RUHR-UNIVERSITAT BOCHUM

FAKULTAT FUR MATHEMATIK
ALGEBRAISCHE KOMBINATORIK

Tableau combinatorics and
insertion algorithms

A THESIS SUBMITTED FOR THE DEGREE OF
MASTER OF SCIENCE

author SUPETVISOT
Tim Strunkheide Prof. Dr. Christian Stump
student number secondary supervisor
108016215942 PD Dr. Bjorn Schuster

March 17, 2023

Contents

[4 Polynomials|

[5 Algorithms in Sage]
b1 Relations and wordsl

5.5 Prettyprinting and documentation| 0L
.6 FExamples|

Acknowledgements

13
13
23
35

39

I would like to express my gratitude to Christian Stump for his excellent guidance and
very kind support throughout this project. I am also want to thank Eric Marberg for
fruitful discussions, Galen Dorpalen-Barry for her expert assistance in almost every mat-
ter, and Elena Hoster for always being there to listen and offer support. Thank you all

for helping me complete this thesis.

1 Introduction

The Schur P-functions and Schur Q-functions are well known families of symmetric func-
tions. Each of them are a basis of the space of symmetric functions, have applications in
respresentation theory and algebraic combinatorics and they generate a ring with non-
negative structure constants. The latter fact was also conjectured for their K-theoretic
analogues GPy and GQ, by Ikeda and Naruse in 2013 in [I]. In 2014, Clifford, Thomas
and Yong proved this for GP) in [2]. However, it is still unproven for GQj.

In this thesis we look onto the symplectic Hecke insertion and a semistandard variant
of it, which was introduced by Eric Marberg in [5]. In this thesis we present some of the
properties of the symplectic Hecke insertion and use them to proof its bijectivity. With
this bijection we are able to understand the bijective approach to proof that K-theoretic
Schur P-functions GP) generate a ring, which was outlined by Eric Marberg in [4]. The
main contribution of this thesis is the correction of an error in the definition of weakly
admissible tableaux [5, Definition 3.5].

In a former version of it a tableau with an outer row box was weakly admissible, if
either 7 = 1 or there exists a column z > ¢ with T;_1 , < T}, < Tj;. So the last part of
the definition was missing. As a result, the first statement of Lemma [3.6] was wrong and
as a result also Theorem 3.8

A closer look onto the details of the proof of Lemma [3.6] reveals the problem: in the
case where we have the outer box not in the first row, we are not able to imply that
co # bif kK = 0. We are not able to evade this, since there are counterexamples, where
the lemma is wrong with the former definition, for example:

%
02 ()

with row reading word 212 and 12 respectively, but 212 é 12, which contradicts the
lemma.

Eric Marberg and I looked for a solution to this and corrected the definition by includ-
ing the missing condition from the definition of admissibility to the definition for weakly
admissibility. With the new version of weakly admissibility, the former proof holds. In
our example, the first insertion state is not weakly admissible anymore, so the lemma
holds. Also, the other parts of [5], where weakly admissibility is used, still hold.

In Chapter 2, we introduce the objects we need to understand the symplectic Hecke
insertion. The main contribution of this thesis is Chapter 3, where we introduce the
algorithm for symplectic Hecke insertion. Therein, Definition describes the main
algorithm while Theorem [3.1]is the main result of this thesis. In section [3.3] we introduce
a semistandard variant of the insertion algorithm and prove its most important properties
in Theorem In Chapter 4, we use the previous results to proof that the K-theoretic
Schur P-functions have positive structure constants in Theorem The last chapter 5
of this thesis presents Sage code that implements the insertion algorithms, their inverses,
and other methods introduced in the previous chapters.

2 Preliminaries

In this paper we refer to the positive integers as N and to the non-negative integers as
N, Let S, be the group of permutations on [n] := {i € N:i < n}. We define S, as the
group of permutations with finite support, that means Soo = J,,cry Sn- The group S, is
generated by {(i,i+ 1) : 1 <i <mn — 1}, the set of permutations, which swap adjacency
positions. We denote s; = (i, + 1), so S, = (s1,52,...,8,—1) and Seo := (S1,82,...).

We use this chapter to define the fundamental objects we require later. Especially, we
introduce symplectic Hecke words, equivalences on words and tableaux.

2.1 Words

A word w is a finite sequence of numbers w = wyws . .. w; with w; € N. The numbers w;
are called letters. The length of w is len(w) = k.

We define now the set of Hecke words. Although, we do not use them in this paper,
we need their related symplectic anaglogue. Define a map o : Sy X {$1,82,...} — Seo
by

{ﬂsi, if w(i) < w(i + 1),
Tos =
m, if w(i) > (i +1).
We define a Hecke word for a permutation o as a word w = wjws...w, such that
o=wiowso...wg. A Hecke word for o with minimal length is called reduced word
for o. The set of reduced words for o is called R(0).

In this paper, we work with fix-point-free involutions. We define the set of fix-point-
free involutions as T, := {77107 : 7 € S}, where O is the permutation © : N — N,
©(n) = n — (=1)". Note, that neither ® nor any element of F is in Sy, because
they do not have finite support, since © = []; jq4q 5i = (12)(34)(56)(78).... We define
Fn =12 € Foo : 2(i) = O(i) for i > n}, so Foo = U en Fau-

We define a map ® : Foo X {81,82,...} — Foo U{0} by

sizsi , if z(i) < z(i + 1),
208 =1z yifi4+1#2(0) > 200+ 1) #14,
0 yifi4+1=20)>2(i+1) =1

A symplectic Hecke word for z € F, is a word wiws...wg, such that it holds
that 2 = © © sy, © Sy © -+ © Sy,. We denote the set of all symplectic Hecke words
for a fix-point-free involution z € F as Hgp(2). A symplectic Hecke word in Hgp(2)
of minimal length is called FPF-involution word for z and the set of FPF-involution
words for z is called Rppr(2).

Remark 2.1. Since © ® s; = 0 if ¢ is odd, every symplectic Hecke word begins with an
even letter. If w = wiws ... wy is a symplectic Hecke word, then w = wyws ... w;w; . .. wg
is also one.

We can conclude from the definition, that every subword w;w;41 ... w;yx of an FPF-
involution word w has to be an FPF-involution word, or else the former word w would
not be an FPF-involution word.

Example 1. Let w = 26542. It holds, that

0® 320860 850 840 89 =1(23)
= (67)(23)0(23)(67) ® 55 © 84 © S92
= (56)(67)(23)0(23)(67)(56) © 54 © 52
= (45)(56)(67)(23)6(23)(67)(56)(45) © s2
= (45)(56)(67)(23)6(23)(67)(56) (4)
= (13)(25)(48)(67)(9,10)(11,12) - -

23)6(23) © 56 @ 55 ® 54 © 82

N(

S0 26542 € Hgp(Z) und Z € Fg. Furthermore, 2654 € Rypr(2) C Hsp(2).

We know, that 526 is not a symplectic Hecke word for any fix-point-free involution,
since it starts with an odd letter. With 26542, there is also 265542 € Hgp(%). Since
265 is a subword of 2654, it follows that 265 is an FPF-involution word. And indeed,

256 € Rrpr((56)(67)(23)0(23)(67)(56)).

Let w = wiws ... wy, be a word of length m. A weakly increasing factorisation of
w is a weakly increasing sequence of positive integers i = (i1 < i9 < -+ < ip,) € N with
ij <ij+1 if wj > wjy1. The weight of such a factorisation is the map wt(, ;) : N — NO
with wt,, ;)(a) = [{j € [m] : i; = a}| for a € N.

The set of all pairs (w, i), where i is a weakly increasing factorisation of w, is called
Incr(w). If W is a set of words, we denote Incr(W) = J,,cyy Incr(w).

Example 2. Every symplectic Hecke word of length n has (1,2,3,4,...,n) as weakly
increasing factorisation.

We already saw some symplectic Hecke words in the previous example, so we can now
define weakly increasing factorisations for them:

(26542, 11234), (26542, 12345), (26542, 22578), (2654, 1137) € Incr(Hsp(%)).

We take the first of them and calculate

Wt (26542,11234) (2) = Wt(26542,11234) (3) = Wt(26542,11234)(4) = 1

and
wt (26542,11234) (1) = 2.

A weakley increasing factorisation splits a word into increasing parts. We can sum-
marize the notation of a word w1th a weakly i increasing factorisation as follows: we write
(wh,w?,w?,...), where w = w'w?w?... and w' = wpwi41 ... we is the subword with
all the indices, so that iy = igy1 = --- = igy;. By the deﬁnition of weakly increasing
factorisations, the words w’ has to be increasing. We also use the term “weakly increasing

factorisation” for these tuples (w!,w?, w3, ...) of possible empty increasing subwords of

w, with w = w'w?w? ..., whereby all but finitely many w’ has to be empty. Moreover,
we abuse the 1ntroduced notation and write (w,7) = (w',w?, w3,...) € Incr(w). By the

definition, we can see that wt(, ;(j) = len(w?).

Example 3. With the notation of the previous examples, we can write now
(26542,11234) = (26,5, 4,2) € Incr(Hgp(2)).

Let y € Fin, 2z € F,, be two fix-point-free involutions. We define another fix-point-free
involution y X z € Fypn by yxz:i—=y(i),m+j— z(j)+mfor1 <i<m,1<j<mn,
and also a bijection

Incr(Hsp(y)) x Incr(Hsp(z)) — Incr(Hgp(y X 2))
(v1,v2,...) X (w1, ws,...) = (viW, voWs, ...),

where w; is formed by adding m to every letter of w;.
We can see directly, that Wh(u1 09,) T Whiwg s,) = Whivgw vpw,...) -

2.2 Equivalences

We define some useful and known relations on words:
Define]2, the braid relation, as the equivalence relation on words generated by the
following rules: for every word a,b and all X,Y € N with |X — Y| > 1 it holds that

o a(X + 1)X(X +1)bZ aX (X +1)Xb and
o aXYb 2 aY Xb.

B
The equivalence relation = is defined similarly as the equivalence relation generated
by the rules: for all words a,b, and all X,Y,Z € N with |X — Y| > 1 it holds that

o uXZXb2 aZX2Zb,

o aXYb 2 aY Xb and
o aXb 2 aXXb

. . S . .
Define the symplectic variant 2 to be the equivalence relation on words generated by

v ® w, if v or w, and X(X — 1)a Bla X(X + 1)a for all words a,v,w and all X > 2.
S S B
Similarly, define 2 to be the equivalence relation on words, with v =2 w, if v Er, and

S
X(X—l)aEI)X(X+1)a for all words a,v,w and X € N with X > 2

Lemma 2.2. If z € F is a fix-point-free involution, then Rppp(z) is an equivalence
S . . . S . .
class under :p, while Hsp(2) is an equivalence class under 2 A word is a symplectic

S
Hecke word, if and only if its equivalence class under 2 does not contain a word that
begins with an odd leter. A symplectic Hecke word is an FPF-involution word, if and

P . S . . .
only if its equivalence class under 2 contains no word with equal adjacent letters.

Example 4. Starting with the word 26542 € Mg, (%), which we found in Example . We
can find other symplectic Hecke words for Z by the following computing;:

r r T S r r
26542 2 62542 2 65242 B 65422 2 6542 = 6742 2 6472 £ 6427,

so {2654, 6254, 6524, 6542, 6742, 6472, 6427} C Hgp(2).
Starting with 265 € Rppr((56)(67)(23)0(23)(67)(56)), which we found in the same
example, we get

265 2 625 2 652 22 672 2 627 £ 267

and since there is no other word which is S:p—equivalent to any of this words, we get
{265,625,652,672,627,267} = Repr((56)(67)(23)6(23)(67)(56)).

Another family of relations is based on the Coxeter-Knuth equivalence 5 (resp.

K
on the K-Knuth equivalence ~). This are the equivalence relations, generated by

aZXYbR aXZYb, aYZXbR aYXZb, aXYXbX aY XY,
resp.

aZXYbR aXZYh, aYZXbmaYXZb, aXYXbmaYXYh, aXbx aXXb.
for all words a,b and every X,Y,Z € Nwith X <Y < Z.

Remark 2.3. The first two rules for each of the latter equivalences state the following:
in a sequence of three distinct letters, we can swap the lowest and the greatest, if they
are adjacent.

To define a symplectic version of these equivalences we want to add another kind of
rule: We say that two words are connected by a symplectic Coxeter-Knuth move, if
one word is obtained from the other in one of these ways:

e By interchanging the first two letters, when they have the same parity.

e By changing the first two letters from X (X — 1) to X(X + 1) for an X € N with
X >2.

. . S .
We define the symplectic Coxeter-Knuth equivalence L as the strongest equiv-
. S . . .
alence relation that has v ~ w, if v N W, or if v and w are connected by a symplectic

S
Coxeter-Knuth move. Analogue, we define the symplectic K-Knuth equivalence 2

as the strongest equivalence relation with v S%p w, if v g w, or if v and w are connected
by a symplectic Coxeter-Knuth move.

By looking onto the definitions of the equivalece relations, we can see that the following
lemma holds.

Lemma 2.4. Let v,w be two words, z € F a fix-point-free involution. If v € Hgp(2)

S
and v % w, then w € Hsp(2). If v € Rppr(2) and v B w, then w € Rppr(2).

Example 5. We can see, that
62467 > 26467 S 24647 X 24674 22 42674 K 46274 K 46724

64724 K 67424 2 65424 K 65242 K 62542 2L 26542.

And since the last word is the word, we took in Example [I} all the listed words are
symplectic Hecke words in Hgp(Z).

2.3 Tableaus

In this part we introduce a few definitions about partitions, Young diagrams and tableaux.
Let n be a non-negative integer. A tupel A = (A1, Ag, ..., Ag) of positive integers A; € N

with Y A\; = nand A\ > A9 > -+ >)\ is a partition of n. The length of a partition

len((A1, A2,..., Ag)) is k. A partition A is strict, if Ay > Ao > -+ > Ap.

Example 6. A partiton of 5 is (2,2, 1), while a strict partition of 5 is (3, 2).

All possible strict partitions of 6 are (6), (5,1) and (4,2).

A Young diagram is a subset of N x N. The Young diagram of a partition A is the
subset Dy = {(4,4) : 1 < j < Ai}. The shifted Young diagram of a strict partition \ is
the subset SDy = {(i,j) 11 <j<i—1+ \}.

To visualise a Young diagram we use a lattice of boxes: for every (i,7) € Y we draw a
box in the ¢-th row and the j-th column. For this paper we use the French notation, so
we start counting the rows from bottom to top and the rows from left to right.

Example 7. The shifted Young diagram for the partition (4,2) is
SD(4,2) = {(17 1)) (11 2)7 (17 3)7 (17 4)1 (27 2)7 (27 3)}7

so the visualization is

| |
A tableau T is a map from a Young diagram Y to N. We write (i,7) € T, if (i,j) € Y
and set T;; = T'(i,j) for every (i,j) € Y. The shape of a tableau is the underlying
Young diagram. A shifted tableau is a tableau, which shape is a shifted Young diagram
8Dy, for any strict partition A. To visualise a tableau we take the visualisation of the
underlying Young diagram and write Tj; in the box at position (4, j).

Example 8. We take a shifted tableau and its visualisation:

We identify tableaux and Young diagramms with their visualisations.

The main diagonal of a tableau T" are the boxes at the positions (7,7) (or the restric-
tion of T to {(i,i) : i € N} NY).

For a tableau T" we define the row reading word by concatenating the entries in the
tableau, starting at first entry in the topmost row and continuing (“like reading”) from
left to right and from top to bottom. For the column reading word we start at the
highest entry in the first column and continuing from top to bottom and from left to
right.

Example 9. We take the tableau from the previous example and see, that
row(T") = 672456, col(T) = 264756
and the main diagonal are the first boxes of each row.

A tableau is called increasing, if for two distinct boxes (z,y) # (a,b) it holds that
Tyy < Ty if and only if x < a and y < b.

Example 10. We take a look onto the following two tableaux:

67 67
2456\ \2256\

The first tableau is increasing, the second one is not, since 711 = T1s.

The length |T'| of a tableau T' is the number of boxes it occupies. We call a tableau
a standard tableau, if it is increasing and its range is [|T]].

Example 11. We list all the shifted standard tableaux of shape (4, 2):

6 416 415 305 316
1234\]1235\\1236\\1246\\1245

Since tableaux were defined onto arbitrary subsets of N x N, we take a short look
onto tableaux, which are not defined on Young diagrams of a partition. Especially, their
visualisation could have holes. A tableau is called row-column-closed, if for every
(a,b), (z,y) € T with a < z and b < y, it holds that (a,y) € T. The following picture
illustrates this condition.

" M
- CI-0
Lemma 2.5. If T is an increasing row-column-closed tableau, then row(7") K col(T).

Proof. By induction over the number of columns of 7"
If T has only one column, row(7") = col(T).
So let T' be an increasing row-column-closed tableau with j columns.

Form the word w by reading the last column of 7" in reverse order (so from highest to
lowest entry). Form U from T by removing the last column. Then U is also increasing

and shifted and col(T") = col(U)w. By induction, row(U) K col(U), so we have to show
now, that row(7") K row(U)w. Let us say, that w is the j-th column and the highest

entry in this column is the i-th, so w = w;w;—1 ... wowy with w, = T;;.
So T has the form

T21T22T23..................T2j
T11T12T13..................le

but with possible several entries missing. Since T has to be row-column-closed, we
know that for any non -empty row k, with k£ < 4, (k, j) has to be occupied by T'.
We get

I‘OW(T) =... TilTig . Ti,j—lwiTi—l,l Ce Ti—l,j—lwi—l c. T11T12 c. T17j_1w1,
while
row(U)w = ... TilT’iQ e T:i,jflj—‘ifl,l e Tifl,jfl e T11T12 e Tl,jfl’wi ..o WwW .

We only have to sort the letters of w from row(U)w to their place in row (7). So we
have to show, that for every k& < ¢ we can swap the k-th row for of the tableau with
every wy, where [> k. Since T is increasing, we know that, if the entries are existing,
Tt <Thpp1 < -+ <Tpjo1 <wsforall bk <sand wy <wy < -+ <wimg < w;.

So Trswiwi_1 X wiTswy—1 for every ¢t > k. By using this, we can pull 77 ;_; through
the letters of w to his place in row(7):

row(U)w = ... T22T23 e Tg}j_lTuTlg . .T17j_3T1,j_2T17j_1’LUZ‘wZ'_1 .o Wow
K
~ ... T22T23 e Tg,j_lTllTlg .. .T17j_3T1,j_2wiT1,j_1w,-_1 . WW
K
~ ... T22T23 e T2,j—1T11T12 . .T17j_3T1,j_2wiwi_1 e ’wQTLj_l'LUl

Since every entry in the first row is lower than 77 ;_1, the same holds for every entry in
the first row, so

K
T‘OUJ(U) ~ .. T22T23 e T27j_1wiwi_1 e w2T11T12 .. .T17j_3T17j_2T17j_1w1.

Now we can apply this to the other rows, by swapping the r-th row and every w,; with
r <t.

K

TOU)(U)U) ~ L WWi—1 . .’w3T22T23 PN T27j_1w2T11T12 .. .Tl’j_3T17j_2T17j_1'lU1
K
la

LT T aTiai1 - Ticajawiwg—1 .o w2l T . wy.

10

We can repeat this, till we reach the (i—1)-th row. First we use again T;_1 j_jw;w;—1 X
w;T;—1 j—1wi—1. Now we need a slightly different argument, since we only have one ele-
ment of w left. We can swap the other entries of the first row T;_1 ;, and w; anyway, since

K .
Ti1p < Tic1p41 < w;i, and so Ty 1w T 1,41 ~ wili—1,Ti 1,41 for every r < j—1.
By using this repeatedly, we can swap now w; with every entry of the (i — 1)-th row and
get

row(U)w X .. Ty Tir - T jTi—1i—1 .- Ti1 j—owiTi—1 j1wi—q ...
5. il Tij T T 3wl 12T 15 1wi—1...
K. T - Tjoawi i1 .. T j—oTi 1 jo1wi—1 - - = row(T).
This completes the proof. O

Example 12. If we take a tableau, which is not row-column-closed, the statement can
be wrong. If we take T as
|3

2

then row(T) = 312 X 132. But col(T) = 123.

Since shifted tableaux are row-column-closed, we can conclude the following lemma.

Theorem 2.6. If T is an increasing shifted tableau, then
K
col(T) ~ row(T).

We define for every number n € N a primed number n’ := n— % So we get the primed
alphabet P={1' <1 <2 <2< ...}. A map from a Young diagram Y to P is called
marked. A map from a Young diagram Y to the power set of the primed numbers P
is called a set-valued tableau. A map from a Young diagram Y to the set of finite,
non-empty multisubsets of P is called a weak set-valued tableau.

Example 13. We look onto the following tableaux:

L o_|36] g 13
EREAN 134 *\1’ 1 ’4’\

The first one is marked, the second one is set-valued and the third one is weak set-valued.

Many definitions for tableaux remain intuitively the same for (weak) set-valued tableaux,
especially the ones which refer to the underlying Young diagram; so the shape of a set-
valued tableau is also the underlying Young diagram and it is also shifted, if the shape
is any SD,.

11

The length of a (weak) set-valued tableau is the sum of the cardinality of all the sets
in the tableau and it is denoted by [T'| := >_, ;|T};|. The weight of a weak set-valued

tableau T is the map wt(7T") : N — NY whose value at i € N is the number of times 4 or 4’
appears in T.

Example 14. By taking the tableaux of the previous example, we get |S| =5, |[U| =6
and the weight of U is
2, if j =1,3,4,
wity(j) =
o) {0, else.
A (weak) set-valued shiftedtableau T is

e increasing, if for two distinct boxes (x,y) # (a,b) it holds that < a and y < b
if and only if max(T},) < min(Tg).

e diagonally-unprimed, if its main diagonal contains no (multi-)set with a primed
entry.

e standard, if it is increasing, diagonally-unprimed and for every i € [|T|] exactly
one of ¢ and i’ appears in the tableau.

e semistandard, if it is increasing, diagonally unprimed, each unprimed number
appears in at most one box in each column of 7" and each primed number appears
in at most one box in each row of T

Example 15. We take a look onto the following tableaux.

[22] 2 1
\ 1] 1R 2 12/

The first two are semistandard, while the last one is not: it is not increasing, since
max(7T11) = 2' > 1 = min(7}2), the box Tj; on the diagonal has a primed entry, the
unprimed 1 appears in two boxes of the second column and the primed 2 appears in two
boxes of the first row.

If T is a tableau, we define the monomial 27 = [T, 2@ and for a set of tableaux T

(2 7
we define the generating function of 7 as } ot 2T,
We define the polynomials KP) for a partition A as generating function over all semi-

standard weak set-valued shifted tableaux of shape A.

Example 16. We want to calculate a few factors of KP(3;). To get the factor of a
monomial [] ", we need to check the number of possible semistandard weak set-valued
tableaux T' of shape (2,1) with wty (i) = a;, so we try to fill the shifted Young diagram

12

with numbers, such that i or ¢ appear exactly a; times:

KP@ 1) =1- rire Hl-mxd 42-atwe 42-xpxy +3-xfzi4.

[2] [2] [2] [2] [2]
11 1|2 \11 1 \12’2’ \11 2!
2] [29] (2]
\1 11 \1 2! \1 12/
[22]

\1

3 Insertion algorithm

In this main chapter of the thesis, we introduce the symplectic Hecke insertion, learn
about its important properties, and work out its inverse. This follows primarily from the
third chapter of [5]. In the final section of this chapter, we refine the insertion to obtain
a semistandard version of the symplectic Hecke insertion. This refinement is based on
section 4.1 of [5]. The semistandard version is the bijection we need in the next chapter
to prove the main result of the thesis.

For a given strict partition A we define the K-theoretic Schur P-function GP) as the
generating function of all semistandard set-valued shifted tableaux of shape A.

In Chapter 4] we see a bijective approach of a proof, that the K-theoretic Schur P-
functions generating a ring with non-negative structure constants, outlined in [4]. That
means, that we have to show, that GP)-GP, = >, er GP, for some non-negative
integers ey, € NY. The first objective is to proof the following theorem, which we
accomplish at the end of section

Theorem 3.1. Let z € Fu,. There is a bijection Hgp(2) — (P, Q) between the set
of symplectic Hecke words for z and the set of pairs of tableaux (P, @), where P is an
increasing shifted tableau with row(P) € Hgp(2) and @ is a standard shifted set-valued
tableau with length |@Q| = len(z) and the same shape as P. Additionally, if we take an
FPF-involution word w € Rppr(z), then row(P) € Rppr and @ is marked.

3.1 Symplectic Hecke insertion

In this section, we introduce the forward transition graph, which is the core of the
symplectic Hecke insertion. We collect some arguments for why the insertion produces
exactly one tableau for any input and prove some useful properties that we need in the
next section. This follows primarily from section 3.1 and 3.2 of [5].

Definition 3.2. A shifted insertion state is a tableau that is either

e increasing, shifted and nonempty (then it is called terminal) or

13

e formed from an increasing shifted tableau with m — 2 rows and n — 2 columns by
adding an extra box in either {m} x [n — 1] or [m — 1] x {n}, which is called its
outer box.

If the outer box is in [m — 1] x {n}, we call it an outer row box, since it is behind the
rows. If it is in {m} x [n — 1], we call it an outer column box, since it is above the

columns.

Example 17.

[2

ot

Bl

<571~

2[4

6

i

2 [

The first three tableaux are shifted insertion states. The first tableau is terminal, the
second one has an outer row box, while the third one has an outer column box. The last
tableau is not a shifted insertion state, since the outer box for an tableau with 2 rows

and 2 columns has to be either in the fourth column or in the fourth row.

We define now three families of weighted directed edges, to get a weighted directed
graph. The knots for this graph are the terminal insertion states.

1. Row transitions

Let U be a non-terminal shifted insertion state with m — 2 rows and n — 2 columns
when its outer box is removed and let the outer box of U be in (i,n), so it is an
outer row box. If the outer box is maximal in its row, let j € N be minimal with
i <jand (i,j) ¢ U, so it is the first free position in the row of the outer box.

R1: If moving the outer box of U to position (i,5) yields an increasing shifted
tableau V', then there is an edge U M V.

..

R1

- [6]
[2]5

(171
brde

R2: If moving the outer box of w to position (7,j) does not yield an increasing

shifted tableau, then there is an edge U M V', where V' is formed from U by
removing the outer box.

%m]

E

ey

- |6

Rr2 [2

4

67]

»J>cnl

E

617]-[7] Ro

[2

o[7]

If the outer box is not maximal in its row, there must exist a minimal z € N with

(i,2) € U and Uy, < Uj,. Assume i < z.

R3: If moving the outer box to position (i, x) does not yield an increasing tableau,
and i + 1 < x or the i + 1-th row of U is non-empty, then there is an edge

14

U & V', where V is formed from U by moving the outer box to position

x
i+ 1,n) and changing its value to Uj,.

%@]

| .

'S

e (1,2 ? B B

[2]4]6]7] - 46">|%[- .

R4: If moving the outer box of U to position (i,) yields an increasing tableau,

then there is an edge U (l—xg V', where V is formed from U by moving box
(i,z) to (i + 1,n) and the outer box to (i, x).

'F"(li;'?' - -
. - .61- - - - (1L3) .[g]- - -
[2]5 R4[24 1246|71'ﬁ;l246l71-~

2. Diagonal transitions

D1:

If x =741 and the ¢ + 1-th row of U is empty, but moving the outer box to
position (7,7 + 1) does not yield an increasing tableau, then there is an edge

U (i’i—+>1) V', where V' is formed from U by moving the outer box to (m,i + 1)
and changing its value to U; ;1.

Te6l71- - 2,3 . . .
[2467[-@#'67-
[2]4]6]7]

For the next three cases, suppose that the i-th row is not empty and that the entry
in the outer box Uy, is lower than the entry at the main-diagonal in this row Uj;.
(So, we handle the case with =z = 1.)

D2:

D3:

If U;y, and Uy; have the same parity but moving the outer box to position (i, 1)

does not yield an increasing tableau, then there is an edge U M V', where
V' is formed from U by moving the outer box to (m,i + 1) and changing its
value to Uj;.

67"(272f"" .?..(2,2
7] po - [6]7]- 2[4]7]- - po

[2]4]6

18] -
[2[4[6]7] [2[4]7]

If U;, and U;; have the same parity and moving the outer box to position
(i,7) yields an increasing tableau, then there is an edge U @) V', where V is
formed from U by moving box (i,4) to (m,i + 1) and then the outer box to

(i,17).

(1;12@ 67..(2_72;....
D3 [3]- [2[3]6]7] D2[2§(757[

15

D4:

(i,9)

If U;,, and Uj; have different parities, then there is an edge U — V', where
V' is formed from U by moving the outer box to (m,i + 1) and changing its
value to Uy + 1.

.F.(Q,Q P -f6l7]- - (22 . . .
[24--EQ‘F-~ [2467[-@a;~67-
[2]4]- - [2]4]6]7]

. Column transitions

Now assume, that the outer box of U is in (m, j), so it is an outer column box. If
the outer box is maximal in its column, let ¢ € N be minimal with (,j) ¢ U, so it
is the first free box in the column of the outer box.

C1:

C2:

If moving the outer box to position (7,) yields an increasing shifted tableau

V', then there is an edge U M V.

.. o |7

_.(ng— "(1;42'?
o1 [2]4

g it

If moving the outer box to position (i, 5) does not yield an increasing shifted

tableau V', then there is an edge U M V', where V is formed from U by

removing the outer box.

67]

=]

i R d

.. (3,3! -[617] - .o .(2,4 -T6l7]-
[6]7]- oo [2]4]6]7] 617 oo [2]46]7]
[2[4[6]7] [2[4]6]7]

If the outer box is not maximal in its column, then there is a minimal x € N with
(x,j) € U and Upj < Uy;.

C3:

C4:

If moving the outer box to position (z, j) does not yield an increasing tableau,

then there is an edge U (x—]; V', where V is formed from U by moving the
outer box to (m, j + 1) and changing its value to U;.

':@:@:::

[2]4]6]7] [2]4]6]7]

If moving the outer box to position (z,j) yields an increasing tableau, then

there is an edge U (x—jg V', where V is formed from U by moving the box at
position (x,j) to (m,j + 1) and the outer box to (z, j).

gy
[6]- of -[6]- -
[2]4]7] [2]4]6] -

16

This ends the enumeration of the types of edges. The directed weighted graph on shifted
insertion states with these edges is called the forward transition graph.
We make a few observations about the edges:

e All the edges start at non-terminal insertion states.

e The cases for the edges are disjunct, so there is a maximum of one outgoing edge
per non-terminal insertion state.

e The cases for the edges cover all possible types of non-terminal shifted insertion
states, so there is a minimum of one outgoing edge per non-terminal insertion states.

So the forward transition graph has exactly one outgoing edge at any non-terminal
insertion state and the terminal insertion states are the sinks of the graph. That means,
that from any insertion state, we can follow exactly one edge to another insertion state.

Assume an edge starts in U and ends in an non-terminal insertion state V. We observe
the possible changes of the position of the outer box:

o [f the edge is of type R3 or R4, the outer boxes of U and V has both to be outer
row boxes and the one of V' is just one row higher than the one of U.

e If the edge is a diagonal transition, the outer box changes from an outer row box
in U to an outer column box in V, and if the outer box of U was in the k-th row
it is in V' in the (k + 1)-th column.

o [f the edge is of type C3 or C4 the outer box stays an outer column box and is only
pushed a row rightwards.

We see here, that the paths in the forward transition graph have a special form: there can
be only one diagonal transition, while there are only row transition before any diagonal
transition, and the column transitions are all after a diagonal transition.

If the outer box is in the (m — 1)-th row or the (n — 1)-th column, it is maximal in its
row and column, so the next edge has to be of type R1, R2, C1 or C2, which leads to
a terminal shifted insertion state, so the path has to be finite length: if a non-terminal
shifted insertion state without its outer box has m — 2 rows and n — 2 columns, then the
path has a length of maximal max{m,n} — 1 edges.

We conclude, that for any non-terminal shifted insertion state, there is an unique path,
which has to end in a terminal shifted insertion state.

With this knowledge we can define now the symplectic Hecke insertion:

Definition 3.3. Let T be an increasing shifted tableau and let a € N. Write T' @ a for
the shifted insertion state formed by adding a to the second unoccupied box in the first
row of T'. A shifted insertion state is called initial, if its outer box is in the first row. If
the directed path from T @ a to a terminal state in the forward transition graph is

Toa=ty 03 g, @)y, Gl @)y

17

then we define T <S—p a to be the increasing shifted tableau U; and call the sequence
of positions (i1, J1), (i2,72),- .-, (i, ;) the bumping path of inserting a into 7. The

. . S
operation transforming (7, a) to T' 2 4 is called symplectic Hecke insertion.

For a word w = wiws ... wy,, let

Sp

<— ’LUQ) ju

Psp(w) == (... ((0 2P %“‘)Sp

wl)

& wy.

We call Pgp,(w) the insertion tableau of w under symplectic Hecke insertion.

Example 18. We want to calculate Ps,(265425). The main part of the needed edges

were already examples under the definitions of the types of edges.

1,1 S
D@2 = -(Eﬁzm—pz

T R PP IR
EIRE BRE 2]6]
ies= S a8 e —pm s
2[6]- - (2[6]-[5] — [2[5)- - (2[5
.(1_722....(272(1,3 P (6] Sp
5. - D4= @ 6l 6] 5 = —4
.6 . .6.. .6.5 .6. 6. 25
[2]5]- - [25-R4[24‘D4 4 Cl[7] |
. L -7 .
g [€%) (2,2 @@ .(1,4. G (s_p2
-[el- - - [l - - - [6] - [2 6. - - [6] - fel- - —[214]7
[2]4]7] [247[-R3[24]-m 7] 04[2 6] Cl[246|7] [
.T6]- - -6l - - - (14 6 ..@(2,3 6 .
[2]4 6|7[@5_[2 415]7]-[5] g3 [2[4[517] - - Ry [2[4]5]7]
So finally, we get -
6

18

We can add more letters, for example:

.T6]- - -6l - - - 14 .[g]- - -[71(23) -[6[7]-
olsl511® 6 = plsls7) @1 . GBI -y G118
(6]
6]7 6]7 (12) [6]7]- -[4] 22 - (23 —(24) [e]7
[2467[@2:[2456[~Eg[2456]~52 6 cs _[6]7]- oo [2]4]5]6]
[2]4]5]6] [2]4]5]6]
6]7]" 6[7 (14) [e]7]- -[6]23 - (83) [6[7
[2456[@5:[2456[-EQ[2456]-@E; 6]7] oo [2]4]5]6]
[2]4]5]6]

Here we can see that
Ps,(2654256) = Ps,(26542562) = Ps,(26542565) = Ps,(265425625).

Example 19. We see later how we can use the insertion for a bijection. Till now, there
are many paths in the forward transition graph which lead to the same tableau. We look
onto a subgraph of the forward transition graph for an example:

6]7 6]7]-[4] @ 6]7
252 [2la6l- - _[6[7] _[6]7]- [2[4]5] - [6]
[2[4]6 [2[4[6] -
./
2[4[5[7] - [6] ' [2[4]5]6] b [2?1;6] F[2?1;6[-@
/
6[7 6[7 \67 (6] 6l71- - -
2la[5]6] - [4] ~ " [2[4[6]7]- - [6[7 ElAE6]- - ¢ [2[4]506] - [3]

For the remaining of this section, we look onto some properties of this insertion.

Definition 3.4. Let T be a shifted insertion state with outer box (7,j). Assume T
with its outer box removed has m — 2 rows and n — 2 columns, and set T}, := oo for
all positions (z,y) ¢ T. We say that T' is weakly admissible if one of the following
conditions holds:

e When j = n (t.m. when the outer box of T" is an outer row box) and either i = 1
or there exists a column x > ¢ with T;_1 , < T}, < Tis, and if T;_q; = Tj,, then
(i,1) € T.

e When ¢ = m (t.m. when the outer box of 7" is an outer column box) and either
Tnj = Tj_1; or there exists a row x < j with T}, j_1 < 155 < Tij.

19

e Additionally, we also say that any terminal shifted insertion state is weakly admis-
sible.

Example 20. Every initial shifted insertion state is weakly admissible, and a weakly
admissible shifted insertion state cannot have his outer column box in the first column.

.. -[6] - -[6l7]- [2467[-‘
[2]4]6] [2]2]5]6]

The first tableau, T', is weakly admissible, since the outer box T4 = 6 < T2 = 0o and
Tio=5<6="Ty.

The second tableau, S, is weakly admissible, since S1; < Sy = S12.

The third tableau, U, is not weakly admissible, since although the second row supplies
Uss = Uys, which fulfills the second condition, the tableau without the outer box is not
weakly increasing.

The fourth tableau is not weakly increasing, since for every column after the first the
value of the outer box, 5, is not smaller or equal than the first and smaller than the
second entry.

Proposition 3.5. If U — V is an edge in the forward transition graph, then V is weakly
admissible.

Example 21.
..
o D
(2[4]6]-[1] p4 -[6]-
[2]4]6]

We already saw in the example before, that the second tableau is weakly admissible.
Since the first tableau is initial, it is also weakly admissible.

But also if the first tableau is a shifted insertion state, which is not weakly admissible,
the tableau at the end of an edge in the transition graph is:

57@
[2]4]6]7]- - pi -[5]7]:
[2]4]6]7]

The first tableau is not weakly admissible, as seen in the example before. But the second
one, let us name it T, is, since the outer box has the value Ty3 = 7 = Th3.

Lemma 3.6. Let U — V be an edge in the forward transition graph between weakly
admissible shifted insertion states.

If it is a row transition, then row(U) g row (V') and if additionally row(U) is reduced
then row(U) X row (V).

If it is a column transition, then col(U) g col(V') and if additionally col(U) is reduced,
then col(U) K col(V).

20

Proof. We only proof the first part of the first statement.

If the edge U — V is of type (R1), the row reading words of U and V are the
same. If the edge is of type (R4), let us call the entries of the row with the outer box
a1 < ag < --- < ay , while b is the entry of the outer box. We need to have a,_1 < b < a,
for 1 <z < k. In this case, we can see that

row(U) =...a1...0,-1G50541 . ..agb
K
N Q] Gp_1agbagyy ... ag
K
N Agay .. Gp_1bagy ... ap = row (V).

Assume that the outer box of U appears in the first row. If it is of type (R2), then
the value of the outer box and the value of the last box in its row without the outer

K
box has to be equal, so the row reading words of U and V has to be connected by =,

K
because of X =~ X X for every X € N. Assume the first row of U has k boxes with values
a1 < ag < --- < ag and the value of the outer box is b. If the edge U — V is of type
(R3), we need to have another box in the first row, that has the same value as the outer
box, let us say az—1 =b < a,, for 1 < < k. Since b = ay—1 < a; < aj41 for every [> x,
K
we know that aja;11a,—1 ~ ajay—1a;—1. Similiary, since b = az—1 > an < -1 for every

K
m <z, we know that a;_1am_10m = Qm_104_10m. SO

row(U) =...a1...03-1030541 - .. QxGz_1
rI\(J ce.Q1 ... Qp—-10205—-10241 - - - Ak
f'IS e Q1. QpQrp 1020541 - . . Ak
X AzQ] .. .0y 1030541 - ..ap = row (V).

Now assume, that the outer box of U appears in any row above the first, so two rows
of U have the form
ag|...|ak| - : @

‘Cl Cof.. ... Cl‘ .

If £ =0, then ¢y # b, since U is weakly admissible. Then the edge U — V has to be
of type (R1).
Assume U — V is of type (R2). Then ay = b or ¢ = b. In the first case, we can show

K .
as above that row(U) ~ row(V'). So assume ci11 = b. Since ¢1 < -+ < ¢ < ap < b, we

21

see that

row(U) = ...agbcrcy . .. cpbegys . ..
K
~ ...qEC1Ca ... ck»flbckbck+2 e
K
~...c1C2 ... cp—10kbegbekio . ..
K
~ ...ClCo ... ck,lakckbckck+2 .
K
~...c1C...cp—1apbekcipcraa ...
K
R...c1c2...Cch—10kbckCrya . ..
K
~ ...QC1Co ... ck,lbckc;Hg e = I‘OW(V).

Finally, we assume U — V' is of type (R3). Define z as in the definition of (R3)). It
follows that a,—1 = b or ¢; = b, since otherwise we would have an edge of type (R4). If

az—1 = b we can follow row(U) X row(V') as above. So assume ¢, = band a;—1 < b < a,.
It follows that

I"OW(U) =as... akbcl ‘e Cz_lb. ..
X ag...0z—102bay11 ... agcy...Cp—1b
g ag...0p—10z—10zb0441 ... akCy ... Cp—1b
X ag...0z— 1030z 1bag4+1 ... axcy ... Co—1b
X ag...0z0,— 10200511 ... apCL ... Cp_1b
fIS ag ...0z0; 1030541 - - - CLkbCl e Cx_lb
X AzQ2 ... 0z0;—10z41 --.arbcy ... cp_1b.

And as before, where the edge was of type (R2), we can eliminate the first b, so

K
row(U) = agay...agcy ... ce—1b = agay...axcy ... co—1b- - =row (V). d

Lemma 3.7. Suppose U — V is a diagonal transition between weakly admissible shifted
insertion states. Assume (i,n) is the outer box of U, so that (i,i) € U.

1.
2.

S
If U - V is of type (D1) and Uy; = U; i+1 mod 2, then row(U) ~ col(V).

If U — V is of type (D2), (D3), or (D4), all entries on the main diagonal of
U have the same parity, and either U;, = U;; mod 2 or U, = Uy — 1, then

row(U) X col(V).

Sp

. If row(U) is a symplectic Hecke word, then row(U) =~ col(V'), and if row(U) is a

symplectic Hecke word that is also a reduced word, then row(U) B col(U).

We summarise the last two lemmas for our main theorem of this section:

22

Theorem 3.8. Suppose T is an increasing shifted tableau and a € N is such that row(T")a
is a symplectic Hecke word. The following properties then hold:

Sp Sp Sp
1. The tableau T < a is increasing and shifted with row (7 < a) = row(T)a.

2. If row(T)a is an FPF-involution word, then row(T' i a) b row(T)a.

Since the insertion tableau Pg,(w) of w under symplectic Hecke insertion is only a
recursive insertion of all the letters of w, the theorem implies the following lemma.

S
Lemma 3.9. If w is a symplectic Hecke word, then w X row(Psp(w)). If w is an

FPF-involution word, then w p row (Psp(w)).

Example 22. We saw in Example [18] that

6

S
Furthermore, we saw in Example [5| that row(7") = 62467 ~ 26542.

3.2 Inverse insertion

In the first part of this section we introduce a stronger version of admissibility, which sum
up the insertion states, which are able to appear if we compute the insertion tableau of
a symplectic Hecke word. For them we define the inverse edges of the forward insertion
graph. After that, we define the recording tableau and proof Theorem [3.I This mainly
follows section 3.3 and 3.4 of [5].

Definition 3.10. Let T be a shifted insertion state. We define

word(T) := {Col(T) , if T has an outer column box,

row(T') , otherwise.

Definition 3.11. Let T be a shifted insertion state. Assume 7" without (4, j) has m — 2
rows and n—2 columns. We say, that T' is admissible, if T is weakly admissible, word(7")
is a symplectic Hecke word and the following condition holds:

1. if (¢,7) is an outer column box, it holds that if T},; = Tj_1,; then (j,7) ¢ T or Ty,
is odd, and if T},; = T j—1 then x > 2.

Example 23. Every terminal shifted insertion state with a row (or equivalently col-
umn) reading word, which is a symplectic Hecke word, is admissible, since it is weakly
admissible and has no outer box.

- [6] [3] < - [6]

. -[4]
2[5]- - [2]5]- - 6 :

cn\roo]-H

23

The first insertion state is not admissible, since the row reading word is not a symplectic
Hecke word, since ((67)0(67))(3) =4 and ((67)0(67))(4) =3,s0 0 ©6® 3 = 0.
The second insertion state, T', is admissible: it is weakly admissible (as proven in

Example, the word 625 g 265, which is a symplectic Hecke word as shown in Example
@and T24 :6755:T12.

The third insertion state, .S, is not admissible, since the outer box Ss3 = 7 = So3 but
(3,3) is occupied by the tableau.

The fourth insertion state, U, is admissible, since its column reading word 244 is not
23

S
Ep—equivalent to a word which starts with an odd letter (see Lemma [2.2)), it is weakly

admissible, since U2 = Usg, and although the outer box is even, (2,2) is not occupied
by U.

Proposition 3.12. Suppose T is an admissible shifted insertion state. Assume that T
has r rows with its outer box removed (if one exists). The diagonal entries Ty, for k € [r]
are then all even.

Proof. Let k € [r]. Since T is admissible, we know that word(7T") € Hgp(z) for a z € Fuo.

We want to show that there is a word in the SEp—equivalence class of word(T"), which begins
with Tgr. This implies that Ty has to be even by Lemma [2.2

First assume there is either no outer box or the outer box of T is in the k-th row or
beneath it. Since T is increasing, we know that Ty, < T} x41 < Ty forevery x < k,y < x.
So [Tk — Ty| > 1 for every < k,y < z, so we can swap Ty with every element that
appears before it in row(7):

I'OW(T) = TrrTr,r—l-l e -Tr,sr Tk+1,sk+171Tk+1,sk+1Tkk’ N
Br
= TrrTr,r—i-l cee Tr,sr ------ Tk+1,sk+1—1Tkka+l7sk+1
Br
= TkkTrrTr,rJrl s TT,ST ------ Tk+1,sk+1—1Tk+1,sk+1-

Now assume T" has an outer row box at position (7,) in a row higher than k. Since T'
is admissible, there has to be a column x > 7 with T;_; ; < Tj;, so it has to be greater
or equal to T}, 41. If the value in the outer box is greater than T}, 11, we can also swap
Ty with T35 in row(T"). If the value in the outer box is equal to T} 11, it has to be in
row k + 1, since otherwise T;_1 ; < T 41, but ¢ —1 > k and T" would not be increasing.

So we can first see that

I‘OW(T) = TrrTr,r-i-l .. 'T7"757“ Tk+1,sk+171Tk+1,sk+1ﬂ,kaka,k+1 e
=TTrpy1- Trspooenns Trt1,s01-1Tk+1, 85500 Lokt 1 Dok T ot - - -
Br
S N N Tit1,s500-1Tk+1, 5501 Tk T k1 Tk - - -

and then make Ty be the first letter of the word as before.

24

Now assume 7" has an outer column box at position (4, j). For all entries Ty, except the
outer box, which appears in front of Ty, in word(T") = col(T'), it holds that |Tj,—T5,| > 1,
so we could swap them with Tj.

If the outer box is in a column right of the k-th, it appears in word(7") behind Tjy.

If the outer box is in the k-th column or in a column left from it, we can see that we
have either T;; = T;j_1j < Tj_1) or there exists a row x < j with Tj;; < Ty < Tj—q 1,
since T' is weakly admissible (in both cases = is only possible, if j = k).

If Tij < Ti—1k, it holds that Ty — T3] > 1. If Tj; = Tj—1 k, the outer box has to be
in the k-th column, so we know that

COI(T) = T11T22T21 Tl,kfljjikakafl,k e
=TTl Ty 1Te1kTirTh—1k - - -
= T11T22T21 Tl,k—lTkka—l,kak cee

In every case, in which we have an outer column box, we can swap now every letter
that is in front of Ty, with Tyy. O

Proposition 3.13. Suppose U — V is a forward transition between shifted insertion

S
states. If U is admissible, then word(U) ~ word(V') and V is admissible.

This stresses the importance of admissible tableaux. We saw earlier in [3.5] that if
U — V is an edge in the forward transition graph, then V has to be weakly admissible.
Proposition tells us furthermore, that if we start with an admissible tableau U
and an edge U — V, then V even has to be admissible. This implies that the set of
admissible tableaux spanns a subgraph in the forward transition graph. We define the
inverse of the symplectic Hecke insertion only on this subgraph and we see, that this is
exactly what we want. Especially, we can already see that we are on the right way for
Theorem [3.1], since P has to be an admissible tableau, because it has to be terminal and
its row reading word row(P) € Hgp(2) is a symplectic Hecke word.

Before we start to define the inverse edges, we need to talk about some important
positions of a tableau.

Definition 3.14. Let T" be a shifted tableau. A position (i,7) for 4,7 € N is an inner
corner, if it is the last occupied box in its row and at highest occupied position in its
column. A position (i, j) for 7, j € N is an outer corner, if it is not in 7', either it is on
the diagonal or it is on the right of an box in 7T, and either it is in the first row or it is
on the top of an box in T'.

So an inner corner is a position, where you can remove a box and get a shifted tableau,
an outer corner is a position, where you can add a box and get a shifted tableau.

Example 24. We take our tableau from Example [18| again and mark the outer corners
with bullets, while the inner corners are the boxes with the value 7:
[

6[7]®
[2[4]6]7]e

25

Lemma 3.15. Suppose U M V' is a forward tansition between shifted insertion states,
where U is admissible and V is terminal. Then U — V is a row or column transition
and (4,7) is an inner or outer corner of V. In addition, the following properties hold:

1. If U — V is a row transition and (4, 7) is an outer corner of V', then i < j.
2. If U — V is a column transition and (4, j) is an inner corner of V', then i < j.
3. If U — V is a column transition and (¢,) is an outer corner of V', then i > 1.

Proof. 1. Since V is terminal, the edge U — V can only be of type (R1), (R2), (C1),
or (C2). Assume it is a row transition and (7, j) is an outer corner of V' with ¢ = j.
If the edge would be of type (R1), the last position in the bumping-path has to be
an inner corner, so the edge has be of type (R2). This means, that the value of the
outer box is either equal to U;_1 ; or equal to U; j_1. Since (1 — 1,1) is not a valid
position in a shifted tableau, we need to have the value of the outer box equal to
Uii—1. But U is admissible which leads to (i,j) = (4,7) € T, so it could not be an
outer corner. So we contradicted i = j.

2. Now let us assume U — V is a column transition, (4,j) is an inner corner of V,
and ¢ = j. If the edge is of type (C2), (i, 7) has not to be occupied by V', so the edge
has to be of type (C1). Then the outer box of U has to be maximal in its column.
But since U is admissible, the outer box has to be equal to U;_1 ; or smaller than
any U; for an x < j. So we contradicted i = j.

3. Let us assume U — V is a column transition, (¢, 7) is an outer corner of V', and
i = 1. Again, since (1,) is an outer corner, the type of the edge can only be (C2).
But then U; ;1 has to be equal to the value of the outer box, so U cannot be
admissible. So we contradicted ¢ = 1.

O

We start now to define a graph on the set of admissible tableaux. As earlier at the
definition of the edges of the forward transition graph, we define different types of edges.
For every type of edge of the form V ~» U with an admissible V we add three things:
first we see an example, directly below we prove that U is admissible, so the edges are
well-defined, and we look for the arguments that U — V is an edge in the forward
transition graph of one specific type. A short remark at this point: since the outer box
of U is either in the i — 1 row or column, the conditions for (weakly) admissible tableaux
move in the indexes according to that.

We start with the edges on terminal tableaux V:

iR1: For each inner corner (i,j) of V, there is an edge V' ~» U where U is formed from
V' by moving box (i, j) to an outer position in row i.

(171) 6l - (2,2) e .
..2 ~ .-2 ~
row [2 5 row ' '

26

iR2:

iCl1:

1C2:

To distinguish between these edges we write V

of type iR1 and iR2 or V

We can see that U is also admissible: since U;_1; = V;_1; < V;; < U; j4+1 = oo and
Vij is the value of the outer box of U, U is weakly admissible; since we only move
one box sideways, it holds that row(U) = row(V'), so row(U) is a symplectic Hecke
word; and U;—1; = Vi—1,; < Vi; < Vjj, such that the outer box of U is never equal

to U;—1;. Additionally, we can see that U M V' is a row transition of type R1.
For each outer corner (i,j) of V' with ¢ < j, there is an edge V' ~» U where U is

formed from V' by adding an outer box in row ¢ whose value is whichever of V;_1 ;
or V; ;_1 is defined and larger.

(6] (14 [6] 6] 23) Tg]- - -
[2[4]7] row (215171 [7] [2[4]517] row [2[2[517] -

In this case U M V is a row transition of type R2, so we can conclude that
K

row(U) ~ row(V) from Proposition Additionally, since the outer box of U has

the value w := max(V;_1;,Vj—1), it holds that U;—1; = Vi-1; < u < U;; = o0

and if u = U;_14, then j = ¢, which contradicts ¢ < j, so U is also admissible.

For each inner corner (i,j) of V' with ¢ < j, there is an edge V' ~» U where U is
formed from V by moving box (i, j) to an outer position in column j.

6 @y .- .= Co 12 B
21416|7 6] -
[|[C01 46[‘ ' COI"

It is clear that U is also admissible and that U (Zig V is a column transition of
type (C1).

For each outer corner (7,7) of V' with ¢ > 1, there is an edge V ~» U where U is
formed from V by adding an outer box in column j whose value is whichever of
Viz1,; or V; j_1 is defined and larger.

‘ @9 .- Qf’,)..@
2147 . .
[2[4]7] col col [2]6]-

In this case U X V is a column transition of type C2, so we have col(U) 5 col(V).
It follows that U is also admissible.

(i,4)
PUNY
row

U for iC1 and iC2, while in both cases (i, j) is the inner or

U to indicate the inverse transitions
(4,9)
A
col

outer corner of the terminal tableau V.

Now we look onto admissible tableaux which are neither initial nor terminal, so they
have an outer box outside of the first row. Assume V is an admissible tableau with an
outer box, but with its outer box removed it has m — 2 rows and n — 2 columns.

27

Assume V has an outer row box in (i,n). Since V' is weakly admissible, there exists a
column z > ¢ with V;_; , < Vi, < Vj;. We choose this x maximal, so Vi, < V;_1 41 also
holds (else Vi_1 241 < Vi < Vjz4+1 and x is not maximal).

iR3:

iR4:

If Vi_1 o = Vip, then there is an edge V ~» U where U is formed from V' by moving
box (i,n) to (i — 1,n) and changing its value to whichever of V;_ ;1 or Vi_o, is
defined and larger.

6] -[4] _, [6] 5l - - 6]
[2[4]7]- - "7 [2]4]7]- [2] [2Z5|7[~@W[2i5|7[‘

We can see, that U is weakly admissible, since U;_1, = max(Vi—1 -1, Vi—22),
and so it holds that U;_2, = Vi—a; < Ui—1n < Vi—1z = Ui—1,. To show that

U (Zi>’x) V is a row transition of type R3 we have to ensure that the i-th row of
U is not empty or ¢ < x for the minimal column z for which U;_1, < Uj—1,. If
x =i, then Vj,, = V;_1; and since V' is admissible, it holds that (i,4) € V and so
(1,i) € U. If x > 14, then U;_1,, < Uj—1, and z is minimal with this property. So

U %) v is a row transition of type (R3). Lemma implies that row(U) is a

symplectic Hecke word, because row(V') is one and finally (i — 1,2) € V implies
(t—1,9) € Vand (i —1,i—1) € U, so U is admissible.

If Vi1 4 < Vip, then there is an edge V ~» U where U is formed from V' by moving
box (i — 1,z) to (i — 1,n) and then box (i,n) to (i — 1, x).

- - [6] _ [6]-[5] (6] -
..W 2[4 - 2[5 [4]

Since the outer box of U fits into position (i — 1,x) of U to preserve an increasing
tableau, we get U;_2, = Vi_2, < Vi1, = Ui_1n < Vip = Ui_14, so U is weakly

admissible. In this case U (ii>’a;)

K
by Lemma that row(U) ~ row(V) and since V is admissible, both words are
symplectic Hecke words. Finally, we see that U;_1,, = Vi_12 > Vi—o;—1 = Ui—2—1,
since x > ¢ and V is increasing, so U is admissible.

V' is a row transition of type R4, so it follows again

Now we assume the outer box of V' is an outer column box and V;_1;_1 < Viy;.
Since V' is weakly admissible, it holds that V,,; = V;_1; or it exists a x < j with
Vej-1 < Vi < Vi < Vj_1,, soin both cases V,,; < Vj_1 ;. The edge V ~» U is then
one of the following types:

iD1:

Suppose Vy; is even and Vj_; j_1 < Vp; = Vj_1j, so that (j,j) ¢ V. There is an
edge V ~» U where U is formed from V' by moving box (m,j) to (j — 1,n) and
changing its value to whichever of V;_1 ;_1 or Vj_o ; is defined and larger.

7
' 67"@
2l 2 6[7] 7 [2[4[5]6] - -
[2[4[5]6]

28

iD2:

iD3:

1iD4:

Since either j —1=1or Uj_gﬂ' = Vj_g,j < Uj—l,n < V]‘_Lj = Uj_17j, U is weakly
admissible. We see that U — V is a diagonal transition of type D1. We know
from Lemma that V;_1 ;1 = U;_1,-1 is even and since V,,,; = V;_1 ; is even,

Uj_1,j is even too. Then the first part of Lemma 3.7/ tells us, that row(U) = col(V),
so row(U) is a symplectic Hecke word. Since V' is increasing, Uj_2 ;1 = Vj_2,_2
has to be smaller than V;_; ;_1 and Vj_» ;, so in this case U;j_1,, # Uj_2 -1, s0 U
is admissible.

Suppose Vj_1j—1 = V. Since V is admissible, it has to be that j —1 > 2. If
Vj_2,j—1 is even, then there is an edge V' ~» U where U is formed from V' by moving
box (m, j) to (j — 1,n) and changing its value to Vj_g ;1.

B m g g
-[6]- 7 [2[A7]- - [677] 7 [2[A[5]7] - -
[2[4[7] [2[4]5]6]

First, we see again that by U;_2 ;1 = U;_1, < Uj_1;-1, U is weakly admissible.
Since Proposition@tells us that V;_1 ;1 iseven, U — V is a diagonal transition
of type D2. Now the second part of Lemma shows, that row(U) is a symplectic
Hecke word, since Lemma So U is admissible again, since (j —1,j — 1) € U.

fVi_1j-1 < Vinj <Vj_1,; and V,,; is even, then there is an edge V' ~~ U where U
is formed from V' by moving box (j — 1,57 — 1) to (5 — 1,n) and then box (m,j) to
(j—1,5-1).

[6]-
s e e
2] [6]
Since moving box (j—1,n) to (j—1,j—1) in U get us an increasing tableau (it is V'

without its outer box), U is weakly admissible. Additionally, by Proposition
Vi_1,j—11iseven, so U — V is a diagonal transition of type D3. All the other entries

on the main diagonal are also even by [3.12} and so implies col(V) 2 row(U) and
row(U) is a symplectic Hecke word. Since Uj_1,, = Vj_1,j-1 > Vj_2j-1 = Uj_2_1,
if these entries exist, it holds that U is admissible.

£

If Vi_1,j-1 < Vipj and Vp,; is odd, then there is an edge V' ~» U where U is formed
from V' by moving box (m, j) to (j — 1,n) and changing its value to V;_ j—1 — 1.

..... 5. - - Lo 6] [5]
co 47[' FW[24

7[[24..

Vj—1,j-1 = Uj_1,j—1 has to be even because of|3.12, so Uj_1, isodd. Then U — V'
is a diagonal transition of type D4. Since the entries on the main diagonal of V/
have not changed and Lemma shows, that the ones of V' are even, the entries

29

iC3a:

on the main diagonal of U are also even. Then col(V) P row(U) by Lemma
so row(U) is a symplectic Hecke word. Since (j — 1,5 — 1) € U, U is admissible.

Suppose Vj_1j-1 = Vinj, so that j —1 > 2, since V' is admissible. If V;_5;_1 is
odd, then there is an edge V' ~» U where U is formed from V' by moving box (m, j)
to (m,j — 1) and changing its value to Vj_2 ;1.

I
[2[5]7] [2]5]7]

In this case U — V is a column transition of type C3, so col(U) K col(V)
has to hold by Lemma [3.6f The tableau U has to be weakly admissible, since
Um7j_1 = Uj_Q’j_l. Since Um,j—l is odd and since Um7j_1 = Uj_Q’j_l = Ux’j_Q
implies that > j — 1 > 2, U is admissible.

For the last two types of edges assume V' has an outer column box and V,,; < V;_1 ;1.
Since V' is weakly admissible, there exists a maximum row x < j —1 with V. j_1 < Vj,;,
and it must hold that V,,,; < V; and Vi,; < Vg1 -1

iC3b:

1C4:

Suppose V; j_1 = Vy,j, so x > 2, since V' is admissible. There is an edge V ~ U
where U is formed from V' by moving box (m,j) to (m,j — 1) and changing its
value to be whichever of V,_1 ;1 or V; ;_» is defined and larger.

@
6[7]- 7 [6]7
[2]4]5]6] [2]4]5]6]

We see that either Uy j_o = Vpj—2 < Upjo1 < Upj1 = Vg1, if Uy j—1 exists,
or Upj—1 = Ujj_1, so U is weakly admissible. The edge U — V is a column

transition of type C3, so col(U) N col(V), and so col(U) is a symplectic Hecke
word. If Uy, j—1 = Uj_9-1 thenx —1 =37 —2,s0 x = j —1. But x has to be
strictly smaller than j —1. If U, j—1 = Uy j—2, then y = 2 > 2. So U is admissible.

If Vi j—1 < Vi, then there is an edge V' ~~» U where U is formed from V' by moving
box (z,7 — 1) to (m,j — 1) and then box (m,j) to (z,j —1).

Since Um’j_Q = Vm’j_z < Vx,j—l = Um,j—l < ij = Ug,j-1, it holds that U is weakly
admissible. The edge U — V is a column transition of type C4. Lemma [3.6]
tells us, that col(U) is a symplectic Hecke word, as row (V') is one. If in this case
Um,j—l = Uj_27]‘_1, then either Vw,j—l = ij ifr=j5—2or Uj—Q,j—l = ‘/3_27j_1 if
x < j — 2. The first case contradicts V, j_1 < Vj,; directly, the second case imples

30

Vej-1 = Unj—1 = Vj—oj—1 and contradicts x < j — 2. If Uy, j—1 = Uy j—2, then
Um,j—1 = Vy,j—2, but since Uy, j_1 = V. j_1 < Vi j_2, y has to be strictly greater
than z and so finally ¥ > 2 and U is admissible.

This completes the definition of the edges for the inverse transition graph.

Example 25. We again take Pg,(265425) from Example |18 and look for some possible
paths in the inverse transition graph:

6] (2,2) - - -[6]
A ~ (214 T1+|5
(2[41517] v, (2TAT506) -+ oy ZLLOLT]
505 [q)
[2[4]5]7] row [2]4[5]7] - [7]
6] @3) - - [6]- - [, [6]
2[4[517] cot -[6]- - ;p2[2[4]5]7]- - ;r3[2[4[5]7] - [2]
4]5]7]
_ _
6 (}/"il) — ’ A —' rd ; d 6
[(2[4]5]7] o1 _[6]- - jcu [6]- scu [6] ,p3[2[5]7]-[2]
[2]4]5] - [2]4]7] [2]5]7]

This seems all but unique. We see how we find the correct path with the next definitions
in Example

Theorem 3.16. Let U and V be admissible insertion states. Then U — V is a forward

transition if and only if V' ~» U is an inverse transition. If V is terminal, then U (Z—]; \%4
(4.9) (

. ce . 0J) o . "
is a row or a column transition if and only if V' ~%" U or V' %" U is an inverse transition.
row col

The next thing we want to achieve is to get a second tableau for the tuple in Theorem
We want to define it in a way that helps us to find the right path in the inverse
transition graph. For the main part of these paths, we need no help, since there is exactly
one outgoing edge for every admissible non-terminal non-initial insertion state. Since the
initial insertion states are the last tableaux on the paths in the inverse transition graph,
we only need the second tableau to consider which is the correct first inverse transition,
which edge start on the terminal insertion state. So we define now Qg,(w) to conclude
the type of the last edge of the forward transition graph:

Definition 3.17. For a symplectic Hecke word w = wiws ... w,, we inductively define
a set-valued tableau Qgp(w). Let Qqp(0) = () and assume n > 0. Let (4, 5) be the label

s . . . S
of the last transition in the insertion path of Pgp(w; ... wp—1) 2 w,. Form Qsp(w) from
Qsp(wy ... wp—1) as follows:

31

1. If the last transition is of type R1, then add n to box (i, j).
2. If the last transition is of type C1, then add n’ to box (i, j).
3. If the last transition is of type R2, then add n to the last box in column j — 1.

4. If the last transition is of type C2, then add n’ to the last box in row 7 — 1.
We call Qg,(w) the recording tableau of w under symplectic Hecke insertion.

Lemma ensures, that in every step i —1 > 0 and j —1 > 0, and that the (i —1)-th
row and the (j — 1)-th column exist in the already defined part of Qgp(w), so Qgp(w)
is well-defined for any symplectic Hecke word w. By construction, Qg,(w) is a standard
shifted set-valued tableau of length |Qgp(w)| = len(w).

Example 26. We recall our first example of an insertion tableau we saw in Example
All the insertions ended with edges of type R1 or C1, except the last. So

36

Qsp(265425) = ‘ 1

4/|5/‘

In the same example we added 6,2 and 5, which delivers

36|79
2/ 4/ 5/8/"

Qsp(265425625) = 5

Definition 3.18. Let z € F, be an FPF-involution, P be an increasing shifted tableau,
w be a word such that row(P)w € Hsp(z) is an FPF-involution word, @ be a standard
set-valued tableau with the same shape as P and length n > 0. @) contains exactly one
of n or n' and this number must appear in an inner corner (i,7), since @ is standard.
Define V; to be the unique admissible shifted insertion state, such that

1. if {n} = Q;j, then P () V1 is an inverse transition.
row

2. if {n’} = Q;;, then P (bzi) V1 is an inverse transition.
(¢}

(rg+1)

3. if {n} C Qyj, then P 227V} is an inverse transition, where 7 is the row of the

unique outer corner of Q in column 5 + 1.

. +
4. if {n'} C Q;j, then P (lwis) V1 is an inverse transition, where s is the column of

the unique outer corner of @ in row ¢ + 1.

Now let Vi ~» V5 ~» --- ~» V; be the maximal directed path in the inverse transition
graph. The last state V; is initial, so it has the form P @ a for a shifted tableau P and a
non-negative number a € N. Set w := aw, and form Q by removing whichever of n or n’
appears. With this we define

~

uninsert(P, Q, w) := (P, Q,).

32

The set-valued tableau Q is standard with length n — 1 and has the same shape as
P. By Theorem we know that P ~» Vi ~» Vo ~» - ~» Vi = P @ a is equivalent

to P®a — V i—Vi.,1— - — Vi =P, soP = P S£ a. By Proposition |3.13]
it holds that row(P) = row(P)a. Then row(P)w = row(P)aw = row(P)w € Hsp(z).
Altogether, (]5, Q, w) has the same properties as (P, Q,w), so we can iterate uninsert:

20

20

Definition 3.19. Given all the requirements of the definition before, we define wg, (P, Q)
to be the word, such that

uninsert o - - - o uninsert(P, @, 0) = (0,0, ws, (P, Q)),
with |@Q|-times concatenated uninsert.

Example 27. We want to inverse the insertion of the word in Example So we
calculate uninsert o - - - o uninsert(Pg,(265425), Q 5,(265425), 0):

The highest number in the recording tableau (seen in Example is 6 in the box at
position (1,4), so the first inverse edge has to be of type iC2 at the outer corner of the
second row:

_ [6] - Y [g]
[2[4]5]7] . [2]2

[6] .
Py, (265425) SR,

7

2

5T7] - ST 5 = Pop(26542) @5,
S0
et 6 | 36) — 6 3
uninser ‘2 4 5|7H1 4/|5/‘7 = ‘2 1 5|7H1 5

.5
1%)
which is (Psp(26542), Qsp(26542),5).

For the first step for the next uninsertion, we have to look onto Q5,(26542). The high-
est number is 5 in box (1,4), so the first edge for uninsert(Ps,(26542), Qs,(265425), 3)
has to be of type iC1 at position (1,4):

Pg,(26542) = |

T
~

col

'

od

. 6 . .

[2

=l

67]

[2

.T§]- -
4

6] -

[2

7] -

= Ps,(2654)®2.

So, uninsert(Pg,(26542), Q5,(26542), 5) = uninsert(Pg,(2654), Q5,(2654), 25).

33

And further we get:

e H o
.76l - g’(ﬁ .?..W.?.W,F_,:ng(ﬂ%)@ll
[2]4]7] - [2]4]- - [2]4]- - [2]5] - [4]
@2
.16l - r;;)v ...@W....:PSp(QG)@5
2[5]- - [2[5]- - [2]6]- [5]
(12) 3
[2]6]- - "~ [2]-[6] = Psp(2) ©6
Trow

1,1
(r:;:v) 2l=0®2.

So finally, we see that we can inverse the insertion from Example [I8}

36

v | = ‘ @) = (0,0,265425)

uninsert o - - - o uninsert <‘

dIE

and so we calculated wgy,(PSp(265425), QSp(265425), () = 265425.
We want to define the inversion of uninsert:

Definition 3.20. As in the definition for uninsert, let P be an increasing shifted tableau,
@ be a standard set-valued tableau with the same shape as P and |Q| =n —1 > 0, and
let w = wywsy...w, be a word with m > 0 and row(P)w € Hgp(z). Let P = Pgsy(v)
be an insertion tableau for a symplectic Hecke word v under symplectic Hecke insertion,
= Qsp(v) be his recording tableau. Let P = Pg,(vw;) be the insertion tableau,
= Qsp(vwy) the recording tableau of vw; under symplectic Hecke insertion, and
= wsy...Wy. We define

E OO

insert(P, Q,w) := (P, Q,).

- S
Since row(P)w ~ row(P)wiw by Theorem [3.8/ and row(P)wijw = row(P)w € Hgp(2),

it holds that row(P)w € Hgp(2). So again, we can iterate the operation and get for
w € Hgp(2), that

insert o - - - o insert((),), w) = (Psp(w), Qsp(w), D),

with len(w)-times concatenated insert.
We have everything to proof Theorem nOW.

34

Proof. Let T)™ be the set of triples (P, Q,w), where P is an increasing shifted tableau, @
is a standard set-valued tableau of length n with the same shape as P and w is a word
of length m, such that row(P)w € Hgp(z). We can see, that insert : 7" — T | and
uninsert : 777, — Ty

The work to show that they are inverses is already done: By their definition, uninsert
only combines edges in the inverse transition graph and insert combines edges of the
forward transition graph. We already saw that every insertion state on the path of
insert is admissible. Since the inverse transition graph is defined on admissible in-
sertion states, every insertion state on the path of uninsert has to be admissible too.
So we can use Theorem which shows that the two paths in uninsert(P, @, w) and
insert(uninsert(P, @, w)), and in insert(P, @, w) and uninsert (insert(P,), w)) are reverse.
That implies that uninsert and insert are inverse, so the symplectic Hecke insertion is
the bijection we are looking for.

Additionally, suppose w € Rppr(z) is an FPF-involution word. Since we only add a
maximum of one box to P for every letter in w, we must have len(w) > |Pg,(w)|. By

Lemma we know that w 2 row(Psp(w)), so row(Ps,(w) € Hsp(z). But the FPF-
involution words are the symplectic Hecke words of minimal length, so len(w) = |Pg,(w)].
It follows, that) has to be marked, since in the last step of an insertion we can never
omit a box with (R2) or (C2).

To proof this property for the inverse, assume row(P) € Rppp and @ is a marked
tableau of the same shape. Since every box of @ has exactly one entry, we only use (iC1)
or (iR1) in the first step for uninsert, so for every box of P, we add one more letter to

wgp(P, Q), so |wsp(P, Q)| = |P| and wg,(P, Q) € Repr(2). O

3.3 Semistandard variant

Before we can use this bijection as intended, we have to refine it in this section and
look onto another bijection, the semistandard symplectic Hecke insertion. We use this
insertion for the K-theoretic P-functions in the next chapter. This primarily follows
section 4.1 of [5].

First we analyse the bumping path from Definition [3:3] We already saw that the types
of transitions can only appear in a fixed order: there is a maximum of one diagonal
transition, before it there can only be row transitions, after it there can only be column
transitions.

Definition 3.21. Let (i1, 71), (i2,52),- -, (i1, ;) be a bumping path, resulting from in-
serting a non-negative integer a € N into an increasing shifted tableau T. We refer to
the positions up to and including the first diagonal position as row-bumped positions
and to any subsequent position as column-bumped position.

Remark 3.22. We have to be a bit careful with the intuition of this definition: The
diagonal position is either obtained by D2, D3, or D4, or it is obtained by C2, which has
to appear directly after D1 appeared. Since D1 creates (4,7 + 1) in the bumping-path,
the last row-bumped position can be a column transition.

35

For an example we can look onto the bumping path from inserting 5 into Pg,(26542565),
which we saw in Example In spite of the position from the diagonal transition at
the second edge, the third position in the bumping path is the last row-bumped position
(created from a column transition).

Another fact we can see in the definitions of the edges of the forward transition graph
is that all the row transitions create a bumping path position in the row of the outer box
and all the column transitions create a bumping path position in the column of the outer
corner. So we know that i; has to be equal to ¢, if (i, j;) is a row-bumped position, and
j¢ has to be t if it is a column-bumped position.

Example 28. We look onto the bumping-path from the insertion of 2 into P.Sp(2654256),
as we have seen it in Example

(6]
6]7 67 (1,2 6]7]- -[4](22 - (23 - (24 6]7
e ® 2 = e GI'EQIH 5 61-512 426152123%15[“ e

So the bumping-path in this case is (1,2),(2,2),(2,3),(2,4), while the first two po-
sitions are row-bumped and the last two positions are column-bumped. We see that
(1,12, J3,74) = (1,2,3,4) and the last row-bumped position, which has to be on the
diagonal, has i = jo = 2.

Proposition 3.23. Suppose T is an increasing shifted tableau and a,b € N are integers
with a < b, such that row(T)ab € Hsp(z) is a symplectic Hecke word. We refer to

U:=T S£ a as the first bumping path and to V. =U <S—p b as the second one. Then:

1. Suppose the i-th element of the first path is row-bumped and the second path has
length at least ¢. Then the i-th elements of both paths are row-bumped and in row
1, and the i-th element of the first path is weakly left of the i-th element of the
second path.

2. If the last position in the first path is row-bumped and occurs in column j, then
the last position in the second path is row-bumped and occurs in column k, where
i<k

3. Suppose the i-th element of the second path is column-bumped. Then the first path
has length at least i, the i-th elements of both paths are column-bumped and in
column 4, and the i-th element of the first path is weakly below of the i-th element
of the second path.

4. If the last position in the second path is column-bumped and occurs in row j, then
the last position in the first path is column-bumped and occurs in row %, where
1 < 7, and in a weakly lefter column.

Definition 3.24. The descent set of a word w = wiwsy ... w, is

Des(w) ={i € [n — 1] : w; > wit1}.

36

The descent set of a standard shifted set-valued tableau T with length |T'| = n is

i and (i + 1)’ both appears in T, or
Des(T) := {i € [n—1] : < i appears in T and i + 1 appears in T in a row above of i, or

i’ appears in T and (i 4+ 1)" appears in T in a column right of 4'.
Example 29. We take the word from Example [18| again:
Des(265425) = {2, 3,4}.

Now we look again onto Q)s,(265425), which we already calculated in Example

36

Qsp(265425) = 5

4! | 5/ ‘

We can check that Des(Qgp(4232143)) = {2,3,4}, since: 2 and 3 appear and 3 is in a
higher row, 3 and 4’ are in the tableau, and 4’ and 5’ appear and 5’ is in a column right
of 4.

Theorem 3.25. If w is a symplectic Hecke word then Des(w) = Des(Qgp(w)).

Remark 3.26. Let T be a standard shifted set-valued tableau. If we create a new
tableau S from T by putting all unprimed entries of 7" in the same box in S and moving
every primed entry in box T, to Sy, then ¢ is a descent if and only if the row of S
which is containing ¢ is strictly below the row of the row in S which is containing 7 + 1.

Definition 3.27. For a symplectic Hecke word w € Hgp (%) of length m and for a weakly
increasing factorisation ¢ = (i1 < iy < --- < 4yy,) of w we define Qg,(w, i) to be the shifted
weak set-valued tableau formed from Qgp(w) by replacing j by i; and j" by z; for each

j € [m].

Example 30. We choose the weakly increasing factorisation ¢ = (112344) for the word
w = 265425. Then

24
1)1 3'|4'\'

QSp(w’ Z) = ‘

Definition 3.28. Let @) be a semistandard shifted weak set-valued tableau. We define
the standardisation st(Q) of @ by changing the entries of @) in the following way:

e First replacing all 1s in Q) from left to right by 1,2,...1.
e Then replacing all 1’s in @ from bottom to top by (i + 1), (i +2),...,75".
e Then replacing all 2s in @ from left to right by 7+ 1,54+ 2,...,k.

e Then replacing all 2/ in @ from bottom to top by (k+ 1), (k+2),...,1.

37

e And so on, that means replacing the primed and unprimed numbers in increasing
order by counting either from left to right if the number is unprimed, or from
bottom to top if the number is primed, and prime them if the former number was
primed too. Continue this process till all entries in @) are replaced.

Example 31. We calculate the standardisation

24 36
st(Qsp(265425,112344)) = st (‘ BERE | 7 D :‘ 5

4! | 5/ ‘

And we see that we obtain Qg,(265425).

Theorem 3.29. Let z € Foo. The map (w, i) — (Psp(w), Qsp(w,)) is a bijection from
weakly increasing factorisations of symplectic Hecke word to pairs (P, @), where P is an
increasing shifted tableau with row(P) € Hsp(z) and Q is a semistandard shifted weak
set-valued tableau with the same shape as P. Moreover, the bijection is weight-preserving
in the following sense: wtqgg (v = Wii.

Proof. Let (w,i) be a weakly increasing factorisation of a symplectic Hecke word. The
construction of Qg,(w,) implies that there are as many j or j' in Qgp(w,) as there are
7 in the weakly increasing factorisation ¢. So the map is weight-perserving.

If we take a streak of the same number in 4, the indices are all not descents. Theorem
[3:25] shows that we must have a sequence of the same length of increasing numbers, which
are elements of Qg,(w) and which are not descents too. Let us take the maximal streak
of an number h € N, so i, = h if and only if ¢ € [j : j + b] for some j,b € N. Since
the corresponding elements in Qg,(w) are no descents, it holds that we can divide the
numbers in an earlier sequence of primed numbers and a latter sequence of unprimed ones,
that means there exists an a < b with j/, (j+1),...(j+a),j+a+1,...,5+b € Qgp(w).
Moreover, two primed entries of the sequence cannot be in different boxes in the same
row, while two unprimed entries cannot be in different boxes in the same column of
Qsp(w). So if we change the entries to form Qg,(w,%), we cannot get any unprimed
number in more than one box of any column and we cannot get any primed number in
more than one box of any row. Since Qgp(w) is standard, increasing and does not have
any primed entries on the diagonal, it follows that Qg,(w,%) has to be weakly increasing
and Qgp(w, i) does not have any primed entries on the diagonal too. So Qgp(w,i) is
semistandard and the map is well-defined.

To define the inverse we have to reconstruct Qg,(w) and ¢ from an given Qgp(w,17).
But Qgsp(w) is the standardisation of Qgp(w,7). To get the correct factorisation i, we
define 9 = (2? < zg <. < z%) with m = |Q|, by ZJQ :=a if a or a’ appears in Q and
changes to j or j' in st(Q).

Let (w,i) be a weakly increasing factorisation of a symplectic Hecke word. By The-
orem we can see that every semistandard shifted weak set-valued tableau, whose
standardisation is Qgp(w), arises as Qgp(w,?) for the choice of some factorisation . It
follows from Theorem that the map is surjective. Since we can recover Qgp,(w) and
i from Qgp(w, 1) as descried, we can also recover w by Theorem so the given map is
injective. O

38

4 Polynomials

In this chapter, we use the semistandard symplectic Hecke insertion (especially Theorem
to prove that the K-theoretic Schur P-functions have positive structure constants,
as stated in the following theorem. This involves working out the bijective proof outlined
in section 1.2 of [4]. Afterwards, we see a bigger example.

For a given strict partition A we define the K-theoretic Schur P-function GPy =, xT
as the generating function of all semistandard set-valued shifted tableaux of shape A\. We
want to see now how the symplectic Hecke insertion helps us as argument to prove the
following theorem.

Theorem 4.1. Let A, u be strict partitions. It holds that

GPy-GP, =) e}, GP,,

while ef , is the number of insertion tableaux with shape v and row reading word in
Hsp(2x X 2p).

Furthermore, we defined KPy =) 2T as the generating function of all weak set-
valued shifted tableaux of shape A with no primes on the diagonal at the end of section
[2:3] These functions help us, since it is already known, that the latter generating function
is related to the Schur P-functions by the automorphism of the algebra of symmetric
functions w which maps the Schur functions sy +— syr. It holds that GP) = w(KP)).
We refer to [6, Corollary 6.6] for details.

So to prove Theorem [4.1] we can prove instead the following lemma.

Lemma 4.2. Let A, ;4 be two strict partitions. It holds that

KPy-KP, = Zegu KP,
14

for some numbers eK# e NO,

If this is proven, we know that
GP) = w(KPy) =w(> 5, KP,) = 5, w(KP,) =) e}, GP,.

Definition 4.3. Let z € F be an FPF-involution. We define

KP, := > PG

(w,i)€Incr(Hsp(2))

wi) — TT. V40 = IT mlen(wj) = for (w,w?,...) — (w,i).

(T
where G Z; i %

39

. S
Example 32. We want to calculate some factors of KPj, ¢,0s5,5,- With the rules of 2 we
can compute the set of symplectic Hecke words of s1s20s9s1 with length lower than 4:

{23,21,223, 233,221,211, 231, 213}

To calculate the factor of a monomial []z}*, we can just count the number of pairs
(w, j) € Incr(Hsp(si1s20s251)), such that i appears in the weakly increasing sequence j
exactly a; times.

(23,11) (21,12) (23,22) (223,111) (221,112) (211,122) (223,222)
(23,12) (233,111) (223,112) (223,122) (233,222)

(233,112) (233,122)

(231,112) (213,122)

This are all possible weakly increasing factorisations of words in Hgp(s1520s251), where
the factorisation uses only 1 and 2 and the lenth of the word is lower than 4. So we get

KP, s0sps, =1 -3 +2- a0 +1-25+2 25 +4-2ay +4- 2123 +2-25+ ...
Lemma 4.4. For a strict partition A it holds that
KP, = Z KPshape(S) :

Se{Psp(w):weHsp(2)}
Proof. Since the semistandard variant of the symplectic Hecke insertion is weight preserv-
ing’ we can see that [L'(’LU/L') — H] .’E:l;)ti(j) — :[;QSP(U/J;). SO KPZ = E(w,i)elncr(Hsp(z)) xQSP(’w,i).
Since we know that the tuples (w,) of this form are in bijection with (Psp(w), Qsp(w, 7)),
we can rew.rite .this sum as KP, = ZSE{PSP(w):weHsp(z)} S xT | where the inner'gener—
ating function is over the set 7 of all semistandard weak set-valued tableaux with the
same shape as S. So KP, = ZSE{PSP(w):weHsp(z)} KPghape(s)- O
Lemma 4.5. Let y,z € F. It holds that

KP,-KP, = KPyx. .

Proof. We saw a bijection Incr(Hsp(y)) x Incr(Hgp(z)) — Incr(Hgp(y x z)) at the end
of section With that we are able to see, that

KPy -KP, = Z H mien(vi) Z H x;en(wj)

(v,i)€lner(Hsp(y)) 1 (w.j)€lner(Hsp(2)) J

= Z H xien(vi) ﬂC;.eﬂ(wj)

Incr(Hsp (y)) xIncr(Hgp(z)) @

_ Z H xl‘en(vi)Jrlen(wj)

Iner(Hsp (y)) xIncr(Msp () i

_ H x;en(viwi)

Incr(Hsp (y) X Hsp(2))
= KPyXZ .

40

Remark 4.6. The last fact we need is that for every A\ which has a maximum of n — 1
columns, there is a formular for an FPF-involution z) € F,, such that KPy = KP, [3].

Since we do not want to proof it here, we want to get convinced by an example:

To calculate a factor of the monomial []z{* in KP(), we have count the number of
semistandard weak set-valued shifted tableaux of shape (1) in which ¢ or i’ appears q;
times. But to get a semistandard tableau, we can fill the single box of the young diagram
exactly one time with the multiset which contains a; times ¢, since we are not allowed to
prime anything in the diagonal box. So the factor of every monomial in KP(yy is 1.

To get this polynomial by calculating KP, for a fix-point-free involution z € F,, we
need a set of symplectic Hecke words, in which every weakly increasing sequence of num-
bers appear exactly once as weakly increasing factorisation for a word in the set. This is
realised if we take the symplectic Hecke words of Hgp,(s20s2) = {2, 22,222,2222,22222 ... }.
Since these words never decrease, we can take any weakly increasing sequence as weakly
increasing factorisation. And since there is only one word of a specific length, we can
choose every of these sequences exactly once. So KP (1) = KPy,ps,-

Now we want to calculate some factors of KPy) :

KPg) = 122 2mwy +12? 4223 +dalxy Hdxiad 4.
) e [2]2] fa] u]2] [r2]2]
(L[] 2] {122
EEIREE
2] [P

We see that this KP ;) has the same factors as the polynomial in Example And
indeed, 2(2) = 818298281.

Proof for Lemma[f.2. We summarise all we have learned in this section, and get:

KP)‘ ' KPN KPZ)\ ’ KPZ# KPZAXZ;L @ Z KPshape(T) = Z GK,U KPV,
Te{Psp(w):weHgp(zxx2u)} v

where ef , is the number of insertion tableaux with shape v and row reading word in
Hsp(2x X 2,,), since the symplectic Hecke insertion is bijective. O

Example 33. We want to check whether the equation holds for KP (1) - KPg).
We already calculated at least a few factors of these polynomials:

KP(l) =1x; + 1x2+1x% + 1lxi20 + lx% + lx:i’ + 1.%'%.’,172 + 1:101:6% + 1:L'§’ + ...
KP) = 123 + 22129 + 123 + 225 + 4afag + 4w123 + 223 + ...

So we can calculate

KP(1)-KPg) = o3+ 322wy + 23 + 327 + 9xdwy + 120302 4+ 9z 23 + 325 + ..

41

Now we want to calculate), 61(11)(2) KP,. We already saw that z(;) = s260s3, while
we claimed that Z@2) = s1890s9s1. With the bijection we defined at the end of sec-
tion we can see that ((2,1),(21,12)) — (265,112), and thus we know that 265
has to be a symplectic Hecke word in Hsp(2(1) X 2(2)). Since this set has to be an

equlvalence class of =, we can use its rules to find the other symplectic Hecke words:
Hsp(2(1) X 2(2)) = {265, 625,652,672, 627,267,6257 ... }.
By calculating the insertion tableaux of this set, we get

= P(265) = P(625) = P(2265) = P(2625) = P(2665) =

P(652) = P(672) = P(627) = P(267) = P(6652) = ...,

2 = P(2652) = P(6253) = P(6525) = P(6725) = P(6275) =

Especially, no other insertion tableau appears, independently how long the words are.

21 _ B _ (1 § -
So 6(1)(2) ey = 6(1)(2) =1 and every other ey = 0, such that

KP 1) -KP(9) = KP(1) + KP3) + KP3.1) .
To calculate them, we are again interested in semistandard weak set-valued shifted
tableaux, as we calculated terms of KP ;1) in Example [16| already.
KP 1) = 1-2fxe +1- 2923 +2- 2500 +2- 2925 +3- 2323 + ...

The tableaux of shape (3), which are interesting for the monomials of degree smaller
or equal to 4, are:

] fafafe| (a2 2] [nfa]a] jufi]2] juf2]2] [12]2]2

| | | | |

and |1 [uf2] [ufz]e] [rjufi] ufi]r] uf]2][1]2]2]
[2]efu] [2fu2] [1]i2f2] [1]22]2]
and 1 [u]2] [1]i2]2] [12]2]

22]2]2] [1]1fr2f [1]1]22) [1]2]22]

[222[2] [2]n]e2] [1]1[22) [1]2]]

2] DNz

So we see that

KP3) = a3+ 2022y + x23 + x5 + 327 + 6wy + Tatad + 6125 4+ 305 + ...

42

And finally, we have to look for semistandard weak set-valued shifted tableaux of shape
(3,1):

2 2 2 2
1|1 1H1 1 2H1 1 2’H1 2] 2

So KP3 1) = zire + 22323 + x123 + ... and alltogether

KP o 1)+ KP3) + KP(3 1) = 2f + 3atas + 23 + 327 + 92fwy + 122725 + 9zy23 + a3 + ..

5 Algorithms in Sage

This chapter contains Sage code that implements the algorithms discussed earlier. The
chapter is divided into several sections. The first section contains code related to words

and relations, including a code that returns a list of words in a given Szp equivalence class
of a fixed length. The second section contains code related to tableaux, including a code
that checks if a tableau is weakly admissible. The next two sections contain the code for
(semistandard) symplectic Hecke insertion and its inverse. Afterward, there is a section
that defines a way to return the visualization of a tableau and useful documentations.
In the last section are examples of requests and their corresponding output.

Before we see the code there are a few remarks to mention the differences between the
notation in the paper and in the code.

Words are realised by a list of its letters.
e Primed numbers are realized by subtracting 0.5. So 5’ is represented by 4.5.

e Marked shifted tableaux (especially Ps),) are realized by a two dimensional list,
where the inner lists each represent one row of the tableaux. So for example

6

’ 9 5 ‘is saved as [[2,4,5,6],[6,7]].

o (Weak) set-valued shifted tableaux are realized by three dimensional lists, where
the second-level lists also represent the rows, where the third-level lists represents
the (multi-)sets of each box. So for example

33
\1’ 1 /4

1 is saved as [[[0.5], [1],[3.5, 3.5]], [[3, 3]]].

e Due to the representation of tableaux, there are two kinds of positions, we are
using. Absolute positions are the numeration, how we did it in this paper too.

43

Relative positions are the places in the more dimensional lists. So for example

T

:| N 1 |saved as [[1,2,3,4],[5,6]]

has 5 on the absolute position (2,2) but in the relative position (2, 1), since it is in
the first entry of the second list.

e Furthermore, the lists start to count with 0, so if we want to get the entry 5 in the
previous tableau, we need to ask for T71][0].

e Outer boxes are represented by a list of length 3. The first entry is the value, the
latter two are the absolute position in the tableau. So for example

6-

|25

is represented by the tableau [[2, 5], [6]] with outer box [5, 3, 1]

5.1 Relations and words

adds word to list, i1f its mot in there already
def add_for_list(list, word):
if not word in list:
list.append(word)

returns list with every symplectic Hecke word of the same permutation as start_word of
— a fized length by calculating the fitting equivalence class (see
def HSp_list(start_word, length):
liste=[]
liste.append(start_word)
for word in liste:
1f any word in the list starts with an odd leter, start_word was not a
— symplectic Hecke word
if word[0]%2==1:
print('Error: This is not a symplectic Hecke word!')
exit()
X(X+1)a ~ X(X-1)a
if 1<len(word) and abs(word[0]-word[1])==1 and word[1]+(2*(word[0]-word[1]))!=0:
candidate = [word[0]]+[word[1]+(2*(word[0]-word[1]))]+word[2:1len(word)]
add_for_list(liste,candidate)
for position in range(0,len(word)):
aXZXb ~ aZXZb
if position+2<len(word) and word[position]==word[position+2]:
candidate = word[0:position] +
— [word[position+1],word[position],word[position+1]] +
— word[position+3:len(word)]
add_for_list(liste,candidate)
aX¥b ~ a¥YXb <f [X-Y[>1
if position+i<len(word) and abs(word[position]-word[position+1])>1:

44

candidate = word[0:position] + [word[position+1],word[position]] +
— word[position+2:len(word)]
add_for_list(liste,candidate)
aXb -> aXXb
if len(word)<length:
candidate = word[0:position] + [word[position],word[position]] +
— word[position+1:len(word)]
add_for_list(liste,candidate)
if len(candidate)==length and len(start_word) !=length:
return HSp_list(candidate,length)
aXXb -> alXb
if positiont+i<len(word) and word[position] == word[position+1]:
candidate = word[0:position] + [word[position]] +
— word[position+2:len(word)]
add_for_list(liste,candidate)
if len(candidate)>length:
return HSp_list(candidate,length)
remove every member of the list, which has the wrong length
kuerzer=[]
for member in liste:
if len(member) !=length:
kuerzer . append (member)
for member in kuerzer:
liste.remove (member)
return(liste)

returns list with all FPF-ivolution words congruent to start_word (see)
def RFPF_list(start_word):
list = [start_word]
for word in list:
1f any word in the list starts with an odd leter, start word was not a
— symplectic Hecke word
if word[0]72==1:
print('Error: This is not a symplectic Hecke word!')
exit ()
X(X-1)a ~ X(Xt1)a
if abs(word[0]-word[1])==1:
add_for_list(list, [word[0] ,word[1]+(2*(word[0]-word[1]))] +
— word[2:1len(word)])
if in the new word are same adjacent letters, start_word was not an
— FPF-involutions word
if word[1]+(2*(word[0]-word[1])) == word[2]:
return []
going through every letter of the actual word
for position in range(0,len(word)-1):
aX¥Yb ~ a¥Xb for |X-Y| >1
if abs(word[position]-word[position+1]) != 1:
candidate = word[0:position] + [word[position+1],word[position]] +
— word[position+2:len(word)]
add_for_list(list,candidate)
if in the new word are same adjacent letters, start_word was mnot an
— FPF-involutions word

45

if (position-1!=-1 and word[position-1] == word[position+1]) or

— (position != len(word)-2 and word[position]==word[position+2]):
return []
if position !'= len(word)-2 and abs(word[position]-word[position+1]) == 1 and

— word[position]==word[position+2]:
candidate = word[0:position] +
— [word[position+1],word[position],word[position+1]] +
— word[position+3:len(word)]
add_for_list(list,candidate)
1f in the new word are same adjacent letters, start_word was mnot an
— FPF-involutions word

if word[position-1] == word[position+1] or word[position+1] ==
— word[position+2]:
return []
return list
returns *“symplectic product'’' 0 ©wi © w2®... from word w, cutted at finite point

— (see)

def odot(word,function=()):
s = [PermutationGroupElement ([])]
for i in range(1,2*ceil(max(word)/2)+2):
s.append (PermutationGroupElement ([(1,i+1)]))
if function==():
function=s[1]
for i in range(3,2+*ceil (max(word)/2)+2,2):
function=function*s[i]
for i in word:
if function(i)<function(i+1):
function = s[i]*function*s[i]
else:
if function(i)==i+1 and function(i+1)==i:
return s[0]
return function

returns list with descents of a word or set-valued tableau (see
def Des(input):
descents=[]
if type(input[0])!=list:
word=input
for index in range(0,len(word)-1):
if word[index]>word[index+1]:
descents.append (index+1)
return descents
else:
Q=input
if Q==[[[1]11:
return []
double saves the row of unprimed entries and the column of primed ones (see
— remark |3.26
double={}
for zeile in range(0,len(Q)):
for spalte in range(0,len(Q[zeile])):

46

for entry in range(0,len(Q[zeile] [spalte])):
if Q[zeile] [spalte] [entry]l==int(ceil(Q[zeile] [spalte] [entry])):
double[ceil(Q[zeile] [spalte] [entry])]=zeile
else:
double[ceil(Q[zeile] [spalte] [entry])]=spalte+zeile
for index in range(l,len(double)):
if double[index]<double[index+1]:
descents.append (index)
return descents

returns true i1ff factorization (as list) is a valid weakly increasing factorization of
— word
def is_wif (word,factorization):
check, whether factorization is increasing
sort=deepcopy (factorization)
sort.sort ()
if factorization!=sort:
return false
if word and factorization have different length
if len(word)'!=len(factorization):
return false
if word decreases, but factorizations does not
for index in Des(word):
if factorization[index-1]>=factorization[index]:
return false
return true

5.2 Tableau methods

checks, whether a shifted marked tableau ¢s increasing in rows and columns
def is_increasing(tableau):
for zeile in range(0,len(tableau)):
for spalte in range(0,len(tableaulzeile])):
row is nmot the highest
if zeilet+i<len(tableau):
if entry over actual entry exists
if spalte <= len(tableau[zeile+1]):
and if this entry is smaller (we need column -1 to get relative
— position)
if tableaul[zeile] [spalte] >= tableau[zeile+1] [spalte-1]:
return false
1f entry is not the last in its row
if spalte+l < len(tableaul[zeile]):
and if the entry is geq than the one on the right
if tableaul[zeile] [spalte] >= tableaul[zeile] [spalte+1]:
return false
return true

return list with the entries in the (absolute) index-th column of shifted tableau
def create_spalte(tableau,index):
spalte=[]

47

for zeile in range(0,len(tableau)):
if index-zeile>=0 and index-zeile<len(tableau[zeile]):
if type(tableau[zeile] [index-zeile]) !=1list:
spalte.append(tableau[zeile] [index-zeile])
else:
spalte.append(tableau[zeile] [index-zeile])
return spalte

returns the row reading word of a shifted insertion state
def row_word(tableau,outer_box=[None,None,None]):
word=]
if outer_box[0] !=None and outer_box[1]==len(tableau):
word . append (outer_box [0])
for zeile in reversed(range(0,len(tableau))):
word.extend(tableau[zeile])
if outer_box[0]!=None and outer_box[1]==zeile:
word.append (outer_box [0])
return word

returns the column reading word of a shifted insertion state
def column_word(tableau,outer_box=[None,None,None]):
word=[]
for index in range(0,len(tableaul0])):
if outer_box[0] !'=None and outer_box[2]==index:
word.append (outer_box[0])
word.extend(reversed(create_spalte(tableau,index)))
if outer_box[0]!'=None and outer_box[2]==len(tableaul[0]):
word.append (outer_box [0])
return word

retuns the word of a shifted insertion state
def word(tableau,outer_box=[None,None,None]):
if tableau has an outer column boz
if outer_box[1]==len(tableau)+1:
word=column_word(tableau,outer_box)
else:
word=row_word (tableau, outer_box)
return word

checks, whether shifted insertion state is weakly admissible (see
def is_weaklyadmissible(tableau,outer_box=[None,None,None]):
terminal and initial tableaus
if outer_box[0]==None or outer_box[1]==0:
return true
outer row boz (first point of definition)
if outer_box[2]==1len(tableaul[0])+1:
looking for fitting column
for index in range(l,len(tableaulouter_box[1]-11)):
if row with outer box end before index-th entry
if outer_box[1]==len(tableau) or index>len(tableaulouter_box[1]]):

48

if tableaul[outer_box[1]-1] [index]<=outer_box[0]:
return true
else:
if tableaulouter_box[1]-1] [index]<=outer_box[0] and
< outer_box[0]<tableaul[outer_box[1]] [index-1]:
return true
outer column box (second point of definition)
if outer_box[1] == len(tableau)+1:
not allowed to have bozxz in first column
if outer_box[2] ==
return false
checks for special condition
if outer_box[2]-1<len(tableau) and
< outer_box[2]-(outer_box[2]-1)<len(tableaulouter_box[2]-1]):
if tableaulouter_box[2]-1] [outer_box[2]-(outer_box[2]-1)] == outer_box[0]:
return true
collect columns of o.b. and the one before
spalte_k = create_spalte(tableau,outer_box[2])
spalte_j = create_spalte(tableau,outer_box[2]-1)
looking for fitting row
for zeile in range(0,len(spalte_j)):
1f the column beneath the o.b. ends before zeile-th entry
if zeile>=len(spalte_k):
if spalte_jlzeile]l<=outer_box[0]:
return true

else:
if spalte_jlzeile]l<=outer_box[0] and outer_box[0]<spalte_k[zeile]:
return true
wrong position for outer box
return false

checks, whether shifted insertion state is admissible (see
def is_admissible(tableau,outer_box=[None,None,Nonel):
if is_weaklyadmissible(tableau,outer_box) is false:
return false
1f word of tableau is not a symplectic Hecke word
if odot(word(tableau,outer_box))==PermutationGroupElement ([]):
return false
2f tableau is empty
if tableau==[]:
return true
1f tableau has an outer row bozx
if outer_box[2]==1len(tableaul[0])+1:
if (0.b.[1],0.b.[1]-1) %s occupied by tableau
if outer_box[1]<len(tableau) and 2<=len(tableaulouter_box[1]1]):
if i1t has the value of the outer box but the diagonal bozxz above 1is
— occupied
if 1<len(tableaulouter_box[1]-1]) and outer_box[0] ==
<y tableaulouter_box[1]-1]1[1] and outer_box[1]>=len(tableaulouter_box[1]1]):
return false
if tableau has an outer column bozx
if outer_box[1]==len(tableau)+1:
if (0.b.[2]-1,0.b.[2]) is occupied by tableau

49

if outer_box[2]-1<len(tableau) and outer_box[2]<len(tableaul[outer_box[2]-1]):
1f value of outer boz is at position (0.b.[2]-1,0.b.[2]) in tableau
if outer_box[0] == tableaul[outer_box[2]-1] [outer_box[2]]:
but (0.b.[2],0.b.[2]) isnt occupied and the outer boz is even
if outer_box[2]<len(tableau) and outer_box[2]<len(tableaul[outer_box[2]])
— and outer_box[2]%2==0:
return false
spalte_i=create_spalte(tableau,outer_box[2]-1)
for index in range(0,len(spalte_i)):
if outer_box[0]==spalte_i[index]:
if index < 1:
return false
return true

returns standardisation of set-valued shifted tableau (see
def standardization(tableau):
spalten=[]
for index in range(0,len(tableaul0])):
spalten.append(create_spalte(tableau,index))
std=deepcopy (tableau)
maximum=0
for zeile in range(0,len(tableau)):
for spalte in range(0,len(tableaul[zeile])):
candidat=round (max(tableau[zeile] [spalte]))
if candidat > maximum:
maximum=int (candidat)
count=1
for number in range(1,maximum+1):
for spalte in range(0,len(tableau[0])):
for zeile in range(0,len(spalten[spaltel)):
for entry in range(0,len(spalten[spalte] [zeile])):
if number==spalten[spalte] [zeile] [entry]:
std[zeile] [spalte-zeile] [entry]l=count
count+=1
for zeile in range(0,len(tableau)):
for spalte in range(0,len(tableaulzeile])):
for entry in range(0,len(tableaulzeile] [spalte])):
if tableau[zeile] [spalte] [entry]l==number+0.5:
std[zeile] [spalte] [entry]=count-0.5
count+=1
return std

adds wvalue to the aboslute position in the set-valued tableau ¢
def add_to_Q(Q,value,position):
if position[0]>1len(Q) or position[1]>1en(Q[0]):
print('Warning: can not add position', position, 'to', Q,'!")
return Q
add Trow
if position[0] == len(Q):
Q.append([[valuel]l)
else:
add a new bozx

50

if position[1]-position[0] == len(Q[position[0]]):
Q[position[0]].append([value])
add to a boz
else:
Q[position[0]] [position[1]-position[0]].append(value)
return Q

5.3 Insertion algorithm

inserts the first letter of the word to P and record it in {
documentation=true returns the edged in the path in prettyprint and the bumping path
word_as_outer_boz=true changes the output: (P,word) will be understood as insertion
— state and the algorithm tries to complete the insertion
def insert(P,Q,word,documentation=false, word_as_outer_box=false):
catch first RI1:
if P==[]:
P=[[word[0]]]
Q=[[[11]1]
bumping_path=[(1,1)]
return P,Q,word[1:len(word)]
starting routine:
either create the the outer_boz for initial insertion state or take word as
<« outer_bozx
if word_as_outer_box==false:
outer_box=[word[0],0,len(P[0])+1]
else:
outer_box=deepcopy (word)
word=[]
bumping_path=[]
position=0
looking for mazimal value in {, in order to be able to add the next number to {
for zeile in range(0,len(Q)):
for spalte in range(0,len(Q[zeile])):
maximum=round (max (Q[zeile] [spalte]))
if maximum > position:
position=int (maximum)
if documentation:
prettyprint (P,outer_box)
while outer_box[0]!=None:
i1s outer box at valid position?
if not ((outer_box[2]==1en(P[0])+1 and outer_box[1] in range(0,len(P)+1)) or
— (outer_box[1]==1len(P)+1 and outer_box[2] in range(0,len(P[0])+1))):
print ('Error: outer-box is not on a valid position: P=', P, 'outer-box=',
<, outer_box)
print('Warning: Picture maybe incorrect')
exit ()
1f the outer box is a row box:
if outer_box[2]==1len(P[0])+1:
1f the outer box 2s in a row above the tableau
if outer_box[1]==1en(P):
P.append ([])
1f the outer box ts mazimal in its row, we can only get R1 und R2:
if P[louter_box[1]]==[] or outer_box[0] >= max(P[outer_box[1]]):

ol

¢ = deepcopy(P)
c[outer_box[1]] .append(outer_box[0])
R1 (see:
if is_increasing(c):
Plouter_box[1]] .append(outer_box[0])
outer_box [0]=None
bumping_path.append((outer_box[1]+1,
< len(P[outer_box[1]])+outer_box[1]))
add_to_Q(Q,position+1, (outer_box[1],
— len(P[outer_box[1]])+outer_box[1]-1))
if documentation:
document ('R1',P,outer_box)
continue
R2 (see@):
else:
outer_box[0]=None
bumping_path.append((outer_box[1]+1,
< len(P[outer_box[1]])+outer_box[1]))
spalte = create_spalte(P,len(P[outer_box[1]])+outer_box[1]-1)
add_to_Q(Q,position+1, (len(spalte)-1,
< len(P[outer_box[1]])+outer_box[1]-1))
1if we did not need the new row from the start of row transitions,
— delete it
if P[-1]==[1:
P.remove([])
if documentation:
document ('R2',P,outer_box)
continue

looking for minimal column z in row of outer boz, s.t. ob < P(zeile,z)

for x in range(0,len(P[outer_box[1]])):

if outer_box[0]<P[outer_box[1]] [x]:
break

1if the outer box is greater than the first boz in the row:
R3 and R4 and DI1:

x!=0:
c = deepcopy(P)
clouter_box[1]][x] = outer_box[0]
RY (see
if is_increasing(c):
outer_box[0] = P[outer_box[1]] [x]
Plouter_box[1]][x] = clouter_box[1]] [x]
outer_box[1] += 1
bumping_path.append((outer_box[1] ,x+outer_box[1]))
if documentation:
document ('R4',P,outer_box)
continue
else:
R3 (see @)
if x>1 or outer_box[1]<=len(P)-2:
outer_box[0] = Plouter_box[1]] [x]
outer_box[1] += 1
bumping_path.append((outer_box[1],x+outer_box[1]))
if documentation:
document ('R3',P,outer_box)

92

continue
D1 (see)
else:
outer_box[0] = P[outer_box[1]] [x]
outer_box[2] = outer_box[1]+1
outer_box[1] len(P)+1
bumping_path.append((outer_box[2] ,outer_box[2]+1))
if documentation:
document ('D1',P,outer_box)
continue

1]

else, s.t. the outer box ts smaller or equal the first entry in its row:
D2, D3 and D4:
else:
1f diagonal entry and outer box have the same parity:
D2 and D3
if P[outer_box[1]] [0]%2==outer_box[0]%2:
¢ = deepcopy(P)
c[outer_box[1]][0] = outer_box[0]
D3 (see @)
if is_increasing(c):
outer_box [0]=P [outer_box[1]] [0]
Plouter_box[1]] [0]=c[outer_box[1]] [0]
outer_box[2]=outer_box[1]+1
outer_box[1]=len(P)+1
bumping_path.append((outer_box[2],outer_box[2]))
if documentation:
document ('D3',P,outer_box)
continue
D2 (see)
else:
outer_box [0]=P[outer_box[1]] [0]
outer_box[2]=outer_box[1]+1
outer_box[1]=len(P)+1
bumping_path.append((outer_box[2],outer_box[2]))
if documentation:
document ('D2',P,outer_box)
continue
1f the diagonal entry and the outer box have different parities:
DY (see
else:
outer_box[0]=P[outer_box[1]] [0]+1
outer_box[2]=outer_box[1]+1
outer_box[1]=len(P)+1
bumping_path.append((outer_box[2],outer_box[2]))
if documentation:
document ('D4',P,outer_box)
continue
else, s.t. 1f there is a column boz
else:
if outer_box[1]==1len(P)+1:
take the column of the outer boz from the tableau
spalte=create_spalte(P,outer_box[2])
1f outer box is maximal in its column:
C1 and C2:

93

if spalte==[] or outer_box[0] >= max(spalte):
C1 (see)
¢ = deepcopy(P)
if len(spalte)==len(c):
c.append([outer_box[0]])
else:
c[len(spalte)] .append(outer_box[0])
if is_increasing(c):
P=c
outer_box[0]=None
bumping_path.append((len(spalte)+1,outer_box[2]+1))
add_to_Q(Q,position+0.5, (len(spalte) ,outer_box[2]))
if documentation:
document ('C1',P,outer_box)
continue
C2 (see)
else:
outer_box [0]=None
bumping_path.append((len(spalte)+1,outer_box[2]+1))
add_to_Q(Q,position+0.5, (len(spalte) -1,
— len(Q[len(spalte)-1])-1+len(spalte)-1))
if documentation:
document ('C2',P,outer_box)
continue
1f the outer bozx is mot mazimal in its column:
C3 and C4:
looking for minimal x in column % of the o.b., s.t. 0.b.<P(%,z)
for x in range(0,len(spalte)):
if outer_box[0]<spalte[x]:
break
c=deepcopy (P)
c[x] [outer_box[2]-x]=outer_box[0]
CY (see
if is_increasing(c):
outer_box[2]+=1
outer_box [0]=P[x] [outer_box[2] -x-1]
P=c
bumping_path.append((x+1,outer_box[2]-x))
if documentation:
document ('C4',P,outer_box)
continue
C3 (see
else:
outer_box [0]=P[x] [outer_box[2]-x]
outer_box[2]+=1
bumping_path.append((x+1,outer_box[2]))
if documentation:
document ('C3',P,outer_box)

continue
print ('Error: ended while-loop without declaring type of edge with')
print('P=', P, 'outer box =', outer_box, 'and Q=', Q)
exit ()

if documentation:
print('and bumping path', bumping_path)

o4

return P,Q,word[1:len(word)]

inserts the full input word in an empty tableau P and creates the recording tableau ¢
with input = (word, factorization) the algorithm returns the symplectic wariant of §
documentation—true prints the insertion step by step, print_result= prettyprints the

—

output

def sHi(input,documentation=false,print_result=false):

if type(input)==tuple:
word=input [0]
factorization=input[1]
else:
word=input
factorization=None
if factorization is not walid for word
if factorization!=None and not(is_wif (word,factorization)):
print ('Error: this is not a valid weakly increasing factorization of the word!')
exit ()
if print_result:
print('The tableau resulting as insertion tableau when inserting', word, end='"')
if factorization!=None:
print (' with weakly increasing factorization', factorization, end='")
print(' to an empty tableau is')
P=[]
Q=[]
as long as we have letters in w, insert the next one
while len(word)!=0:
(P,Q,word)=insert (P,Q,word,documentation)
1f a valid factorization was in input, return {(w,7) (see)
if factorization!=None:
for zeile in range(0,len(Q)):
for spalte in range(0,len(Q[zeile])):
for entry in range(0,len(Q[zeile] [spalte])):
if Q[zeile] [spalte] [entry]l==ceil(Q[zeile] [spalte] [entry]):
Q[zeile] [spalte] [entry]l=
— factorization[ceil(Q[zeile] [spalte] [entry])-1]
else:
Q[zeile] [spalte] [entry]l=
— factorization[ceil(Q[zeile] [spalte] [entry])-1]1-0.5
if print_result:
print('\n P=')
prettyprint (P)
print('\n with the recording tableau Q=')
prettyprint(Q)
return (P,Q)

5.4 Inverse insertion

returns the bigger and existing entry in the tableau of the two absolute positions
def bigger_entry(tableau,positionl,position2):

1if positionl is occupied by tableau
if positionl[0]<len(tableau) and positioni[1]-positioni[0]<
< len(tableau[position1[0]]) and position1[0]>=0 and positioni[1]>=0:

95

candidate=tableaul[position1[0]] [positionl[1]-positionl[0]]
1f position2 is also occupied by tableau
if position2[0]<len(tableau) and position2[1]-position2[0]<
— len(tableaul[position2[0]]) and position2[0]>=0 and position2[1]>=0:
candidate=max (tableau[position1[0]] [positionl[1]-positioni[0]],
< tableau[position2[0]] [position2[1]-position2[0]])
1f positionl is mot occupied by tableau
else:
1f position2 is occupied by tableau
if position2[0]<len(tableau) and position2[1]-position2[1]<
< len(tableaul[position2[0]]) and position2[0]>=0 and position2[1]>=0:
candidate=tableau[position2[0]] [position2[1]-position2[0]]
else:
print('\n ERROR: Neither', positionl, 'nor', position2, 'is occupied by',
< tableau)
exit()
return candidate

removes mazimal value from box in relative position
def remove_from_Q(Q,pos_zeile,pos_spalte):
if len(Q[pos_zeile] [pos_spalte])!=1:
Q[pos_zeile] [pos_spalte] .remove (max(Q[pos_zeile] [pos_spaltel))
else:
if len(Q[pos_zeile])!=1:
Q[pos_zeile] .remove ([max(Q[pos_zeile] [pos_spalte]l)])
else:
Q.remove ([[max(Q[pos_zeile] [pos_spalte])]])

uninserts the wvalue of P, which ?s choosen by { and put it wn front of the word
def uninsert(P,Q,word,documentation=false):
if documentation:
prettyprint (P)
looking for mazimal element in and save its relative postition in (pos_zeile,
— pos_spalte)
position=0
for zeile in range(0,len(Q)):
for spalte in range(0,len(Q[zeile])):
maximum=round (max (Q[zeile] [spalte]))
if maximum > position:
position=int (maximum)
pos_zeile=zeile
pos_spalte=spalte
outer_box=[None,None,None]
if mazimal element ts unprimed:
1R1 or iR2
if max(Q[pos_zeile] [pos_spalte])==position:
if it is alone in its boxr, so <RI (see
if len(Q[pos_zeile] [pos_spalte])==1:
outer_box [0]=P[pos_zeile] [pos_spalte]
outer_box[1]=pos_zeile
outer_box[2]=len(P[0])+1
if len(P[pos_zeile])!=1:

o6

P[pos_zeile] .pop(pos_spalte)
else:
P.pop(pos_zeile)
if documentation:
document ('iR1',P,outer_box)
else, s.t. there are other elements in the box of the mazimal wvalue in {, so
— 1R2 (see
else:
take the right outer corner
outer_corner=[None,None,pos_spalte+i+pos_zeile]
if pos_spalte+1<len(P[0]):
outer_corner[1]=len(create_spalte(P,pos_spaltet+pos_zeile+1))
else:
outer_corner[1]=0
now 1R2 at position of the outer corner
outer_box[1]=outer_corner[1]
outer_box[2]=len(P[0])+1
outer_box [0]=bigger_entry (P, (outer_corner[1],outer_corner[2]-1),
— (outer_corner[1]-1,outer_corner[2]))
if documentation:
document ('iR2',P,outer_box)
else, s.t. mazimal value in § is primed, so
1C1 and 2C2
else:
if it is alome in its boz, so iCl (see
if len(Q[pos_zeile] [pos_spalte])==1:
outer_box [0]=P[pos_zeile] [pos_spaltel]
outer_box[1]=1len(P)+1
outer_box[2]=pos_spalte+pos_zeile
if len(P[pos_zeile])!=1:
P[pos_zeile] .pop(pos_spalte)
else:
P.pop(pos_zeile)
if documentation:
document ('iC1',P,outer_box)
else, s.t. there are other elements in the box of the mazimal wvalue in {, so
— 102 (see
else:
looking for outer corner in P in row above of maz value in (
outer_corner=[None,pos_zeile+1,Nonel
if pos_zeile+1<len(P):
outer_corner[2]=1len(P[pos_zeile+1])+pos_zeile+1
else:
outer_corner [2]=pos_zeile+1
now 1C2 at position of outer corner
outer_box[2]=outer_corner[2]
outer_box[1]=len(P)+1
outer_box [0]=bigger_entry (P, (outer_corner[1]-1,outer_corner[2]),
— (outer_corner[1],outer_corner[2]-1))
if documentation:
document ('iC2',P,outer_box)
if outer_box[0]==None or outer_box[1]==None or outer_box[2]==None:
print('\n Error: Couldnt find the first edge, P=', P, 'outer_box=', outer_box)
exit ()

o7

if is_admissible(P,outer_box) is false:
print('\n Error: Something went wrong, P is not admissible anymore! \n P=', P,
— 'outer_box=', outer_box)
prettyprint (P, outer_box)
exit()
other edges:
starting routine
while outer_box[1]!=0:
if is_admissible(P,outer_box) is false:
print('\n Error: Something went wrong, P is not admissible anymore! \n
< outer_box=', outer_box)
prettyprint (P)
exit()
1f outer box is an outer row box
if outer_box[2]==1len(P[0])+1:
looking for special column from admissibility
for spalte in reversed(range(0,len(P[outer_box[1]-1]1))):
if Plouter_box[1]-1] [spalte]<=outer_box[0]:
break
iR3 (see
if P[outer_box[1]-1] [spalte]==outer_box[0]:
outer_box[1]-=1
outer_box [0]=bigger_entry (P, (outer_box[1],spalte-1-outer_box[1]),
— (outer_box[1]-1,spalte+1-(outer_box[1]-1)))
if documentation:
document ('iR3',P,outer_box)
continue
iR4: (see)
else:
outer_box[1]-=1
outer_box[0], P[outer_box[1]][spalte] = P[outer_box[1]] [spaltel],
< outer_box[0]
if documentation:
document ('iR4',P,outer_box)
continue
else, s.t if the outer bozxz is an outer column box
else:
if outer_box[1]==1len(P)+1:
1f value of outer box is geq than diagonal entry in column left of
— outer boz:
1D1 or iD2 or D3 or iD4 or 21(3a
if outer_box[2]-1<len(P) and P[outer_box[2]-1] [0]<=outer_box[0]:
iD1: (see)
if outer_box[0]%2==0 and P[outer_box[2]-1] [0]<outer_box[0] and
— (outer_box[2]<len(P[outer_box[2]-1]) and
— Plouter_box[2]-1] [1]==outer_box[0]):
outer_box[0]=bigger_entry (P, (outer_box[2]-1,0),
— (outer_box[2]-2,2))
outer_box[1]=outer_box[2]-1
outer_box[2]=1len(P[0])+1
if documentation:
document ('iD1',P,outer_box)
continue

1D2 (see

o8

if P[outer_box[2]-1] [0]==outer_box[0] and P[outer_box[2]-2] [1]%2==0:
outer_box [0]=P[outer_box[2]-2][1]
outer_box[1]=outer_box[2]-1
outer_box[2]=1en(P[0])+1
if documentation:
document ('iD2',P,outer_box)
continue
iD3 (see
if P[outer_box[2]-1] [0]<outer_box[0] and (1>=len(P[outer_box[2]-1])
— or outer_box[0]<P[outer_box[2]-1][1]) and outer_box[0]%2==0:
outer_box[1]=outer_box[2]-1
outer_box[2]=1en(P[0])+1
outer_box[0] ,P[outer_box[1]][0] =
— Plouter_box[1]][0],outer_box[0]
if documentation:
document ('iD3',P,outer_box)
continue
1D4 (see
if P[outer_box[2]-1] [0]<outer_box[0] and outer_box[0]%2==1:
outer_box[0]=P[outer_box[2]-1][0]-1
outer_box[1]=outer_box[2]-1
outer_box[2]=1len(P[0])+1
if documentation:
document ('iD4',P,outer_box)
continue
i1C3a (see
if P[outer_box[2]-1] [0]==outer_box[0] and 1<len(P[outer_box[2]-2])
— and Plouter_box[2]-2] [1]%2==1:
outer_box[0]=P[outer_box[2]-2][1]
outer_box[2]-=1
if documentation:
document ('iC3a',P,outer_box)
continue
1f outer box is lower than the diagonal entry in column left of outer
— box:
1C3b and 1C4
if outer_box[2]-1>=1len(P) or outer_box[0]<P[outer_box[2]-1][0]:
looking for special row given by admissible tableaus
spalte=create_spalte(P,outer_box[2]-1)
for index in reversed(range(0,len(spalte))):
if spalte[index]<=outer_box[0]:
break
1C3b (see
if P[index] [outer_box[2]-1-index]==outer_box[0]:
outer_box[2] -=1
outer_box [0]=bigger_entry (P, (index-1,outer_box[2]),
— (index,outer_box[2]-1))
if documentation:
document ('iC3b',P,outer_box)
continue
i1C{ (see
if P[index] [outer_box[2]-1-index]<outer_box[0]:
outer_box[2]-=1

99

outer_box[0],P[index] [outer_box[2]-index] =
— P[index] [outer_box[2]-index] ,outer_box[0]
if documentation:
document ('iC4',P,outer_box)
continue
print('\n Error: Something went wrong. Can not find fitting edge for P=')
prettyprint (P,outer_box)
exit()
remove max element from { and add outer box to word
remove_from_Q(Q,pos_zeile,pos_spalte)
word.insert (0, outer_box[0])
return(P,Q,word)

returns the word (resp. the word and the factorization), which results in the
— admissible insertion tableau P and the recording tableau { by symplectic Hecke
— insertion.
def isHi(PQ,documentation=false,print_result=false):
P=PQ[0]
Q=PQ[1]
looking for factorization:
factorization=[]
for zeile in range(0,len(Q)):
for spalte in range(0,len(Q[zeile])):
for entry in range(0,len(Q[zeile] [spaltel)):
factorization.append(ceil (Q[zeile] [spalte] [entry]))
factorization.sort()
if factorization is not trivial, calculate standardization(§(w,z))
if factorization!=list(range(l,len(factorization)+1)):
Q=standardization(Q)
if print_result:
print('To get this P and Q you need the word ', end='"')

word=[]
uninsert letters from P, till it 2s empty
while P!=[]:

(P,Q,word)=uninsert (P,Q,word,documentation)

if print_result:
print (word, end='")
if factorization!=list(range(l,len(factorization)+1)):

print(' with the factorization', factorization,end='")

print('.")

if factorization == list(range(l,len(factorization)+1)):
return word

return (word,factorization)

5.5 Prettyprinting and documentation

prints row with entries
def printentries(tableau,zeile,spalte):
if type(tableaul[zeile] [spalte])==type([]):
for eintrag in range(0,len(tableaulzeile] [spalte])):
if type(tableaul[zeile] [spalte] [eintrag])==Integer or
— type(tableau[zeile] [spalte] [eintrag]) == int:

60

print(tableaul[zeile] [spalte] [eintrag], sep='',end=' ')
else:
print(int(tableaul[zeile] [spalte] [eintrag]+0.5),' "', sep='',end=' ')
else:
print (tableau[zeile] [spalte], sep='',end=' ')
create tableau, which entries save the needed length per bozx
def create_length(tableau):
laenge=[]
Set-valued tableaus:
if type(tableau[0] [0])==type([]):
for zeile in range(0,len(tableau)):
laenge.append([])
for spalte in range(0,len(tableaulzeile])):
laenge[zeile] .append([]1)
laenge[zeile] [spalte]=2xlen(tableaul[zeile] [spalte])-1
for eintrag in range(0,len(tableaulzeile] [spalte])):
laenge[zeile] [spalte] +=
— floor(log(tableau[zeile] [spalte] [eintrag]+0.5,10))
if round(tableau[zeile] [spalte] [eintrag]l)!=
— tableau[zeile] [spalte] [eintrag]:
laenge[zeile] [spalte] +=1
insertion tableaus
else:
for zeile in range(0,len(tableau)):
laenge.append([1)
for spalte in range(0,len(tableaulzeile])):
laenge([zeile] .append([]1)
laenge[zeile] [spalte] = 1+floor(log(tableaulzeile] [spalte]+0.5,10))
return laenge

print (set-valued) shifted tableaus (with outer boz):
def prettyprint(tableau, outer_box=[None,None,None]):
catch empty tableaus
if (tableau==[] or tableau==[[]]) and outer_box[0]==None:
print (' #####E")
print('#')
print('#')
print (' #####E")
return
if (tableau==[] or tableau==[[]]) and outer_box[0] !=None:
print (' #####E")

print ('# +-','-"*(1+floor (log(outer_box[0]+0.5,10))),'-+',sep="")
print('# | ',outer_box[0],' |',sep="")

print('# +-','="*(1+floor (log(outer_box[0]+0.5,10))),'-+',sep="")
print (' #####4")

return

first determine the length needed for each bozx

laenge=create_length(tableau)

looking for maximal length in each column to make every boz in a column equaly
— long

laenge_spalte=deepcopy(laenge[0])

looking for outer column box

if outer_box[0]!=None and outer_box[1]==len(tableau)+1:

61

if outer_box[2]<len(laenge_spalte):
laenge_spalte[outer_box[2]]=
— max(laenge_spalte[outer_box[2]],1+floor(log(outer_box[0]+0.5,10)))
if len(laenge)>0:
for zeile in range(1l,len(laenge)):
for spalte in range(0,len(laenge[zeile])):
laenge_spalte[zeile+spalte]=
— max(laenge_spalte[zeile+spalte] ,laenge[zeile] [spalte])
create frame
print ()
print ('###','#'*(sum(laenge_spalte)+3+len(tableaul0])),sep='"',end="'")
if outer_box[0]!=None:
print (' ### ' * (max (0,outer_box[2]-len(tableaul0]))),
— '#'x(1+floor(log(outer_box[0]+0.5,10))), '###', sep='"',end="")
print ('###')
print('#')
create bozes with entries
create outer column boz
if outer_box[0]!=None and outer_box[l1]==len(tableau)+1 and
— outer_box[2]<len(laenge_spalte):

print('# ', ! "xouter_box[2], '
< '*(sum(laenge_spalte[0:outer_box[2]])-outer_box[1]), sep='',end='")
print('+-', '-'xlaenge_spalte[outer_box[2]],'-+', sep="'")
print('# ', ! "xouter_box[2], '
— '#(sum(laenge_spalte[0:outer_box[2]])-outer_box[1]), sep='',end='")
print('|', outer_box[0],'[")
print('# ', "xouter_box[2], '
— '#(sum(laenge_spalte[0:outer_box[2]])-outer_box[1]), sep='"',end='")
print('+-','-'+laenge_spalte[outer_box[2]], '-+', sep='")
print('# ')
else:

create outer column box in a column next to tableau
if outer_box[0]!=None and outer_box[1]==len(tableau)+1:

print('# ', ' "*(len(tableaul0])), ' '*(sum(laenge_spalte)+1),
— sep='',end='")

print('+-', '-'*x(1+floor(log(outer_box[0]+0.5,10))),"'-+"',sep="")
print('# ', ' '*(len(tableaul0])), ' '*(sum(laenge_spalte)+1),
— sep='',end='")

print('|", outer_box[0],'|")

print('# ', ' '*(len(tableaul0])), ' '*(sum(laenge_spalte)+1),
— sep='',end='")

print('+-', '-'*(1+floor(log(outer_box[0]+0.5,10))), '-+', sep='")

print('# ')
create outer row bozxz in row over tableau
if outer_box[0]!=None and outer_box[l1]==len(tableau) and
— outer_box[2]==len(tableaul[0])+1:

print('# ', ! '*(len(tableaul[0])+1), '
— 'x(sum(laenge_spalte)+1),sep='"',end="'")
print('+-', '-'*x(1+floor(log(outer_box[0]+0.5,10))),'-+',sep="")
print('# ', ! '*(len(tableaul[0])+1), '
— 'x(sum(laenge_spalte)+1),sep='"',end="'")
print('|', outer_box[0],'[")
print('# ', end='")

create tableau

62

for zeile in reversed(range(0,len(laenge))):

Shifting

print (' 'xzeile,' 'x(sum(laenge_spalte[0:zeile])-zeile), sep='',end='")

edge above Tow

for spalte in range(0,len(laenge[zeile])):
print('+-','-'+xlaenge_spalte[spalte+zeile],'-', sep='',end="'")

print('+',end="")

edges of outer Tow box

if outer_box[0]!=None and (outer_box[1]==zeile or outer_box[1]==zeile+1):
print (' '*(sum(laenge_spalte[len(tableaul[zeile])+zeile:len(tableaul0]1)])),

— 'x(len(tableau[0])-len(tableau[zeile])-zeile+1), sep='"', end='"')
print('+-','-"*(1+floor(log(outer_box[0]+0.5,10))),'-+', sep='"',end='")
print ()
print('# ',end='")
shifting
print (' 'xzeile,' '*(sum(laenge_spalte[0:zeile])-zeile), sep='"',end='")

print entries

for spalte in range(0,len(laenge[zeile])):
print('| ', '
< 'xfloor((laenge_spalte[spaltetzeile] -laenge[zeile] [spalte])/2),
— sep='',end='")
printentries(tableau,zeile,spalte)
print(' 'xceil((laenge_spalte[spalte+zeile]-laenge[zeile] [spalte])/2),
— sep='',end='")

print('| ',end='")

print entry of outer Tow box

if outer_box[0]!=None and outer_box[1]==zeile:

print(' '#(sum(laenge_spalte[len(tableau[zeile])+zeile:len(tableaul0]1)1)), '

— 'x(len(tableau[0])-len(tableau[zeile])-zeile), sep='', end='"')
print(' |', outer_box[0],'|', end='")
print ()

print('# ',end='")
print lowest edge
for spalte in range(0,len(laenge[0])):

print('+-', '-'xlaenge_spalte[spalte], '-', sep='',end='")
print('+', end='")
if outer_box[0] !=None and outer_box[1]==0:

print (' +-', '-'"x(1+floor(log(outer_box[0]+0.5,10))), '-+', sep='"', end='")
create frame
print ()
print('#')
print ("###','#'*(sun(laenge_spalte)+3*len(tableaul[0])),sep='"',end="")
if outer_box[0] !'=None:

print ('### ' * (max(0,outer_box[2]-len(tableaul0]))),

— '#'x(1+floor(log(outer_box[0]+0.5,10))), '###', sep='"', end='")
print ('###')
print ()

print an arrow for documentation
def print_edge(label):

print(' [|")
print('',label)
print(' [|")

63

print(' V')

prints an edge with hit tableau for documentation
def document(label,P,outer_box):

print_edge(label)

prettyprint (P,outer_box)

64

5.6 Examples

Finally, here are are some examples, which produce the output beneath them.
Input:

print('\n---------- \n')

#In Ezample |1| we calculated, that
print('26542 is a symplectic Hecke word for')

odot([2,6,5,4,2])

print('\n-------——-- \n')

#In emample we calculated, that
print('The FPF-involution words of (56) (67)(23)theta(23) (67) (56) are')

RFPF_list([2,6,5])

print('\n---------- \n')

#In e:cample we saw the insertion tableau, in exzample the recording tableau of
sHi([2,6,5,4,2,5], print_result=true)

print('\n---------- \n')

#In ezaple we saw the inverse:

isHi(([[2, 4, 5, 7], [611, [[[1], [2], [3.5], [4.5]11, [[3, 6111))
print('\n---------- \n')

#In exzample we saw which recording tableau we get with a factorization:
sHi(([2,6,5,4,2,5],[1,1,2,3,4,4]) ,print_result=true)

print('\n---------- \n')

#In emample we saw the insertion tableau of 265, here is the insertion step by step:

sHi([2,6,5],documentation=true)

print('\n---------- \n')

65

26542 is a symplectic Hecke word for
(1,3)(2,5)(4,8)(6,7)

The FPF-involution words of (56) (67) (23)theta(23) (67)(56) are
(cz, e, 51, (6, 2, 51, [6, 5, 21, [6, 7, 21, [6, 2, 71, [2, 6, 7]]

The tableau resulting as insertion tableau when inserting [2, 6, 5, 4, 2, 5] to an empty
— tableau is

P=
HEHHHHH

oot
| 6 |

[IR, R et (e
| 21415171
[g S S

H O OH ¥ H HH

HEHHHHHH

with the recording tableau Q=

HEHHHHHH AR

#
Fooo oo +

| 36 |

H -t ————— Foe o+
111 2 | 415 |
-t [ST ——
#

HHHHHEHE
([[2, 4, 5, 71, [611, [[[11, [2]1, [3.50000000000000], [4.5000000000000011, [[3, 6111)

To get this P and Q you need the word [2, 6, 5, 4, 2, 5].
[2, 6, 5, 4, 2, 5]

The tableau resulting as insertion tableau when inserting [2, 6, 5, 4, 2, 5] with weakly
< increasing factorization [1, 1, 2, 3, 4, 4] to an empty tableau is

66

HEHHHHH

oot
| 6 |

[e e
| 214151 7]
f R g

H O H ¥ H HH

HEHHHHH

with the recording tableau Q=

B R

#
Fomm o +

| 24 |

At Fom e+
| 1| 1 | 3|4 |
-t [T S
#

HEHHH R

(ct2, 4, 5, 71, [611, [C[11, [1], [2.50000000000000],

HEHHHHH

Fomot Aot
| 2| | 6 |
B g

H O O H OH

HEHHHHH

|
R1
|
v

HEHHHAH AR AR

H O OH ¥
N
(o)}

HEHHHBHSHHHRSH
and bumping path [(1, 2)]

HHHHH AR

67

[3.50000000000000]17 ,

[[2, 4111

H O H
N
(o))
ol

HEHHHHH

[
R4
|
v

HHH R

o R OE OB H H
+
|
|
|
4
|
|
)
+
+
|
|
|
+

HEHHHHH

[
R1
|
v

HEHHHHH AR

H OH H H H HH
+
|
|
|
+
|
|
|
+

HEHHHAH AR

and bumping path [(1, 2), (2,

([f2, 51, [611, CC[1], (211,

2)]
(L3111

68

References

[1] T. Ikeda and H. Naruse. “K-theoretic analogues of factorial Schur P- and Q-
functions”, Advances in Mathematics 243 (2013), pp. 22-66.

[2] E. Clifford, H. Thomas and A. Yong. “K-theoretic Schubert calculus for OG(n,2n+1)
and jeu de taquin for shifted increasing tableaux”, J. Reine Angew. Math. 690 (2014),
pp. 51-63.

[3] E. Marberg and B. Pawlowski. “On some properties of symplectic Grothendieck
polynomials”, J. Pure Appl. Algebra 225 (2021), 106463.

[4] E. Marberg. “Shifted insertion algorithms for primed words”, arXiv:2104.11437.

[5] E. Marberg. “A symplectic refinement of shifted Hecke insertion”, J. Combin. Theory
Ser. A 173 (2020), 105216.

[6] J. B. Lewis and E. Marberg. “Enriched set-valued P-partitions and shifted stable
Grothendieck polynomials”, Math. Z. 299 (2021), pp. 1929-1972.

69

Eigenstandigkeitserkldarung

Hiermit versichere ich, dass
1. ich die vorliegende Arbeit selbstandig angefertigt habe,

2. ich aufser den im Quellen- und Literaturverzeichnis sowie in den Anmerkungen
genannten Hilfsmitteln keine weiteren benutzt,

3. ich alle Stellen der Arbeit, die anderen Werken dem Wortlaut oder Sinn nach
entnommen sind, unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Das umfasst alle Quellen, insbesondere auch Informationen aus dem internet und

4. die vorliegende Arbeit mit der vorher abgegebenen Version iibereinstimmt.

Gleichzeitig erklare ich, dass ich weder diese Arbeit (in dieser oder einer inhaltlich dquiv-
alenten Form) noch Teile daraus bereits an anderer Stelle eingereicht habe.

Datum, Ort Unterschrift

70

	Introduction
	Preliminaries
	Words
	Equivalences
	Tableaus

	Insertion algorithm
	Symplectic Hecke insertion
	Inverse insertion
	Semistandard variant

	Polynomials
	Algorithms in Sage
	Relations and words
	Tableau methods
	Insertion algorithm
	Inverse insertion
	Prettyprinting and documentation
	Examples

