U
(x,j)−→ V , where V is formed from U by moving the

outer box to (m, j + 1) and changing its value to Uxj .

· · 6 ·
· · · ·
· 6 7 ·
2 4 6 7

(2,3)−→
C3

· · · 7
· · · ·
· 6 7 ·
2 4 6 7

C4: If moving the outer box to position (x, j) yields an increasing tableau, then

there is an edge U
(x,j)−→ V , where V is formed from U by moving the box at

position (x, j) to (m, j + 1) and the outer box to (x, j).

· · 6
· · ·
· 6 ·
2 4 7

(1,3)−→
C4

· · · 7
· · · ·
· 6 · ·
2 4 6 ·

16



This ends the enumeration of the types of edges. The directed weighted graph on shifted
insertion states with these edges is called the forward transition graph.

We make a few observations about the edges:

• All the edges start at non-terminal insertion states.

• The cases for the edges are disjunct, so there is a maximum of one outgoing edge
per non-terminal insertion state.

• The cases for the edges cover all possible types of non-terminal shifted insertion
states, so there is a minimum of one outgoing edge per non-terminal insertion states.

So the forward transition graph has exactly one outgoing edge at any non-terminal
insertion state and the terminal insertion states are the sinks of the graph. That means,
that from any insertion state, we can follow exactly one edge to another insertion state.

Assume an edge starts in U and ends in an non-terminal insertion state V . We observe
the possible changes of the position of the outer box:

• If the edge is of type R3 or R4, the outer boxes of U and V has both to be outer
row boxes and the one of V is just one row higher than the one of U .

• If the edge is a diagonal transition, the outer box changes from an outer row box
in U to an outer column box in V , and if the outer box of U was in the k-th row
it is in V in the (k + 1)-th column.

• If the edge is of type C3 or C4 the outer box stays an outer column box and is only
pushed a row rightwards.

We see here, that the paths in the forward transition graph have a special form: there can
be only one diagonal transition, while there are only row transition before any diagonal
transition, and the column transitions are all after a diagonal transition.

If the outer box is in the (m− 1)-th row or the (n− 1)-th column, it is maximal in its
row and column, so the next edge has to be of type R1, R2, C1 or C2, which leads to
a terminal shifted insertion state, so the path has to be finite length: if a non-terminal
shifted insertion state without its outer box has m− 2 rows and n− 2 columns, then the
path has a length of maximal max{m,n} − 1 edges.

We conclude, that for any non-terminal shifted insertion state, there is an unique path,
which has to end in a terminal shifted insertion state.

With this knowledge we can define now the symplectic Hecke insertion:

Definition 3.3. Let T be an increasing shifted tableau and let a ∈ N. Write T ⊕ a for
the shifted insertion state formed by adding a to the second unoccupied box in the first
row of T . A shifted insertion state is called initial, if its outer box is in the first row. If
the directed path from T ⊕ a to a terminal state in the forward transition graph is

T ⊕ a = U0
(i1,j1)−→ U1

(i2,j2)−→ U2
(i3,J3)−→ . . .

(il,jl)−→ Ul,
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then we define T
Sp← a to be the increasing shifted tableau Ul and call the sequence

of positions (i1, j1), (i2, j2), . . . , (il, jl) the bumping path of inserting a into T . The
operation transforming (T, a) to T

Sp← a is called symplectic Hecke insertion.
For a word w = w1w2 . . . wn, let

PSp(w) := (. . . ((∅ Sp← w1)
Sp← w2)

Sp← . . . )
Sp← wn.

We call PSp(w) the insertion tableau of w under symplectic Hecke insertion.

Example 18. We want to calculate PSp(265425). The main part of the needed edges
were already examples under the definitions of the types of edges.

∅ ⊕ 2 = · 2
(1,1)−→
R1

2 = ∅ Sp← 2.

· · · ·
· · · ·
· · · ·
2 · · ·

⊕ 6 =

· · · ·
· · · ·
· · · ·
2 · 6 ·

(1,2)−→
R1

· · · ·
· · · ·
· · · ·
2 6 · ·

= 2
Sp← 6.

· · · ·
· · · ·
· · · ·
2 6 · ·

⊕ 5 =

· · · ·
· · · ·
· · · ·
2 6 · 5

(1,2)−→
R4

· · · ·
· · · ·
· · · 6
2 5 · ·

(2,2)−→
R1

· · · ·
· · · ·
· 6 · ·
2 5 · ·

= 2 6
Sp← 5.

· · · ·
· · · ·
· 6 · ·
2 5 · ·

⊕ 4 =

· · · ·
· · · ·
· 6 · ·
2 5 · 4

(1,2)−→
R4

· · · ·
· · · ·
· 6 · 5
2 4 · ·

(2,2)−→
D4

· · 7 ·
· · · ·
· 6 · ·
2 4 · ·

(1,3)−→
C1

· · · ·
· · · ·
· 6 · ·
2 4 7 ·

=
6

2 5

Sp← 4.

· · · ·
· · · ·
· 6 · ·
2 4 7 ·

⊕ 2 =

· · · · ·
· · · · ·
· 6 · · ·
2 4 7 · 2

(1,2)−→
R3

· · · · ·
· · · · ·
· 6 · · 4
2 4 7 · ·

(2,2)−→
D2

· · 6 ·
· · · ·
· 6 · ·
2 4 7 ·

(1,3)−→
C4

· · · 7
· · · ·
· 6 · ·
2 4 6 ·

(1,4)−→
C1

· · · ·
· · · ·
· 6 · ·
2 4 6 7

=
6

2 4 7

Sp← 2.

· 6 · ·
2 4 6 7

⊕ 5 =
· 6 · · · ·
2 4 5 7 · 5

(1,4)−→
R3

· 6 · · · 6
2 4 5 7 · ·

(2,3)−→
R2

· 6 · ·
2 4 5 7

So finally, we get
PSp(265425) =

6
2 4 5 7

.
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We can add more letters, for example:

· 6 · ·
2 4 5 7

⊕ 6 =
· 6 · · · ·
2 4 5 7 · 6

(1,4)−→
R4

· 6 · · · 7
2 4 5 6 · ·

(2,3)−→
R1

· 6 7 ·
2 4 5 6

6 7
2 4 6 7

⊕ 2 =
6 7

2 4 5 6 · 2

(1,2)−→
R3

6 7 · · 4
2 4 5 6 · ·

(2,2)−→
D2

6
·

6 7
2 4 5 6

(2,3)−→
C3

7
·

6 7 ·
2 4 5 6

(2,4)−→
C2

6 7
2 4 5 6

.

6 7 ·
2 4 5 6

⊕ 5 =
6 7

2 4 5 6 · 5

(1,4)−→
R2

6 7 · · 6
2 4 5 6 · ·

(2,3)−→
D1

7
·

6 7
2 4 5 6

(3,3)−→
C2

6 7
2 4 5 6

.

Here we can see that

PSp(2654256) = PSp(26542562) = PSp(26542565) = PSp(265425625).

Example 19. We see later how we can use the insertion for a bijection. Till now, there
are many paths in the forward transition graph which lead to the same tableau. We look
onto a subgraph of the forward transition graph for an example:

6 7
2 4 5 · 2

−→ 6 7 · 4
2 4 6 · · −→

6
·

6 7
2 4 6

−→
7
·

6 7 ·
2 4 6 ·

6 7
2 4 5 6

6 7
2 4 5 · 6

6 7
2 4 5 6 · 4

−→ 6 7 · · 5
2 4 6 7 · · −→

7
·

6 7
2 4 6 7

←− 6 7
2 4 5 6 · 6

6
2 4 5 7 · 6

−→ 6 · · · 7
2 4 5 6 · · −→

6 7 · · 6
2 4 5 6 · · ←−

6 7 · · ·
2 4 5 6 · 5

For the remaining of this section, we look onto some properties of this insertion.

Definition 3.4. Let T be a shifted insertion state with outer box (i, j). Assume T
with its outer box removed has m − 2 rows and n − 2 columns, and set Txy := ∞ for
all positions (x, y) /∈ T . We say that T is weakly admissible if one of the following
conditions holds:

• When j = n (t.m. when the outer box of T is an outer row box) and either i = 1
or there exists a column x ≥ i with Ti−1,x ≤ Tin < Tix, and if Ti−1,i = Tin, then
(i, i) ∈ T .

• When i = m (t.m. when the outer box of T is an outer column box) and either
Tmj = Tj−1,j or there exists a row x < j with Tx,j−1 ≤ Tmj < Txj .
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• Additionally, we also say that any terminal shifted insertion state is weakly admis-
sible.

Example 20. Every initial shifted insertion state is weakly admissible, and a weakly
admissible shifted insertion state cannot have his outer column box in the first column.

· · · 6
2 5 · ·

· 3 ·
· · ·
· 6 ·
2 4 6

· · 7 ·
· · · ·
· 6 7 ·
2 2 5 6

· 5 7 · · 5
2 4 6 7 · ·

The first tableau, T , is weakly admissible, since the outer box T24 = 6 < T22 =∞ and
T12 = 5 < 6 = T24.

The second tableau, S, is weakly admissible, since S11 ≤ S42 = S12.
The third tableau, U , is not weakly admissible, since although the second row supplies

U23 = U43, which fulfills the second condition, the tableau without the outer box is not
weakly increasing.

The fourth tableau is not weakly increasing, since for every column after the first the
value of the outer box, 5, is not smaller or equal than the first and smaller than the
second entry.

Proposition 3.5. If U → V is an edge in the forward transition graph, then V is weakly
admissible.

Example 21.

· 6 · ·
2 4 6 · 1

(1,1)−→
D4

· 3 ·
· · ·
· 6 ·
2 4 6

We already saw in the example before, that the second tableau is weakly admissible.
Since the first tableau is initial, it is also weakly admissible.

But also if the first tableau is a shifted insertion state, which is not weakly admissible,
the tableau at the end of an edge in the transition graph is:

· 5 7 · · 5
2 4 6 7 · ·

(2,3)−→
D1

· · 7 ·
· · · ·
· 5 7 ·
2 4 6 7

The first tableau is not weakly admissible, as seen in the example before. But the second
one, let us name it T , is, since the outer box has the value T43 = 7 = T23.

Lemma 3.6. Let U → V be an edge in the forward transition graph between weakly
admissible shifted insertion states.

If it is a row transition, then row(U)
K
≈ row(V ) and if additionally row(U) is reduced

then row(U)
K∼ row(V ).

If it is a column transition, then col(U)
K
≈ col(V ) and if additionally col(U) is reduced,

then col(U)
K∼ col(V ).
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Proof. We only proof the first part of the first statement.
If the edge U → V is of type (R1), the row reading words of U and V are the

same. If the edge is of type (R4), let us call the entries of the row with the outer box
a1 < a2 < · · · < ak , while b is the entry of the outer box. We need to have ax−1 < b < ax
for 1 ≤ x ≤ k. In this case, we can see that

row(U) = . . . a1 . . . ax−1axax+1 . . . akb

K∼ . . . a1 . . . ax−1axbax+1 . . . ak
K∼ . . . axa1 . . . ax−1bax+1 . . . ak = row(V ).

Assume that the outer box of U appears in the first row. If it is of type (R2), then
the value of the outer box and the value of the last box in its row without the outer
box has to be equal, so the row reading words of U and V has to be connected by

K
≈,

because of X
K
≈ XX for every X ∈ N. Assume the first row of U has k boxes with values

a1 < a2 < · · · < ak and the value of the outer box is b. If the edge U → V is of type
(R3), we need to have another box in the first row, that has the same value as the outer
box, let us say ax−1 = b < ax, for 1 ≤ x ≤ k. Since b = ax−1 < al < al+1 for every l ≥ x,

we know that alal+1ax−1
K
≈ alax−1al−1. Similiary, since b = ax−1 > am < am−1 for every

m ≤ x, we know that ax−1am−1am
K
≈ am−1ax−1am. So

row(U) = . . . a1 . . . ax−1axax+1 . . . akax−1

K∼ . . . a1 . . . ax−1axax−1ax+1 . . . ak
K∼ . . . a1 . . . axax−1axax+1 . . . ak
K∼ axa1 . . . ax−1axax+1 . . . ak = row(V ).

Now assume, that the outer box of U appears in any row above the first, so two rows
of U have the form

a2 . . . ak · · b

c1 c2 . . . . . . cl · ·
.

If k = 0, then c2 ̸= b, since U is weakly admissible. Then the edge U → V has to be
of type (R1).

Assume U → V is of type (R2). Then ak = b or ck+1 = b. In the first case, we can show

as above that row(U)
K
≈ row(V ). So assume ck+1 = b. Since c1 < · · · < ck < ak < b, we
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see that

row(U) = . . . akbc1c2 . . . ckbck+2 . . .

K∼ . . . akc1c2 . . . ck−1bckbck+2 . . .

K∼ . . . c1c2 . . . ck−1akbckbck+2 . . .

K∼ . . . c1c2 . . . ck−1akckbckck+2 . . .

K∼ . . . c1c2 . . . ck−1akbckckck+2 . . .

K
≈ . . . c1c2 . . . ck−1akbckck+2 . . .

K∼ . . . akc1c2 . . . ck−1bckck+2 · · · = row(V ).

Finally, we assume U → V is of type (R3). Define x as in the definition of (R3). It
follows that ax−1 = b or cx = b, since otherwise we would have an edge of type (R4). If
ax−1 = b we can follow row(U)

K∼ row(V ) as above. So assume cx = b and ax−1 < b < ax.
It follows that

row(U) = a2 . . . akbc1 . . . cx−1b . . .

K∼ a2 . . . ax−1axbax+1 . . . akc1 . . . cx−1b

K
≈ a2 . . . ax−1ax−1axbax+1 . . . akc1 . . . cx−1b

K∼ a2 . . . ax−1axax−1bax+1 . . . akc1 . . . cx−1b

K∼ a2 . . . axax−1axbax+1 . . . akc1 . . . cx−1b

K∼ a2 . . . axax−1axax+1 . . . akbc1 . . . cx−1b

K∼ axa2 . . . axax−1ax+1 . . . akbc1 . . . cx−1b.

And as before, where the edge was of type (R2), we can eliminate the first b, so

row(U)
K
≈ axa2 . . . akc1 . . . cx−1b = axa2 . . . akc1 . . . cx−1b · · · = row(V ).

Lemma 3.7. Suppose U → V is a diagonal transition between weakly admissible shifted
insertion states. Assume (i, n) is the outer box of U , so that (i, i) ∈ U .

1. If U → V is of type (D1) and Uii ≡ Ui,i+1 mod 2, then row(U)
Sp
≈ col(V ).

2. If U → V is of type (D2), (D3), or (D4), all entries on the main diagonal of
U have the same parity, and either Uin ≡ Uii mod 2 or Uin = Uii − 1, then
row(U)

K∼ col(V ).

3. If row(U) is a symplectic Hecke word, then row(U)
Sp
≈ col(V ), and if row(U) is a

symplectic Hecke word that is also a reduced word, then row(U)
Sp∼ col(U).

We summarise the last two lemmas for our main theorem of this section:
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Theorem 3.8. Suppose T is an increasing shifted tableau and a ∈ N is such that row(T )a
is a symplectic Hecke word. The following properties then hold:

1. The tableau T
Sp← a is increasing and shifted with row(T

Sp← a)
Sp
≈ row(T )a.

2. If row(T )a is an FPF-involution word, then row(T
Sp← a)

Sp∼ row(T )a.

Since the insertion tableau PSp(w) of w under symplectic Hecke insertion is only a
recursive insertion of all the letters of w, the theorem implies the following lemma.

Lemma 3.9. If w is a symplectic Hecke word, then w
Sp
≈ row(PSp(w)). If w is an

FPF-involution word, then w
Sp∼ row(PSp(w)).

Example 22. We saw in Example 18 that

P (26542) =
6

2 4 6 7
:= T.

Furthermore, we saw in Example 5 that row(T ) = 62467
Sp
≈ 26542.

3.2 Inverse insertion

In the first part of this section we introduce a stronger version of admissibility, which sum
up the insertion states, which are able to appear if we compute the insertion tableau of
a symplectic Hecke word. For them we define the inverse edges of the forward insertion
graph. After that, we define the recording tableau and proof Theorem 3.1. This mainly
follows section 3.3 and 3.4 of [5].

Definition 3.10. Let T be a shifted insertion state. We define

word(T ) :=

{
col(T ) , if T has an outer column box,
row(T ) , otherwise.

Definition 3.11. Let T be a shifted insertion state. Assume T without (i, j) has m− 2
rows and n−2 columns. We say, that T is admissible, if T is weakly admissible, word(T )
is a symplectic Hecke word and the following condition holds:

1. if (i, j) is an outer column box, it holds that if Tmj = Tj−1,j then (j, j) /∈ T or Tmj

is odd, and if Tmj = Tx,j−1 then x ≥ 2.

Example 23. Every terminal shifted insertion state with a row (or equivalently col-
umn) reading word, which is a symplectic Hecke word, is admissible, since it is weakly
admissible and has no outer box.

· 6 · 3
2 5 · ·

· · · 6
2 5 · ·

· · 7 ·
· · · ·
· · 8 ·
· 6 7 ·
2 4 6 7

· 4
· ·
2 4

23



The first insertion state is not admissible, since the row reading word is not a symplectic
Hecke word, since ((67)θ(67))(3) = 4 and ((67)θ(67))(4) = 3, so θ ⊙ 6⊙ 3 = 0.

The second insertion state, T , is admissible: it is weakly admissible (as proven in

Example 20), the word 625
Br≡ 265, which is a symplectic Hecke word as shown in Example

4 and T24 = 6 ̸= 5 = T12.
The third insertion state, S, is not admissible, since the outer box S53 = 7 = S23 but

(3, 3) is occupied by the tableau.
The fourth insertion state, U , is admissible, since its column reading word 244 is not

Sp
≡-equivalent to a word which starts with an odd letter (see Lemma 2.2), it is weakly
admissible, since U12 = U32, and although the outer box is even, (2, 2) is not occupied
by U .

Proposition 3.12. Suppose T is an admissible shifted insertion state. Assume that T
has r rows with its outer box removed (if one exists). The diagonal entries Tkk for k ∈ [r]
are then all even.

Proof. Let k ∈ [r]. Since T is admissible, we know that word(T ) ∈ HSp(z) for a z ∈ F∞.

We want to show that there is a word in the
Sp
≡-equivalence class of word(T ), which begins

with Tkk. This implies that Tkk has to be even by Lemma 2.2.
First assume there is either no outer box or the outer box of T is in the k-th row or

beneath it. Since T is increasing, we know that Tkk < Tk,k+1 < Txy for every x < k, y < x.
So |Tkk − Txy| > 1 for every x < k, y < x, so we can swap Tkk with every element that
appears before it in row(T ):

row(T ) = TrrTr,r+1 . . . Tr,sr . . . . . . Tk+1,sk+1−1Tk+1,sk+1
Tkk . . .

Br≡ TrrTr,r+1 . . . Tr,sr . . . . . . Tk+1,sk+1−1TkkTk+1,sk+1

. . .

Br≡ TkkTrrTr,r+1 . . . Tr,sr . . . . . . Tk+1,sk+1−1Tk+1,sk+1
.

Now assume T has an outer row box at position (i, j) in a row higher than k. Since T
is admissible, there has to be a column x ≥ i with Ti−1,x ≤ Tij , so it has to be greater
or equal to Tk,k+1. If the value in the outer box is greater than Tk,k+1, we can also swap
Tkk with Tij in row(T ). If the value in the outer box is equal to Tk,k+1, it has to be in
row k+1, since otherwise Ti−1,x < Tk,k+1, but i− 1 > k and T would not be increasing.
So we can first see that

row(T ) = TrrTr,r+1 . . . Tr,sr . . . . . . Tk+1,sk+1−1Tk+1,sk+1
Ti,jTkkTk,k+1 . . .

= TrrTr,r+1 . . . Tr,sr . . . . . . Tk+1,sk+1−1Tk+1,sk+1
Tk,k+1TkkTk,k+1 . . .

Br≡ TrrTr,r+1 . . . Tr,sr . . . . . . Tk+1,sk+1−1Tk+1,sk+1
TkkTk,k+1Tkk . . .

and then make Tkk be the first letter of the word as before.
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Now assume T has an outer column box at position (i, j). For all entries Txy except the
outer box, which appears in front of Tkk in word(T ) = col(T ), it holds that |Tkk−Txy| > 1,
so we could swap them with Tkk.

If the outer box is in a column right of the k-th, it appears in word(T ) behind Tkk.
If the outer box is in the k-th column or in a column left from it, we can see that we

have either Tij = Tj−1,j ≤ Tk−1,k or there exists a row x < j with Tij < Txj ≤ Tk−1,k,
since T is weakly admissible (in both cases = is only possible, if j = k).

If Tij < Tk−1,k, it holds that |Tkk − Tij | > 1. If Tij = Tk−1,k, the outer box has to be
in the k-th column, so we know that

col(T ) = T11T22T21 . . . . . . T1,k−1TijTkkTk−1,k . . .

= T11T22T21 . . . . . . T1,k−1Tk−1,kTkkTk−1,k . . .

= T11T22T21 . . . . . . T1,k−1TkkTk−1,kTkk . . . .

In every case, in which we have an outer column box, we can swap now every letter
that is in front of Tkk with Tkk.

Proposition 3.13. Suppose U → V is a forward transition between shifted insertion

states. If U is admissible, then word(U)
Sp
≈ word(V ) and V is admissible.

This stresses the importance of admissible tableaux. We saw earlier in 3.5 that if
U −→ V is an edge in the forward transition graph, then V has to be weakly admissible.
Proposition 3.13 tells us furthermore, that if we start with an admissible tableau U
and an edge U −→ V , then V even has to be admissible. This implies that the set of
admissible tableaux spanns a subgraph in the forward transition graph. We define the
inverse of the symplectic Hecke insertion only on this subgraph and we see, that this is
exactly what we want. Especially, we can already see that we are on the right way for
Theorem 3.1, since P has to be an admissible tableau, because it has to be terminal and
its row reading word row(P ) ∈ HSp(z) is a symplectic Hecke word.

Before we start to define the inverse edges, we need to talk about some important
positions of a tableau.

Definition 3.14. Let T be a shifted tableau. A position (i, j) for i, j ∈ N is an inner
corner, if it is the last occupied box in its row and at highest occupied position in its
column. A position (i, j) for i, j ∈ N is an outer corner, if it is not in T , either it is on
the diagonal or it is on the right of an box in T , and either it is in the first row or it is
on the top of an box in T .

So an inner corner is a position, where you can remove a box and get a shifted tableau,
an outer corner is a position, where you can add a box and get a shifted tableau.

Example 24. We take our tableau from Example 18 again and mark the outer corners
with bullets, while the inner corners are the boxes with the value 7:

•
6 7 •

2 4 6 7 •
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Lemma 3.15. Suppose U
(i,j)−→ V is a forward tansition between shifted insertion states,

where U is admissible and V is terminal. Then U −→ V is a row or column transition
and (i, j) is an inner or outer corner of V . In addition, the following properties hold:

1. If U −→ V is a row transition and (i, j) is an outer corner of V , then i < j.

2. If U −→ V is a column transition and (i, j) is an inner corner of V , then i < j.

3. If U −→ V is a column transition and (i, j) is an outer corner of V , then i > 1.

Proof. 1. Since V is terminal, the edge U −→ V can only be of type (R1), (R2), (C1),
or (C2). Assume it is a row transition and (i, j) is an outer corner of V with i = j.
If the edge would be of type (R1), the last position in the bumping-path has to be
an inner corner, so the edge has be of type (R2). This means, that the value of the
outer box is either equal to Ui−1,j or equal to Ui,j−1. Since (i− 1, i) is not a valid
position in a shifted tableau, we need to have the value of the outer box equal to
Ui,i−1. But U is admissible which leads to (i, j) = (i, i) ∈ T , so it could not be an
outer corner. So we contradicted i = j.

2. Now let us assume U −→ V is a column transition, (i, j) is an inner corner of V ,
and i = j. If the edge is of type (C2), (i, j) has not to be occupied by V , so the edge
has to be of type (C1). Then the outer box of U has to be maximal in its column.
But since U is admissible, the outer box has to be equal to Uj−1,j or smaller than
any Uxj for an x < j. So we contradicted i = j.

3. Let us assume U −→ V is a column transition, (i, j) is an outer corner of V , and
i = 1. Again, since (1, j) is an outer corner, the type of the edge can only be (C2).
But then U1,j−1 has to be equal to the value of the outer box, so U cannot be
admissible. So we contradicted i = 1.

We start now to define a graph on the set of admissible tableaux. As earlier at the
definition of the edges of the forward transition graph, we define different types of edges.
For every type of edge of the form V ⇝ U with an admissible V we add three things:
first we see an example, directly below we prove that U is admissible, so the edges are
well-defined, and we look for the arguments that U −→ V is an edge in the forward
transition graph of one specific type. A short remark at this point: since the outer box
of U is either in the i− 1 row or column, the conditions for (weakly) admissible tableaux
move in the indexes according to that.

We start with the edges on terminal tableaux V :

iR1: For each inner corner (i, j) of V , there is an edge V ⇝ U where U is formed from
V by moving box (i, j) to an outer position in row i.

2
(1,1)
⇝
row

· 2
6 · ·

2 5 · ·
(2,2)
⇝
row

· · · 6
2 5 · ·
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We can see that U is also admissible: since Ui−1,j = Vi−1,j < Vij < Ui,j+1 =∞ and
Vij is the value of the outer box of U , U is weakly admissible; since we only move
one box sideways, it holds that row(U) = row(V ), so row(U) is a symplectic Hecke
word; and Ui−1,i = Vi−1,i < Vii ≤ Vij , such that the outer box of U is never equal

to Ui−1,i. Additionally, we can see that U
(i,j)−→ V is a row transition of type R1.

iR2: For each outer corner (i, j) of V with i < j, there is an edge V ⇝ U where U is
formed from V by adding an outer box in row i whose value is whichever of Vi−1,j

or Vi,j−1 is defined and larger.

6
2 4 7

(1,4)
⇝
row

6
2 5 7 · 7

6
2 4 5 7

(2,3)
⇝
row

6 · · · 6
2 4 5 7 · ·

In this case U
(i,j)−→ V is a row transition of type R2, so we can conclude that

row(U)
K
≈ row(V ) from Proposition 3.8. Additionally, since the outer box of U has

the value u := max(Vi−1,j , Vi,j−1), it holds that Ui−1,j = Vi−1,j ≤ u < Ui,j = ∞
and if u = Ui−1,i, then j = i, which contradicts i < j, so U is also admissible.

iC1: For each inner corner (i, j) of V with i < j, there is an edge V ⇝ U where U is
formed from V by moving box (i, j) to an outer position in column j.

6
2 4 6 7

(1,4)
⇝
col

· · · 7
· · · ·
· 6 · ·
2 4 6 ·

· · ·
· · ·
2 6 ·

(1,2)
⇝
col

· 6 ·
· · ·
2 · ·

It is clear that U is also admissible and that U
(i,j)−→ V is a column transition of

type (C1).

iC2: For each outer corner (i, j) of V with i > 1, there is an edge V ⇝ U where U is
formed from V by adding an outer box in column j whose value is whichever of
Vi−1,j or Vi,j−1 is defined and larger.

6
2 4 7

(2,3)
⇝
col

· · 7
· · ·
· 6 ·
2 4 7

2 6
(1,3)
⇝
col

· · 6
· · ·
2 6 ·

In this case U
(i,j)−→ V is a column transition of type C2, so we have col(U)

K
≈ col(V ).

It follows that U is also admissible.

To distinguish between these edges we write V
(i,j)
⇝
row

U to indicate the inverse transitions

of type iR1 and iR2 or V
(i,j)
⇝
col

U for iC1 and iC2, while in both cases (i, j) is the inner or
outer corner of the terminal tableau V .

Now we look onto admissible tableaux which are neither initial nor terminal, so they
have an outer box outside of the first row. Assume V is an admissible tableau with an
outer box, but with its outer box removed it has m− 2 rows and n− 2 columns.

27



Assume V has an outer row box in (i, n). Since V is weakly admissible, there exists a
column x ≥ i with Vi−1,x ≤ Vin < Vix. We choose this x maximal, so Vin < Vi−1,x+1 also
holds (else Vi−1,x+1 ≤ Vin < Vi,x+1 and x is not maximal).

iR3: If Vi−1,x = Vin, then there is an edge V ⇝ U where U is formed from V by moving
box (i, n) to (i− 1, n) and changing its value to whichever of Vi−1,x−1 or Vi−2,x is
defined and larger.

6 · · 4
2 4 7 · · ⇝

6
2 4 7 · 2 6 · · · 6

2 4 5 7 · · ⇝
6

2 4 5 7 · 5

We can see, that U is weakly admissible, since Ui−1,n = max(Vi−1,x−1, Vi−2,x),
and so it holds that Ui−2,x = Vi−2,x ≤ Ui−1,n < Vi−1,x = Ui−1,x. To show that

U
(i−1,x)−→ V is a row transition of type R3 we have to ensure that the i-th row of

U is not empty or i < x for the minimal column x for which Ui−1,n < Ui−1,x. If
x = i, then Vin = Vi−1,i and since V is admissible, it holds that (i, i) ∈ V and so
(i, i) ∈ U . If x > i, then Ui−1,n < Ui−1,x and x is minimal with this property. So

U
(i−1,x)−→ V is a row transition of type (R3). Lemma 3.6 implies that row(U) is a

symplectic Hecke word, because row(V ) is one and finally (i − 1, x) ∈ V implies
(i− 1, i) ∈ V and (i− 1, i− 1) ∈ U , so U is admissible.

iR4: If Vi−1,x < Vin, then there is an edge V ⇝ U where U is formed from V by moving
box (i− 1, x) to (i− 1, n) and then box (i, n) to (i− 1, x).

· · · 6
2 5 · · ⇝ 2 6 · 5

6 · 5
2 4 · · ⇝

6 · ·
2 5 · 4

Since the outer box of U fits into position (i− 1, x) of U to preserve an increasing
tableau, we get Ui−2,x = Vi−2,x < Vi−1,x = Ui−1,n < Vin = Ui−1,x, so U is weakly

admissible. In this case U
(i−1,x)−→ V is a row transition of type R4, so it follows again

by Lemma 3.6 that row(U)
K
≈ row(V ) and since V is admissible, both words are

symplectic Hecke words. Finally, we see that Ui−1,n = Vi−1,x > Vi−2,i−1 = Ui−2,i−1,
since x ≥ i and V is increasing, so U is admissible.

Now we assume the outer box of V is an outer column box and Vj−1,j−1 ≤ Vmj .
Since V is weakly admissible, it holds that Vmj = Vj−1,j or it exists a x < j with
Vx,j−1 ≤ Vmj < Vx,j ≤ Vj−1,j , so in both cases Vmj ≤ Vj−1,j . The edge V ⇝ U is then
one of the following types:

iD1: Suppose Vmj is even and Vj−1,j−1 < Vmj = Vj−1,j , so that (j, j) /∈ V . There is an
edge V ⇝ U where U is formed from V by moving box (m, j) to (j − 1, n) and
changing its value to whichever of Vj−1,j−1 or Vj−2,j is defined and larger.

· 4
· ·
2 4
⇝ 2 4 · 2

7
·

6 7
2 4 5 6

⇝ 6 7 · · 6
2 4 5 6 · ·
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Since either j − 1 = 1 or Uj−2,j = Vj−2,j ≤ Uj−1,n < Vj−1,j = Uj−1,j , U is weakly
admissible. We see that U −→ V is a diagonal transition of type D1. We know
from Lemma 3.12, that Vj−1,j−1 = Uj−1,j−1 is even and since Vmj = Vj−1,j is even,

Uj−1,j is even too. Then the first part of Lemma 3.7 tells us, that row(U)
Sp
≈ col(V ),

so row(U) is a symplectic Hecke word. Since V is increasing, Uj−2,j−1 = Vj−2,j−2

has to be smaller than Vj−1,j−1 and Vj−2,j , so in this case Uj−1,n ̸= Uj−2,j−1, so U
is admissible.

iD2: Suppose Vj−1,j−1 = Vmj . Since V is admissible, it has to be that j − 1 ≥ 2. If
Vj−2,j−1 is even, then there is an edge V ⇝ U where U is formed from V by moving
box (m, j) to (j − 1, n) and changing its value to Vj−2,j−1.

· · 6
· · ·
· 6 ·
2 4 7

⇝ 6 · · 4
2 4 7 · ·

· · 6
· · ·
· 6 7
2 4 5 6

⇝ 6 7 · · 4
2 4 5 7 · ·

First, we see again that by Uj−2,j−1 = Uj−1,n < Uj−1,j−1, U is weakly admissible.
Since Proposition 3.12 tells us that Vj−1,j−1 is even, U −→ V is a diagonal transition
of type D2. Now the second part of Lemma 3.7 shows, that row(U) is a symplectic
Hecke word, since Lemma 3.12. So U is admissible again, since (j − 1, j − 1) ∈ U .

iD3: If Vj−1,j−1 < Vmj < Vj−1,j and Vmj is even, then there is an edge V ⇝ U where U
is formed from V by moving box (j − 1, j − 1) to (j − 1, n) and then box (m, j) to
(j − 1, j − 1).

· 6 ·
· · ·
2 · ·

⇝
· · ·
· · ·
6 · 2

E

Since moving box (j−1, n) to (j−1, j−1) in U get us an increasing tableau (it is V
without its outer box), U is weakly admissible. Additionally, by Proposition 3.12,
Vj−1,j−1 is even, so U −→ V is a diagonal transition of type D3. All the other entries

on the main diagonal are also even by 3.12, and so 3.7 implies col(V )
Sp∼ row(U) and

row(U) is a symplectic Hecke word. Since Uj−1,n = Vj−1,j−1 > Vj−2,j−1 = Uj−2,j−1,
if these entries exist, it holds that U is admissible.

iD4: If Vj−1,j−1 < Vmj and Vmj is odd, then there is an edge V ⇝ U where U is formed
from V by moving box (m, j) to (j − 1, n) and changing its value to Vj−1,j−1 − 1.

· 3 · · ·
· · · · ·
· 6 · · ·
2 4 7 · ·

⇝ 6 · · ·
2 4 7 · 1

· · 7 ·
· · · ·
· 6 · ·
2 4 · ·

⇝ 6 · 5
2 4 · ·

Vj−1,j−1 = Uj−1,j−1 has to be even because of 3.12, so Uj−1,n is odd. Then U −→ V
is a diagonal transition of type D4. Since the entries on the main diagonal of V
have not changed and Lemma 3.12 shows, that the ones of V are even, the entries
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on the main diagonal of U are also even. Then col(V )
Sp∼ row(U) by Lemma 3.7,

so row(U) is a symplectic Hecke word. Since (j − 1, j − 1) ∈ U , U is admissible.

iC3a: Suppose Vj−1,j−1 = Vmj , so that j − 1 ≥ 2, since V is admissible. If Vj−2,j−1 is
odd, then there is an edge V ⇝ U where U is formed from V by moving box (m, j)
to (m, j − 1) and changing its value to Vj−2,j−1.

· · 6
· · ·
· 6 ·
2 5 7

⇝
· 5 ·
· · ·
· 6 ·
2 5 7

In this case U −→ V is a column transition of type C3, so col(U)
K∼ col(V )

has to hold by Lemma 3.6. The tableau U has to be weakly admissible, since
Um,j−1 = Uj−2,j−1. Since Um,j−1 is odd and since Um,j−1 = Uj−2,j−1 = Ux,j−2

implies that x ≥ j − 1 ≥ 2, U is admissible.

For the last two types of edges assume V has an outer column box and Vmj < Vj−1,j−1.
Since V is weakly admissible, there exists a maximum row x < j − 1 with Vx,j−1 ≤ Vmj ,
and it must hold that Vmj < Vxj and Vmj < Vx+1,j−1.

iC3b: Suppose Vx,j−1 = Vmj , so x ≥ 2, since V is admissible. There is an edge V ⇝ U
where U is formed from V by moving box (m, j) to (m, j − 1) and changing its
value to be whichever of Vx−1,j−1 or Vx,j−2 is defined and larger.

7
·

6 7 ·
2 4 5 6

⇝
6
·

6 7
2 4 5 6

We see that either Ux,j−2 = Vx,j−2 ≤ Um,j−1 < Ux,j−1 = Vx,j−1, if Ux,j−1 exists,
or Um,j−1 = Uj,j−1, so U is weakly admissible. The edge U −→ V is a column

transition of type C3, so col(U)
K
≈ col(V ), and so col(U) is a symplectic Hecke

word. If Um,j−1 = Uj−2,j−1 then x − 1 = j − 2, so x = j − 1. But x has to be
strictly smaller than j−1. If Um,j−1 = Uy,j−2, then y = x ≥ 2. So U is admissible.

iC4: If Vx,j−1 < Vmj , then there is an edge V ⇝ U where U is formed from V by moving
box (x, j − 1) to (m, j − 1) and then box (m, j) to (x, j − 1).

· · · 7 ·
· · · · ·
· 6 · · ·
2 4 6 · ·

⇝
· · 6 · ·
· · · · ·
· 6 · · ·
2 4 7 · ·

Since Ux,j−2 = Vx,j−2 < Vx,j−1 = Um,j−1 < Vmj = Ux,j−1, it holds that U is weakly
admissible. The edge U −→ V is a column transition of type C4. Lemma 3.6
tells us, that col(U) is a symplectic Hecke word, as row(V ) is one. If in this case
Um,j−1 = Uj−2,j−1, then either Vx,j−1 = Vmj if x = j − 2 or Uj−2,j−1 = Vj−2,j−1 if
x < j − 2. The first case contradicts Vx,j−1 < Vmj directly, the second case imples
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Vx,j−1 = Um,j−1 = Vj−2,j−1 and contradicts x < j − 2. If Um,j−1 = Uy,j−2, then
Um,j−1 = Vy,j−2, but since Um,j−1 = Vx,j−1 < Vx,j−2, y has to be strictly greater
than x and so finally y ≥ 2 and U is admissible.

This completes the definition of the edges for the inverse transition graph.

Example 25. We again take PSp(265425) from Example 18 and look for some possible
paths in the inverse transition graph:

6
2 4 5 7

(2,2)
⇝
row

· · · · 6
2 4 5 6 · · ⇝iR4

2 4 6 7 · 5

6
2 4 5 7

(1,5)
⇝
row

6
2 4 5 7 · 7

6
2 4 5 7

(2,3)
⇝
col

· · 6 ·
· · · ·
· 6 · ·
2 4 5 7

⇝
iD2

6 · · · 4
2 4 5 7 · · ⇝iR3

6
2 4 5 7 · 2

6
2 4 5 7

(1,4)
⇝
col

7
·

6 · ·
2 4 5 ·

⇝
iC4

5
·

6 ·
2 4 7

⇝
iC4

4
·
6

2 5 7

⇝
iD3

6
2 5 7 · 2

This seems all but unique. We see how we find the correct path with the next definitions
in Example 27.

Theorem 3.16. Let U and V be admissible insertion states. Then U −→ V is a forward
transition if and only if V ⇝ U is an inverse transition. If V is terminal, then U

(i,j)−→ V

is a row or a column transition if and only if V
(i,j)
⇝
row

U or V
(i,j)
⇝
col

U is an inverse transition.

The next thing we want to achieve is to get a second tableau for the tuple in Theorem
3.1. We want to define it in a way that helps us to find the right path in the inverse
transition graph. For the main part of these paths, we need no help, since there is exactly
one outgoing edge for every admissible non-terminal non-initial insertion state. Since the
initial insertion states are the last tableaux on the paths in the inverse transition graph,
we only need the second tableau to consider which is the correct first inverse transition,
which edge start on the terminal insertion state. So we define now QSp(w) to conclude
the type of the last edge of the forward transition graph:

Definition 3.17. For a symplectic Hecke word w = w1w2 . . . wn, we inductively define
a set-valued tableau QSp(w). Let Qsp(∅) = ∅ and assume n > 0. Let (i, j) be the label

of the last transition in the insertion path of PSp(w1 . . . wn−1)
Sp← wn. Form QSp(w) from

QSp(w1 . . . wn−1) as follows:
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1. If the last transition is of type R1, then add n to box (i, j).

2. If the last transition is of type C1, then add n′ to box (i, j).

3. If the last transition is of type R2, then add n to the last box in column j − 1.

4. If the last transition is of type C2, then add n′ to the last box in row i− 1.

We call QSp(w) the recording tableau of w under symplectic Hecke insertion.

Lemma 3.15 ensures, that in every step i−1 > 0 and j−1 > 0, and that the (i−1)-th
row and the (j − 1)-th column exist in the already defined part of QSp(w), so QSp(w)
is well-defined for any symplectic Hecke word w. By construction, QSp(w) is a standard
shifted set-valued tableau of length |QSp(w)| = len(w).

Example 26. We recall our first example of an insertion tableau we saw in Example 18.
All the insertions ended with edges of type R1 or C1, except the last. So

QSp(265425) =
36

1 2 4′ 5′

In the same example we added 6, 2 and 5, which delivers

QSp(265425625) =
36 79′

1 2′ 4′ 5′8′
.

Definition 3.18. Let z ∈ F∞ be an FPF-involution, P be an increasing shifted tableau,
w be a word such that row(P )w ∈ HSp(z) is an FPF-involution word, Q be a standard
set-valued tableau with the same shape as P and length n > 0. Q contains exactly one
of n or n′ and this number must appear in an inner corner (i, j), since Q is standard.
Define V1 to be the unique admissible shifted insertion state, such that

1. if {n} = Qij , then P
(i,j)
⇝
row

V1 is an inverse transition.

2. if {n′} = Qij , then P
(i,j)
⇝
col

V1 is an inverse transition.

3. if {n} ⊊ Qij , then P
(r,j+1)
⇝
row

V1 is an inverse transition, where r is the row of the
unique outer corner of Q in column j + 1.

4. if {n′} ⊊ Qij , then P
(i+1,s)
⇝
col

V1 is an inverse transition, where s is the column of
the unique outer corner of Q in row i+ 1.

Now let V1 ⇝ V2 ⇝ · · · ⇝ Vl be the maximal directed path in the inverse transition
graph. The last state Vl is initial, so it has the form P̂ ⊕ a for a shifted tableau P̂ and a
non-negative number a ∈ N. Set ŵ := aw, and form Q̂ by removing whichever of n or n′

appears. With this we define

uninsert(P,Q,w) := (P̂ , Q̂, ŵ).
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The set-valued tableau Q̂ is standard with length n − 1 and has the same shape as
P̂ . By Theorem 3.16, we know that P ⇝ V1 ⇝ V2 ⇝ · · · ⇝ Vl = P̂ ⊕ a is equivalent
to P̂ ⊕ a −→ Vl −→ Vl−1 −→ · · · −→ V1 = P , so P = P̂

Sp← a. By Proposition 3.13,

it holds that row(P )
Sp
≈ row(P̂ )a. Then row(P̂ )ŵ = row(P̂ )aw

Sp
≈ row(P )w ∈ HSp(z).

Altogether, (P̂ , Q̂, ŵ) has the same properties as (P,Q,w), so we can iterate uninsert:

Definition 3.19. Given all the requirements of the definition before, we define wSp(P,Q)
to be the word, such that

uninsert ◦ · · · ◦ uninsert(P,Q, ∅) = (∅, ∅, wSp(P,Q)),

with |Q|-times concatenated uninsert.

Example 27. We want to inverse the insertion of the word in Example 18. So we
calculate uninsert ◦ · · · ◦ uninsert(PSp(265425), QSp(265425), ∅):

The highest number in the recording tableau (seen in Example 26) is 6 in the box at
position (1, 4), so the first inverse edge has to be of type iC2 at the outer corner of the
second row:

PSp(265425) =
6 · ·

2 4 5 7

(2,4)
⇝
col

6 · · · 6
2 4 5 7 · · ⇝

6 · · · ·
2 4 5 7 · 5

= PSp(26542)⊕ 5,

so

uninsert

(
6

2 4 5 7
,

36

1 2 4′ 5′
, ∅

)
=

(
6

2 4 5 7
,

3

1 2 4′ 5′
, 5

)

which is (PSp(26542), QSp(26542), 5).
For the first step for the next uninsertion, we have to look onto QSp(26542). The high-

est number is 5′ in box (1, 4), so the first edge for uninsert(PSp(26542), QSp(265425), 3)
has to be of type iC1 at position (1, 4):

PSp(26542) =

· · · ·
· · · ·
· 6 · ·
2 4 6 7

(1,4)
⇝
col

· · · 7
· · · ·
· 6 · ·
2 4 6 ·

⇝
· · 6 ·
· · · ·
· 6 · ·
2 4 7 ·

⇝
· · · · ·
· · · · ·
· 6 · · 4
2 4 7 · ·

⇝
· · · · ·
· · · · ·
· 6 · · ·
2 4 7 · 2

= PSp(2654)⊕2.

So, uninsert(PSp(26542), QSp(26542), 5) = uninsert(PSp(2654), QSp(2654), 25).

33



And further we get:

· · · ·
· · · ·
· 6 · ·
2 4 7 ·

(1,3)
⇝
col

· · 7 ·
· · · ·
· 6 · ·
2 4 · ·

⇝
· · · ·
· · · ·
· 6 · 5
2 4 · ·

⇝
· · · ·
· · · ·
· 6 · ·
2 5 · 4

= PSp(265)⊕ 4

· · · ·
· · · ·
· 6 · ·
2 5 · ·

(2,2)
⇝
row

· · · ·
· · · ·
· · · 6
2 5 · ·

⇝
· · · ·
· · · ·
· · · ·
2 6 · 5

= PSp(26)⊕ 5

2 6 · · (1,2)
⇝
row

2 · 6 = PSp(2)⊕ 6

2
(1,1)
⇝
row

· 2 = ∅ ⊕ 2.

So finally, we see that we can inverse the insertion from Example 18:

uninsert ◦ · · · ◦ uninsert

(
6

2 4 5 7
,

36

1 2 4′ 5′
, ∅

)
= (∅, ∅, 265425)

and so we calculated wSp(PSp(265425), QSp(265425), ∅) = 265425.

We want to define the inversion of uninsert:

Definition 3.20. As in the definition for uninsert, let P be an increasing shifted tableau,
Q be a standard set-valued tableau with the same shape as P and |Q| = n− 1 ≥ 0, and
let w = w1w2 . . . wm be a word with m > 0 and row(P )w ∈ HSp(z). Let P = PSp(v)
be an insertion tableau for a symplectic Hecke word v under symplectic Hecke insertion,
Q = QSp(v) be his recording tableau. Let P̌ = PSp(vw1) be the insertion tableau,
Q̌ = QSp(vw1) the recording tableau of vw1 under symplectic Hecke insertion, and
w̌ = w2 . . . wm. We define

insert(P,Q,w) := (P̌ , Q̌, w̌).

Since row(P̌ )w̌
Sp
≈ row(P )w1w by Theorem 3.8 and row(P )w1w = row(P )w ∈ HSp(z),

it holds that row(P̌ )w̌ ∈ HSp(z). So again, we can iterate the operation and get for
w ∈ HSp(z), that

insert ◦ · · · ◦ insert(∅, ∅, w) = (PSp(w), QSp(w), ∅),

with len(w)-times concatenated insert.
We have everything to proof Theorem 3.1 now.
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Proof. Let Tm
n be the set of triples (P,Q,w), where P is an increasing shifted tableau, Q

is a standard set-valued tableau of length n with the same shape as P and w is a word
of length m, such that row(P )w ∈ HSp(z). We can see, that insert : Tm+1

n → Tm
n+1 and

uninsert : Tm
n+1 → Tm+1

n .
The work to show that they are inverses is already done: By their definition, uninsert

only combines edges in the inverse transition graph and insert combines edges of the
forward transition graph. We already saw that every insertion state on the path of
insert is admissible. Since the inverse transition graph is defined on admissible in-
sertion states, every insertion state on the path of uninsert has to be admissible too.
So we can use Theorem 3.8, which shows that the two paths in uninsert(P,Q,w) and
insert(uninsert(P,Q,w)), and in insert(P,Q,w) and uninsert(insert(P,Q,w)) are reverse.
That implies that uninsert and insert are inverse, so the symplectic Hecke insertion is
the bijection we are looking for.

Additionally, suppose w ∈ RFPF(z) is an FPF-involution word. Since we only add a
maximum of one box to P for every letter in w, we must have len(w) ≥ |PSp(w)|. By

Lemma 3.9, we know that w
Sp
≈ row(PSp(w)), so row(PSp(w) ∈ HSp(z). But the FPF-

involution words are the symplectic Hecke words of minimal length, so len(w) = |PSp(w)|.
It follows, that Q has to be marked, since in the last step of an insertion we can never
omit a box with (R2) or (C2).

To proof this property for the inverse, assume row(P ) ∈ RFPF and Q is a marked
tableau of the same shape. Since every box of Q has exactly one entry, we only use (iC1)
or (iR1) in the first step for uninsert, so for every box of P , we add one more letter to
wSp(P,Q), so |wSp(P,Q)| = |P | and wSp(P,Q) ∈ RFPF(z).

3.3 Semistandard variant

Before we can use this bijection as intended, we have to refine it in this section and
look onto another bijection, the semistandard symplectic Hecke insertion. We use this
insertion for the K-theoretic P-functions in the next chapter. This primarily follows
section 4.1 of [5].

First we analyse the bumping path from Definition 3.3. We already saw that the types
of transitions can only appear in a fixed order: there is a maximum of one diagonal
transition, before it there can only be row transitions, after it there can only be column
transitions.

Definition 3.21. Let (i1, j1), (i2, j2), . . . , (il, jl) be a bumping path, resulting from in-
serting a non-negative integer a ∈ N into an increasing shifted tableau T . We refer to
the positions up to and including the first diagonal position as row-bumped positions
and to any subsequent position as column-bumped position.

Remark 3.22. We have to be a bit careful with the intuition of this definition: The
diagonal position is either obtained by D2, D3, or D4, or it is obtained by C2, which has
to appear directly after D1 appeared. Since D1 creates (i, i + 1) in the bumping-path,
the last row-bumped position can be a column transition.
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For an example we can look onto the bumping path from inserting 5 into PSp(26542565),
which we saw in Example 18. In spite of the position from the diagonal transition at
the second edge, the third position in the bumping path is the last row-bumped position
(created from a column transition).

Another fact we can see in the definitions of the edges of the forward transition graph
is that all the row transitions create a bumping path position in the row of the outer box
and all the column transitions create a bumping path position in the column of the outer
corner. So we know that it has to be equal to t, if (it, jt) is a row-bumped position, and
jt has to be t if it is a column-bumped position.

Example 28. We look onto the bumping-path from the insertion of 2 into PSp(2654256),
as we have seen it in Example 18.

6 7
2 4 6 7

⊕ 2 =
6 7

2 4 5 6 · 2

(1,2)−→
R3

6 7 · · 4
2 4 5 6 · ·

(2,2)−→
D2

6
·

6 7
2 4 5 6

(2,3)−→
C3

7
·

6 7 ·
2 4 5 6

(2,4)−→
C2

6 7
2 4 5 6

.

So the bumping-path in this case is (1, 2), (2, 2), (2, 3), (2, 4), while the first two po-
sitions are row-bumped and the last two positions are column-bumped. We see that
(i1, i2, j3, j4) = (1, 2, 3, 4) and the last row-bumped position, which has to be on the
diagonal, has i2 = j2 = 2.

Proposition 3.23. Suppose T is an increasing shifted tableau and a, b ∈ N are integers
with a ≤ b, such that row(T )ab ∈ HSp(z) is a symplectic Hecke word. We refer to

U := T
Sp← a as the first bumping path and to V = U

Sp← b as the second one. Then:

1. Suppose the i-th element of the first path is row-bumped and the second path has
length at least i. Then the i-th elements of both paths are row-bumped and in row
i, and the i-th element of the first path is weakly left of the i-th element of the
second path.

2. If the last position in the first path is row-bumped and occurs in column j, then
the last position in the second path is row-bumped and occurs in column k, where
j ≤ k.

3. Suppose the i-th element of the second path is column-bumped. Then the first path
has length at least i, the i-th elements of both paths are column-bumped and in
column i, and the i-th element of the first path is weakly below of the i-th element
of the second path.

4. If the last position in the second path is column-bumped and occurs in row j, then
the last position in the first path is column-bumped and occurs in row i, where
i ≤ j, and in a weakly lefter column.

Definition 3.24. The descent set of a word w = w1w2 . . . wn is

Des(w) = {i ∈ [n− 1] : wi > wi+1}.
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The descent set of a standard shifted set-valued tableau T with length |T | = n is

Des(T ) := {i ∈ [n−1] :


i and (i+ 1)′ both appears in T, or
i appears in T and i+ 1 appears in T in a row above of i, or
i′ appears in T and (i+ 1)′ appears in T in a column right of i′.

Example 29. We take the word from Example 18 again:

Des(265425) = {2, 3, 4}.

Now we look again onto QSp(265425), which we already calculated in Example 26:

QSp(265425) =
36

1 2 4′ 5′
.

We can check that Des(QSp(4232143)) = {2, 3, 4}, since: 2 and 3 appear and 3 is in a
higher row, 3 and 4′ are in the tableau, and 4′ and 5′ appear and 5′ is in a column right
of 4′.

Theorem 3.25. If w is a symplectic Hecke word then Des(w) = Des(QSp(w)).

Remark 3.26. Let T be a standard shifted set-valued tableau. If we create a new
tableau S from T by putting all unprimed entries of T in the same box in S and moving
every primed entry in box Tx,y to Sy,x, then i is a descent if and only if the row of S
which is containing i is strictly below the row of the row in S which is containing i+ 1.

Definition 3.27. For a symplectic Hecke word w ∈ HSp(z) of length m and for a weakly
increasing factorisation i = (i1 ≤ i2 ≤ · · · ≤ im) of w we define QSp(w, i) to be the shifted
weak set-valued tableau formed from QSp(w) by replacing j by ij and j′ by i′j for each
j ∈ [m].

Example 30. We choose the weakly increasing factorisation i = (112344) for the word
w = 265425. Then

QSp(w, i) =
24

1 1 3′ 4′
.

Definition 3.28. Let Q be a semistandard shifted weak set-valued tableau. We define
the standardisation st(Q) of Q by changing the entries of Q in the following way:

• First replacing all 1s in Q from left to right by 1, 2, . . . i.

• Then replacing all 1′s in Q from bottom to top by (i+ 1)′, (i+ 2)′, . . . , j′.

• Then replacing all 2s in Q from left to right by j + 1, j + 2, . . . , k.

• Then replacing all 2′ in Q from bottom to top by (k + 1)′, (k + 2)′, . . . , l′.
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• And so on, that means replacing the primed and unprimed numbers in increasing
order by counting either from left to right if the number is unprimed, or from
bottom to top if the number is primed, and prime them if the former number was
primed too. Continue this process till all entries in Q are replaced.

Example 31. We calculate the standardisation

st(QSp(265425, 112344)) = st

(
24

1 1 3′ 4′

)
=

36

1 2 4′ 5′
.

And we see that we obtain QSp(265425).

Theorem 3.29. Let z ∈ F∞. The map (w, i) 7→ (PSp(w), QSp(w, i)) is a bijection from
weakly increasing factorisations of symplectic Hecke word to pairs (P,Q), where P is an
increasing shifted tableau with row(P ) ∈ HSp(z) and Q is a semistandard shifted weak
set-valued tableau with the same shape as P . Moreover, the bijection is weight-preserving
in the following sense: wtQSp(w,i) = wti.

Proof. Let (w, i) be a weakly increasing factorisation of a symplectic Hecke word. The
construction of QSp(w, i) implies that there are as many j or j′ in QSp(w, i) as there are
j in the weakly increasing factorisation i. So the map is weight-perserving.

If we take a streak of the same number in i, the indices are all not descents. Theorem
3.25 shows that we must have a sequence of the same length of increasing numbers, which
are elements of QSp(w) and which are not descents too. Let us take the maximal streak
of an number h ∈ N, so it = h if and only if t ∈ [j : j + b] for some j, b ∈ N. Since
the corresponding elements in QSp(w) are no descents, it holds that we can divide the
numbers in an earlier sequence of primed numbers and a latter sequence of unprimed ones,
that means there exists an a ≤ b with j′, (j+1)′, . . . (j+a)′, j+a+1, . . . , j+b ∈ QSp(w).
Moreover, two primed entries of the sequence cannot be in different boxes in the same
row, while two unprimed entries cannot be in different boxes in the same column of
QSp(w). So if we change the entries to form QSp(w, i), we cannot get any unprimed
number in more than one box of any column and we cannot get any primed number in
more than one box of any row. Since QSp(w) is standard, increasing and does not have
any primed entries on the diagonal, it follows that QSp(w, i) has to be weakly increasing
and QSp(w, i) does not have any primed entries on the diagonal too. So QSp(w, i) is
semistandard and the map is well-defined.

To define the inverse we have to reconstruct QSp(w) and i from an given QSp(w, i).
But QSp(w) is the standardisation of QSp(w, i). To get the correct factorisation i, we
define iQ = (iQ1 ≤ iQ2 ≤ · · · ≤ iQm) with m = |Q|, by iQj := a if a or a′ appears in Q and
changes to j or j′ in st(Q).

Let (w, i) be a weakly increasing factorisation of a symplectic Hecke word. By The-
orem 3.25 we can see that every semistandard shifted weak set-valued tableau, whose
standardisation is QSp(w), arises as QSp(w, i) for the choice of some factorisation i. It
follows from Theorem 3.1, that the map is surjective. Since we can recover QSp(w) and
i from QSp(w, i) as descried, we can also recover w by Theorem 3.1, so the given map is
injective.
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4 Polynomials

In this chapter, we use the semistandard symplectic Hecke insertion (especially Theorem
3.29) to prove that the K-theoretic Schur P-functions have positive structure constants,
as stated in the following theorem. This involves working out the bijective proof outlined
in section 1.2 of [4]. Afterwards, we see a bigger example.

For a given strict partition λ we define the K-theoretic Schur P-function GPλ =
∑

T xT

as the generating function of all semistandard set-valued shifted tableaux of shape λ. We
want to see now how the symplectic Hecke insertion helps us as argument to prove the
following theorem.

Theorem 4.1. Let λ, µ be strict partitions. It holds that

GPλ ·GPµ =
∑
ν

eνλµGPν ,

while eνλµ is the number of insertion tableaux with shape ν and row reading word in
HSp(zλ × zµ).

Furthermore, we defined KPλ =
∑

T xT as the generating function of all weak set-
valued shifted tableaux of shape λ with no primes on the diagonal at the end of section
2.3. These functions help us, since it is already known, that the latter generating function
is related to the Schur P-functions by the automorphism of the algebra of symmetric
functions ω which maps the Schur functions sλ 7→ sλT . It holds that GPλ = ω(KPλ).
We refer to [6, Corollary 6.6] for details.

So to prove Theorem 4.1, we can prove instead the following lemma.

Lemma 4.2. Let λ, µ be two strict partitions. It holds that

KPλ ·KPµ =
∑
ν

eνλµKPν

for some numbers eνλµ ∈ N0.

If this is proven, we know that

GPλ = ω(KPλ) = ω(
∑
ν

eνλµKPν) =
∑
ν

eνλµω(KPν) =
∑
ν

eνλµGPν .

Definition 4.3. Let z ∈ F∞ be an FPF-involution. We define

KPz :=
∑

(w,i)∈Incr(HSp(z))

x(w,i),

where x(w,i) =
∏

j x
wti(j)
j =

∏
i x

len(wj)
j = for (w1, w2, . . . ) 7→ (w, i).
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Example 32. We want to calculate some factors of KPs1s2θs2s1 . With the rules of Sp
= we

can compute the set of symplectic Hecke words of s1s2θs2s1 with length lower than 4:

{23, 21, 223, 233, 221, 211, 231, 213}.

To calculate the factor of a monomial
∏

xaii , we can just count the number of pairs
(w, j) ∈ Incr(HSp(s1s2θs2s1)), such that i appears in the weakly increasing sequence j
exactly ai times.

(23, 11) (21, 12) (23, 22) (223, 111) (221, 112) (211, 122) (223, 222)

(23, 12) (233, 111) (223, 112) (223, 122) (233, 222)

(233, 112) (233, 122)

(231, 112) (213, 122)

This are all possible weakly increasing factorisations of words in HSp(s1s2θs2s1), where
the factorisation uses only 1 and 2 and the lenth of the word is lower than 4. So we get

KPs1s2θs2s1 = 1 · x21 + 2 · x1x2 + 1 · x22 + 2 · x31 + 4 · x21x2 + 4 · x1x22 + 2 · x32 + . . .

Lemma 4.4. For a strict partition λ it holds that

KPz =
∑

S∈{PSp(w):w∈HSp(z)}

KPshape(S) .

Proof. Since the semistandard variant of the symplectic Hecke insertion is weight preserv-
ing, we can see that x(w,i) =

∏
j x

wti(j)
j = xQSp(w,i). So KPz =

∑
(w,i)∈Incr(HSp(z))

xQSp(w,i).
Since we know that the tuples (w, i) of this form are in bijection with (PSp(w), QSp(w, i)),
we can rewrite this sum as KPz =

∑
S∈{PSp(w):w∈HSp(z)}

∑
T xT , where the inner gener-

ating function is over the set T of all semistandard weak set-valued tableaux with the
same shape as S. So KPz =

∑
S∈{PSp(w):w∈HSp(z)}KPshape(S).

Lemma 4.5. Let y, z ∈ F∞. It holds that

KPy ·KPz = KPy×z .

Proof. We saw a bijection Incr(HSp(y))× Incr(HSp(z)) −→ Incr(HSp(y × z)) at the end
of section 2.1. With that we are able to see, that

KPy ·KPz =
∑

(v,i)∈Incr(HSp(y))

∏
i

x
len(vi)
i

∑
(w,j)∈Incr(HSp(z))

∏
j

x
len(wj)
j

=
∑

Incr(HSp(y))×Incr(HSp(z))

∏
i,j

x
len(vi)
i x

len(wj)
j

=
∑

Incr(HSp(y))×Incr(HSp(z))

∏
i

x
len(vi)+len(wj)
i

=
∑

Incr(HSp(y)×HSp(z))

∏
x
len(viw̌i)
i

= KPy×z .
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Remark 4.6. The last fact we need is that for every λ which has a maximum of n− 1
columns, there is a formular for an FPF-involution zλ ∈ Fn such that KPλ = KPzλ [3].

Since we do not want to proof it here, we want to get convinced by an example:
To calculate a factor of the monomial

∏
xaii in KP(1), we have count the number of

semistandard weak set-valued shifted tableaux of shape (1) in which i or i′ appears ai
times. But to get a semistandard tableau, we can fill the single box of the young diagram
exactly one time with the multiset which contains ai times i, since we are not allowed to
prime anything in the diagonal box. So the factor of every monomial in KP(1) is 1.

To get this polynomial by calculating KPz for a fix-point-free involution z ∈ F∞, we
need a set of symplectic Hecke words, in which every weakly increasing sequence of num-
bers appear exactly once as weakly increasing factorisation for a word in the set. This is
realised if we take the symplectic Hecke words ofHSp(s2θs2) = {2, 22, 222, 2222, 22222 . . . }.
Since these words never decrease, we can take any weakly increasing sequence as weakly
increasing factorisation. And since there is only one word of a specific length, we can
choose every of these sequences exactly once. So KP(1) = KPs2θs2 .

Now we want to calculate some factors of KP(2) :

KP(2) = 1x21 +2x1x2 +1x2 +2x31 +4x21x2 +4x1x
2
2 + . . .

1 1 1 2 2 2 11 1 11 2 12 2

1 2′ 1 11 11 2′ 1 22

1 12 1 2′2

1 12′ 1 2′2′

We see that this KP(2) has the same factors as the polynomial in Example 32. And
indeed, z(2) = s1s2θs2s1.

Proof for Lemma 4.2. We summarise all we have learned in this section, and get:

KPλ ·KPµ
4.6
= KPzλ ·KPzµ

4.5
= KPzλ×zµ

4.4
=

∑
T∈{PSp(w):w∈HSp(zλ×zµ)}

KPshape(T ) =
∑
ν

eνλµKPν ,

where eνλµ is the number of insertion tableaux with shape ν and row reading word in
HSp(zλ × zµ), since the symplectic Hecke insertion is bijective.

Example 33. We want to check whether the equation holds for KP(1) ·KP(2).
We already calculated at least a few factors of these polynomials:

KP(1) = 1x1 + 1x2+1x21 + 1x1x2 + 1x22 + 1x31 + 1x21x2 + 1x1x
2
2 + 1x32 + . . .

KP(2) = 1x21 + 2x1x2 + 1x22 + 2x31 + 4x21x2 + 4x1x
2
2 + 2x32 + . . .

So we can calculate

KP(1) ·KP(2) = x31 + 3x21x2 + x32 + 3x41 + 9x31x2 + 12x21x
2
2 + 9x1x

3
2 + 3x42 + . . .
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Now we want to calculate
∑

ν e
ν
(1)(2)KPν . We already saw that z(1) = s2θs2, while

we claimed that z(2) = s1s2θs2s1. With the bijection we defined at the end of sec-
tion 2.1, we can see that ((2, 1), (21, 12)) 7−→ (265, 112), and thus we know that 265
has to be a symplectic Hecke word in HSp(z(1) × z(2)). Since this set has to be an

equivalence class of
Sp
≡, we can use its rules to find the other symplectic Hecke words:

HSp(z(1) × z(2)) = {265, 625, 652, 672, 627, 267, 6257 . . . }.
By calculating the insertion tableaux of this set, we get

6

2 5
= P (265) = P (625) = P (2265) = P (2625) = P (2665) = . . . ,

2 6 7 = P (652) = P (672) = P (627) = P (267) = P (6652) = . . . ,

6

2 5 7
= P (2652) = P (6253) = P (6525) = P (6725) = P (6275) = . . . .

Especially, no other insertion tableau appears, independently how long the words are.
So e

(2,1)
(1)(2) = e

(3)
(1)(2) = e

(3,1)
(1)(2) = 1 and every other eν(1)(2) = 0, such that

KP(1) ·KP(2) = KP(2,1)+KP(3)+KP(3,1) .

To calculate them, we are again interested in semistandard weak set-valued shifted
tableaux, as we calculated terms of KP(2,1) in Example 16 already.

KP(2,1) = 1 · x21x2 + 1 · x1x22 + 2 · x31x2 + 2 · x1x32 + 3 · x21x22 + . . .

The tableaux of shape (3), which are interesting for the monomials of degree smaller
or equal to 4, are:

1 1 1 1 1 2 1 2 2 11 1 1 11 1 2 11 2 2 12 2 2

and 1 1 2′ 1 2′ 2 1 11 1 11 1 2′ 11 2′ 2 1 22 2

2 2 2 1 1 11 1 11 2 1 12 2 1 2′2 2

and 1 11 2′ 1 12′ 2 1 2′2′ 2

22 2 2 1 1 12 1 1 22 1 2 22

2 22 2 1 1 12′ 1 1 2′2 1 2′ 22

2 2 22 1 1 2′2′

So we see that

KP(3) = x31 + 2x21x2 + x1x
2
2 + x32 + 3x41 + 6x31x2 + 7x21x

2
2 + 6x1x

3
2 + 3x42 + . . . .
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And finally, we have to look for semistandard weak set-valued shifted tableaux of shape
(3, 1):

2

1 1 1

2

1 1 2

2

1 1 2′
2

1 2′ 2

So KP(3,1) = x31x2 + 2x21x
2
2 + x1x

3
2 + . . . and alltogether

KP(2,1)+KP(3)+KP(3,1) = x31 + 3x21x2 + x32 + 3x41 + 9x31x2 + 12x21x
2
2 + 9x1x

3
2 + 3x42 + . . .

= KP(1) ·KP(2) .

5 Algorithms in Sage

This chapter contains Sage code that implements the algorithms discussed earlier. The
chapter is divided into several sections. The first section contains code related to words

and relations, including a code that returns a list of words in a given
Sp
≡ equivalence class

of a fixed length. The second section contains code related to tableaux, including a code
that checks if a tableau is weakly admissible. The next two sections contain the code for
(semistandard) symplectic Hecke insertion and its inverse. Afterward, there is a section
that defines a way to return the visualization of a tableau and useful documentations.
In the last section are examples of requests and their corresponding output.

Before we see the code there are a few remarks to mention the differences between the
notation in the paper and in the code.

• Words are realised by a list of its letters.

• Primed numbers are realized by subtracting 0.5. So 5′ is represented by 4.5.

• Marked shifted tableaux (especially PSp) are realized by a two dimensional list,
where the inner lists each represent one row of the tableaux. So for example

6 7

2 4 5 6
is saved as [[2, 4, 5, 6], [6, 7]].

• (Weak) set-valued shifted tableaux are realized by three dimensional lists, where
the second-level lists also represent the rows, where the third-level lists represents
the (multi-)sets of each box. So for example

33

1′ 1 4′4′
is saved as [[[0.5], [1], [3.5, 3.5]], [[3, 3]]].

• Due to the representation of tableaux, there are two kinds of positions, we are
using. Absolute positions are the numeration, how we did it in this paper too.
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Relative positions are the places in the more dimensional lists. So for example

T =
5 6

1 2 3 4
saved as [[1, 2, 3, 4], [5, 6]]

has 5 on the absolute position (2, 2) but in the relative position (2, 1), since it is in
the first entry of the second list.

• Furthermore, the lists start to count with 0, so if we want to get the entry 5 in the
previous tableau, we need to ask for T [1][0].

• Outer boxes are represented by a list of length 3. The first entry is the value, the
latter two are the absolute position in the tableau. So for example

· 6 · 5

2 5 · ·

is represented by the tableau [[2, 5], [6]] with outer box [5, 3, 1]

5.1 Relations and words
# adds word to list, if its not in there already
def add_for_list(list, word):

if not word in list:
list.append(word)

# returns list with every symplectic Hecke word of the same permutation as start_word of
a fixed length by calculating the fitting equivalence class (see 2.2)↪→

def HSp_list(start_word, length):
liste=[]
liste.append(start_word)
for word in liste:

# if any word in the list starts with an odd leter, start_word was not a
symplectic Hecke word↪→

if word[0]%2==1:
print('Error: This is not a symplectic Hecke word!')
exit()

# X(X+1)a ∼ X(X-1)a
if 1<len(word) and abs(word[0]-word[1])==1 and word[1]+(2*(word[0]-word[1]))!=0:

candidate = [word[0]]+[word[1]+(2*(word[0]-word[1]))]+word[2:len(word)]
add_for_list(liste,candidate)

for position in range(0,len(word)):
# aXZXb ∼ aZXZb
if position+2<len(word) and word[position]==word[position+2]:

candidate = word[0:position] +
[word[position+1],word[position],word[position+1]] +
word[position+3:len(word)]

↪→

↪→

add_for_list(liste,candidate)
# aXYb ∼ aYXb if |X-Y|>1
if position+1<len(word) and abs(word[position]-word[position+1])>1:
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candidate = word[0:position] + [word[position+1],word[position]] +
word[position+2:len(word)]↪→

add_for_list(liste,candidate)
# aXb -> aXXb
if len(word)<length:

candidate = word[0:position] + [word[position],word[position]] +
word[position+1:len(word)]↪→

add_for_list(liste,candidate)
if len(candidate)==length and len(start_word)!=length:

return HSp_list(candidate,length)
# aXXb -> aXb
if position+1<len(word) and word[position] == word[position+1]:

candidate = word[0:position] + [word[position]] +
word[position+2:len(word)]↪→

add_for_list(liste,candidate)
if len(candidate)>length:

return HSp_list(candidate,length)
# remove every member of the list, which has the wrong length
kuerzer=[]
for member in liste:

if len(member)!=length:
kuerzer.append(member)

for member in kuerzer:
liste.remove(member)

return(liste)

# returns list with all FPF-ivolution words congruent to start_word (see 2.2)
def RFPF_list(start_word):

list = [start_word]
for word in list:

# if any word in the list starts with an odd leter, start word was not a
symplectic Hecke word↪→

if word[0]%2==1:
print('Error: This is not a symplectic Hecke word!')
exit()

# X(X-1)a ∼ X(X+1)a
if abs(word[0]-word[1])==1:

add_for_list(list,[word[0],word[1]+(2*(word[0]-word[1]))] +
word[2:len(word)])↪→

# if in the new word are same adjacent letters, start_word was not an
FPF-involutions word↪→

if word[1]+(2*(word[0]-word[1])) == word[2]:
return []

# going through every letter of the actual word
for position in range(0,len(word)-1):

# aXYb ∼ aYXb for |X-Y| > 1
if abs(word[position]-word[position+1]) != 1:

candidate = word[0:position] + [word[position+1],word[position]] +
word[position+2:len(word)]↪→

add_for_list(list,candidate)
# if in the new word are same adjacent letters, start_word was not an

FPF-involutions word↪→
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if (position-1!=-1 and word[position-1] == word[position+1]) or
(position != len(word)-2 and word[position]==word[position+2]):↪→

return []
if position != len(word)-2 and abs(word[position]-word[position+1]) == 1 and

word[position]==word[position+2]:↪→

candidate = word[0:position] +
[word[position+1],word[position],word[position+1]] +
word[position+3:len(word)]

↪→

↪→

add_for_list(list,candidate)
# if in the new word are same adjacent letters, start_word was not an

FPF-involutions word↪→

if word[position-1] == word[position+1] or word[position+1] ==
word[position+2]:↪→

return []
return list

# returns ``symplectic product'' θ ⊙ w1 ⊙ w2⊙... from word w, cutted at finite point
(see 2.2)↪→

def odot(word,function=()):
s = [PermutationGroupElement([])]
for i in range(1,2*ceil(max(word)/2)+2):

s.append(PermutationGroupElement([(i,i+1)]))
if function==():

function=s[1]
for i in range(3,2*ceil(max(word)/2)+2,2):

function=function*s[i]
for i in word:

if function(i)<function(i+1):
function = s[i]*function*s[i]

else:
if function(i)==i+1 and function(i+1)==i:

return s[0]
return function

# returns list with descents of a word or set-valued tableau (see 3.24)
def Des(input):

descents=[]
if type(input[0])!=list:

word=input
for index in range(0,len(word)-1):

if word[index]>word[index+1]:
descents.append(index+1)

return descents
else:

Q=input
if Q==[[[]]]:

return []
# double saves the row of unprimed entries and the column of primed ones (see

remark 3.26)↪→

double={}
for zeile in range(0,len(Q)):

for spalte in range(0,len(Q[zeile])):
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for entry in range(0,len(Q[zeile][spalte])):
if Q[zeile][spalte][entry]==int(ceil(Q[zeile][spalte][entry])):

double[ceil(Q[zeile][spalte][entry])]=zeile
else:

double[ceil(Q[zeile][spalte][entry])]=spalte+zeile
for index in range(1,len(double)):

if double[index]<double[index+1]:
descents.append(index)

return descents

# returns true iff factorization (as list) is a valid weakly increasing factorization of
word↪→

def is_wif(word,factorization):
# check, whether factorization is increasing
sort=deepcopy(factorization)
sort.sort()
if factorization!=sort:

return false
# if word and factorization have different length
if len(word)!=len(factorization):

return false
# if word decreases, but factorizations does not
for index in Des(word):

if factorization[index-1]>=factorization[index]:
return false

return true

5.2 Tableau methods
# checks, whether a shifted marked tableau is increasing in rows and columns
def is_increasing(tableau):

for zeile in range(0,len(tableau)):
for spalte in range(0,len(tableau[zeile])):

# row is not the highest
if zeile+1<len(tableau):

# if entry over actual entry exists
if spalte <= len(tableau[zeile+1]):

# and if this entry is smaller (we need column -1 to get relative
position)↪→

if tableau[zeile][spalte] >= tableau[zeile+1][spalte-1]:
return false

# if entry is not the last in its row
if spalte+1 < len(tableau[zeile]):

# and if the entry is geq than the one on the right
if tableau[zeile][spalte] >= tableau[zeile][spalte+1]:

return false
return true

# return list with the entries in the (absolute) index-th column of shifted tableau
def create_spalte(tableau,index):

spalte=[]
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for zeile in range(0,len(tableau)):
if index-zeile>=0 and index-zeile<len(tableau[zeile]):

if type(tableau[zeile][index-zeile])!=list:
spalte.append(tableau[zeile][index-zeile])

else:
spalte.append(tableau[zeile][index-zeile])

return spalte

# returns the row reading word of a shifted insertion state
def row_word(tableau,outer_box=[None,None,None]):

word=[]
if outer_box[0]!=None and outer_box[1]==len(tableau):

word.append(outer_box[0])
for zeile in reversed(range(0,len(tableau))):

word.extend(tableau[zeile])
if outer_box[0]!=None and outer_box[1]==zeile:

word.append(outer_box[0])
return word

# returns the column reading word of a shifted insertion state
def column_word(tableau,outer_box=[None,None,None]):

word=[]
for index in range(0,len(tableau[0])):

if outer_box[0]!=None and outer_box[2]==index:
word.append(outer_box[0])

word.extend(reversed(create_spalte(tableau,index)))
if outer_box[0]!=None and outer_box[2]==len(tableau[0]):

word.append(outer_box[0])
return word

# retuns the word of a shifted insertion state
def word(tableau,outer_box=[None,None,None]):

# if tableau has an outer column box
if outer_box[1]==len(tableau)+1:

word=column_word(tableau,outer_box)
else:

word=row_word(tableau,outer_box)
return word

# checks, whether shifted insertion state is weakly admissible (see 3.4)
def is_weaklyadmissible(tableau,outer_box=[None,None,None]):

# terminal and initial tableaus
if outer_box[0]==None or outer_box[1]==0:

return true
# outer row box (first point of definition)
if outer_box[2]==len(tableau[0])+1:

# looking for fitting column
for index in range(1,len(tableau[outer_box[1]-1])):

# if row with outer box end before index-th entry
if outer_box[1]==len(tableau) or index>len(tableau[outer_box[1]]):
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if tableau[outer_box[1]-1][index]<=outer_box[0]:
return true

else:
if tableau[outer_box[1]-1][index]<=outer_box[0] and

outer_box[0]<tableau[outer_box[1]][index-1]:↪→

return true
# outer column box (second point of definition)
if outer_box[1] == len(tableau)+1:

# not allowed to have box in first column
if outer_box[2] == 0:

return false
# checks for special condition
if outer_box[2]-1<len(tableau) and

outer_box[2]-(outer_box[2]-1)<len(tableau[outer_box[2]-1]):↪→

if tableau[outer_box[2]-1][outer_box[2]-(outer_box[2]-1)] == outer_box[0]:
return true

# collect columns of o.b. and the one before
spalte_k = create_spalte(tableau,outer_box[2])
spalte_j = create_spalte(tableau,outer_box[2]-1)
# looking for fitting row
for zeile in range(0,len(spalte_j)):

# if the column beneath the o.b. ends before zeile-th entry
if zeile>=len(spalte_k):

if spalte_j[zeile]<=outer_box[0]:
return true

else:
if spalte_j[zeile]<=outer_box[0] and outer_box[0]<spalte_k[zeile]:

return true
# wrong position for outer box
return false

# checks, whether shifted insertion state is admissible (see 3.11)
def is_admissible(tableau,outer_box=[None,None,None]):

if is_weaklyadmissible(tableau,outer_box) is false:
return false

# if word of tableau is not a symplectic Hecke word
if odot(word(tableau,outer_box))==PermutationGroupElement([]):

return false
# if tableau is empty
if tableau==[]:

return true
# if tableau has an outer row box
if outer_box[2]==len(tableau[0])+1:

# if (o.b.[1],o.b.[1]-1) is occupied by tableau
if outer_box[1]<len(tableau) and 2<=len(tableau[outer_box[1]]):

# if it has the value of the outer box but the diagonal box above is
occupied↪→

if 1<len(tableau[outer_box[1]-1]) and outer_box[0] ==
tableau[outer_box[1]-1][1] and outer_box[1]>=len(tableau[outer_box[1]]):↪→

return false
# if tableau has an outer column box
if outer_box[1]==len(tableau)+1:

# if (o.b.[2]-1,o.b.[2]) is occupied by tableau
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if outer_box[2]-1<len(tableau) and outer_box[2]<len(tableau[outer_box[2]-1]):
# if value of outer box is at position (o.b.[2]-1,o.b.[2]) in tableau
if outer_box[0] == tableau[outer_box[2]-1][outer_box[2]]:

# but (o.b.[2],o.b.[2]) isnt occupied and the outer box is even
if outer_box[2]<len(tableau) and outer_box[2]<len(tableau[outer_box[2]])

and outer_box[2]%2==0:↪→

return false
spalte_i=create_spalte(tableau,outer_box[2]-1)
for index in range(0,len(spalte_i)):

if outer_box[0]==spalte_i[index]:
if index < 1:

return false
return true

# returns standardisation of set-valued shifted tableau (see 3.28)
def standardization(tableau):

spalten=[]
for index in range(0,len(tableau[0])):

spalten.append(create_spalte(tableau,index))
std=deepcopy(tableau)
maximum=0
for zeile in range(0,len(tableau)):

for spalte in range(0,len(tableau[zeile])):
candidat=round(max(tableau[zeile][spalte]))
if candidat > maximum:

maximum=int(candidat)
count=1
for number in range(1,maximum+1):

for spalte in range(0,len(tableau[0])):
for zeile in range(0,len(spalten[spalte])):

for entry in range(0,len(spalten[spalte][zeile])):
if number==spalten[spalte][zeile][entry]:

std[zeile][spalte-zeile][entry]=count
count+=1

for zeile in range(0,len(tableau)):
for spalte in range(0,len(tableau[zeile])):

for entry in range(0,len(tableau[zeile][spalte])):
if tableau[zeile][spalte][entry]==number+0.5:

std[zeile][spalte][entry]=count-0.5
count+=1

return std

# adds value to the aboslute position in the set-valued tableau Q
def add_to_Q(Q,value,position):

if position[0]>len(Q) or position[1]>len(Q[0]):
print('Warning: can not add position', position, 'to', Q,'!')
return Q

# add row
if position[0] == len(Q):

Q.append([[value]])
else:

# add a new box
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if position[1]-position[0] == len(Q[position[0]]):
Q[position[0]].append([value])

# add to a box
else:

Q[position[0]][position[1]-position[0]].append(value)
return Q

5.3 Insertion algorithm
# inserts the first letter of the word to P and record it in Q
# documentation=true returns the edged in the path in prettyprint and the bumping path
# word_as_outer_box=true changes the output: (P,word) will be understood as insertion

state and the algorithm tries to complete the insertion↪→

def insert(P,Q,word,documentation=false, word_as_outer_box=false):
# catch first R1:
if P==[]:

P=[[word[0]]]
Q=[[[1]]]
bumping_path=[(1,1)]
return P,Q,word[1:len(word)]

# starting routine:
# either create the the outer_box for initial insertion state or take word as

outer_box↪→

if word_as_outer_box==false:
outer_box=[word[0],0,len(P[0])+1]

else:
outer_box=deepcopy(word)
word=[]

bumping_path=[]
position=0
# looking for maximal value in Q, in order to be able to add the next number to Q
for zeile in range(0,len(Q)):

for spalte in range(0,len(Q[zeile])):
maximum=round(max(Q[zeile][spalte]))
if maximum > position:

position=int(maximum)
if documentation:

prettyprint(P,outer_box)
while outer_box[0]!=None:

# is outer box at valid position?
if not ((outer_box[2]==len(P[0])+1 and outer_box[1] in range(0,len(P)+1)) or

(outer_box[1]==len(P)+1 and outer_box[2] in range(0,len(P[0])+1))):↪→

print('Error: outer-box is not on a valid position: P=', P, 'outer-box=',
outer_box)↪→

print('Warning: Picture maybe incorrect')
exit()

# if the outer box is a row box:
if outer_box[2]==len(P[0])+1:

# if the outer box is in a row above the tableau
if outer_box[1]==len(P):

P.append([])
# if the outer box is maximal in its row, we can only get R1 und R2:
if P[outer_box[1]]==[] or outer_box[0] >= max(P[outer_box[1]]):
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c = deepcopy(P)
c[outer_box[1]].append(outer_box[0])
# R1 (see R1):
if is_increasing(c):

P[outer_box[1]].append(outer_box[0])
outer_box[0]=None
bumping_path.append((outer_box[1]+1,

len(P[outer_box[1]])+outer_box[1]))↪→

add_to_Q(Q,position+1,(outer_box[1],
len(P[outer_box[1]])+outer_box[1]-1))↪→

if documentation:
document('R1',P,outer_box)

continue
# R2 (see R2):
else:

outer_box[0]=None
bumping_path.append((outer_box[1]+1,

len(P[outer_box[1]])+outer_box[1]))↪→

spalte = create_spalte(P,len(P[outer_box[1]])+outer_box[1]-1)
add_to_Q(Q,position+1,(len(spalte)-1,

len(P[outer_box[1]])+outer_box[1]-1))↪→

# if we did not need the new row from the start of row transitions,
delete it↪→

if P[-1]==[]:
P.remove([])

if documentation:
document('R2',P,outer_box)

continue
# looking for minimal column x in row of outer box, s.t. ob < P(zeile,x)
for x in range(0,len(P[outer_box[1]])):

if outer_box[0]<P[outer_box[1]][x]:
break

# if the outer box is greater than the first box in the row:
# R3 and R4 and D1:
if x!=0:

c = deepcopy(P)
c[outer_box[1]][x] = outer_box[0]
# R4 (see R4)
if is_increasing(c):

outer_box[0] = P[outer_box[1]][x]
P[outer_box[1]][x] = c[outer_box[1]][x]
outer_box[1] += 1
bumping_path.append((outer_box[1],x+outer_box[1]))
if documentation:

document('R4',P,outer_box)
continue

else:
# R3 (see R3)
if x>1 or outer_box[1]<=len(P)-2:

outer_box[0] = P[outer_box[1]][x]
outer_box[1] += 1
bumping_path.append((outer_box[1],x+outer_box[1]))
if documentation:

document('R3',P,outer_box)
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continue
# D1 (see D1)
else:

outer_box[0] = P[outer_box[1]][x]
outer_box[2] = outer_box[1]+1
outer_box[1] = len(P)+1
bumping_path.append((outer_box[2],outer_box[2]+1))
if documentation:

document('D1',P,outer_box)
continue

# else, s.t. the outer box is smaller or equal the first entry in its row:
# D2, D3 and D4:
else:

# if diagonal entry and outer box have the same parity:
# D2 and D3
if P[outer_box[1]][0]%2==outer_box[0]%2:

c = deepcopy(P)
c[outer_box[1]][0] = outer_box[0]
# D3 (see D3)
if is_increasing(c):

outer_box[0]=P[outer_box[1]][0]
P[outer_box[1]][0]=c[outer_box[1]][0]
outer_box[2]=outer_box[1]+1
outer_box[1]=len(P)+1
bumping_path.append((outer_box[2],outer_box[2]))
if documentation:

document('D3',P,outer_box)
continue

# D2 (see D2)
else:

outer_box[0]=P[outer_box[1]][0]
outer_box[2]=outer_box[1]+1
outer_box[1]=len(P)+1
bumping_path.append((outer_box[2],outer_box[2]))
if documentation:

document('D2',P,outer_box)
continue

# if the diagonal entry and the outer box have different parities:
# D4 (see D4)
else:

outer_box[0]=P[outer_box[1]][0]+1
outer_box[2]=outer_box[1]+1
outer_box[1]=len(P)+1
bumping_path.append((outer_box[2],outer_box[2]))
if documentation:

document('D4',P,outer_box)
continue

# else, s.t. if there is a column box
else:

if outer_box[1]==len(P)+1:
# take the column of the outer box from the tableau
spalte=create_spalte(P,outer_box[2])
# if outer box is maximal in its column:
# C1 and C2:
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if spalte==[] or outer_box[0] >= max(spalte):
# C1 (see C1)
c = deepcopy(P)
if len(spalte)==len(c):

c.append([outer_box[0]])
else:

c[len(spalte)].append(outer_box[0])
if is_increasing(c):

P=c
outer_box[0]=None
bumping_path.append((len(spalte)+1,outer_box[2]+1))
add_to_Q(Q,position+0.5,(len(spalte),outer_box[2]))
if documentation:

document('C1',P,outer_box)
continue

# C2 (see C2)
else:

outer_box[0]=None
bumping_path.append((len(spalte)+1,outer_box[2]+1))
add_to_Q(Q,position+0.5,(len(spalte)-1,

len(Q[len(spalte)-1])-1+len(spalte)-1))↪→

if documentation:
document('C2',P,outer_box)

continue
# if the outer box is not maximal in its column:
# C3 and C4:
# looking for minimal x in column i of the o.b., s.t. o.b.<P(i,x)
for x in range(0,len(spalte)):

if outer_box[0]<spalte[x]:
break

c=deepcopy(P)
c[x][outer_box[2]-x]=outer_box[0]
# C4 (see C4)
if is_increasing(c):

outer_box[2]+=1
outer_box[0]=P[x][outer_box[2]-x-1]
P=c
bumping_path.append((x+1,outer_box[2]-x))
if documentation:

document('C4',P,outer_box)
continue

# C3 (see C3)
else:

outer_box[0]=P[x][outer_box[2]-x]
outer_box[2]+=1
bumping_path.append((x+1,outer_box[2]))
if documentation:

document('C3',P,outer_box)
continue

print('Error: ended while-loop without declaring type of edge with')
print('P=', P, 'outer box =', outer_box, 'and Q=', Q)
exit()

if documentation:
print('and bumping path', bumping_path)
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return P,Q,word[1:len(word)]

# inserts the full input word in an empty tableau P and creates the recording tableau Q
# with input = (word,factorization) the algorithm returns the symplectic variant of Q
# documentation=true prints the insertion step by step, print_result= prettyprints the

output↪→

def sHi(input,documentation=false,print_result=false):
if type(input)==tuple:

word=input[0]
factorization=input[1]

else:
word=input
factorization=None

# if factorization is not valid for word
if factorization!=None and not(is_wif(word,factorization)):

print('Error: this is not a valid weakly increasing factorization of the word!')
exit()

if print_result:
print('The tableau resulting as insertion tableau when inserting', word, end='')
if factorization!=None:

print(' with weakly increasing factorization', factorization, end='')
print(' to an empty tableau is')

P=[]
Q=[[]]
# as long as we have letters in w, insert the next one
while len(word)!=0:

(P,Q,word)=insert(P,Q,word,documentation)
# if a valid factorization was in input, return Q(w,i) (see 3.27)
if factorization!=None:

for zeile in range(0,len(Q)):
for spalte in range(0,len(Q[zeile])):

for entry in range(0,len(Q[zeile][spalte])):
if Q[zeile][spalte][entry]==ceil(Q[zeile][spalte][entry]):

Q[zeile][spalte][entry]=
factorization[ceil(Q[zeile][spalte][entry])-1]↪→

else:
Q[zeile][spalte][entry]=

factorization[ceil(Q[zeile][spalte][entry])-1]-0.5↪→

if print_result:
print('\n P=')
prettyprint(P)
print('\n with the recording tableau Q=')
prettyprint(Q)

return (P,Q)

5.4 Inverse insertion
# returns the bigger and existing entry in the tableau of the two absolute positions
def bigger_entry(tableau,position1,position2):

# if position1 is occupied by tableau
if position1[0]<len(tableau) and position1[1]-position1[0]<

len(tableau[position1[0]]) and position1[0]>=0 and position1[1]>=0:↪→
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candidate=tableau[position1[0]][position1[1]-position1[0]]
# if position2 is also occupied by tableau
if position2[0]<len(tableau) and position2[1]-position2[0]<

len(tableau[position2[0]]) and position2[0]>=0 and position2[1]>=0:↪→

candidate=max(tableau[position1[0]][position1[1]-position1[0]],
tableau[position2[0]][position2[1]-position2[0]])↪→

# if position1 is not occupied by tableau
else:

# if position2 is occupied by tableau
if position2[0]<len(tableau) and position2[1]-position2[1]<

len(tableau[position2[0]]) and position2[0]>=0 and position2[1]>=0:↪→

candidate=tableau[position2[0]][position2[1]-position2[0]]
else:

print('\n ERROR: Neither', position1, 'nor', position2, 'is occupied by',
tableau)↪→

exit()
return candidate

# removes maximal value from box in relative position
def remove_from_Q(Q,pos_zeile,pos_spalte):

if len(Q[pos_zeile][pos_spalte])!=1:
Q[pos_zeile][pos_spalte].remove(max(Q[pos_zeile][pos_spalte]))

else:
if len(Q[pos_zeile])!=1:

Q[pos_zeile].remove([max(Q[pos_zeile][pos_spalte])])
else:

Q.remove([[max(Q[pos_zeile][pos_spalte])]])

# uninserts the value of P, which is choosen by Q and put it in front of the word
def uninsert(P,Q,word,documentation=false):

if documentation:
prettyprint(P)

# looking for maximal element in Q and save its relative position in (pos_zeile,
pos_spalte)↪→

position=0
for zeile in range(0,len(Q)):

for spalte in range(0,len(Q[zeile])):
maximum=round(max(Q[zeile][spalte]))
if maximum > position:

position=int(maximum)
pos_zeile=zeile
pos_spalte=spalte

outer_box=[None,None,None]
# if maximal element is unprimed:
# iR1 or iR2
if max(Q[pos_zeile][pos_spalte])==position:

# if it is alone in its box, so iR1 (see iR1)
if len(Q[pos_zeile][pos_spalte])==1:

outer_box[0]=P[pos_zeile][pos_spalte]
outer_box[1]=pos_zeile
outer_box[2]=len(P[0])+1
if len(P[pos_zeile])!=1:
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P[pos_zeile].pop(pos_spalte)
else:

P.pop(pos_zeile)
if documentation:

document('iR1',P,outer_box)
# else, s.t. there are other elements in the box of the maximal value in Q, so

iR2 (see iR2)↪→

else:
# take the right outer corner
outer_corner=[None,None,pos_spalte+1+pos_zeile]
if pos_spalte+1<len(P[0]):

outer_corner[1]=len(create_spalte(P,pos_spalte+pos_zeile+1))
else:

outer_corner[1]=0
# now iR2 at position of the outer corner
outer_box[1]=outer_corner[1]
outer_box[2]=len(P[0])+1
outer_box[0]=bigger_entry(P,(outer_corner[1],outer_corner[2]-1),

(outer_corner[1]-1,outer_corner[2]))↪→

if documentation:
document('iR2',P,outer_box)

# else, s.t. maximal value in Q is primed, so
# iC1 and iC2
else:

# if it is alone in its box, so iC1 (see iC1)
if len(Q[pos_zeile][pos_spalte])==1:

outer_box[0]=P[pos_zeile][pos_spalte]
outer_box[1]=len(P)+1
outer_box[2]=pos_spalte+pos_zeile
if len(P[pos_zeile])!=1:

P[pos_zeile].pop(pos_spalte)
else:

P.pop(pos_zeile)
if documentation:

document('iC1',P,outer_box)
# else, s.t. there are other elements in the box of the maximal value in Q, so

iC2 (see iC2)↪→

else:
# looking for outer corner in P in row above of max value in Q
outer_corner=[None,pos_zeile+1,None]
if pos_zeile+1<len(P):

outer_corner[2]=len(P[pos_zeile+1])+pos_zeile+1
else:

outer_corner[2]=pos_zeile+1
# now iC2 at position of outer corner
outer_box[2]=outer_corner[2]
outer_box[1]=len(P)+1
outer_box[0]=bigger_entry(P,(outer_corner[1]-1,outer_corner[2]),

(outer_corner[1],outer_corner[2]-1))↪→

if documentation:
document('iC2',P,outer_box)

if outer_box[0]==None or outer_box[1]==None or outer_box[2]==None:
print('\n Error: Couldnt find the first edge, P=', P, 'outer_box=', outer_box)
exit()
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if is_admissible(P,outer_box) is false:
print('\n Error: Something went wrong, P is not admissible anymore! \n P=', P,

'outer_box=', outer_box)↪→

prettyprint(P, outer_box)
exit()

# other edges:
# starting routine
while outer_box[1]!=0:

if is_admissible(P,outer_box) is false:
print('\n Error: Something went wrong, P is not admissible anymore! \n

outer_box=', outer_box)↪→

prettyprint(P)
exit()

# if outer box is an outer row box
if outer_box[2]==len(P[0])+1:

# looking for special column from admissibility
for spalte in reversed(range(0,len(P[outer_box[1]-1]))):

if P[outer_box[1]-1][spalte]<=outer_box[0]:
break

# iR3 (see iR3)
if P[outer_box[1]-1][spalte]==outer_box[0]:

outer_box[1]-=1
outer_box[0]=bigger_entry(P,(outer_box[1],spalte-1-outer_box[1]),

(outer_box[1]-1,spalte+1-(outer_box[1]-1)))↪→

if documentation:
document('iR3',P,outer_box)

continue
# iR4: (see iR4)
else:

outer_box[1]-=1
outer_box[0], P[outer_box[1]][spalte] = P[outer_box[1]][spalte],

outer_box[0]↪→

if documentation:
document('iR4',P,outer_box)

continue
# else, s.t if the outer box is an outer column box
else:

if outer_box[1]==len(P)+1:
# if value of outer box is geq than diagonal entry in column left of

outer box:↪→

# iD1 or iD2 or iD3 or iD4 or iC3a
if outer_box[2]-1<len(P) and P[outer_box[2]-1][0]<=outer_box[0]:

# iD1: (see iD1)
if outer_box[0]%2==0 and P[outer_box[2]-1][0]<outer_box[0] and

(outer_box[2]<len(P[outer_box[2]-1]) and
P[outer_box[2]-1][1]==outer_box[0]):

↪→

↪→

outer_box[0]=bigger_entry(P,(outer_box[2]-1,0),
(outer_box[2]-2,2))↪→

outer_box[1]=outer_box[2]-1
outer_box[2]=len(P[0])+1
if documentation:

document('iD1',P,outer_box)
continue

# iD2 (see iD2)
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if P[outer_box[2]-1][0]==outer_box[0] and P[outer_box[2]-2][1]%2==0:
outer_box[0]=P[outer_box[2]-2][1]
outer_box[1]=outer_box[2]-1
outer_box[2]=len(P[0])+1
if documentation:

document('iD2',P,outer_box)
continue

# iD3 (see iD3)
if P[outer_box[2]-1][0]<outer_box[0] and (1>=len(P[outer_box[2]-1])

or outer_box[0]<P[outer_box[2]-1][1]) and outer_box[0]%2==0:↪→

outer_box[1]=outer_box[2]-1
outer_box[2]=len(P[0])+1
outer_box[0],P[outer_box[1]][0] =

P[outer_box[1]][0],outer_box[0]↪→

if documentation:
document('iD3',P,outer_box)

continue
# iD4 (see iD4)
if P[outer_box[2]-1][0]<outer_box[0] and outer_box[0]%2==1:

outer_box[0]=P[outer_box[2]-1][0]-1
outer_box[1]=outer_box[2]-1
outer_box[2]=len(P[0])+1
if documentation:

document('iD4',P,outer_box)
continue

# iC3a (see iC3a)
if P[outer_box[2]-1][0]==outer_box[0] and 1<len(P[outer_box[2]-2])

and P[outer_box[2]-2][1]%2==1:↪→

outer_box[0]=P[outer_box[2]-2][1]
outer_box[2]-=1
if documentation:

document('iC3a',P,outer_box)
continue

# if outer box is lower than the diagonal entry in column left of outer
box:↪→

# iC3b and iC4
if outer_box[2]-1>=len(P) or outer_box[0]<P[outer_box[2]-1][0]:

# looking for special row given by admissible tableaus
spalte=create_spalte(P,outer_box[2]-1)
for index in reversed(range(0,len(spalte))):

if spalte[index]<=outer_box[0]:
break

# iC3b (see iC3b)
if P[index][outer_box[2]-1-index]==outer_box[0]:

outer_box[2]-=1
outer_box[0]=bigger_entry(P,(index-1,outer_box[2]),

(index,outer_box[2]-1))↪→

if documentation:
document('iC3b',P,outer_box)

continue
# iC4 (see iC4)
if P[index][outer_box[2]-1-index]<outer_box[0]:

outer_box[2]-=1
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outer_box[0],P[index][outer_box[2]-index] =
P[index][outer_box[2]-index],outer_box[0]↪→

if documentation:
document('iC4',P,outer_box)

continue
print('\n Error: Something went wrong. Can not find fitting edge for P=')
prettyprint(P,outer_box)
exit()

# remove max element from Q and add outer box to word
remove_from_Q(Q,pos_zeile,pos_spalte)
word.insert(0, outer_box[0])
return(P,Q,word)

# returns the word (resp. the word and the factorization), which results in the
admissible insertion tableau P and the recording tableau Q by symplectic Hecke
insertion.

↪→

↪→

def isHi(PQ,documentation=false,print_result=false):
P=PQ[0]
Q=PQ[1]
# looking for factorization:
factorization=[]
for zeile in range(0,len(Q)):

for spalte in range(0,len(Q[zeile])):
for entry in range(0,len(Q[zeile][spalte])):

factorization.append(ceil(Q[zeile][spalte][entry]))
factorization.sort()
# if factorization is not trivial, calculate standardization(Q(w,i))
if factorization!=list(range(1,len(factorization)+1)):

Q=standardization(Q)
if print_result:

print('To get this P and Q you need the word ', end='')
word=[]
# uninsert letters from P, till it is empty
while P!=[]:

(P,Q,word)=uninsert(P,Q,word,documentation)
if print_result:

print(word, end='')
if factorization!=list(range(1,len(factorization)+1)):

print(' with the factorization', factorization,end='')
print('.')

if factorization == list(range(1,len(factorization)+1)):
return word

return (word,factorization)

5.5 Prettyprinting and documentation
# prints row with entries
def printentries(tableau,zeile,spalte):

if type(tableau[zeile][spalte])==type([]):
for eintrag in range(0,len(tableau[zeile][spalte])):

if type(tableau[zeile][spalte][eintrag])==Integer or
type(tableau[zeile][spalte][eintrag]) == int:↪→
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print(tableau[zeile][spalte][eintrag], sep='',end=' ')
else:

print(int(tableau[zeile][spalte][eintrag]+0.5),'´', sep='',end=' ')
else:

print(tableau[zeile][spalte], sep='',end=' ')
# create tableau, which entries save the needed length per box
def create_length(tableau):

laenge=[]
# Set-valued tableaus:
if type(tableau[0][0])==type([]):

for zeile in range(0,len(tableau)):
laenge.append([])
for spalte in range(0,len(tableau[zeile])):

laenge[zeile].append([])
laenge[zeile][spalte]=2*len(tableau[zeile][spalte])-1
for eintrag in range(0,len(tableau[zeile][spalte])):

laenge[zeile][spalte]+=
floor(log(tableau[zeile][spalte][eintrag]+0.5,10))↪→

if round(tableau[zeile][spalte][eintrag])!=
tableau[zeile][spalte][eintrag]:↪→

laenge[zeile][spalte]+=1
# insertion tableaus
else:

for zeile in range(0,len(tableau)):
laenge.append([])
for spalte in range(0,len(tableau[zeile])):

laenge[zeile].append([])
laenge[zeile][spalte] = 1+floor(log(tableau[zeile][spalte]+0.5,10))

return laenge

# print (set-valued) shifted tableaus (with outer box):
def prettyprint(tableau, outer_box=[None,None,None]):

# catch empty tableaus
if (tableau==[] or tableau==[[]]) and outer_box[0]==None:

print('######')
print('#')
print('#')
print('######')
return

if (tableau==[] or tableau==[[]]) and outer_box[0]!=None:
print('######')
print('# +-','-'*(1+floor(log(outer_box[0]+0.5,10))),'-+',sep='')
print('# | ',outer_box[0],' |',sep='')
print('# +-','-'*(1+floor(log(outer_box[0]+0.5,10))),'-+',sep='')
print('######')
return

# first determine the length needed for each box
laenge=create_length(tableau)
# looking for maximal length in each column to make every box in a column equaly

long↪→

laenge_spalte=deepcopy(laenge[0])
# looking for outer column box
if outer_box[0]!=None and outer_box[1]==len(tableau)+1:
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if outer_box[2]<len(laenge_spalte):
laenge_spalte[outer_box[2]]=

max(laenge_spalte[outer_box[2]],1+floor(log(outer_box[0]+0.5,10)))↪→

if len(laenge)>0:
for zeile in range(1,len(laenge)):

for spalte in range(0,len(laenge[zeile])):
laenge_spalte[zeile+spalte]=

max(laenge_spalte[zeile+spalte],laenge[zeile][spalte])↪→

# create frame
print()
print('###','#'*(sum(laenge_spalte)+3*len(tableau[0])),sep='',end='')
if outer_box[0]!=None:

print('###'*(max(0,outer_box[2]-len(tableau[0]))),
'#'*(1+floor(log(outer_box[0]+0.5,10))), '###', sep='',end='')↪→

print('###')
print('#')
# create boxes with entries
# create outer column box
if outer_box[0]!=None and outer_box[1]==len(tableau)+1 and

outer_box[2]<len(laenge_spalte):↪→

print('# ', ' '*outer_box[2], '
'*(sum(laenge_spalte[0:outer_box[2]])-outer_box[1]), sep='',end='')↪→

print('+-', '-'*laenge_spalte[outer_box[2]],'-+', sep='')
print('# ', ' '*outer_box[2], '

'*(sum(laenge_spalte[0:outer_box[2]])-outer_box[1]), sep='',end='')↪→

print('|', outer_box[0],'|')
print('# ',' '*outer_box[2], '

'*(sum(laenge_spalte[0:outer_box[2]])-outer_box[1]), sep='',end='')↪→

print('+-','-'*laenge_spalte[outer_box[2]], '-+', sep='')
print('# ')

else:
# create outer column box in a column next to tableau
if outer_box[0]!=None and outer_box[1]==len(tableau)+1:

print('# ', ' '*(len(tableau[0])), ' '*(sum(laenge_spalte)+1),
sep='',end='')↪→

print('+-', '-'*(1+floor(log(outer_box[0]+0.5,10))),'-+',sep='')
print('# ', ' '*(len(tableau[0])), ' '*(sum(laenge_spalte)+1),

sep='',end='')↪→

print('|', outer_box[0],'|')
print('# ', ' '*(len(tableau[0])), ' '*(sum(laenge_spalte)+1),

sep='',end='')↪→

print('+-', '-'*(1+floor(log(outer_box[0]+0.5,10))), '-+', sep='')
print('# ')

# create outer row box in row over tableau
if outer_box[0]!=None and outer_box[1]==len(tableau) and

outer_box[2]==len(tableau[0])+1:↪→

print('# ', ' '*(len(tableau[0])+1), '
'*(sum(laenge_spalte)+1),sep='',end='')↪→

print('+-', '-'*(1+floor(log(outer_box[0]+0.5,10))),'-+',sep='')
print('# ', ' '*(len(tableau[0])+1), '

'*(sum(laenge_spalte)+1),sep='',end='')↪→

print('|', outer_box[0],'|')
print('# ', end='')
# create tableau
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for zeile in reversed(range(0,len(laenge))):
# Shifting
print(' '*zeile,' '*(sum(laenge_spalte[0:zeile])-zeile), sep='',end='')
# edge above row
for spalte in range(0,len(laenge[zeile])):

print('+-','-'*laenge_spalte[spalte+zeile],'-', sep='',end='')
print('+',end='')
# edges of outer row box
if outer_box[0]!=None and (outer_box[1]==zeile or outer_box[1]==zeile+1):

print(' '*(sum(laenge_spalte[len(tableau[zeile])+zeile:len(tableau[0])])), '
'*(len(tableau[0])-len(tableau[zeile])-zeile+1), sep='', end='')↪→

print('+-','-'*(1+floor(log(outer_box[0]+0.5,10))),'-+', sep='',end='')
print()
print('# ',end='')
# shifting
print(' '*zeile,' '*(sum(laenge_spalte[0:zeile])-zeile), sep='',end='')
# print entries
for spalte in range(0,len(laenge[zeile])):

print('| ', '
'*floor((laenge_spalte[spalte+zeile]-laenge[zeile][spalte])/2),
sep='',end='')

↪→

↪→

printentries(tableau,zeile,spalte)
print(' '*ceil((laenge_spalte[spalte+zeile]-laenge[zeile][spalte])/2),

sep='',end='')↪→

print('| ',end='')
# print entry of outer row box
if outer_box[0]!=None and outer_box[1]==zeile:

print(' '*(sum(laenge_spalte[len(tableau[zeile])+zeile:len(tableau[0])])), '
'*(len(tableau[0])-len(tableau[zeile])-zeile), sep='', end='')↪→

print(' |', outer_box[0],'|', end='')
print()
print('# ',end='')

# print lowest edge
for spalte in range(0,len(laenge[0])):

print('+-', '-'*laenge_spalte[spalte], '-', sep='',end='')
print('+', end='')
if outer_box[0]!=None and outer_box[1]==0:

print(' +-', '-'*(1+floor(log(outer_box[0]+0.5,10))), '-+', sep='', end='')
# create frame
print()
print('#')
print('###','#'*(sum(laenge_spalte)+3*len(tableau[0])),sep='',end='')
if outer_box[0]!=None:

print('###'*(max(0,outer_box[2]-len(tableau[0]))),
'#'*(1+floor(log(outer_box[0]+0.5,10))), '###', sep='', end='')↪→

print('###')
print()

# print an arrow for documentation
def print_edge(label):

print(' |')
print('',label)
print(' |')
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print(' V')

# prints an edge with hit tableau for documentation
def document(label,P,outer_box):

print_edge(label)
prettyprint(P,outer_box)
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5.6 Examples

Finally, here are are some examples, which produce the output beneath them.
Input:

print('\n---------- \n' )

#In Example 1 we calculated, that
print('26542 is a symplectic Hecke word for')

odot([2,6,5,4,2])

print('\n---------- \n' )

#In example 4 we calculated, that
print('The FPF-involution words of (56)(67)(23)theta(23)(67)(56) are')

RFPF_list([2,6,5])

print('\n---------- \n' )

#In example 18 we saw the insertion tableau, in example 26 the recording tableau of
sHi([2,6,5,4,2,5], print_result=true)

print('\n---------- \n' )

#In exaple 27 we saw the inverse:
isHi(([[2, 4, 5, 7], [6]], [[[1], [2], [3.5], [4.5]], [[3, 6]]]))

print('\n---------- \n' )

#In example 30 we saw which recording tableau we get with a factorization:
sHi(([2,6,5,4,2,5],[1,1,2,3,4,4]),print_result=true)

print('\n---------- \n' )

#In example 33 we saw the insertion tableau of 265, here is the insertion step by step:
sHi([2,6,5],documentation=true)

print('\n---------- \n' )
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Output:

----------

26542 is a symplectic Hecke word for
(1,3)(2,5)(4,8)(6,7)

----------

The FPF-involution words of (56)(67)(23)theta(23)(67)(56) are
[[2, 6, 5], [6, 2, 5], [6, 5, 2], [6, 7, 2], [6, 2, 7], [2, 6, 7]]

----------

The tableau resulting as insertion tableau when inserting [2, 6, 5, 4, 2, 5] to an empty
tableau is↪→

P=

######################
#
# +---+
# | 6 |
# +---+---+---+---+
# | 2 | 4 | 5 | 7 |
# +---+---+---+---+
#
######################

with the recording tableau Q=

##########################
#
# +-----+
# | 3 6 |
# +---+-----+----+----+
# | 1 | 2 | 4´ | 5´ |
# +---+-----+----+----+
#
##########################

([[2, 4, 5, 7], [6]], [[[1], [2], [3.50000000000000], [4.50000000000000]], [[3, 6]]])

----------

To get this P and Q you need the word [2, 6, 5, 4, 2, 5].
[2, 6, 5, 4, 2, 5]

----------

The tableau resulting as insertion tableau when inserting [2, 6, 5, 4, 2, 5] with weakly
increasing factorization [1, 1, 2, 3, 4, 4] to an empty tableau is↪→
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P=

######################
#
# +---+
# | 6 |
# +---+---+---+---+
# | 2 | 4 | 5 | 7 |
# +---+---+---+---+
#
######################

with the recording tableau Q=

##########################
#
# +-----+
# | 2 4 |
# +---+-----+----+----+
# | 1 | 1 | 3´ | 4´ |
# +---+-----+----+----+
#
##########################

([[2, 4, 5, 7], [6]], [[[1], [1], [2.50000000000000], [3.50000000000000]], [[2, 4]]])

----------

#################
#
# +---+ +---+
# | 2 | | 6 |
# +---+ +---+
#
#################

|
R1
|
V

##############
#
# +---+---+
# | 2 | 6 |
# +---+---+
#
##############

and bumping path [(1, 2)]

#####################
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#
# +---+---+ +---+
# | 2 | 6 | | 5 |
# +---+---+ +---+
#
#####################

|
R4
|
V

#####################
#
# +---+
# | 6 |
# +---+---+ +---+
# | 2 | 5 |
# +---+---+
#
#####################

|
R1
|
V

##############
#
# +---+
# | 6 |
# +---+---+
# | 2 | 5 |
# +---+---+
#
##############

and bumping path [(1, 2), (2, 2)]
([[2, 5], [6]], [[[1], [2]], [[3]]])

----------
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