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1 INTRODUCTION

1 Introduction
This thesis deals with the question of whether or not, respectively to what ex-
tent, a geometric realization (as a polytope) of a certain kind of structural object
(the multi-associahedron) exists. The multi-associahedron is linked to the the-
ory of finite reflection groups in which we will make a detour to elaborate this
connection. We will mainly focus on two different techniques for geometric re-
alization based on the two articles Fan realizations of subword complexes and
multi-associahedra using Gale duality [BCL14] published in 2014 and Realiza-
tions of multiassociahedra via rigidity [RS22b] published in 2022. Comparing
the techniques and their results will give us an overview about the difficulty of
the topic and the progress towards solving this question, which is presented at
the end of this thesis. First we will explain what the structural object in question
shall be and, furthermore, what our understanding of a geometric realization is.
This will be the content of the next two subsections.

1.1 Triangulations of the n-gon and Associahedra
Let n ∈ N be a positive integer and consider a set of n points in the plane. More
precisely, we let these points lie equidistantly distributed on the unite circle and
number them by {1, . . . , n}, where i and i + 1, and n and 1 lie directly next
to each other. By connecting consecutive points we obtain an object called the
regular polygon with n vertices and edges. It has the property of being convex
(thus every straight line between two points lies completely within the area
bounded by the n points), equiangular (all angles of the form ∠(i, O, i+ 1) are
equal in measure and O denotes the origin) and equilateral (the length of the
sides are equal in measure). In short, we will call this the n-gon. For n = 5 we
obtain the following picture:

1

2

3

4

5

O

Let us now triangulate the 5-gon, thus, draw straight, non-crossing lines be-
tween the points in such way, that the resulting areas are solely triangles. For
example, by connecting the vertices 1 and 3, and 1 and 4, which we denote as
the edges [1, 3] and [1, 4], we obtain the following triangulation:
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1.1 Triangulations of the n-gon and Associahedra 1 INTRODUCTION

In total, there are five different triangulations of the 5-gon, which are listed in
Table 1.1.
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t1 t2 t3 t4 t5

Table 1.1: The five triangulations of the 5-gon labeled by ti. Remark, that we
obtain the triangulation t2 from the triangulation t1 by ’flipping’ the edge [1, 4]
to the edge [3, 5]. This continues to work between adjacent triangulations by
flipping certain edges. In later sections we will go into further details about this
procedure.

Using the flip of edges described in the caption of Table 1.1 we consider the
following. Taking the triangulations as vertices and connecting two vertices
whenever the two corresponding triangulations are connected by the flip of an
edge, yields the following picture (after positioning the triangulations in a nice
way)

t1

t2

t3

t4

t5

where for example the triangulation t1 and t5 are connected since the first is
obtained from the latter by flipping the edge [1, 3] to the edge [2, 4] and back-
wards. The resulting object is again a pentagon, which is not always the case as
we will see in a moment. By identifying the vertices of our ’new’ pentagon with
points in R2 on the unite circle, in the same manner as we did before, we can
talk about a geometric object which has the property of being polytopal (we will
go into further details later and give the precise definition, for now imagine a
polytope to be an object in Rn which is ’bounded’ in some kind of sense and has
flat surfaces). The structural object is the ’network’ of different triangulations
which are somehow connected by flips of edges and the geometric realization is
the way we described just before. We call the ’new’ pentagon the 2-dimensional
associahedron.

Lets consider a slightly bigger example and look at triangulations of the 6-
gon. There are in total 14 different triangulations, for example the following
two which are, again, connected by the flip of an edge.
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By doing the same geometric realization as we did for the triangulations of the
pentagon, we obtain the 3-dimensional realization pictured in Figure 1.1 which
is again a polytope. Remark, that these geometric realizations are not unique.

Figure 1.1: The 3-dimensional associahedron in R3. The picture is taken from
[FZ03].

In the course of the thesis we will discuss the polytopality of the associahe-
dron of an arbitrary dimension, thus, we will look at different versions of the
next theorem. Remark, that this statement was proven some time ago. For
more details concerning the history of the associahedron and its timeline we
refer to [Ceb12], from which Theorem 1.1 is taken from aswell.

Theorem 1.1 ([Ceb12]). The n-dim. associahedron Asso(n) corresponds to the
triangulations of a convex (n + 3)-gon, has Cn+1 = 1

n+2

(
2n+2
n+1

)
many vertices

and is a simple polytope.

1.2 k-Triangulations and Multi-Associahedra
The realization of the associahedron as a polytope is well known for quiet some
time. Our main goal is to look at the generalization of triangulations, which
we will discuss now. Remember the rule for triangulating the n-gon: Drawing
non-crossing edges by connecting the vertices of the n-gon. The obvious way to
generalize this is to allow a certain number of crossings in the following manner:
Consider k-many edges in the n-gon. We say that they form a k-crossing, if they
are all pairwise crossing. Furthermore, we call a k-triangulation of the n-gon
a maximal (k + 1)-crossing free set of edges (thus, adding any additional edge
would result in the existence of a (k + 1)-crossing).
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Table 1.2: An example of a 2-triangulation of the 8-gon. On the left we see the
crossing of two edges. In the middle is an example of a 3-crossing. On the right
is a maximal 3-crossing free set of edges, thus, a 2-triangulation of the 8-gon.

In Table 1.2 is an example for such a multi-triangulation. Remark, that there
are certain edges which will never be part of a 3-crossing and are part of any 2-
triangulation. We will go into further details about the classification of edges
which are important (red) and not-important (blue) for a k-crossing in a later
section of the thesis.

Now, staying with the example in Table 1.2, just like we were able to obtain
the triangulations from one another by flipping an edge we can obtain a differ-
ent 2-triangulation of the 8-gon by flipping an edge from the given one. Lets take
the edge [1, 4] and flip it to the edge [2, 5]. This yields another 2-triangulation,
which is depicted below. Remark, that not every flip yields a 3-crossing free set
of edges!
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Again, we can take the different 2-triangulations of the 8-gon and connect
them, whenever the differ by a flip. The question is, whether or not this is
doable in such a manner and dimension, that the geometric realization is poly-
topal. For this particular example the answer is yes, although we can not give a
picture since it is realized in R7. The multi-associahedron △(n, k) is the struc-
ture based on connecting k-triangulations of the n-gon by flipping edges. This
will be the object of our interest in this thesis.

We will discuss the multi-associahedron after introducing polytopes and talk-
ing about Theorem 1.1 in Section 3.
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2 POLYTOPES

2 Polytopes
First, we want to go into details about our main geometric object - polytopes
and how to realize them. For our purpose we only talk about bounded, convex
polytopes and will always (as it is consent in the literature) omit the words
bounded and convex. Beginning with the main definitions and looking at some
examples and important properties, our main goal is to give an understanding
of what a polytope is and to show an example of how a structure like the
associahedron can be realized as a polytope.

2.1 Definitions and Examples
In this subsection we will work very closely with the chapters one, two and seven
of [Zie95]. Remark, that we do not want to explore the theory of polytopes in
all its depth and refer for that to the cited reference. Let K be a finite subset
of Rd. Remember that the convex hull of K is defined as

conv(K) =
⋂

K⊆K′⊆Rd

K′ convex

K ′

and a subset K is called convex, if any line segment between arbitrary points
of K is completely included in K. One can show that for K = {x1, . . . , xn} the
following equality holds, giving us a more useful and geometric interpretation.

conv(K) =

{
n∑

i=1

λixi

∣∣∣∣∣λi ≥ 0 ,

n∑
i=1

λi = 1

}
We are now able to give the definition of one kind of polytope based on the

convex hull of a set of points.

Definition 2.1. A V-polytope is the convex hull of a finite set of points in
some Rd.

A polytope can thus be determined by a finite set of points. On the other
hand the geometric intuition leads to another approach which uses halfspaces
as boundaries.

Definition 2.2. An H-polyhedron is an intersection of finitely many closed
halfspaces in some Rd. Define an H-polytope as a bounded H-polyhedron
meaning, that it does not contain any ray of the form {x + ty | t ≥ 0} for any
vector x ∈ Rd and y ∈ Rd \ {0}.

Remark 2.1. Saying, that a polyhedron P is an intersection of finitely many
closed halfspaces in some Rd is the same as to say that there is a system of m
inequalities that the points in P have to satisfy, thus, the polyhedron P can be
presented in the form

P = P (A, z) = {x ∈ Rd |Ax ≤ z}

where A ∈ Rm×d and z ∈ Rm.

Example 2.1. The following pictures illustrate the definition of a V-polytope
and an H-polytope
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2.1 Definitions and Examples 2 POLYTOPES

where

P = conv
({(

3/2
3/2

)
,

(
−1/2
1/2

)
,

(
−3/2
−1

)
,

(
0

−3/2

)
,

(
2
0

)})
respectively

P = P

A =


−2 4
−6 4
−2 −6
3 −4
3 1

 , z =


3
5
9
6
6


 .

Looking at the given example and considering the definitions it might become
clear that the definition of a V- and an H-polytope define the same geometric
object. In fact, they are equivalent.

Theorem 2.1. A subset P ⊆ Rd is a V-polytope P = conv(V ) for some V ⊆ Rd

if and only if it is an H-polytope P = P (A, z) for some A ∈ Rm×d, z ∈ Rm.

Definition 2.3. A polytope P is a set of points in Rd which can be presented
either as a V- or an H-polytope.

Example 2.2. The moment curve in Rd is defined by the map

x : R → Rd, t 7→ x(t) = (t, t2, . . . , td)T .

We define the cyclic polytope as the convex hull

Cd(t1, . . . , tn) = conv{x(t1), . . . , x(tn)}

of n > d distinct points x(ti), with t1 < · · · < tn, on the moment curve. The
points x(ti) are the vertices of the polytope and the combinatorial equivalence
class of the polytope does not depend on the specific choice of the ti (this is
more or less obvious from the fact that the ti are always strictly increasing).
Thus, we can use the notation Cd(n) and speak about ’the’ cyclic polytope. The
cyclic polytope will appear again, when we talk about the more simple cases of
realizing certain multi-associahedra as polytopes. We look at a quick example
for the cyclic polytope C2(7)

x(− 3
2 )

x(−1)

x(0)

x( 12 )

x(1)

x( 32 )

x(2)
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2.1 Definitions and Examples 2 POLYTOPES

We will now introduce the necessary definitions to describe a polytope more
clearly, thus, in terms of its vertices, edges, ridges and facets. This terminol-
ogy will appear again in a later section of this thesis when we will talk about
simplicial complexes.

Definition 2.4. Let P ⊆ Rd be a polytope and consider the linear inequal-
ity cx ≤ c0, where x ∈ Rd and cT ∈ Rd. We call this inequality valid for P if it
is satisfied for all points x ∈ P . Furthermore, we define a face of P to be any
set of the form

F = P ∩ {x ∈ Rd | cx = co}

for a valid inequality cx ≤ c0 for P . The dimension of a face is the dimension
of its affine hull.

For the valid inequalities 0x ≤ 0 and 0x ≤ 1 we can see that P itself, respec-
tively the empty set, are faces of P . The faces of dimensions 0, 1, dim(P ) − 2
and dim(P ) − 1 are called vertices, edges, ridges and facets, respectively.
We denote the vertex set by vert(P ).

Example 2.3. Consider the 2-simplex in R3, i.e., the convex hull of the three
standard basis vectors and 0. Its facets are the triangular shaped sides and the
ridges are the lines connecting the vertices.

In the following we collect some simple and basic facts about faces of poly-
topes, which are good to know for understanding the nature of them.

Proposition 2.2. Let P ⊂ Rd be a polytope and V = vert(P ) be the set of
vertices. Let F be a face of P .

1. The face F is a polytope with vert(F ) = F ∩ V .

2. Every intersection of faces of P is a face of P .

3. The faces of F are exactly the faces of P that are contained in F .

4. F = P ∩ aff(F ).

To be able to give a combinatorial description of polytopes we have to talk
about partially ordered sets (posets). We only give the necessary terminology
to understand the definition of a face lattice of a polytope and its properties.

Definition 2.5. Let S be a finite set with an reflexive, transitive and antisym-
metric relation ≤. We then call (S,≤) a poset. We call a poset bounded, if it
has an unique minimal and an unique maximal element, respectively. A poset is
a lattice, if it is bounded, every two elements x, y ∈ S have an unique minimal
upper bound in S and every two elements x, y ∈ S have an unique maximal
lower bound in S.

8



2.1 Definitions and Examples 2 POLYTOPES

There is a graphical representation of posets as graphs in the plane using
Hasse diagrams: The vertices correspond to elements of S and there is an
increasing path from x to y whenever x ≤ y holds.

Example 2.4. The following examples show a not bounded poset (there is no
unique maximal element), a bounded poset which is not a lattice (e.g. the two
vertices on the second level do not have an unique minimal upper bound) and
a lattice poset.

Definition 2.6. The face lattice of a polytope P is the poset L = L(P ) of all
faces of P , partially ordered by inclusion.

Thanks to Proposition 2.2 we know that this definition makes sense. Even
more, one can show that the face lattice is indeed a lattice poset, justifying the
terminology. Furthermore, we can now call two polytopes combinatorially
equivalent, whenever their face lattices are isomorphic.

Example 2.5. The following is the face lattice of the convex pentagon.

empty set
vertices
edges
5-gon

A common tool for describing polytopes, or creating them, are fans, which
we will introduce now. Before doing so, we need the notion of a cone.

Definition 2.7. Let Y = {y1, . . . , yk} ⊆ Rd be an arbitrary finite set of points.
We define its conical hull as the set

cone(Y ) = {
n∑

i=1

λiyi |λi ≥ 0}.

More generally, a cone is a nonempty set of vectors that with every finite set of
vectors also contains all their linear combinations with nonnegative coefficients.

Remark, that a cone always contains the origin by definition. Just like for
polytopes there is a characterizing theorem for polyhedral cones.

Theorem 2.3. A cone C ⊆ Rd is a finitely generated combination of vec-
tors C = cone(Y ) for some Y ∈ Rd×n, if and only if it is a finite intersection
of closed linear halfspaces C = P (A, 0) for some A ∈ Rm×d.

Remark 2.2. With the notation C = P (A, 0) we do not mean that the cone
is a polytope, since it is never bounded in the needed sense (all halfspaces run
through the origin).

9



2.1 Definitions and Examples 2 POLYTOPES

We are now able to give the notation of a fan. Since this term is based on
cones and faces of cones we remark that the definition of a face of a polytope
can be naturally extended to polyhedral cones.

Definition 2.8. A fan in Rd is a family F = {C1, . . . , Cn} of nonempty poly-
hedral cones with the following two properties

1. Every nonempty face of a cone in F is also a cone in F .

2. The intersection of any two cones in F is a face of both.

Furthermore, we call F

• complete, if
⋃
F =

⋃n
i=1 Ci = Rd.

• pointed, if {0} ∈ F .

• simplicial, if all cones are simplicial cones, i.e., cones spanned by linearly
independent vectors.

By definition the simplicial cones are automatically pointed.

Example 2.6. Let P be a polytope in Rd with 0 ∈ relint(P ). Define the face
fan of P as the set of all cones spanned by proper faces of P , thus

F(P ) = {cone(F ) |F ∈ L(P ) \ P}.

F is a pointed fan in lin(P ), i.e., its union is the linear hull lin(P ). It is a
complete fan in Rd, if P is a d-polytope with 0 ∈ int(P ).

0 0

Above is on the left side a polytope in R2 and on the right side its face fan.
The cones corresponding to the facets of the polytope are colored and the cone
corresponding to the vertices, called rays, are the thick lines starting at the
origin.

Example 2.7. Denote by (Rd)∗ the dual space of Rd and let P be a nonempty
polytope in Rd. For the normal fan of P take the cones of those linear func-
tions, which are maximal on a fixed face of P . That is, for every nonempty
face F of P we define

NF =

{
c ∈ (Rd)∗

∣∣∣∣F ⊆ {x ∈ P | cx = max
y∈P

cy}
}

and furthermore
N (P ) = {NF |F ∈ L(P ) \ ∅}.

10



2.2 Many Associahedra 2 POLYTOPES

N (P ) is a complete fan in (Rd)∗. If P is d-dimensional, then the fan is pointed,
since then {0} = NP is in the fan.

On the left is a polytope and one the right its normal fan. For this, we have iden-
tified R2 with (R2)∗ via the standard euclidean scalar product, which accounts
for the right angles in the figure.

2.2 Many Associahedra
Our plan for this subsection is to present two realizations of the associahedron
as polytopes. We will not prove any of this and refer to the corresponding ar-
ticles and books, respectively, as the goal is to show that the formulation the
realization of the associahedron is far from being right.

In the following we will present a realization of the Stasheff polytope by Loday
using planar binary trees. The results are summarized from [Lod02].

Definition 2.9. An undirected graph G = (V,E) consists of a set of ver-
tices V and a set of edges E, where an edge e = {v, w} ∈ E connects two
vertices v, w ∈ V . A path in G is a sequence of edges joining vertices, in which
all vertices and edges are distinct. We call G a tree, if any two vertices in V
can be connected by an unique path. A vertex which is connected to only one
other vertex is called a leave. A tree in which every vertex is connected to at
most two other vertices is called binary.

We will visualize graphs in the plane by identifying the vertices with points
in R2 and drawing lines between two points if the corresponding vertices of the
graph are connected by an edge.

Example 2.8. A graph (called the complete graph on five vertices) which is
not a tree, a tree that is not binary and a binary tree.

11



2.2 Many Associahedra 2 POLYTOPES

As a convention we will depict trees as in the previous example, thus, we
arrange the vertices in such way that the leaves are at the top of the picture.
Considering binary trees we give a labelling of the leaves and the internal vertices
(the non-leaves) as follows: Label the leaves from left to right by 0, 1, 2, . . . .
Then label the internal vertices by 1, 2, . . . , where the ith vertex is the one
inbetween the leaves i− 1 and i. This looks like this:

0 1 2

1

2

Now consider the set Yn of binary trees with n+1 leaves and n internal vertices.
For n = 0, 1, 2, 3 they look like this:

Y0 =
{ }

, Y1 =

{ }
, Y2 =

 ,


Y3 =

 , , , ,


To a binary tree t ∈ Yn we associate the vector M(t) ∈ Rn given by

M(t) = (a1b1, . . . , aibi, . . . , anbn)
T

where

ai = number of leaves on the left side of the ith internal vertex, and
bi = number of leaves on the right side of the ith internal vertex.

These vectors are very easy to compute, for example

M

( )
=

(
2
1

)
, M

( )
=

1
2
3

 , M

( )
=

1
4
1

 .

Theorem 2.4. The n-dimensional associahedron is the convex hull of the vec-
tors given by binary trees in Yn+1, thus,

Asso(n) = conv{M(t) | t ∈ Yn+1}.

The Loday realization is a special case of the realization by Postnikov.
Let e1, . . . , en+1 ∈ Rn+1 be the standard basis vectors and define

∆[i,...,j] = conv{ei, . . . , ej} ⊂ Rn+1.

For any positive vector a = {aij ∈ R>0 | 1 ≤ i ≤ j ≤ n + 1} the Postnikov
associahedron is the set

Postn(a) =
∑

1≤i≤j≤n+1

aij∆[i,...,j].

12
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Proposition 2.5 (Section 8.2 in [Pos05]). Postn(a) is an n-dimensional asso-
ciahedron. In particular, for aij = 1 this yields the realization of Loday.

There are more realizations of the associahedron apart from the ones shown
here and not all of them are combinatorially equivalent. Furthermore, there
are different techniques of showing that the given constructions indeed form a
polytope and realize the associahedron, such that there is no simple answer to
the question of how we can realize a structure like the multi-associahedron as
a polytope. We will discuss two approaches concerning the multi-associahedron
at a later point of the thesis.

13



3 k-TRIANGULATIONS

3 k-Triangulations
This section offers a more detailed discussion about multi-triangulations, which
may have first appeared in [CP01] in 1992. Pilaud and Santos ([PS08]) found
a very beautiful and satisfying way of exploring their structure using k-stars in
2008. Their definitions, results and methods are the content of the first three
subsections.

3.1 Introducing the Star
We will begin by giving a proper definition of a multi-triangulation, which we
already saw in the introduction. For this, we need the notion of a complete
graph and the crossing of edges in it.

Definition 3.1. Consider n-points on the unit circle which we call vertices of
the n-gon. By connecting each pair of vertices by an edge we obtain the com-
plete graph in n points, denoted by Kn. If v1 and v2 are two vertices, we denote
the edge connecting them by [v1, v2]. If v1, v2, v3 and v4 are distinct vertices
lying in counterclockwise order on the unit circle, we say that the edges [v1, v3]
and [v2, v4] cross.

In Example 3.1 is the complete graph K5 pictured.

Definition 3.2. A k-triangulation of the n-gon is a maximal set of edges of
the complete graph Kn, such that no k + 1 many of them mutually cross.

Next to the explicit example we gave in the first section, there are the trivial
cases considering certain pairs of integers (n, k).

Example 3.1. In the case k = 1 the 1-triangulations are the normal trian-
gulations of the n-gon. If n ≤ 2k + 1 the graph Kn does not contain k + 1
mutually intersecting edges. Thus, Kn is the unique k-triangulation. For the
case where n = 2k+ 2 there are k+ 1 many k-triangulations obtained from Kn

by deleting one of the diagonals [i, i+ k].

It is not possible to have a 3-crossing in the pentagon. Hence, K5 is the unique
2-triangulation of the 5-gon.

1

2
3

4

5

6
7

8

By choosing three of the four diagonals (in red) of the 8-gon and adding all
other ’non diagonal’ edges we obtain a 3-triangulation.

14



3.1 Introducing the Star 3 k-TRIANGULATIONS

We will now go into more details about how k-triangulations are composed
and especially, which edges play a role, which do not and how we differentiate
between them. The following definition builds the foundation for the object of
our interest in this section.

Definition 3.3. Let p, q ∈ Z be coprime. A star polygon of type {p
q } is a

polygon of the following form: Given a set V = {sj | j ∈ Zp} of p points on
the unit circle, connect them with the set E = {[sj , sj+q] | j ∈ Zp} of edges of
length q.

Since triangles are used to decompose the n-gon we will introduce the follow-
ing generalization for k-triangulations. In fact, we will see with much satisfaction
that this seems to be the key element for understanding k-triangulations.

Definition 3.4. A k-star is a star polygon of type { 2k+1
k }.

Example 3.2. The following polygons are a star polygon of type { 8
3}, a 2-star

and a 3-star.

s1

s2

s3
s4

s5

s6
s7

s8

s1

s2

s3

s4

s5

s1

s2
s3

s4

s5

s6
s7

The next theorem will summarize the most important results of this section.
It is important to understand the nature of flipping edges, which we already
mentioned in the introduction, and the role k-stars play in k-triangulations.

Theorem 3.1. Let T be a k-triangulation of the n-gon with n ≥ 2k + 1. Then
the following properties hold:

1. T contains exactly n− 2k many k-stars.

2. Each edge of T belongs to zero, one or two k-stars, depending on whether
its length is smaller, equal or greater than k.

3. Any common edge f of two k-stars R and S of T can be flipped to another
edge e, so that T△{e, f} is a k-triangulation. Moreover, the edges e and f
depend only on R ∪ S, not the rest of T .

To prove these statements we need some further notation and definitions.
From now on we ignore the trivial cases and let k ≥ 1 and n ≥ 2k+1. Denote Vn

to be the set of vertices of the convex n-gon.

Definition 3.5. For u, v, w ∈ Vn we denote u ≺ v ≺ w if they appear in
counterclockwise order on the circle. We define the cyclic interval as the
set Ju, vK = {w ∈ Vn |u ⪯ w ⪯ v}, and similarly the other intervals Ku, vJ, Ju, vJ
and Ku, vK.

Now that we have a notion for an order of vertices on the circle we can give
an explicit definition for k-stars in a given set of vertices.
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3.1 Introducing the Star 3 k-TRIANGULATIONS

Definition 3.6. Let s0 ≺ s1 ≺ · · · ≺ s2k ≺ s0 be vertices of Vn. We then define
the corresponding k-star S to be the set of edges {[sj , sj+k] | j ∈ Z2k+1}. We
can cyclically label the vertices of S in

1. circle order in cyclic order around the circle, or

2. star order by tracing the edges of S.

In Table 3.1 is an illustration of the two different labels of a 2-star. The
next definition introduces the notation to differentiate between edges that play
a crucial role in a k-triangulation and those who do not. Take a look at the
3-triangulation of the 8-gon in Example 3.1. For an edge [e, f ] to be able to cross
pairwise with three other edges, there must be at least three vertices ’between’ e
and f . Every other edge that does not satisfy this condition will never be able
to form a 4-crossing and is thus part of every 3-triangulation.

s1

s2

s3

s4

s5

r1

r4

r2

r5

r3

Table 3.1: The first is the circle order of the vertices of a 2-star and the latter
depicts the star order.

Definition 3.7. For u, v ∈ Vn, let [u, v] denote the edge connecting the ver-
tices u ̸= v. Define its length |u − v| to be the minimal number of vertices
inbetween them including the start vertex, thus, |u− v| = min{|Ju, vJ|, |Jv, uJ|}.
We call an edge [u, v]

• k-relevant, if |u− v| > k.

• k-boundary, if |u− v| = k.

• k-irrelevant, if |u− v| < k.

Remark 3.1. Although the k-boundary edges are only ’almost’ relevant and
do not contribute to a (k + 1)-crossing they are very important for the theory,
especially for k-stars.

Example 3.3. Lets consider 3-triangulations of the 8-gon. We can distinguish
between the 3-irrelevant, 3-boundary and 3-relevant edges of K8 and as we can
see only the 3-relevant edges form a 4-crossing.

1

2
3

4

5

6
7

8

1

2
3

4

5

6
7

8

1

2
3

4

5

6
7

8

16



3.2 The Art of k-Stars 3 k-TRIANGULATIONS

Definition 3.8. Let E ⊆ Kn be a subgraph. A pair of edges {[u, v], [v, w]}
in E, where u ≺ v ≺ w, is called an angle ∠(u, v, w), if for each vertex t
inbetween u an w the edge [v, t] is not in E. For an angle ∠(u, v, w) and a
vertex t inbetween u and w we call the edge [v, t] a bisector of ∠(u, v, w). An
angle is k-relevant, if its edges are either k-relevant or k-boundary edges.

Example 3.4. The edges [3, 6] and [3, 7] form a 3-relevant angle, whereas the
edges [2, 7] and [2, 8] do not form a 3-relevant angle, but an angle (since [2, 8]
is a 3-irrelevant edge). The edge [2, 6] (which is not in the 3-triangulation) is a
bisector of the angle ∠(3, 6, 1).

1

2
3

4

5

6
7

8

3.2 The Art of k-Stars
Now that we have the necessary definitions we begin to study the mutual posi-
tions of k-stars in k-triangulations.

Lemma 3.2. Let E ⊆ Kn be (k + 1)-crossing free and let R and S denote
two k-stars of E.

1. Any angle of S is also an angle of E and is k-relevant.

2. For any vertex t not in S there is an unique angle ∠(u, v, w) in S that is
bisected by [v, t].

In the figure below is our 3-triangulation of the 8-gon and a 3-star contained
in it. As we can see, every angle of the star is an angle of the 3-triangulation
and the edge [2, 6] is the bisector of the unique angle ∠(5, 2, 7).
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Proof. Let V = {sj | j ∈ Z2k+1} be the set of vertices of S in star order and
suppose that E contains an edge [sj , t] where sj ∈ V and t ∈Ksj+1, sj−1J. Then
the following set forms a (k + 1)-crossing:

{[sj+1, sj+2], [sj+3, sj+4], . . . , [sj−2, sj−1], [sj , t]}.

To be more precise, the k edges of the form [sm, sm+1] always form a k-crossing in
a k-star (for visualization look at Example 3.2 and Table 3.1) and the edge [sj , t]

17
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crosses every one of those by definition. Thus, every angle of S must be an angle
of E. Since any edge of S separates the other vertices of S into two parts of
size k and k − 1 it is at least k-boundary and thus the angle ∠(sj−1, sj , sj+1)
is k-relevant.
The second part of the lemma is obvious by definition of bisector and k-stars (ev-
ery vertex in between two vertices of S bisects an angle formed on the ’opposite
side’ of this vertex).

Corollary 3.3. The two k-stars R and S in Lemma 3.2 can not share any
angle.

Proof. The previous lemma induces that the knowledge of an arbitrary angle
∠(sj−1, sj , sj+1) of S permits the recovery of all the k-star, since the vertex sj+2

is the unique vertex such that ∠(sj , sj+1, sj+2) is an angle of E (the first possible
angle).

Remark 3.2. Since R and S have 2k+1 edges, they can not share more than k
edges.

Corollary 3.4. For any edge [u, v] of E, the number of vertices of S between u
and v and the number of vertices between v and u are different.

Proof. Suppose that the number of vertices on both sides is the same. Since S
has 2k + 1 vertices, one of the vertices of [u, v] is a vertex of S, lets say it is u.
But then [u, v] is either an edge in S, which can not be, or [u, v] is a bisector of
the angle of u, thus [u, v] can not be in E.

The previous corollary makes the following definition valid, which we will
use from now on.

Definition 3.9. Let [u, v] be an edge of E. We say that S lies on the positive
side of the oriented edge from u to v, if there are more vertices of S in Jv, uK
than in Ju, vK. Otherwise we say that S lies on the negative side. Furthermore,
we say that S is contained in an angle ∠(u, v, w) of E, if it lies on the positive
side of both edges [u, v] and [v, w] oriented in their order of appearance.

Remark 3.3. We will omit the addition of the orientation and assume, that the
orientation is defined by the order of appearance of the vertices in the notation
of the edge and angle, respectively.

Example 3.5. Look at the following two 3-stars in our 3-triangulation of the
8-gon.
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R : 1

2
3

4

5

6
7

8

S :

They both share the edges [1, 5], [3, 7] and [4, 8], but no angle (in fact, the angles
of R at the shared edges are always on the opposite side than the angles of S).
Furthermore, we can observe that R lies on the positive side of the edge [3, 7],
whereas S lies on its negative side. The angle ∠(3, 6, 1) contains R.
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Lemma 3.5. Let ∠(u, v, w) be an angle of E containing the k-star S. Then
either v is a vertex of S and ∠(u, v, w) is an angle of S, or v is not a vertex
of S and ∠(u, v, w) has a common bisector with an angle of S.

Proof. Let v be a vertex of S and let ∠(x, v, y) be the angle of S at v. Since
∠(u, v, w) contains S, we have w ⪯ y ≺ x ⪯ u. Then we can conclude that x = u
and y = w, for ∠(x, v, y) is an angle of S and ∠(u, v, w) is an angle of E.

Now suppose that v is not a vertex in S. Using Lemma 3.2 we have an
unique angle ∠(x, y, z) of S containing v. We want to show, that ∠(u, v, w)
contains y, such that [v, y] is a common bisector. Assuming that y ∈Ku, vJ we
know that Ku, vJ contains all the k + 1 vertices of S between y and z (because
each edge of a k-star divides by definition its vertices in sets of k − 1 and k
vertices and z ∈Kv, yJ). Since S lies on the positive side of [u, v], this can not
be. The same follows for the case y ∈Kv, wJ. If y = u or y = w, then [u, v]
or [v, w] is a bisector of ∠(x, y, z), which can not be either, since it is an angle
(of S).

Theorem 3.6. Every pair of k-stars whose union is (k + 1)-crossing free have
an unique common bisector.

Proof. Let R and S be two k-stars whose union is (k + 1)-crossing free and
vertices rj and sj in star order. It is easy to see from the definitions, that if S
lies on the negative side of the edge [rj−1, rj ], then it lies on the positive side of
the edge [rj , rj+1] (all vertices in Jrj−1, rjK also lie in Krj , rj+1J). But since the
number of vertices of R is odd, there is an index j ∈ Z2k+1 such that S lies on
the positive side of [rj−1, rj ] and [rj , rj+1], thus, in the angle ∠(rj−1, rj , rj+1).
Using Lemma 3.5, we have found a common bisector of R and S.

To prove the uniqueness, suppose that e and f are two common bisectors
of R and S and label the vertices so that e = [r0, s0]. Let f = [ra, sb] for
some a, b ∈ Z2k+1 \ {0}. Note, that a and b have the same parity, thus, by
symmetry we can assume that a = 2α and b = 2β for 1 ≤ β ≤ α ≤ k. But then
the set

{[r2i, r2i+1] | 0 ≤ i ≤ α− 1} ∪ {[s2j , s2j+1] |β ≤ j ≤ k}

forms a (k+1+α−β)-crossing which contradicts the assumption that the union
of R and S is (k + 1)-crossing free.

The common bisector of the 3-stars R and S in Example 3.5 is the edge [2, 6].
The next Lemma plays an important role in understanding how k-triangulations
are influenced by the flipping of particular edges.

Lemma 3.7. Let f be a common edge of R and S and e their common bisector.
Then E△{e, f} is a (k + 1)-crossing free subset of E, where △ denotes the
symmetric difference.

The proof of this Lemma requires the two technical Lemmas 3.6 and 3.7
in [PS08]. They make statements about the parallelism of corresponding edges
of R and S, how they separate the k-stars and about the positioning of the
common bisector in a k-crossing that crosses it. Since both proofs are proven
by contradiction using the construction of (k+ 1)-crossings, we will not go into
detail here and refer to [PS08] for the details.

19



3.3 Flipping Edges 3 k-TRIANGULATIONS

3.3 Flipping Edges
In the following part we will examine an important property of k-triangulations
that connects them with subword complexes (which we will study in the next
section): The flip of edges. From now on let T be a k-triangulation of the n-gon.
We begin by stating the foundamental result of this subsection.

Theorem 3.8. Any k-relevant angle of T belongs to an unique k-star contained
in T .

To prove this theorem we need the next definition, which will help us in
constructing the proof.

Definition 3.10. Let ∠(u, v, w) be a k-relevant angle of T and let f = [a, b]
and e = [c, d] be two edges of T that intersect the angle, thus,

u ≺ a
c
≺ v ≺ b

d
≺ w.

We say that e is v-farther than f , if a ⪯ c and d ⪯ b. We generalize this:
Let E and F be two (k − 1)-crossings that intersect ∠(u, v, w) with their edges
being labelled ei = [ai, bi] and fi = [ci, di] for 1 ≤ i ≤ k − 1, respectively, and
satisfying

u ≺ a1
c1

≺ . . . ≺ ak−1

ck−1
≺ v ≺ b1

d1
≺ . . . ≺ bk−1

dk−1
≺ w.

We say E is v-farther than F , if for every 1 ≤ i ≤ k− 1 the edge ei is v-farther
than fi. Furthermore, we say that E is maximal, if there is no (k− 1)-crossing
intersecting ∠(u, v, w), which is v-farther.

In Table 3.2 is a visualization of this definition. Let us now start with the
proof of the theorem above.

u

v

w

b
a

d

c

u

v

w

b1 a1

d1
c1

b2

a2

d2

c2

Table 3.2: [a, b] is v-further than [c, d], as is {[ai, bi]} than {[ci, di]}.

Proof of Theorem 3.8. This proof is accompanied by Table 3.3. Let ∠(u, v, w)
be a k-relevant angle of T . Assume for the moment that [u, v+1] ∈ T . Since [u, v]
is at least k-boundary and at most k-relevant and v ≺ v + 1 (thus [u, v + 1] is
at least k-relevant and at most k-boundary) we can deduce, that ∠(v + 1, u, v)
is a k-relevant angle of T . Certainly, if ∠(v + 1, u, v) is contained in a k-star S
of T , then so is ∠(u, v, w), since it is the next possible angle.
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Moreover, if n > 2k + 1 (n = 2k + 1 being trivial), T can not contain all edges

{[u+ i, v + i] |, 0 ≤ i ≤ n− 1} and {[u+ i, v + i+ 1] | 0 ≤ i ≤ n− 1}.

Consequently, we can assume that [u, v + 1] /∈ T .
Thus, we have a k-crossing E of the form ei = [ai, bi] ∈ T preventing [u, v + 1]
and satisfying

u ≺ a1 ≺ · · · ≺ ak ≺ v + 1 ≺ b1 ≺ · · · ≺ bk ≺ u.

Since [u, v] ∈ T we have ak = v (because of the maximality) and since ∠(u, v, w)
is an angle we must have v + 1 ≺ bk ⪯ w. Thus, the set {e1, . . . , ek−1} forms
a (k− 1)-crossing that intersects ∠(u, v, w), which we assume to be v-maximal.
For a better visualization look at Table 3.3.

Next, we will prove that [u, b1], [a1, b2], . . . , [ak−2, bk−1], [ak−1, w] ∈ T , such
that the points u, a1, . . . , ak−1, v, b1, . . . , bk−1 will be the vertices of a k-star
of T containing ∠(u, v, w). We will do this in the following two steps, where the
second step exists for reiterating the argument for the other edges:

1. Prove that ∠(a1, b1, u) is an angle of T .

2. Show that e2, . . . , ek−1, [v, w] forms a (k− 1)-crossing intersecting the an-
gle ∠(a1, b1, u) and is b1-maximal.

First Step: Suppose [u, b1] /∈ T , thus, there exists a k-crossing F in T preventing
this edge. Let F = {fi = [ci, di] | 1 ≤ i ≤ k}, where

u ≺ c1 ≺ · · · ≺ ck ≺ b1 ≺ d1 ≺ · · · ≺ dk ≺ u.

First note that v ≺ dk ⪯ w. Indeed, if dk ∈Kw, uJ then we must have ck ̸= v,
since ∠(u, v, w) is an angle. Thus, either ck ∈Ku, vJ and the set F ∪ {[u, v]} is
a (k + 1)-crossing, or ck ∈Kv, b1J and E ∪ {[ck, dk]} is a (k + 1)-crossing, which
both leads to a contradiction. Consequently, we must have b1 ≺ · · · ≺ dk−1 ≺ w.
Now, let l = max{1 ≤ i ≤ k − 1 | bi ≺ di ≺ w}. We can then deduce that for
any 1 ≤ i ≤ l we have u ≺ ci ⪯ ai, since inductively {e1, . . . , ei} ∪ {fi, . . . , fk}
does not form a (k+1)-crossing (the ei and fi are in T , thus {e1}∪{f1, . . . , fk}
must be (k + 1)-crossing free, which is only possible if e1 is parallel to f1 [see
Table 3.3] and therefore u ≺ c1 ⪯ a1). Thus, for any 1 ≤ i ≤ l we have

u ≺ ci ⪯ ai ≺ v ≺ bi ≺ di ≺ w

such that fi is v-farther than ei. Furthermore, the two chains

u ≺ c1 ≺ · · · ≺ cl(⪯ al) ≺ al+1 ≺ · · · ≺ ak−1 ≺ v

and
v ≺ d1 ≺ · · · ≺ dl

def. l
≺ bl+1 ≺ · · · ≺ bk−1 ≺ w.

hold. Thus {f1, . . . , fl, el+1, . . . , ek−1} is a (k−1)-crossing that is v-farther than
{e1, . . . , ek−1}, which is a contradiction and we obtain [u, b1] ∈ T .
Finally we can show that ∠(a1, b1, u) is an angle. Suppose the opposite. Then
there exists a0 ∈Ku, a1J, such that [a1, ao] ∈ T . But then the (k − 1)-crossing
{[a0, b1], e2, . . . , ek−1} is v-farther than {e1, . . . , ek−1}, which is a contradiction.
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w u

vv + 1

a1

b1

a2

b2

ak−1

bk−1
bk

w u

v

a1

b1

al

bl

ak−1

bk−1

dk

al+1

bl+1

c1

cl

d1

dl
dl+1

w u

v

a1

b1

a2

b2

ak−1

bk−1

dk−1

d2

c2

ck−1

(a) (b) (c)

Table 3.3: (a) The k-crossing E; (b) The first step: [u, b1] ∈ T ; (c) The second
step: {e1, . . . , ek−1, [v, w]} is b1-maximal.

Second Step: Proving this statement will be very similar to the technique above.
Suppose that F = {fi = [ci, di] | 2 ≤ i ≤ k} is a (k − 1)-crossing that inter-
sects ∠(a1, b1, u), is b1-farther than {e2, . . . , ek−1, [v, w]} and satisfies

a1 ≺ c2 ≺ · · · ≺ ck ≺ b1 ≺ d2 ≺ · · · ≺ dk ≺ u.

Again, we can note that bk ⪯ dk ⪯ w for the same reasons we discussed earlier:
If dk ∈Kw, uJ, then ck ̸= v since ∠(u, v, w) is an angle. Thus, either ck ∈Ka1, vJ
and F ∪ {[u, v], e1} is a (k + 1)-crossing, or ck ∈Kv, b1J and E ∪ {[ck, dk]} is
a (k + 1)-crossing. Hence, we have b1 ≺ d2 ≺ · · · ≺ dk−1 ≺ w.
Furthermore, for any 2 ≤ i ≤ k − 1, fi is ∠(a1, b1, u)-farther than ei such that

a1 ≺ ci ⪯ ai ≺ b1 ≺ bi ⪯ di ≺ u.

In particular, we have a1 ≺ ck−1 ⪯ ak−1 ≺ v and get

u ≺ a1 ≺ c2 ≺ · · · ≺ ck−1 ≺ v ≺ b1 ≺ d2 ≺ · · · ≺ dk−1 ≺ w

such that {e1, f2, . . . , fk−1} is v-farther than {e1, . . . , ek−1}, which is a contra-
diction.
This ends the proof and

S = {[v, u], [u, b1], [b1, a1], [a1, b2], . . . , [ak−2, bk−1], [bk−1, ak−1], [ak−1, w], [w, u]}

is by construction the unique k-star in T containing the angle ∠(u, v, w).

Theorem 3.8 enables us to tell exactly the connection between the different
edges of T and the k-stars it contains.

Corollary 3.9. Let e be an edge of T .

1. If e is k-relevant, then it belongs to exactly two k-stars in T (one on each
side).

2. If e is a k-boundary edge, then it belongs to exactly one k-star.

3. If e is k-irrelevant, then it does not belong to any k-star.
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Proof. Let e = [a, b] be a k-relevant edge. Consider without loss of generality
the vertex a. In a there are exactly two k-relevant angels, one ’to the left’ of e
and one ’to the right’ of e, with either a k-boundary edge in a, or a different
k-relevant edge (there is always at least [in the sense of ’at most’ a k-relevant
edge] a k-boundary edge lying on each side of e). Using Theorem 3.8 we obtain
the two unique k-stars containing e. If e is k-boundary, it can only form one
k-relevant angle in a, with either another k-boundary edge, or with a k-relevant
edge. Finally, a k-irrelevant edge can neither be part of a k-relevant angle, nor
of any k-star by definition.

Corollary 3.10. Let T be a k-triangulation.

1. For any k-star S in T and for any vertex r not in S there is an unique
k-star R in T such that r is a vertex of the common bisector of R and S.

2. Any k-relevant edge which is not in T is the common bisector of an unique
pair of k-stars of T .

Proof. For the first part, let ∠(u, s, v) be the unique angle of S which contains r
(Lemma 3.2). Let ∠(x, r, y) be the unique angle of T containing s (Lemma 3.5).
Using Theorem 3.8, the angle ∠(x, r, y) belongs to a unique k-star R in T . The
common bisector must be [r, s] and it is unique because of Theorem 3.6 (the
union of two k-stars in the same k-triangulation is (k+ 1)-crossing free) and so
is R.
Now, let e = [r, s] /∈ T be a k-relevant edge and let ∠(x, r, y) and ∠(u, s, v)
denote the unique angles of T which contain s and r, respectively. Again,
Theorem 3.8 gives us an unique k-star R containing ∠(x, r, y) (respectively S
containing ∠(u, s, v)) and their unique common bisector is e.

We can observe that the previous Corollary 3.10 gives us two bijections
between

1. ’vertices not used in S’ and ’k-stars in T that are not S’, and

2. ’k-relevant edges not used in T ’ and ’pairs of k-stars in T

which we can use in combination with Corollary 3.9 for double counting to
obtain the next corollary, the proof of which we will not discuss.

Corollary 3.11. 1. Any k-triangulation of the n-gon contains exactly n−2k
many k-stars, k(n − 2k − 1) many k-relevant edges and k(2n − 2k − 1)
edges overall.

2. The k-triangulations are exactly the (k+1)-crossing free subsets of Kn of
cardinality k(2n− 2k − 1).

The corollarys yield an important property of k-triangulations. Let T be
a k-triangulation of the n-gon and let f be a k-relevant edge of T . Thanks
to Corollary 3.9, there are exactly two k-stars R and S containing f . Using
Theorem 3.6, let e be the common bisector of R and S (their union is triv-
ially (k + 1)-crossing free). Due to Lemma 3.7 we know that T ′ := T△{e, f} is
a (k+1)-crossing free subset of Kn. Moreover, T ′ is maximal: Suppose that T ′

is properly contained in a k-triangulation T̃ . With the same arguments from
above, T̃△{e, f} is a (k + 1)-crossing free subset which properly contains T ,
which is not possible because of the maximality of T .
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We will call this process the flipping of the edge f and by doing so we
obtain new k-triangulations of the n-gon.

Example 3.6. At the end of this subsection we summarize our gained knowl-
edge by considering our previous example for a 3-triangulation of the 8-gon.
First, we can distinguish between the 3-irrelevant, 3-boundary and 3-relevant
edges of K8.

To obtain a 3-triangulation we have to choose three 3-relevant edges, e.g.,
[1, 5], [3, 7] and [4, 8]. Let T be induced by these edges, thus
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T =

Since n = 8 and k = 3 and using Corollary 3.11, we know that T contains
exactly two 3-stars, which are the following:
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Furthermore, they share the common 3-relevant edge f = [4, 8] and the
unique common bisector is e = [2, 6]. The flip from f to e yields a different
3-triangulation of the 8-gon.

1

2
3

4

5

6
7

8

1

2
3

4

5

6
7

8

T△{e, f} =
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3.4 Multi-Associahedra 3 k-TRIANGULATIONS

3.4 Multi-Associahedra
This subsection contains the definition of our main object of interest. We will
shortly introduce the basic concept of an abstract simplicial complex without
discussing it too much. In the section about subword complexes we will give
further insight in the topic. For further details and a more topological point of
view we refer to [Wac06].

Definition 3.11. Let V be a set and ∆ ⊆ P(V ) be a collection of nonempty
finite subsets of V . We call ∆ an abstract simplicial complex, if the following
two conditions are satisfied:

1. For every vertex v ∈ V the singleton {v} is in ∆.

2. For every face σ ∈ ∆ and every nonempty subset τ ⊆ σ, the face τ of σ
is also in ∆.

The maximal faces of ∆ (i.e., faces that are not subsets of other faces) are called
facets. For a face σ ∈ ∆ we define its dimension as dim(σ) = |σ|−1 and ∞, if
it is not finite. The dimension of the complex ∆ is the largest dimension of any
of the faces it contains. Finally, we call an abstract simplicial complex pure, if
it is of finite dimension and every facet has the same dimension.

Remark 3.4. There are four comments to be made.

1. We will omit the word abstract and only talk about simplicial complexes,
although the connection with geometric simplicial complexes based on
points, lines, triangles, tetrahedra and higher dimensional simplices is ap-
parent (as we will see).

2. In our studies we only consider finite dimensional complexes, thus, the
vertex set V is finite.

3. The object of our interest, the multi-associahedron, is a simplicial com-
plex. In fact, we already saw examples of 1- and 2-dimensional simplicial
complexes in the introduction.

4. Just like for polytopes there exists the definition of a face lattice for sim-
plicial complexes. Of cause, if the face lattice of simplicial complex is
isomorphic to the face lattice of a polytope, this complex is realizable as
a polytope.

Example 3.7. We can determine a full simplicial complex by just giving the
facets, since every face of a facet is a face of the complex and any face of the
complex is a subset of a facet. Look at the following two examples:

1. Let ∆ be the simplicial complex induced by the facets {a, b} and {b, c, d}
(thus, the vertex set is V = {a, b, c, d}). Then we can determine the
simplicial complex to be

∆ = {{a}, {b}, {c}, {d}, {a, b}, {b, c}, {b, d}, {c, d}, {b, c, d}}.

We can visualize it by using the singletons as vertices and connecting them
by an edge whenever they form a face (indirectly, this is the geometric
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simplicial complex, but for the moment we will not identify the vertices
with points in Rn). This would look as follows

a b c

d

and we shaded the ’triangle’ {a, b, c} since it forms a 2-face (i.e., a face of
dimension 2) of ∆ and not only consist of the 1-faces that form its sides.

2. Using the visualization above, the simplicial complex formed by the facets
{a, b, c}, {b, c, d} and {c, d, e} looks like this

a

b d

c e

3. The complex in 2. is pure, whereas the one in 1. is not.

Definition 3.12 (e.g., [PS08]). For the two positive integers n, k ∈ N define
the multi-associahedron with parameters (n, k) to be the simplicial complex
whose faces are (k + 1)-crossing free subsets of the n-gon. Thus, the facets
are k-triangulations and the ridges are exactly the flips between the different
k-triangulations. We denote the complex by △n,k.

Remark 3.5. There are two things to point out.

1. By definition, for k = 1 the k-triangulations of the n-gon are exactly
the standard triangulations and the multi-associahedron is the normal
associahedron. Furthermore, we know that △n,1 is always realizable as a
polytope.

2. Thanks to Corollary 3.11 we can deduce that △n,k is a pure simplicial
complex of dimension k(2n− 2k − 1)− 1.

Finally, we can present the conjecture on which this thesis is based on in a
reasonable manner. This may have been first formulated by [Jon05] in 2005 and
found several connections with other areas of mathematics, for example Coxeter
theory.

Conjecture 3.12 ([Jon05]). For arbitrary n, k ∈ N, the multi-associahedron
△n,k is realizable as a polytope.

3.5 Realizing the First Polytopes
We are now in the position to prove Conjecture 3.12 for some cases of (n, k), most
of them trivial. We will do this by identifying the facets, thus k-triangulations,
of △n,k with facets of known polytopes, which yields an isomorphism between
their face lattices. The results are summarized from Section 8 in [PS08].

26
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Remark, that this kind of realization differs from the realizations we saw in
the introduction of this thesis, where we identified the facets of △n,1 with points
in R2 and R3, respectively. Instead, we will realize certain multi-triangulations
as the boundary complex of a polytope.

Definition 3.13 ([BP09]). Let P ⊂ Rd be a polytope. We define the boundary
of P as the set of proper faces of P , i.e.,

∂(P ) = {F ∈ L(P ) |F ̸= P}.

Furthermore, we only need to take the k-relevant edges into account and
thus identify faces of △n,k only if they contain all k-irrelevant and k-boundary
and at least one k-relevant edge. Thus, the vertices of the polytope are in
correspondence with exactly one k-relevant edge.

Definition 3.14 ([BP09]). Let ∆ be a simplicial complex and P a polytope.
We say that P is a realization of ∆, if its boundary complex ∂(P ) is isomorphic
to ∆, i.e., if ϕ : ∆ → ∂(P ) is a bijection which respects inclusion (thus, their
face lattices).

We will implicitly use this definition for the upcoming realizations.

Corollary 3.13. For k = 1, the multi-associahedron is polytopal.

Proof. This is Theorem 1.1, since 2-crossing free sets are exactly triangulations
of the n-gon. Thus, the multi-associahedron △n,1 is the (n − 3)-dimensional
associahedron.

The next two results follow from the considerations in Example 3.1.

Corollary 3.14. The multi-associahedron △2k+1,k is realizable as a polytope.

Proof. There is only one unique k-triangulation. Thus, the realizing polytope
is a point.

Corollary 3.15. The multi-associahedron △2k+2,k is realizable as a polytope.

Proof. There are k + 1 many k-triangulations. The realizing polytope is the
following set, called the k-simplex:

x1

...
xk

 ∈ Rk

∣∣∣∣∣∣∣xi ≥ 0 for all 1 ≤ i ≤ k,

k∑
i=1

xi = 1

 .

This is obviously a polytope (it is the convex hull of the k standard basis vectors
of Rk and the origin) with k + 1 many facets and the facets correspond to the
facets of △2k+2,k, thus, they are combinatorially equivalent.
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Example 3.8. For k = 2, the 2-simplex is a triangle whose facets are its sides.

For k = 3, the 3-simplex is a tetrahedron, thus, the following polytope with 4
triangular facets and the ridges are the lines connecting the vertices.

Identifying each of the 4 facets with one of the 4 facets of △8,3 yields for example
the following picture for one of the facets:

The next and last result is less obvious to prove.

Corollary 3.16. The multi-associahedron △2k+3,k is realizable as a polytope.

Before going into the proof we look at examples of how k-relevant edges
behave in a (2k + 3)-gon.

Example 3.9. As we can see, the set of k-relevant edges form (k + 1)-stars in
the corresponding (2k + 3)-gons. For k = 1, 2, 3 this looks as follows:
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Furthermore, the set of k-relevant edges form a cycle of length 2k + 3. For the
general case, the set (i.e. the k-star) is

S = {[1, k + 2], [1, k + 3], [2, k + 3], [2, k + 4], . . . , [k + 1, 2k + 3], [k + 2, 2k + 3]}.

Proof of Corollary 3.16. By Corollary 3.11 we know that a k-triangulation of
the (2k + 3)-gon consists of 2k many k-relevant edges, thus, we can obtain a
k-triangulation by removing three edges from the set S in the example above.
But not every removal yields a (k + 1)-crossing free subset. We claim that this
only happens, if by removing the edges the length of paths of k-relevant edges in
the triangulation is even, thus, we decompose the cycle set S into subsets of even
cardinality. By path we mean consecutive k-relevant edges in star order. We
give a brief example of what we mean. For k = 3, the first removal (marked by
red edges) does yield a 4-crossing free set, whereas the second does not (marked
by blue edges).
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In the first picture, the edges were decomposed in the paths

{[6, 1], [1, 5]} and {[4, 8], [8, 3], [3, 7], [7, 2]}

whereas in the second picture in the paths

{[5, 9]}, {[4, 8], [8, 3], [3, 7], [7, 2]} and {[6, 1]}.

Observe, that m consecutive edges contribute with m
2 (m even), respectively m+1

2
(m odd), edges to a (k + 1)-crossing, since consecutive edges share one vertex.
It is easy to see that the set of 2k + 3 edges S can be decomposed into sub-
sets with cardinalities pictured in Table 3.4 and that only those which contain
uneven numbers generate (k + 1)-crossings.

Crossing Cardinality of Subsets Cardinality of Subsets Crossing
k 2k 2k-2 1 1 k+1

k+1 2k-1 1 2k-3 2 1 k+1
k 2k-2 2 2k-4 3 1 k+1

k+1 2k-3 3 2k-4 2 2 k
k 2k-4 4 2k-5 4 1 k+1

. . . . . . . . . . . . . . . . . . . . .

Table 3.4: The possible cardinalities of the decomposed subsets of S and the
crossing they form.

We now conclude that △2k+3,k is realizable as the cyclic polytope C2k(2k+3),
introduced in Example 2.2 of Section 2, by using the next theorem.
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Theorem 3.17 (Gale’s eveness condition, [Zie95]). Let n > d ≥ 2. We will
use [n] to denote the set {1, . . . , n} and choose real parameters t1 < · · · < tn. A
subset S ⊆ [n] of cardinality d forms a facet of Cd(n) if and only if the following
’eveness condition’ is satisfied: If i < j are not in S, then the number of k ∈ S
between i and j is even, thus

2
∣∣∣ #{k ∈ S | i < k < j} for i, j /∈ S.

With our considerations from above we can therefore close the proof.
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4 SUBWORD COMPLEXES

4 Subword Complexes
Now that we introduced multi-associahedra and stated the conjecture we will
look at the connection with subword complexes, which are introduced in this
section. Before we go into further details we give a leading example.

Example 4.1. Lets consider the symmetric group S3. It is well known that
it is generated by the transpositions S = {s1, s2} where si = (i, i + 1). The
set S will be, talking about subword complexes, our alphabet. For the moment
we rename the simple transitions to s1 = a and s2 = b. Now we look at the
word Q = (b, a, b, a, b), which is a (in this case 5-) tuple of letters from our
alphabet S. In this word we search for all ’subwords’ of the form bab and aba,
taking into account the positions of the letters (in fact, considering bab and aba
as elements of S3 by just composing the transpositions, they ’decode’ the same
permutation). We mark the letters of such a subword by × and mark the letters
not used by ◦ to obtain the following tabular:

b a b a b
× × × ◦ ◦
× ◦ ◦ × ×
× × ◦ ◦ ×
◦ × × × ◦
◦ ◦ × × ×

By regarding the letters of Q as vertices and connecting two vertices by an edge
whenever they occur in the same complement of a subword (thus, both corre-
sponding letters are marked with ◦ in the same row), we obtain the following
pentagon, where the number of the vertex corresponds to the position of the
letter in Q.

1

2

3

4

5

What we just described and visualized is a simplicial complex, whose vertices
are the letters of Q and facets are given by the complements of the subword we
searched for in Q. We will call this a subword complex, which is in this case
identical with the multi-associahedron △5,1.

We give one more example to establish the connection between multi-asso-
ciahedra and the word-structure just introduced.

Example 4.2. We consider the same alphabet, word, subword and tabular from
the last example. In addition, we consider the convex 5-gon (not the subword
complex from the last example!) and give a list of its ordered diagonals,i.e.,
we give all proper diagonals in the pentagon with starting vertex 1, then all
diagonals with starting vertex 2 and so on until we have all diagonals of the
pentagon. This ordered list is the following:

q1 = [1, 3], q2 = [1, 4], q3 = [2, 4], q4 = [2, 5], q5 = [3, 5].
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We now connect the position i of Q with the ith ordered diagonal. Considering
the rows of the tabular above and drawing the two with ◦ marked diagonals
will give us a triangulation of the pentagon. In fact, doing this for each row
will give us all triangulations. This procedure yields the facets of the multi-
associahedron △5,1. An extended example can be found at the end of this
section.

These two examples are exemplary for the statements that we will examine
in this section. Before we can go into further details and exact definitions we
have to introduce finite reflection groups.

4.1 Finite Reflection Groups
In this subsection we will work very closely with [Hum90]. Due to its very good
structure and detailed proofs, we omit most of them and consider the statements
only. The goal of this section is to give a grasp of what finite reflection groups
are, what properties their elements have and how they interact.

Let V be real euclidean space and ⟨·, ·⟩ a positive definite symmetric bilinear
form on V . For α ∈ V define the reflection of α as the linear operator

sα : V → V, β 7→ β − 2⟨β, α⟩
⟨α, α⟩

α

which maps α to its negative and fixes the hyperspace Hα := (Rα)⊥ of vectors
in V perpendicular to α with respect to ⟨·, ·⟩. Thus, reflections form a subgroup
of the orthogonal group O(V ). A subgroup of O(V ) is called a finite reflection
group, if it is generated by reflections.

Example 4.3. Let Sn be the symmetric group acting on Rn by permuting
the standard basis vectors e1, . . . , en. Thus, reflections are exactly transposi-
tions (i, j) sending ei − ej to its negative. It is known, that the transposi-
tions (i, i+ 1), 1 ≤ i ≤ n− 1 generate Sn making it a reflection group.

To study finite reflection groups and their action and geometry on V we
introduce the following definition.

Definition 4.1. Let Φ ⊂ V be a finite set of nonzero vectors which we call
roots. We call Φ a root system with associated reflection group W , if for
all α ∈ Φ the following conditions are satisfied:

1. Φ ∩ Rα = {±α}

2. sαΦ = Φ

We then define W to be the group generated by all reflections sα, α ∈ Φ.

From now on let Φ be a root system with associated reflection group W . For
exploring the action of W on the vector space we introduce the following total
ordering on V . Let {v1, . . . , vn} be a basis of V . We then order the vectors in
lexicographic order, i.e.,

n∑
i=1

aivi <

n∑
i=1

bivi ⇔ ak < bk for the least index k for which ak ̸= bk

and we will call v ∈ V positive if 0 < v. For this purpose, fix a basis of V .
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Definition 4.2. A subset Π ⊂ Φ is called a positive system, if all roots are
positive relative to the total ordering of V . Hence we have Φ = Π ⊔ (−Π). A
subset ∆ ⊂ Φ is called a simple system, if ∆ is a basis for the R-span of Φ
in V and if each root is a linear combination of ∆ with coefficients all of the
same sign. We call the elements in the respective subset positive and simple
roots.

Example 4.4. The following picture shows an example for a root system in R2.
Beginning with the two roots α1 and α2 we obtain the full root system by using
the reflections induced by α1 and α2.

α1

α2

α̃ = α1 + 2α2 = sα2
(α1)

sα2
(α2)

sα1(α1)

sα1(α2) = 1 · α1 + 1 · α2

sα1
(sα2

(α2))

sα2(sα1(α1))

Furthermore we have a longest root α̃ regarding the simple system ∆ = {α1, α2}
and ∆ induces the positive system Φ = {α1, α2, α̃, sα1

(α2)} and in fact, as we
will see in a moment, these two sets define each other uniquely.

The following theorem gives us the existence and uniqueness of simple sys-
tems.

Theorem 4.1. 1. For every simple system ∆ in Φ there is a unique positive
system containing ∆.

2. Every positive system Π in Φ contains an unique simple system.

The choice of neither a positive nor a simple system is unique. For instance,
by using a simple system ∆ and an element w ∈ W we obtain another simple
system w∆ with corresponding positive system wΠ. Luckily, positive and simple
systems determine each other uniquely.

Theorem 4.2. Any two positive, respectively simple, systems in Φ are conjugate
under W .

We defined W to be the group generated by all reflections induced by all
roots in the root system Φ. Since each root α ∈ Φ can be written as a linear
combination of simple roots the question is, whether W is generated by simple
reflections, thus reflections sα for α ∈ Π.

Theorem 4.3. For a fixed simple system ∆, W is generated by the simple
reflections induced by ∆.

Our next goal is to find an efficient presentation of W as an abstract group.
For this we will need to study the ways in which an arbitrary w ∈ W can be
written as a product of simple reflections.

Definition 4.3. Let w = s1 . . . sr be an element in W , where si = sαi
for

some αi ∈ ∆. Define the length l(w) of w to be the smallest r for which such
an expression exists.
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It turns out that the length of an element of the reflection group coincides
with the number of positive roots sent to negative roots by this element, which
we denote by n(w). To be more precise:

For w ∈ W we have l(w) = n(w) = |Π ∩ w−1(−Π)|.

The following two results are crucial in understanding how reduced expres-
sions for group elements can be obtained.

Theorem 4.4 (Delete Condition). Let ∆ be a simple system and w = s1 . . . sr
an arbitrary not reduced expression of w ∈ W , thus n(w) < r. Then there exist
indices 1 ≤ i < j ≤ r satisfying

w = s1 . . . ŝi . . . ŝj . . . sr

and the hat denotes omission.

Thus, a reduced expression can be obtained by pairwise omitting simple
reflections. This can be reformulated as follows.

Theorem 4.5 (Exchange Condition). For an arbitrary expression w = s1 . . . sr
and a simple reflection s = sα, such that l(ws) < l(w), there exists an index i
for which

ws = s1 . . . ŝi . . . sr ⇔ w = s1 . . . ŝi . . . srs.

In particular, w has a reduced expression ending in s if and only if l(ws) < l(w).

The Exchange Condition will be the central concept of subword complexes
in the next subsection. After exploring reduced expressions, we search for the
longest element of W . For this, recall that because of Theorem 4.2, W acts
transitive on positive and simple systems. In fact, the action is simple transitive
after all, which follows from the theorem in Chapter 1.8 in [Hum90].
By definition, a set Π is a positive system whenever −Π is (just switch the
signs). Thus, there exists an element w◦ ∈ W which maps Π and −Π to each
other. Furthermore, it is the longest possible element in W , since we must
have l(w◦) = n(w◦) = |Π| and with that it must be unique.

We will now give the efficient presentation of W mentioned earlier. For
this, we introduce the integer m(α, β), denoting the order of sαsβ ∈ W for
roots α, β ∈ Φ.

Theorem 4.6. For a fixed simple system ∆ in Φ, the finite reflection group W
is generated by the set S := {sα |α ∈ ∆}, subject only to the relations

(sαsβ)
m(α,β) = idV .

Example 4.5. These relations are also called braid relations for the following
reason. Consider the symmetric group S4 as a reflection group as introduced in
Example 4.3. It is generated by the transpositions si = (i, i+ 1) for i = 1, 2, 3.
Furthermore, they are subject to the relations (sisi+1)

3 = id and (sisj)
2 = id

for not consecutive i, j. These equations are equivalent to

sisi+1si = si+1sisi+1 and sisj = sjsi,
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justifying the expression ’braid relation’. We call an application of these equa-
tions a braid move, e.g., the transformation of the element s1s2s3s2 ∈ S4

to s1s3s2s3 to s3s1s2s3. They define the same element but differ in their repre-
sentation in simple reflections.

Thus we do not only know that, by definition, the reflection groups are
generated by reflections of the form sα for α ∈ Φ, but also that the generating
set is much smaller and subject to special relations. One question remains
though: Are all reflections in W of the form sα? The answer is yes.

Proposition 4.7. Every reflection in W is of the form sα for some α ∈ Φ.

Now that we have this result, we can give one last characterization for the
reflections.

Proposition 4.8. For α ∈ ∆ and w ∈ W we have wsαw
−1 = swα. In particu-

lar, if T is the set of all reflections sα for α ∈ Φ, we have

T =
⋃

w∈W

wSw−1.

This will be of need when we define the Bruhat ordering on W at a later
point. Before we start with the next subsection we end this one with the study
of the subgroup structure of W . For this we will look at subgroups generated
by sets of simple reflections.

Definition 4.4. Let W be generated by the set of simple reflections S cor-
responding to the simple system ∆. For any subset I ⊂ S, define WI to
be the subgroup of W generated by all sα ∈ I with corresponding simple
roots ∆I := {α ∈ ∆|sα ∈ I}. We call subgroups obtained in this way parabolic
subgroups. Furthermore, define ΦI to be the intersection of Φ with the R-
span VI of ∆I in V .

The following proposition shows, that parabolic subgroups behave in a con-
venient way with our definitions so far.

Proposition 4.9. Let I ⊂ S and WI ,∆I and ΦI as above.

1. ΦI is a root system in VI ⊂ V , with simple system ∆I and corresponding
reflection group WI .

2. Viewing WI as a reflection group, with length function relative to ∆I , we
have l = lI on WI .

3. Define W I := {w ∈ W | l(ws) > l(w) for all s ∈ I}. For all w ∈ W
there is a unique u ∈ W I and a unique v ∈ WI such that w = uv and
l(w) = l(u)+ l(v). Furthermore, u is the unique element of smallest length
in the coset wWI .

4.2 Classification and Coxeter Systems
In the following we will determine all possible finite reflection groups using their
Coxeter graph. Though this classification might not be very trivial using group
theory, the proof using Coxeter graphs is very easy and satisfying and can be
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found in the second chapter in [Hum90]. Afterwards we will shortly introduce
Coxeter systems, which turn out to be the same as finite reflection groups. The
definition of the Coxeter graph makes use of the fact that finite reflection groups
are generated in the way of Theorem 4.6.

Definition 4.5. Let W be a finite reflection group determined by the simple
system ∆ and positive integers m(α, β), α, β ∈ ∆. Construct the Coxeter
graph Γ as follows:

• The vertex set is the set of simple roots in ∆.

• Join the two vertices corresponding to α, β by an edge if m(α, β) ≥ 3.

• Label the edges with the corresponding integer. By convention we will
omit the label 3.

Remark 4.1. Since simple systems are conjugate, the Coxeter graph does not
depend on the choice of the simple system ∆.

Given a Coxeter graph Γ with vertex set S = {s1, . . . , sn} we can associate
a symmetric n× n matrix A by setting

aij := − cos
π

m(si, sj)

and thus define a bilinear form xtAy. By using the standard terminology we
call a Coxeter graph positive definite, respectively positive semidefinite,
whenever the corresponding bilinear form is. Furthermore we say that a Coxeter
graph is of positive type, if it is positive definite or semidefinite.

Example 4.6. Direct computation yields, that the graphs in Table 4.1 are of
positive type.

Theorem 4.10. The graphs in Table 4.1 are the only connected Coxeter graphs
of positive type.

Remark 4.2. To each graph of positive type exists a corresponding finite re-
flection group (see chapters five and six in [Hum90]).

At the end of the introduction of finite reflection groups we introduce Coxeter
systems. Instead of considering the group of reflections in an euclidean vector
space V , we introduce the Coxeter group as a group subject only to relations of
the form in Theorem 4.6.

Definition 4.6. A Coxeter system is a pair (W,S) consisting of a Coxeter
group W and a set of generators S ⊂ W , which are solely determined by the
relations

(ss′)m(s,s′) = e,

where e is the neutral element of W and the integers m(s, s′) for s, s′ ∈ S are
defined as

m(s, s) = 1, m(s, s′) = m(s′, s) ≥ 2.

If no relation occurs, we set m(s, s′) = ∞.
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Group Coxeter graph Group Coxeter graph

An
. . . Ã1

∞

Bn
. . . 4 Ãn

. . .

Dn
. . .

B̃2 = C̃2
4 4

E6 B̃n
. . . 4

E7 C̃n
. . . 44

E8 D̃n
. . .

F4
4 Ẽ6

H3
5 Ẽ7

H4
5 Ẽ8

I2(m) m F̃4
4

G2
6 G̃2

6

Table 4.1: In the left part are positive definite and in the right part positive
semidefinite graphs with their respective Coxeter groups.

Example 4.7. Finite reflection groups are examples for Coxeter systems. In
fact, we will be particularly interested in the Coxeter group An in Table 4.1
which we already examined in Example 4.5 for n = 3. To be more precise, the
Coxeter group An can be identified with the symmetric group Sn+1.

Remark 4.3. We will only be interested in finite Coxeter groups and as just
explained only in the case An. Furthermore, all statements we have for finite re-
flection groups exist for Coxeter groups as well. For more details about Coxeter
groups we refer to the fifth chapter of [Hum90].

4.3 The Subword Complex
We will now give the definition of subword complexes and discuss its properties.
Most results of this subsection are taken from [KM03]. Let from now on (W,S)
be a finite Coxeter system. Our main goal will be to show the following state-
ment, which shows the very-easy-to-classify nature of subword complexes.
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Theorem 4.11. The subword complex is a simplicial sphere homeomorphic
to either a sphere or a ball, i.e., there is a bijective, continuous function with
continuous inverse function, that maps the complex to a sphere, respectively ball,
with appropriate dimension.

Eventually, we will learn what a subword complex is, that it is a simplicial
complex by nature and how we can classify them. Both of the next definitions
introduce the language of this subsection.

Definition 4.7. A word Q of size m of S is a m-tuple of simple reflections
in S, thus Q = (s1, . . . , sm) where the si ∈ S are arbitrary (in this case, we do
not mean si = sαi

!). An ordered subsequence P of Q is called a subword. For
an element w ∈ W we say that a subword P

1. represent w, if the ordered product of the generating elements in P is a
reduced expression for w.

2. contains w, if some subword of P represents w.

The notion of words and subwords build the foundation for the object of our
interest in this section.

Definition 4.8. Let Q be a word in S and w ∈ W . The subword com-
plex ∆(Q,w) is the set of subwords Q \ P whose complements P contain w.

The following lemma shows the nice structure subword complexes have.

Lemma 4.12. For a word Q and an element w ∈ W the subword complex
∆(Q,w) is a pure simplicial complex whose facets are the subwords Q \ P such
that P represents w.

Proof. Let Q be a word which contains at least one reduced expression of w ∈ W
(otherwise the subword complex would be empty). It is apparent, that the
facets are given by subwords which represent w (by considering complements
of subwords containing w, they only become smaller the longer the subword
is). Moreover, every subword containing a subword that represents w corre-
sponds to a face being a subset of the corresponding facet, and the vertices of
the subword complex are exactly the different letters in Q, whose complement
contains a reduced expression of w. Thus, the subword complex is a simplicial
complex. Since all reduced expressions of w have the same length (otherwise
their inversion set would be different, which would be a contradiction) it is a
pure simplicial complex.

Example 4.8. We will repeat the example we gave at the beginning of this
section with the appropriate language. Consider the Coxeter system W = S3

and S = {s1, s2} where si = (i, i + 1). Let the word be Q = (s2, s1, s2, s1, s2)
and w = s2s1s2 = s1s2s1. We determine the facets of ∆(Q,w) by finding all
subwords in Q, which represent w while tracking the positions of letters in Q
used in these subwords. We obtain the following tabular:

s2 s1 s2 s1 s2
× × × ◦ ◦
× ◦ ◦ × ×
× × ◦ ◦ ×
◦ × × × ◦
◦ ◦ × × ×
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Since Q is a word of length five, we will have five vertices corresponding to each
position in the word. Two vertices are connected by an edge, if they occur in
the same complement of a subword representing w (marked with ◦). Thus, the
subword complex ∆(Q,w) is the following pentagramm:

1

2

3

4

5

In the example, the importance of the exchange condition in Theorem 4.5
becomes clear: For a certain × in a row there is an unique other × we can
choose instead. These are the ridges between facets.

Definition 4.9. Let ∆ be a simplicial complex and F ∈ ∆ a face.

1. The deletion of F from ∆ is the set del(F,∆) = {G ∈ ∆ |G ∩ F = ∅}.

2. The link of F in ∆ is the set lk(F,∆) = {G ∈ ∆ |G∩F = ∅ , G∪F ∈ ∆}.

Both, the link and the deletion of a face are simplicial complexes themselves.
In correspondence with the next definition we will see examples for both.

Definition 4.10. We call a simplicial complex ∆ with vertex set V vertex-
decomposable if it is pure and one of the following conditions are satisfied:

1. ∆ = ∅ or the only facet of ∆ is V , or

2. for some vertex v ∈ ∆, both complexes del(v,∆) and lk(v,∆) are vertex-
decomposable and every facet of del(v,∆) is a facet of ∆.

This definition is inductively well-defined, since the deletion and the link of
a vertex are of lower dimension than the starting complex.

Example 4.9. Let V = {a, b, c, d, e} be the set of vertices and let ∆ be gener-
ated by the facets {a, b}, {b, c, d} and {c, d, e}. We will show that this simplicial
complex is vertex-decomposable.

1. Since ∆ ̸= ∅ and V is not a facet choose v = a. Then lk(a,∆) = {b} is
vertex-decomposable. On the other hand we need to check that the com-
plex ∆′ := del(a,∆), which is generated by the facets {b, c, d} and {c, d, e},
is vertex-decomposable.

2. Again ∆′ is neither empty nor is {b, c, d, e} a facet. Hence choose v′ = b.
Then, lk(b,∆′) = {c, d} is vertex-decomposable and del(b,∆′) = {c, d, e}
is a facet. Furthermore, del(b,∆′) is a facet of ∆′. Thus, del(b,∆′) is
vertex-decomposable and so are ∆′ and thus ∆.

Remark, that ∆ is not a pure complex.
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The definition of vertex-decomposable often comes with the requirement for
the complex to be pure. This has mainly to do with the next definition and
their correspondence.

Definition 4.11. A shelling of a pure simplicial complex ∆ is an ordered list
of its facets F1, . . . , Ft such that(

k−1⋃
i=1

F̂i

)
∩ F̂k

is a pure subcomplex generated by codimension 1 faces of Fk for each k ≤ t,
where F̂ denotes the set of faces of F .

Shellability for simplicial complexes is an important property for our main
result of this section. Without going into details we will explain why: Shellable
simplicial complex are homotopy equivalent to the wedge of spheres (corre-
sponding to spanning simplices) or they are contractible. For a more detailed
summary we refer to [Wac96]. Furthermore, shellable and vertex-decomposable
complexes are corresponding as follows.

Lemma 4.13 ([BP79]). Let ∆ be a pure simplicial complex. If ∆ is vertex-
decomposable, then ∆ is shellable.

Since further details into shellable complexes and the proofs of some of the
upcoming results would need the introduction of topological definitions and
methods, we refer to [KM03], [Wac96] and [BP79] for further details.

Theorem 4.14. Subword complexes are vertex-decomposable, hence shellable.

Proof. Let ∆ = ∆(Q,w) be a subword complex. We will prove this by induction
on the length m of Q. The case m = 1 is trivial. Suppose Q = (s, s2, s3, . . . , sm).
By induction, it suffices to show that lk(s,∆) and del(s,∆) are subword com-
plexes. By definition, both of them consist of subwords of Q′ = (s2, . . . , sm).
First, we show that lk(s,∆) = ∆(Q′, w). Suppose we have a face F ∈ lk(s,∆).
Then F ∪{s} ∈ ∆, which means that Q\(F ∪{s}) contains a reduced expression
of w, which is equivalent to say that Q′ \F contains a reduced expression of w,
thus, F ∈ ∆(Q′, w). The other inclusion follows the same way around.
Second, we show that the deletion of s is either its link or the complex ∆(Q′, sw).
This depends on whether or not sw is longer or shorter than w. In the first case,
no reduced expression for w can start with s. Thus, for a face F ∈ del(s,∆), we
have F ∈ ∆, s ∈ Q \ F and Q \ F contains a reduced expression of w, implying
that Q′ \ F contains a reduced expression of w, thus, del(s,∆) = ∆(Q′, w).
On the other hand, if sw is shorter than w there is a reduced expression of w
starting with s. Let F ∈ del(s,∆), thus, F ∈ ∆ and s ∈ Q \ F .

• If Q \ F contains a reduced expression of w starting with s, then Q′ \ F
contains a reduced expression of sw.

• If Q\F contains a reduced expression of w not starting with s, then Q′\F
contains a reduced expression of sw by the exchange condition.

Thus, in both cases we have del(s,∆) = ∆(Q′, sw).
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We will now introduce the necessary lemmas to show the main result of this
subsection. Before we start to formulate and prove them, we need to introduce
a partial order on the Coxeter group W . Let T be the set of all reflections as
in Proposition 4.8.

Definition 4.12. For u,w ∈ W denote

• u
t→ w, if ut = w for a t ∈ T .

• u → w, if there exists a t ∈ T such that u
t→ w.

• u ≤ w, if there exist u0, . . . , uk ∈ W where u = u0 → u1 → · · · → uk = w.

We call ’≤’ the Bruhat ordering on W . The Bruhat graph is a directed
graph with nodes in W and edges given by the second point above.

Example 4.10. Consider the Coxeter group W of type A2 given by S = {a, b}.
Then the set of all reflections is T = {a, b, aba = bab}. The Bruhat graph is the
following:

id
a

b

ab

ba

aba

The following two results should give a good understanding of the Bruhat
order. For a more detailed discussion we refer to [Hum90].

Theorem 4.15. Let w = s1 . . . sr be an arbitrary reduced expression. Then we
have w′ ≤ w if and only if w′ is a subexpression of this reduced expression, i.e.,

w′ = si1 . . . siq for 1 ≤ i1 < · · · < iq ≤ r.

Proposition 4.16. Let w′ < w. Then there exist w0, . . . , wm ∈ W such
that w′ = w0 < · · · < wm = w and l(wi) = l(wi−1) + 1 for 1 ≤ i ≤ m.

The next definition contains the greedy algorithm for the length of words.
It will play an important role in the main result of this section.

Definition 4.13. For a word Q and a letter s ∈ S let Q′ be the word obtained
by adding s at the end of Q. The Demazure product of Q′ is recursively
defined by

δ(Q′) =

{
ws, l(ws) > l(w)
w, l(ws) < l(w)

where w denotes the Demazure product of Q and δ(∅) = id.

Example 4.11. Let Q = (s2, s1, s1, s2, s1, s2). Then we compute its Demazure
product as follows: Starting with the first letter we only add the consecutive
one if the length of product of the letters increases, thus,

s2 → s2s1 → s2s1 → s2s1s2 → s2s1s2 → s2s1s2 = δ(Q).

We now start with giving two lemmas exploring the correspondence of the
Demazur product and elements of the Coxeter group. Let ≤ and < be the
Bruhat order on W and Q = (s1, . . . , sm) a word of length m. We denote the
omission of si from Q to obtain a word of length m− 1 by Q \ si.
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Lemma 4.17. Let P be a word and let w ∈ W .

1. δ(P ) ≥ w if and only if P contains w.

2. If δ(P ) = w, then every subword of P containing w has Demazure prod-
uct w.

3. If δ(P ) > w, then P contains a word T representing an element w′ > w
satisfying |T | = l(w′) = l(w) + 1.

Proof. We will use the first point to prove the other two. By definition every
word contains its Demazure product. Let P ′ ⊆ P be a subword of P contain-
ing w. Thus, we have w = δ(P ) ≥ δ(P ′) ≥ w which forces δ(P ′) = w proving
the second point.

For the third point, choose any element w′ ∈ W such that l(w′) = l(w) + 1
and w < w′ ≤ δ(P ) (Proposition 4.16). Such a group element certainly ex-
ists, since w can not be the unique longest element, because otherwise δ(P )
must have already been w. By definition of the Bruhat ordering the inequal-
ity w < w′ ≤ δ(P ) holds.

Now to the remaining equivalence. Suppose w′ = δ(P ) ≥ w and let P ′ ⊆ P
be the subword obtained by reading P in order, omitting any reflections along
the way that do not increase its representing elements length. Thus, P ′ repre-
sents w′ and contains w by definition. On the other hand, if T ⊆ P represents w,
then use induction on the length of P as follows. Let s ∈ S be the last reflection
in the list P , such that δ(P )s < δ(P ), thus, δ(P \s) = δ(P ) or δ(P \s) = δ(P )s.

• If ws > w, then T ⊆ P \ s and w ≤ δ(P \ s) ≤ δ(P ).

• If ws < w and T ′ ⊂ T represents ws, then T ′ ⊆ P \ s and ws ≤ δ(P \ s).
Since ws < w it follows, that w ≤ δ(P ).

Lemma 4.18. Let T be a word and w ∈ W such that |T | = l(w) + 1.

1. There are at most two elements s ∈ T such that T \ s represents w.

2. If δ(T ) = w, then there are two distinct s ∈ T sucht that T \s represents w.

3. If T represents w′ > w, then T \ s represents w for exactly one s ∈ T .

Proof. The case |T | ≤ 2 is obvious. For the first part, suppose that there are
reflections s1, s2, s3 ∈ T , such that T \si represents w. Without loss of generality
we can assume T = (T1, s1, T2, s2, T3, s3, T4) and using the assumption we have

T1T2s2T3s3T4 = T1s1T2T3s3T4 ⇐⇒ T2s2 = s1T2

by cancelling the same elements from the left and right of the first equation.
Using this and the assumption again we obtain

w = T1s1T2s2T3T4 = T1T2s2s2T3T4 = T1T2T3T4

which contradicts the assumption, that l(w) = |T |+ 1.
Now suppose δ(T ) = w. Since |T | = l(w)+1, there is a reflection s ∈ T , such

that T = (T1, s, T2), (T1, T2) represents w and t1 > t1s, where T1 represents t1.
Using the third part of the lemma, omitting some reflection s′ from T1 yields a
reduced expression for t1s, while (T1 \ s′, s, T2) must represent w.

The last part is exactly the Exchange condition or Proposition 4.16.
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Lemma 4.19. Let ∆ be a shellable simplicial complex in which every codimen-
sion 1 face is contained in at most two facets. Then ∆ is a topological manifold-
with-boundary that is homeomorphic to either a ball or a sphere. The facets
of the topological boundary of ∆ are the codimension 1 faces of ∆ contained in
exactly one facet of ∆.

We will not proof this lemma which is Proposition 4.7.22 in [Bjö+00]. The
next theorem is the main result we present in this section. It gives us a very
easy-to-check property of subword complexes.

Theorem 4.20. A subword complex ∆(Q,w) is either a ball or a sphere. A
face Q \ P is in the boundary of ∆(Q,w) if and only if δ(P ) ̸= w.

Proof. The first point in Lemma 4.18 shows that every codimension 1 face
of ∆(Q,w) is contained in at most two facets, while the shellability of the
complex is shown in Theorem 4.14. Thus, the conditions of Lemma 4.19 are
satisfied, proving the first sentence of the statement.
Let Q\F be a face and δ(F ) ̸= w. Then, by part one of Lemma 4.17, δ(F ) > w.
Choosing T as in the third part of Lemma 4.17, we have by the third part of
Lemma 4.18 that Q \ T is a codimension 1 face contained in exactly one facet
of ∆(Q,w). Thus, using Lemma 4.19, we conclude Q \ F ⊆ Q \ T is in the
boundary of ∆(Q,w).
If δ(F ) = w, the second part of Lemma 4.17 and Lemma 4.18 say that every
codimension 1 face Q \T ∈ ∆(Q,w) containing Q \F is contained in two facets
of ∆(Q,w). Lemma 4.19 says each such Q \ T is in the interior of ∆(Q,w),
whence Q \ F must itself be an interior face.

Corollary 4.21. The subword complex ∆(Q,w) is a sphere if δ(Q) = w and a
ball otherwise.

Example 4.12. The Demazur product of the word Q = (s2, s1, s2, s1, s2) in
Example 4.8 is δ(Q) = s2s1s2 = w, hence ∆(Q,w) is a sphere (which we already
saw as the pentagramm). Considering the subword complex with the same
word Q but with w′ = s2s1 we can already tell, that ∆(Q,w′) is homeomorphic
to a ball. Indeed, the resulting simplicial complex is the following:

1 5 4

32

The next result shows that every spherical subword complex is always iso-
morphic to a subword complex with the longest element in the Coxeter group.

Theorem 4.22 (Theorem 3.7. [CLS13]). Every spherical complex ∆(Q,w) is
isomorphic to the complex ∆(Q′, w◦) for some word Q′ such that δ(Q′) = w◦.

Proof. Since ∆(Q,w) is spherical we must have δ(Q) = w. Now let R be a
reduced word for w−1w◦ = δ(Q)−1w◦ and define the word Q′ to be the con-
catenation of Q and R. Thus, we must have δ(Q′) = w◦, since w◦ is contained
in Q′, and every reduced expression of w◦ in Q′ must contain all the letters in R.
Since every reduced expression of w◦ in Q′ is given by reduced expressions of w
in Q together with all the letters in R the complexes ∆(Q,w) and ∆(Q′, w◦)
are isomorphic.
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Remark 4.4. In the same article [KM03] the authors stated the question on
whether or not any spherical subword complex can be realized as a polytope. As
we will see in a moment, this question is very closely related to Conjecture 3.12
and motivated by the question of when simplicial spheres are realizable as poly-
topes in general, since there are examples of simplicial complexes homeomorphic
to spheres which are not polytopal. An example for a simplicial 3-sphere and
its non-polytopality can be found in [BG87].

Now that we have established and classified subword complexes we can give
their connection to multi-associahedra. This is the content of the next result.

Theorem 4.23 (Theorem 2.1. [Stu11]). Consider the word

Qn,k = (sn−k−1, . . . , s1, sn−k−1, . . . , s2, . . . , sn−k−1, sn−k−2, sn−k−1)

and the element

wn,k = [1, . . . , k, n− k, n− k − 1, . . . , k + 1] ∈ Sn−k.

Then △n,k = ∆(Q′
n,k, wn,k), where Q′

n,k is obtained from Qn,k by deleting all
letters si for 1 ≤ i ≤ k.

Thus, the multi-associahedron is vertex-decomposable and shellable. The
question is, speaking about subword complexes, whether or not the multi-
associahedron is homeomorphic to a sphere, or a ball. The answer was given
in the same article and uses the fact, that wn,k is the longest element in the
parabolic subgroup generated by the simple reflections in Q′

n,k (δ(Q′
n,k) ≤ wn,k)

and that Q′
n,k contains a reduced expression for wn,k as a suffix (δ(Q′

n,k) ≥ wn,k

by part one of Lemma 4.17).

Corollary 4.24 (Corollary 2.2. [Stu11]). The multi-associahedron is a trian-
gulated sphere.

Remark 4.5. Since the connection between subword complexes and multi-
associahedra is in type A we will not consider any other Coxeter group, as
already mentioned.

In Subsection 2.1 in [CLS13] there is another description of the bijection
between subword complexes and multi-associahedra, which we will quickly con-
sider for a better understanding.

We want to obtain the multi-associahedron △n,k. For this, let Sm+1 be
the symmetric group and consider the m simple transitions si = (i, i + 1),
where m = n − 2k − 1. The k-relevant diagonals of the convex n-gon are in
bijection with positions of letters in the word

Q = (sm, . . . , s1, . . . , sm, . . . , s1, sm, . . . , s1, sm, . . . , s2, . . . , sm, sm−1, sm)

where the sequence (sm, . . . , s1) in the beginning is repeated k-times. If the
vertices of the n-gon are cyclically labeled by the integers from 1 to n, the
bijection sends the ith letter of Q to the ith k-relevant diagonal in lexicographic
order. A collection of k-relevant diagonals forms a facet of △n,k if and only if
the complement of the corresponding subword in Q forms a reduced expression
for the permutation [m + 1, . . . , 2, 1] ∈ Sm+1. We will look at the following
example next to the one we gave at the beginning of this section. Lets look at
a final example in addition to the one we gave at the beginning.
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Example 4.13. We will look at 2-triangulations of the 7-gon, thus, n = 7, k = 2
and m = 2. Our word is Q = (s2, s1, s2, s1, s2, s1, s2) and the corresponding
element w = s2s1s2 = s1s2s1.

Q s2 s1 s2 s1 s2 s1 s2
Diagonal q1 q2 q3 q4 q5 q6 q7

t1 × × × ◦ ◦ ◦ ◦
t2 × × ◦ ◦ × ◦ ◦
t3 × × ◦ ◦ ◦ ◦ ×
t4 × ◦ ◦ × × ◦ ◦
t5 × ◦ ◦ × ◦ ◦ ×
t6 × ◦ ◦ ◦ ◦ × ×
t7 ◦ × × × ◦ ◦ ◦
t8 ◦ × × ◦ ◦ × ◦
t9 ◦ × ◦ ◦ × × ◦
t10 ◦ ◦ × × × ◦ ◦
t11 ◦ ◦ × × ◦ ◦ ×
t12 ◦ ◦ × ◦ ◦ × ×
t13 ◦ ◦ ◦ × × × ◦
t14 ◦ ◦ ◦ ◦ × × ×

Table 4.2: The reduced expressions of w = s2s1s2 = s1s2s1 in the given word
Q = (s2, s1, s2, s1, s2, s1, s2). The rows yield the different 2-triangulations of the
7-gon.

In Table 4.2 are the facets of the subword complex ∆(Q,w) and thus of △7,2

listed. Furthermore, looking at the 7-gon and listing its 2-relevant diagonals
yields

q1 = [1, 4], q2 = [1, 5], q3 = [2, 5], q4 = [2, 6], q5 = [3, 6], q6 = [3, 7], q7 = [4, 7].

Looking at the row t6 we have to draw the diagonals q2, q3, q4 and q5 to obtain
the corresponding facet of △7,2.

1

2
3

4

5

6
7

45



5 GALE DUALITY

5 Gale Duality
In the last two sections of this thesis we want to show some of the results
of the research towards the Conjecture 3.12. The goal of this section is to
give complete simplicial fan realizations for any spherical subword complex of
type An for n ≤ 3 and of multi-associahedra △n,k for n ≤ 2k+4. It is yet unclear
whether these are normal fans of polytopes. The construction of the fans work
for any subword complex of type An and yield complete and simplicial fans
for △9,2 and △11,3, but which are not obtainable as normal fans of a polytope.
The results and definitions of this section are taken from [BCL14].

Remark 5.1. Since we know that every spherical subword complex is isomor-
phic to a subword complex of the form ∆(Q,w◦), we will simply write ∆(Q).

5.1 Counting Matrices
After giving the necessary definitions we will state the main results of this
section.

Definition 5.1. Let Q be a word and M ∈ R(r−N)×r, where N denotes the
length of the longest element w◦. We define a natural collection of cones FQ,M

in Rr−N as follows: The rays are given by the column vectors of M and its
cones are spanned by the columns corresponding to faces of ∆(Q).

Let S = {s1, . . . , sn} be the set of simple transitions and c a Coxeter element,
i.e., the product of the simple transitions in S in some arbitrary sequence.
Define Pm = cm = (p1, . . . , pr̃) and choose m such that it contains the word Q
as a subword. The number r̃ = mn denotes the number of letters in Pm.
Our main ingredient is the following matrix, whose entries count the number
of reduced expressions of c in Pm containing the letter pi in position i, after
restricting to standard parabolic subgroups, which were introduced earlier in
Definition 4.4. In the following, fix a positive system Φ+ with corresponding
simple system ∆.

Definition 5.2. The counting matrix Dc,m ∈ RN×r̃ is a matrix, whose rows
correspond to positive roots and columns to the position 1 ≤ j ≤ r̃ of the
letters of Pm = cm. Given α ∈ Φ+ and 1 ≤ j ≤ r̃, denote by Sα ⊆ S the
subset of generators whose corresponding simple roots are used in the unique
decomposition of α in ∆ and by cα the restriction of c to the generators in Sα.
The entry dα,j of Dc,m is the number of reduced expressions of cα in P using
the letter pj in position j. In particular: pj /∈ Sα ⇒ dα,j = 0.

Example 5.1. Lets consider an example in A2. Let c = (s1, s2) and con-
sider P4 = c4 = (s1, s2, s1, s2, s1, s2, s1, s2). Fix Φ+ = {α1, α1 + α2, α2} in this
order. The positive roots determine the rows of the counting matrix Dc,4 in the
following way: The ith row counts all reduced expressions of the restriction of c
to the alphabet induced by the simple roots, which appear in the ith positive
root in Φ+. Since the first positive root is the simple root α1, which corresponds
to the simple transition s1, the restriction is cα1

= (s1). Now, the columns de-
termine which position in P4 will be fixed to obtain the reduced expression
for cα1 . Since every second position in P4 contains s2, the corresponding entries
are 0.
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The second row corresponds to the positive root α1 + α2 which is obtained by
adding the two simple roots α1 and α2. Thus, cα1+α2

= c and for the entry
in column i we have to count all possibilities to find c in P4 while fixing the
letter in position i. For example, fixing the third letter s1 gives us three reduced
expressions for c by choosing one of the three s2 to the right of the third position.
Thus, d2,3 = 3. The middle row is demonstrated more clearly in Table 5.1. The
counting matrix is the following:

Dc,4 =

1 0 1 0 1 0 1 0
4 1 3 2 2 3 1 4
0 1 0 1 0 1 0 1


Reduced expressions in Q fixing position pi Number of reduced expressions

s1 s2 s1 s2 s1 s2 s1 s2 4
s1 s2 s1 s2 s1 s2 s1 s2 1
s1 s2 s1 s2 s1 s2 s1 s2 3
s1 s2 s1 s2 s1 s2 s1 s2 2
s1 s2 s1 s2 s1 s2 s1 s2 2
s1 s2 s1 s2 s1 s2 s1 s2 3
s1 s2 s1 s2 s1 s2 s1 s2 1
s1 s2 s1 s2 s1 s2 s1 s2 4

Table 5.1: An example of how the counting matrix works for the row corre-
sponding to the root α1 + α2. The boxed letters are the fixed positions pi and
the colored letters contribute to the counter of cα1+α2

.

By choosing a sufficiently large m we can embed any word Q in Pm =
cm via φ : [r] → [r̃] by sending positions in Q to positions in Pm, where we
denote [r] = {1, . . . , n}. For any such embedding we will construct a complete
simplicial fan realization of the subword complex ∆(Q).

Definition 5.3. The restricted matrix Dφ is the restriction of Dc,m to the
columns φ(1), . . . , φ(r) corresponding to the positions of the letters of Q em-
bedded in Pm.

The next definition contains the main ingredient of the technique used in
this section. There is a lot more to say about Gale duality and other coherent
concepts, but we will not go into more details here and just adopt the term.

Definition 5.4. Let A be a full rank matrix. We call a matrix B a Gale dual
matrix of A, if the rows of B form a basis for the kernel of A. From linear
algebra it is clear that B is determined up to linear transformation of the rows.

Example 5.2. We will continue the example from above. Consider the word

Q = (s1, s2, s2, s1, s1)

and let φ be the embedding of Q in P4 by mapping the positions in Q to the
first possible position in P4. The resulting restricted matrix is

Dφ =

1 0 0 1 1
4 1 2 2 1
0 1 1 0 0

 .
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A Gale dual matrix of Dφ is

Mφ =

(
−1 −2 2 1 0
−1 −3 3 0 1

)
.

We will often use this notation for the Gale dual matrix corresponding to the
restricted matrix.

In the following theorem we will give the main result of this section, which
yields infinitely many complete simplicial fan realizations of certain subword
complexes. Remark, that computations in [BCL14] showed that no configura-
tion makes these fans the normal fan of a polytope.

Theorem 5.1. Let ∆(Q) be a spherical subword complex of type An with n ≤ 3
and let φ be an embedding of Q into cm. The fan FQ,Mφ

is a complete simplicial
fan realization of ∆(Q).

In the cases where φ is the natural embedding and Q = cm we get explicit
realizations.

Corollary 5.2. Let c = (s2, s1, s3) be a Coxeter element of type A3 and Q = cm

with m ≥ 3. The fan FQ,M213,m
is a complete simplicial fan realization of ∆(Q)

for the matrix M213,m below.

MT
213,m =

(
−I3m−6

B213,m−2 . . . B213,1

)
∈ R(3m)×(3m−6)

where the entries depend on the functions S(i) = i2 and T (i) = i(i+ 1)/2 and

B213,i =


S(i+ 1) −T (i) −T (i)
2T (i) −T (i− 1) + 1 −T (i)
2T (i) −T (i) −T (i− 1) + 1

−S(i+ 1) + 1 T (i) T (i)
−2T (i) T (i− 1) T (i)
−2T (i) T (i) T (i− 1)

 .

Remark 5.2. There are explicit forms for the counting matrix and its Gale dual
matrix like in Corollary 5.2. For example, we can give the following counting
matrix and its Gale dual in type A2 with c = (s1, s2) and rows in the order
corresponding to {α1, α1 + α2, α2}:

Dc,m =

 1 0 1 0 . . . 0 1 0
m 1 m− 1 2 . . . m− 1 1 m
0 1 0 1 . . . 1 0 1



Mc,m =

 −I2m−3

E1

...
Em−2

−1 1 1

 , Ei =

(
−m+ 1 1 m− i
m− 1 0 −m+ i+ 1

)

Since their computation is purely counting positions of simple reflections in the
word Q and transformation of linear equations, we will not prove this represen-
tation.
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We can also express these results in terms of multi-associahedra: Con-
sider △n,k where n = 2k + 4. Then there are 3k + 6 many k-relevant diagonals
which are in correspondence with the columns of M213,k+2 as follows:

• cyclically label the vertices of the n-gon from 1 up to n

• note the k-relevant diagonals in lexicographic order

• the first diagonal corresponds to the last column of M213,k+2

• the other k-relevant diagonals correspond to the other columns in lexico-
graphic order

Let Fk be the simplicial fan in R3k whose rays are the columns of M213,k+2

and whose cones are spanned by the column vectors corresponding to faces
of △2k+4,k.

Corollary 5.3. Fk is a complete simplicial fan realization of △2k+4,k.

Remark 5.3. In [BCL14] is also a fan realization for spherical subword com-
plexes of type B.

5.2 The Graph of Reduced Expressions
We will now go into the details of the proofs of the results summarized before.
One ingredient will be the graph of reduced expressions of an element in W and
the sign function on this graph. We will discuss both, but will not go into detail
about corresponding proofs and refer to [BCL14]. Remember the term braid
relation which we discussed in Example 4.5.

Definition 5.5. Let (W,S) be a finite Coxeter system and let w ∈ W be an
arbitrary element. We define the graph of reduced expressions of w as
follows:

• vertices: reduced expressions of w

• edges: if the vertices are related by a single braid relation

• label an edge with the pair of indices {i, j} of the braid move mij

We denote the graph of w by G(w).

Example 5.3. Consider W = S4 and let w◦ be the longest element in type A3.
There are 16 different reduced words for w◦ for example 323123, where we denote
the simple reflections in short by i = si = (i, i + 1). Since we have the braid
relation 323 = 232 we know that the vertices 323123 and 232123 are connected
via an edge labeled {2, 3}.

Remark 5.4. It is known that for any finite Coxeter system (W,S) and every
element w ∈ W the graph G(w) is connected, e.g., Theorem 3.3.(ii) in [BB06].

Definition 5.6. We call two pairs of indices {i, j} and {i′, j′} conjugated, if
there exists a w ∈ W such that si′ = w−1siw and sj′ = w−1sjw. Furthermore,
we say that they are in the same automorphism class, if {i′, j′} is the image
of {i, j} under an automorphism of W .

49



5.2 The Graph of Reduced Expressions 5 GALE DUALITY

The first result we will discuss is that G(w) is a mega bipartite graph, that
is, the graph can be divided into two disjoint and independent sets (bipartite)
and any graph obtained by contracting the edges corresponding to a specific set
of braid relations is bipartite as well (mega). To give a precise statement we
will need one more definitions.

Definition 5.7. Let Z = {{i, j} | 1 ≤ i < j ≤ n}. We call Z stabled, if for
every {i, j} ∈ Z and every of its images {i′, j′} via an automorphism of W , the
pair {i′, j′} ∈ Z. For every stabled subset Z, let GZ(w) be the graph obtained
from G(w) by contracting all the edges corresponding to braid relations mij

for {i, j} /∈ Z.

Special cases are where Z consists of pairs {i, j}, where mij is even (respec-
tively odd). Thus, Geven(w) (resp. Godd(w)) is the graph obtained from G(w)
by contracting all edges corresponding to non-even (resp. non-odd) braid re-
lations. See Table 5.2 for an illustration. We explain this by considering the
following example.

Example 5.4. Let W = S4 be of type A3. There are the three braid rela-
tions m12 = m23 = 3 and m13 = 2, thus, we have the sets Zeven = {{1, 3}}
and Zodd = {{1, 2}, {2, 3}}. Remember, that the conjugation of transpositions
is subject to the rule w(i, j)w−1 = (w(i), w(j)). But there is no permutation w
that conjugates s1 to s1 and in the same time s3 to s2, since for the first con-
dition we would need the identity on 1 and 2, but for the second condition we
would need w to permute 2 and 3, and 3 and 4, which is not possible. In the same
way we can see that {1, 3} and {2, 3} are not conjugated. On the other hand,
the permutation (1, 2, 3, 4) conjugates {1, 2} and {2, 3}. Thus, Zeven and Zodd

are stabled. In general, in type An any pair {i, i+1} is conjugated to any other
pair {j, j + 1} and any pair {k, l}, where l − k > 1, is conjugated to any other
similar pair.

The following two statements summarize the results we need to know about
the graph of reduced expressions and stabled subsets.

Theorem 5.4. Let (W,S) be a finite Coxeter system and w ∈ W . Then, for
any stabled set Z the graph GZ(w) is bipartite. In particular, G(w), Geven(w)
and Godd(w) are bipartite.

The next definition introduces the sign function on the graph of reduced
expression. The sign of a reduced expression will be important when we will talk
about the signature matrix, a key definition that appears in the next subsection.

Definition 5.8. The sign function on reduced expressions of w◦ is a map

sign : {reduced expressions of w◦} −→ {−1,+1}

such that if w,w′ are connected by a braid move mij , then

sign(w′) = (−1)mij−1sign(w).

Since the graph of reduced expressions is connected, the defined function is
unique up to global multiplication with −1. The following lemma gives another
method to compute the sign of a reduced expression.

50



5.3 Signature Matrices 5 GALE DUALITY

323123(−)

232123(−)

231213(−)

231231(+) 213213(+)

213231(−)

212321(−)

121321(−) 123121(+)

123212(+)

132312(+)

312312(−) 132132(−)

312132(+)

321232(+)

321323(+)

{2, 3}

{1, 2}

{1, 3} {1, 3}

{1, 3} {1, 3}

{2, 3}

{1, 2}

{1, 3}

{1, 2}

{2, 3}

{1, 3} {1, 3}

{1, 3} {1, 3}

{1, 2}

{2, 3}

{1, 3}

Table 5.2: The graph of reduced expressions of the longest element in type A3

and their sign in round brackets. The blue edges are corresponding to odd
braid relations and the red edges are corresponding to even braid relations. The
contraction of either stabled subsets yields a bipartite graph.

Lemma 5.5. The sign function on reduced expressions of w◦ is the unique map,
up to global multiplication with −1, such that if the elements w = w1 . . . wN

and w′ = w′
1 . . . w

′
N are two reduced expressions of w◦ connected by a flip

(thus, w \ wi = w′ \ w′
j), then sign(w′) = (−1)i−j sign(w).

Example 5.5. One possible way of defining the sign in type A3 is marked
in Table 5.2. We will continue to use these signs in our further studies of
examples in this type. In Remark 3.7 in [BCL14] there is a more detailed
explanation about the correspondence of the sign function in type An and multi-
permutations.

Remark 5.5. The proofs of the statements up to this moments would need the
introduction of Coxeter complexes, Coxeter arrangements and other objects. In
order not to prolong the discussion about the graph of reduced expressions and
its sign function unnecessarily and to focus on our main topic we omit the proofs
and refer to Section 3 of [BCL14] for more details.

5.3 Signature Matrices
We will now introduce signature matrices for a pair consisting of a word Q and
an element w ∈ W . From now on let Q = (q1, . . . , qr) be a word containing at
least one reduced expression of w◦ and let N := l(w◦).

Definition 5.9. A matrix M ∈ RN×r is a signature matrix of type W for
the pair (Q,w◦), if for every reduced expression w of w◦ in Q the inequal-
ity sign(w) det(w) > 0 holds, where det(w) denotes the determinant of the
matrix M restricted to the column corresponding to w.
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Example 5.6. Consider type A2. The word Q = (s1, s2, s1, s2) contains both
reduced expressions for w◦. Computing the corresponding counting matrix,
using the positive system {α1, α1 + α2, α2} in this order, yields

D(s1,s2),2 =

1 0 1 0
2 1 1 2
0 1 0 1

 .

Since the sign of both reduced expressions is positive (they differ by the braid
move m12 = 3), it suffices to compute the determinant of the restricted matrices

Ms1s2s1 =

1 0 1
2 1 1
0 1 0

 and Ms2s1s2 =

0 1 0
1 1 2
1 0 1


which both are 1. Thus, the counting matrix D(s1,s2),2 is a signature matrix of
type A2 for the pair (Q,w◦).

The Coxeter signature matrix plays a fundamental role in the concept of
obtaining fan realizations of subword complexes. We will see in a moment that
finding a complete simplicial fan realization of ∆(Q) is almost equivalent to
finding a Coxeter signature matrix for the pair (Q,w◦).

Proposition 5.6. Let W be a Coxeter group of type An, where n ≤ 3, and let c
be a Coxeter element. For Q = cm, the counting matrix Dc,m is a signature
matrix for the pair (Q,w◦).

Proof. We will inspect each case one by one.
Case A1: There is only one reduced expression whose sign is 1. Since the count-
ing matrix is the (1 × m)-matrix (1 . . . 1), the corresponding determinant is
always 1.
Case A2: There are exactly two reduced expressions: s1s2s1 and s2s1s2. This is
Example 5.6. The case for the other Coxeter element c = (s2, s1) is nearly the
same with the difference, that the positive root system needs to be in a different
order (we have to swap the order of α1 and α2, since otherwise the first and last
row of the counting matrix above would be swapped and thus the determinant
would be −1).
Case A3: In this case we have 16 different reduced expression (see Table 5.2).
The proof is done by brute force computation. We will only give an example and
refer for the rest to the proof in Section 4 of [BCL14], who used the computer
software Sage to compute every case.
Lets consider the Coxeter element c = (s1, s2, s3) and consider the positive sys-
tem {α1, α1 + α2, α1 + α2 + α3, α2, α2 + α3, α3} with their corresponding rows
in this order. It is easy to verify that we have to look at the word Q = c4 to be
able to compute the determinant of every of the 16 reduced expressions of w◦.
The corresponding counting matrix is the following:

Dc,4 =



s1 s2 s3 s1 s2 s3 s1 s2 s3 s1 s2 s3
1 0 0 1 0 0 1 0 0 1 0 0
4 1 0 3 2 0 2 3 0 1 4 0
10 4 1 6 6 3 3 6 6 1 4 10
0 1 0 0 1 0 0 1 0 0 1 0
0 4 1 0 3 2 0 2 3 0 1 4
0 0 1 0 0 1 0 0 1 0 0 1
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We can now compute the determinants of the restriction of Dc,4 to the appropri-
ate columns (remember that we do this by picking the first fitting columns for
the corresponding reduced expression of w◦, e.g., if w = 321323(= s3s2s1s3s2s3)
we restrict the counting matrix to the columns 3,5,7,9,11 and 12). After com-
puting the matrices we can compare the signs of the reduced expressions (for
that look at Table 5.2) with that of their determinant. Let us look at an exam-
ple.
For the reduced expression w = 312312 the corresponding restricted matrix is

0 1 0 0 1 0
0 3 2 0 2 3
1 6 6 3 3 6
0 0 1 0 0 1
1 0 3 2 0 2
1 0 0 1 0 0


and its determinant is −1. Since the sign of w is negative, their product is 1 > 0,
as requested.

Remark 5.6. The authors claim, without explanation, that the proposition
does not hold for n ≥ 4.

Our main goal for now will be to reformulate the problem of finding fan
realizations of subword complexes in terms of Coxeter signature matrices. For
this, let Q = (q1, . . . , qr) contain at least one reduced expression of w◦ and
let N = l(w◦). Let M ∈ R(r−N)×r be of full rank and MG ∈ RN×r be a Gale
dual matrix with associated fan FQ,M .

Theorem 5.7. FQ,M is a complete simplicial fan realization of the spherical
subword complex ∆(Q) if and only if

(S) MG is a Coxeter signature matrix for the pair (Q,w◦) and

(I) there is a facet of ∆(Q) for which the interior of its associated cone is not
intersected by any other cone.

The proof of this theorem follows directly from the next two lemmas, the
first of which we will not prove.

Lemma 5.8. FQ,M complete simplicial fan if and only if the following three
conditions are satisfied:

(B) The vectors associated to a facet of ∆(Q) form a basis of Rr−N (Basis).

(F) If I and J are two adjacent facets that differ by a flip (thus, I\{i} = J\{j})
then the vectors associated to i and j lie in opposite sites of the hyperplane
generated by the vectors associated to the intersection I ∩ J (Flip).

(I) There is a facet for which the interior of its associated cone is not inter-
sected by any other cone (Injectivity).

Lemma 5.9. The Conditions (B) and (F) are satisfied if and only if MG is a
Coxeter signature matrix for the pair (Q,w◦).
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Sketch of the proof. First, we can reformulate the the conditions (B) and (F) in
Lemma 5.8 for Gale dual matrices, i.e., they are satisfied for a matrix M , if and
only if MG satisfies the following conditions:

1. The vectors associated to the complement of a facet of ∆(Q) form a basis
of RN .

2. If I and J are two adjacent facets that differ by a flip I \{i} = J \{j}, then
the vectors associated to i and j lie in the same side of the hyperplane
generated by vectors associated to the complement of I ∪ J .

The first point implies that for every reduced expression w ⊂ Q of w◦ we
have det(w) ̸= 0. By using Lemma 5.5 and setting the sign and determinant
of w1 . . . wN ⊂ Q to be positive, the second point implies that the sign and deter-
minant of w is determined by sign(w) det(w) > 0. Conversely, these inequalities
imply both conditions.

Remark 5.7. Although condition (I) in Theorem 5.7 is in general difficult to
prove, the condition (S) seems to be the most important one.

5.4 Proof of Theorem 5.1
We are now in the position to prove the main result: Theorem 5.1. For this,
let ∆(Q) be a spherical subword complex of type An with n ≤ 3 and let φ be
an embedding of Q into cm. We will prove this result in two steps. The first
one will be to prove that it is sufficient to consider the case where Q = cm and
the embedding φ is the trivial embedding. The second step will be the proof of
this explicit case.

The proof of the first step is based on the following two lemmas, the first of
which is a standard result that we will not prove.

Lemma 5.10. Let I be a cone in a complete simplicial fan F . The projection
of the link lk(I,F) to the orthogonal space of I is a complete simplicial fan
realizing lk(I,F).

Lemma 5.11. Let Q = cm and φ be the trivial embedding of cm into itself. If the
fan FQ,Mφ is complete, then the fan FQ′,Mφ′ is complete for any embedding φ′

of a word Q′ into cm.

Proof. The idea for the proving this lemma is to obtain the fan associated to Q′

as a projection of the fan associated to Q and using Lemma 5.10. We will do
this by giving appropriate choices of Mφ and M ′

φ and since different choices
of Gale dual matrices only effect the fans by linear transformations (by the
definition of the fans and Gale dual matrices), and particularly do not affect
their completeness, the result will follow.

Throughout the proof we will denote the length of Q = cm by r̃. Furthermore
we will assume that Q′ contains at least one reduced expression of w◦ (otherwise
its associated fan would be empty and there would be nothing to prove).

Let I ⊂ [r̃] be the face of ∆(Q) containing the positions in cm which are
not in φ′(Q′). Then there is a natural isomorphism (just like in the proof of
Theorem 4.14)

∆(Q′) ∼= lk(I,∆(Q)) ∼= lk(I,FQ,Mφ).
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Now let I ′ be a facet of ∆(Q) containing I. Since the vectors associated to facets
form a basis, we can assume that the restriction of Mφ to the columns with
indices in I ′ is the identity matrix (otherwise multiply its inverse with Mφ from
the left - the result would still be a Gale dual matrix of Dφ). Since I ⊂ I ′, the
columns of Mφ with indices in I are certain canonical basis vectors {ei1 , . . . , eik},
where k = |I|. Now let M ′ be the matrix obtained from Mφ by removing the
columns with indices in I and the rows with indices in {i1, . . . , ik}. We claim,
that M ′ is a Gale dual matrix Mφ′ of Dφ′ . This follows from the following two
points:

1. Dφ′ is obtained from Dφ by removing the columns with indices in I (by
definition of the restricted counting matrix).

2. Mφ has a zero entry in every position which is a column in I and a row
not in {i1, . . . , ik} (since its the restriction of the identity).

Now, taking Mφ′ = M ′, we deduce that FQ′,Mφ′ is the projection of lk(I,FQ,Mφ)
to the orthogonal space of the cone corresponding to I. Using Lemma 5.10 and
the isomorphism above we can say that FQ′,Mφ′ is a complete simplicial fan
realizing ∆(Q′).

We will now finish the proof of Theorem 5.1 by inspecting the case Q = cm.

Proof of Theorem 5.1. To prove this case we follow the steps in Theorem 5.7.
The signature condition is equivalent to the statement in Proposition 5.6. Since
φ is the trivial embedding we have MG

φ = Dc,m, which is a Coxeter signature
matrix for (Q,w◦) as desired. For the injectivity condition we need to prove
that there is a cone whose interior is not intersected by any other cone. We will
do this, again, by brute force inspection of each case.

Type A1: The counting matrix in this case is the same as in the proof of
Proposition 5.6. Its kernel is given by the span

R ·


−1
1
0
...
0

+ · · ·+ R ·


−1
0
...
0
1


Thus the Gale dual matrix defines the rays of the corresponding fan via m rays
given by the m− 1 basis vectors in Rm−1. Thus, the maximal cones correspond
to subsets of m−1 rays and the subword complex is isomorphic to the boundary
of an m− 1 dimensional simplex.

Type A2: Let us first consider the Gale dual matrix, which has the following
form, which can be obtained from its corresponding counting matrix (compare
to Remark 5.2):

M12,m =

 −I2m−3

E1

...
Em−2

−1 1 1

 , Ei =

(
−m+ 1 1 m− i
m− 1 0 −m+ i+ 1

)
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To prove this case we fix the cone C∗ corresponding to the negative orthant
(this is corresponding to the facet of ∆(Q) whose complement is the reduced
expression s2s1s2 of w◦ in the last three positions of Q, thus, the rays are given
by the negative identity matrix −I2m−3). We will show, that the interior of C∗ is
not intersected by any other cone. Let C be a cone corresponding to a subword
of cm whose complement is a reduced expression of w◦. There are three possible
cases for C that we have to check.

The corresponding facet uses two of the last three positions of Q. Using
Lemma 5.8 we can deduce that, since MG

φ is a Coxeter signature matrix and
thus two adjacent cones lie in opposite sides of the hyperplane spanned by their
intersection (which is a negative basis vector), the interior of C∗ and C is not
intersecting .

The corresponding facet uses one of the last three positions of Q. In this
case, C uses all negative basis vectors except for two and two of the last three
columns of M12,m. Denote by v1, v2 ∈ R2 the restrictions of these columns to
the coordinates corresponding to the negative basis vectors not used in C. We
will now explain why the cone spanned by v1 and v2 does not intersect the
negative orthant in R2, which is equivalent to say that C does not intersect C∗.
We have to differentiate the cases where the letter in the last three positions
of Q in the reduced expression is the next-to-last s2, the last s1 or the last s2,
thus, which of the last three columns is not in the fan. In each case, we provide
a vector v ∈ R2 with non-negative entries whose inner product with v1 and v2 is
non-negative and its hyperplane orthogonal to v separates the negative orthant
and the cone spanned by v1 and v2.

v1 =

(
−m+ a
m− b

) v =

(
m− b
m− a

)

v2 =

(
m− a

−m+ b+ 1

)

v2 =

(
−m+ a+ 1

m− b

)
v = v1 =

(
0
1

)

v1 =

(
m− a
−m+ b

)
v =

(
1
0

)v2 =

(
0
1

)

Table 5.3: The three cases in type A2 using two negative basis vectors.

Note, that the two negative vectors used in the reduced expression have to
be corresponding to different simple reflections, thus, they can not be both
corresponding to s1 nor to s2. This implies that the restricted vectors can only
be of the form given in Table 5.3. The first picture shows the case, where the
reduced expression uses the last s1, in the middle the case where the next-to-
last s2 is used and on the right the final case. The parameters a ≤ b ≤ m
denote the copy of c in which the negative basis vectors that are not used in C
are taken in the power cm counted from left to right.

The corresponding facet uses none of the last three positions of Q. In this
case, all of the last three columns are used. The procedure is the same as
before, but in R3. Let v1, v2, v3 ∈ R3 be the restriction of the last three columns
of M12,m to the three negative basis vectors that are not used in C.
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There are two possible cases corresponding to the two reduced expressions of w◦:−m+ a 1 m− a
m− b 0 −m+ b+ 1
−m+ c 1 m− c

 and

m− a 0 −m+ a+ 1
m+ b 1 m− b
m− c 0 −m+ c+ 1


where the vectors v1, v2, v3 are given by the columns. Again, the four para-
meters a ≤ b ≤ c ≤ m denote the copy of c in which the negative basis vectors
that are not used in C are taken in the power cm counted from left to right. In
both cases, the hyperplane orthogonal to the vector

v =

 0
m− c
m− b


separates the negative orthant and the cone spanned by v1, v2 and v3, since v
has non-negative entries and the inner product of v with every vi is non-negative.

Type A3: This case is considered in exactly the same way as in the case for
type A2. Since there are more reduced expressions for w◦ and the Gale dual
matrix for the counting matrix is larger, the consideration of the different cases
is just more extensive. We refer for the details to the proof in Section 6 of
[BCL14].
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6 Matroids and Rigidity
In this section we will look at more recent results concerning our conjecture.
The article [RS22b] builds the foundations for the statements and techniques
we will discuss here. It was first published in 2022, eight years after the previous
article [BCL14] and using completely different methods. We will first present
the results of this research and the idea behind them. Furthermore, we will
introduce matroids, which are in the focus of the concepts in this section. The
last subsection, however, deals with the polytopality of △8,2, which has already
been proven in 2009 in [BP09] with similar techniques.

Indeed, we will present new polytopal realizations of multi-associahedra. To
lower the expectations, there are not too many...

Theorem 6.1. For (n, k) ∈ {(9, 2), (10, 2), (10, 3)} the multi-associahedron is
a polytopal sphere. Furthermore, we can realize △13,4 as a complete simplicial
fan.

On the other hand we will also show the limitations of the techniques used.

Theorem 6.2. If k ≥ 3 and n ≥ 2k+6 then no choice of points will realize △n,k

as a fan using the methods in this section.

The question at hand is, what these methods are and how they are connected
to multi-associahedra. This will be the content of the next subsection.

Remark 6.1. In this section we will work with the reduced multi-associahedron
denoted by △n,k, thus, the simplicial complex we obtain by omitting the kn
many k-irrelevant and k-boundary edges of the k-triangulations (compare with
Corollary 3.11). It was proven in [Jon05] that this is, not to our surprise, a
shellable sphere of dimension k(n− 2k − 1)− 1.

6.1 The Idea
The methods that will be used come from rigidity theory. Consider the square
with hinges as vertices. This object is rather flexible, as it can be tilted to a
parallelogram by ’pressing’ against the upper part of one of its sides. But there
are structures which are not flexible at all, for example the triangle with hinges
as vertices. No force can bend the triangle, no matter where the force is applied.
In general, we will look at matrices which can be understood as encodements of
forces along the edges of a graph. We call them rigidity matrices and they will
give us the vectors for our polytopal realizations.

vs.

Let us talk about the connection of this theory with k-triangulations and
multi-associahedra. We know, that the number of edges in a k-triangulation
equals k(2n− 2k− 1). This coincides with the rank of so called abstract rigidity
matroids of dimension 2k on n elements, and such a matroid corresponds to
a rigidity matrix mentioned earlier. The idea is, that for any given choice of
points p1, . . . , pn ∈ R2k in general position the rows of their rigidity matrix gives
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a real vector configuration of the desired rank k(2n−2k−1). The question is, if
using these vectors as rays yield a fan and whether or not this fan is polytopal.
Based on previous research, the authors of [RS22b] decided to use this strategy
for points along the moment curve {(t, t2, . . . , t2k) | t ∈ R}.

6.2 Introducing Matroids
We will now start with the basic definitions of this section, where the first
definition is that of a matroid. The content of this subsection is based on
[RS22b] and is expanded by [Bjö+00].

Definition 6.1. A finite matroid (E, I) is defined by a finite set of elements E
and a non-empty family I of subsets of E, called the independent sets of the
matroid, and the following properties:

• The empty set is independent, thus ∅ ∈ I.

• Every subset of an independent set is independent itself.

• If I1, I2 ∈ I, such that |I1| < |I2|, then there exists an element x ∈ I2 \ I1
with I1 ∪ {x} ∈ I.

A maximal independent set B ∈ I is called basis for the matroid, whereas a
minimal dependent subset of E (that is, a not independent set whose proper
subsets are independent) is called a circuit. The rank of the matroid is the
size of its largest independent set.

Example 6.1. Consider the undirected graph G = (V,E) with its set of ver-
tices V = {1, 2, 3, 4} and set of edges E = {a, b, c, d, e, f}, visualized as follows:

1 2

3

4

a

b

c

d ef

The matroid M = (E, I) contains all the cycle-free subgraphs of G, thus

I = {∅, {a}, {b}, {c}, {d}, {e}, {a, b}, {a, c}, {a, d}, {a, e}, {b, c}, {b, d}, {b, e},
{c, d}, {c, e}, {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}},

where a cycle is a path whose first and last vertex are equal. The last five sets
are bases of the matroid, the set {b, c, d} is a circuit and M has rank 3.

We can extend this example to arbitrary graphs, which justifies the following
definition.
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Definition 6.2. Let (V,E) be a (multi-) graph. A graphic matroid (E, I)
has E as its elements and a set of edges is independent whenever it is a forest
(thus, it does not contain simple cycles).

Now that the connection between matroids and graphs is build, we introduce
the concept of rigidity matrices and matroids.

Definition 6.3. Let G = (V,E) be an undirected graph of n labeled ver-
tices and m edges, embedded into Rd, i.e., every vertex vj corresponds to a
vector (x

(j)
1 , . . . , x

(j)
d )T . We define its rigidity matrix with m rows and nd

columns as follows:

• The entry in row e and column (v, i) is zero, if and only if v is not an
endpoint of e.

• If edge e has vertices v and u as endpoints, then the value of the entry is
the difference between the ith coordinates of v and u.

The rigidity matroid is the matroid whose elements are the edges E and where
a set of edges is independent if it corresponds to a set of rows of the rigidity
matrix that is linearly independent.

Example 6.2. Continuing Example 6.1 and embedding G in R2 by

1 7→ v1 =

(
0
0

)
, 2 7→ v2 =

(
2
0

)
, 3 7→ v3 =

(
4
2

)
, 4 7→ v4 =

(
4
−2

)
yields the following rigidity matrix
x1 − x2 y1 − y2 x2 − x1 y2 − y1 0 0 0 0

0 0 x2 − x3 y2 − y3 x3 − x2 y3 − y2 0 0
0 0 x2 − x4 y2 − y4 0 0 x4 − x2 y4 − y2
0 0 0 0 x3 − x4 y3 − y4 x4 − x3 y4 − y3
0 0 0 0 x3 − x4 y3 − y4 x4 − x3 y4 − y3

x1 − x1 x2 − x2 0 0 0 0 0 0


where vi =

(
xi

yi

)
. Inserting the numbers results in the matrix


−2 0 2 0 0 0 0 0
0 0 −2 −2 2 2 0 0
0 0 −2 2 0 0 2 −2
0 0 0 0 0 4 0 −4
0 0 0 0 0 4 0 −4
0 0 0 0 0 0 0 0

 .

The set of edges {a, b, c, d} is a basis for the corresponding rigidity matroid, the
set {d, e} is a circuit and the matroid has rank 4.

The rigidity matrix defined above has similarly defined relatives, which we
will introduce now. Although each of them has its own history and applications
we will not go into further details, but they will be important in our later studies.
For now, denote by p = (p1, . . . , pn) a configuration (i.e. an ordered set) of n
points in Rd.

60



6.2 Introducing Matroids 6 MATROIDS AND RIGIDITY

Definition 6.4. For a configuration p of n points we define their bar-and-joint
rigidity matrix as the following

(
n
d

)
× nd matrix

R(p) =



p1 − p2 p2 − p1 0 0 . . . 0 0 0
p1 − p3 0 p3 − p1 0 . . . 0 0 0

...
...

...
...

...
...

...
p1 − pn 0 0 0 . . . 0 0 pn − p1

0 p2 − p3 p3 − p2 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 pn−1 − pn pn − pn−1


.

Instead of looking at the difference of coordinates of points in Rd we have
the difference of complete points in the respective entries of the matrix. This
matrix is best to read row by row as follows: Consider the set of ordered edges(

[n]

2

)
= {[i, j] | 1 ≤ i < j ≤ n}.

These edges yield the complete graph in n vertices Kn. Then, each of the
edges [i, j] ∈

(
[n]
2

)
has its own row in the matrix and rows can be considered

labeled by edges in Kn. Thus, speaking about vertices as hinges or joints and
forces along edges of a graph, this information can be decoded in this matrix by
interpreting the coefficients of linear dependencies among the rows of R(p) as
forces along the edges and the resultant force on every vertex cancels out (i.e.
we would have a 0-block corresponding to every vertex, just as in the last row
of the rigidity matrix in Example 6.2, which we omit). An important property
of R(p) is the next lemma.

Lemma 6.3 (Theorem 11.1.4 in [Whi96]). If n ≥ d and the points p affinely
span Rd then the rank of R(p) equals

dn−
(
d+ 1

2

)
=

d

2
(2n− d− 1).

For d = 2k this is exactly the number of edges of a k-triangulation of the n-gon.

We will now introduce the notion of rigidity and extend our set of matroids
accordingly.

Definition 6.5. Let E ⊆
(
[n]
2

)
be a subset of edges. We say that E is

• self-stress-free or independent, if the rows of the to E restricted ma-
trix R(p)|E are linearly independent, and

• rigid or spanning, if they have the same rank as R(p).

We call the matroid of rows of R(p) the bar-and-joint matroid of p and
denote it R(p).

Example 6.3. Continuing Example 6.2, the basis {a, b, c, d} is self-stress-free
and rigid, whereas {a, b, c, d, e} is rigid but not self-stress-free.

We will now introduce similar rigidity matrices and their matroids, which
will be used to prove the results of Theorem 6.1 and Theorem 6.2.

61



6.2 Introducing Matroids 6 MATROIDS AND RIGIDITY

Definition 6.6. The hyperconnectivity matroid of the configuration of the
points p = (p1, . . . , pn) in Rd is the matroid of rows of

H(p) =



p2 −p1 0 . . . 0 0
p3 0 −p1 . . . 0 0
...

...
...

...
...

pn 0 0 . . . 0 −p1
0 p3 −p2 . . . 0 0
...

...
...

...
...

0 0 0 . . . pn −pn−1


which we denote by H(p).

Definition 6.7. For points q = (q1, . . . , qn) in R2 and a parameter d ∈ N,
the d-dimennsional cofactor rigidity matroid of the points q is the matroid of
rows of

Cd(q) =



c12 −c12 0 . . . 0 0
c13 0 −c13 . . . 0 0
...

...
...

...
...

c1n 0 0 . . . 0 −c1n
0 c23 −c23 . . . 0 0
...

...
...

...
...

0 0 0 . . . cn−1,n −cn−1,n


which we denote by Cd(q). For qi = (xi, yi), qj = (xj , yj) the vector cij ∈ Rd is
defined as

cij =
(
(xi − xj)

d−1, (yi − yj)(xi − xj)
d−2, . . . , (yi − yj)

d−1
)

and for d = 2 we have C2(q) = R(q).

Remark 6.2. The matroids R(p) and Cd(q) are invariant under affine trans-
formation of the points, and H(p) under linear transformation.

From now on we will often (and already have) assume the points to be lying
in general position, i.e. no d + 1 of the n points lie in an affine hyperplane.
Furthermore, the points lying in general position implies that the rank of the
three matrices R(p), H(p) and Cd(q) and thus the rank of their corresponding
matroids equals dn−

(
d+1
2

)
([RS22b]).

Remark 6.3. Matroids that are in correspondence with a set of vectors are
called linear matroids. To avoid confusion and to avoid going into further detail,
we will omit this term as it is not relevant to us.

We will now explore the details about our interpretation of rigidity and
forces along edges using the dependencies of rows in our rigidity matrices. For
this we need to introduce oriented matroids, although, by following the first
two chapters in [Bjö+00], we will not introduce them axiomatically but in the
context of directed graphs, as it is sufficient for us.
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Definition 6.8. Let G = (V,E) be an undirected graph with simple cycle (only
the first and last vertex are equal) set C ⊆ E. By adding an orientation to the
edges of G we can divide a simple cycle X ∈ C in a set of positive edges X+,
whose orientation is the original one, and in a set of negative edges X−, whose
assigned orientation is reversed. We write X = (X+, X−) and call this a signed
circuit of G. The signed circuits of G form a collection which we denote by

C = {X = (X+, X−) |X is a signed circuit of G}.

The oriented matroid MG is the pair (E, C).

Since we do not give a more detailed definition, the following example should
help understanding and visualizing oriented matroids.

Example 6.4. Consider the complete graph K4 with an orientation of the edges
as indicated by the arrows.

2

3

1

6

4

5

The edges (without their orientation) {1, 2, 5, 6} form a simple cycle in K4.
Then we have the following two signed circuits for this simple cycle, which now
respects the orientation of the edges:

X = (X+ = {2, 6}, X− = {1, 5}) and X = (X+ = {1, 5}, X− = {2, 6}).

Remark 6.4. There are several properties that come with signed circuits. In
fact, by looking at them in a more general context, they form one possible set
of axioms that define oriented matroids. They are the following:

1. ∅ is not a signed circuit.

2. If X is a signed circuit, then so is −X, where − denotes the reversal of
the orientations.

3. No proper subset of a circuit is a circuit.

4. If X0 and X1 are circuits with X1 ̸= −X0 and e ∈ X+
0 ∩X−

1 , then there is a
third circuit X ∈ C with X+ ⊆ (X+

0 ∪X+
1 )\{e} and X− ⊆ (X+

0 ∪X−
1 )\{e}.

The axioms are reminiscent of the axioms of a matroid, although they are for
minimal non-dependend subsets, that is, circuits. For a more detailed discussion
about oriented matroids and the different set of axioms we refer to [Bjö+00].

We give an example for the fourth axiom based on our previous example.

Example 6.5. Look again at the situation of Example 6.4 and consider the
two signed circuits

X0 = ({2, 6}, {1, 5}) and X1 = ({3}, {2, 6}).

The edge e = {2, 6} satisfies the condition in 4, such that the signed circuit
is X = ({3}, {1, 5}).
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Let us now return to our original situation and answer the question of how
rigidity matroids and oriented matroids are connected. The answer lies in our
interpretation of forces along edges.

Definition 6.9. Consider a finite set E = {v1, . . . , vn} of vectors that span a
vector space of dimension d. A minimal linear dependence of these vectors is
the equation

n∑
i=1

λivi = 0, λi ∈ R

such that only a minimal number of the λi’s is not 0. We consider the sets of
indices {i |λi ̸= 0} corresponding to the minimal linear dependencies as the cir-
cuits of the (unoriented) matroid. By considering the signed set X = (X+, X−)
given by

X+ = {i |λi > 0}, X−{i |λi < 0}

for all the minimal dependencies among the vi, we obtain the corresponding
oriented matroid M = (E, C) of the vector configuration E.

Remark 6.5. Note, that the coefficients of a minimal linear dependence are
unique up to a common scalar. Thus, for a given circuit of the matroid, there
are exactly two signed circuits in M, namely the positive and the negative one.
Furthermore, the just defined oriented matroid is indeed an oriented matroid,
satisfying the axioms in Remark 6.4.

Hence, all the rigidity matroids that we defined earlier define oriented ma-
troids in the manner just described.

Example 6.6. Consider the columns of the rigidity matrix in Example 6.2 and
label them by vi. We have for example the minimal linear dependencies

v1 + v3 − v4 + 2v7 = 0 and v5 − v6 − v7 − v8 = 0

and thus the signed circuits X = ({1, 3, 7}, {4}) and X = ({5}, {6, 7, 8}).

Remark 6.6. It is obvious, that for defining an oriented matroid based on a
matrix the choice of using rows or columns as the configuration of vectors is
irrelevant. However, columns and rows do not define the same matroid.

We will now look at the correspondence between the bar-and-joint, hyper-
connectivity and cofactor rigidity matrices. In fact, their rows define the same
oriented matroid by choosing points p and p′ along the moment curve and
points q along the parabola.

Theorem 6.4 ([CS23]). Let t1 < · · · < tn ∈ R be real parameters and define
the configurations of points by

pi = (1, ti, . . . , t
d−1
i )T ∈ Rd, p′i = (ti, t

2
i , . . . , t

d
i )

T ∈ Rd, qi = (ti, t
2
i )

T ∈ R2.

Then, the three matrices H(p), R(p′) and Cd(q) can be obtained from one an-
other by multiplying on the right by a regular matrix and then multiplying rows
by some positive scalars. In particular, the rows of the three matrices define the
same oriented matroid.
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Remark 6.7. For each of the three presented matroids and for every dimen-
sion d, we can find an unique most free matroid that can be obtained by suf-
ficiently generic choices of points. We will call them generic bar-and-joint,
hyperconnectivity and cofactor matroids. In [RS22b] the conjecture was stated,
that k-triangulations of the n-gon are bases in the generic bar-and-joint matroid.
In [RS22a] they proved this statement for the generic hyperconnectivity matroid.
This implies, that at least the individual cones have the right dimension and are
simplicial, which is a necessary condition for realizing the multi-associahedron.

Thus, we can translate k-triangulations as graphs to (graphical) matroids
and, by embedding the graph in the appropriate dimension, to oriented ma-
troids.

6.3 Obstructions for Realizablity
In this section we will use the cofactor rigidity to show that it does not re-
alize the reduced complex △n,k for n ≥ 2k + 6 and k ≥ 3. The authors in
[RS22b] argued that this is the most natural setting, since the combinatorics of
multi-associahedra comes from crossings in the complete graph embedded with
vertices in convex position in the plane.

Before we start with going into the results we adjust our definition of the
cofactor matrix. Consider a vector configuration Q = (Q1, . . . , Qn) with the
3-dimensional vectors Qi = (Xi, Yi, Zi) ∈ R3 \ {0}. These vectors Qi generate
rays of

cone(Q) =

{
n∑

i=1

λiQi |λi ≥ 0

}
.

We usually assume that Q is in general position (every three of its vectors form
a linear basis) and sometimes that it is also in convex position, thus,

• all the rays in cone(Q) are different, and

• the cyclic order of Q1, . . . , Qn equals their order as rays of cone(Q).

Based on this configuration let us redefine the vectors cij in Definition 6.7 in
terms of the vectors Qi as follows. Let

xij = XiZj − ZiXj and yij = YiZj − ZiYj

and define cij = (xd−1
ij , yijx

d−2
ij , . . . , yd−1

ij ). Now define the cofactor matrix Cd(Q)
and its matroid of rows Cd(Q) exactly as in Definition 6.7. Furthermore, we
obtain the original definition of Cd(q) as a special case for Zi = 1 for all i
and qi = (Xi, Yi). We only assume Q to be a configuration in dimension three
for the results on cofactor rigidity.

Proposition 6.5. Let Q = (Q1, . . . , Qn) be a vector configuration. Then,

1. the column-space of Cd(Q), hence the oriented matroid Cd(Q), is invariant
under a linear transformation of Q, and

2. the matroid Cd(Q) is also invariant under rescaling (that is, multiplication
by non-zero scalars) of the vectors Qi. If the scalars are all positive or d
is odd, then the same holds for the oriented matroid.
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Sketch of the proof. For Q ∈ R3 \ {0} consider the set Cd−2
d−1 (Q) of all three-

variate polynomials in R[X,Y, Z] that are homogeneous of degree d − 1 and
such that all their partial derivatives up to order d − 2 vanish at Q. It is easy
to see that for a fixed Qi = (Xi, Yi, Zi) and a vector of variables Qj = (X,Y, Z)
the entries in the vector cij form a basis for Cd−2

d−1 (Qi): First of all they satisfy
the homogeneous and derivative condition (by definition and using the chain
rule for differentiating and then plugging in Qi) and they form a basis since the
homogeneous terms are gradually mixed up to the maximal possible amount.
For a linear transformation L : R3 → R3 and a fixed Qi we can now define the
linear map

L̃i : C
d−2
d−1 (L(Q)) → Cd−2

d−1 (Q), L̃i(f) = f ◦ L.

For the matrix Mi ∈ Rd×d of L̃i in the appropriate bases let M ∈ Rdn×dn be
the block-diagonal matrix consisting of the Mi. We then have

Cd(L(Q)) = Cd(Q)M−1

proving the first point (since the Mi are invertible and so is M). The second
point follows from the fact that multiplying Qi by a scalar λi corresponds to
multiplying the rows of edges using i by the scalar λd−1

i and the matroid of rows
is invariant under this transformation for a positive rescaling factor or for d odd,
since the sign is then of no importance because of the even exponents.

We will now introduce a method to obtain a matroid in n points by deleting
the last point of a matroid in n + 1 points. Before we give the next result, we
need the notion of a contraction of a set of vectors to an independent subset.

Definition 6.10. For a vector configuration V ⊂ RD and an independent sub-
set I ⊂ V we define the contraction of V at I as the image of V \ I under the
quotient linear map RD → RD/lin(I).

Proposition 6.6 (Coning Theorem). Let Q = (Q1, . . . , Qn+1) be a vector con-
figuration in general position in R3. Then, the matroid Cd(Q1, . . . , Qn) is the
contraction of the matroid Cd+1(Q) at

(
[n]
2

)
. If the vectors are in convex position,

the same is true for the oriented matroid.

Before we will give the idea of the proof we want to discuss an interesting im-
plication of this proposition, justifying its name. For this we need the following
definition.

Definition 6.11. Let G = ([n], E) be a graph with vertex set [n]. Then the
cone G ∗ {n+1} over G is defined as the graph with vertex set [n+1] and with
edges

E ∗ {n+ 1} = E ∪ {[i, n+ 1] | i ∈ [n]}.

Example 6.7. The coning of the graph G visualized in black and its coning,
where the new edges and vertex are marked in blue.
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Corollary 6.7. A graph G with vertex set [n] is d-rigid when realized on the
configuration (Q1, . . . , Qn) if and only if its cone G ∗ {n + 1} is (d + 1)-rigid
on (Q1, . . . , Qn, Qn+1).

Thus, this corollary gives us control about when rigidity translates between
addition or omission of vertices of graphs, which we will need in the proof of
the next theorem.

Sketch of the proof for the Coning theorem. By assuming Qn+1 = (0, 1, 0)T and
using the assumption that the configuration is in general position, the rest of the
coordinates can be restricted up to certain (in-) equalities for the Xi (and Zi).
Furthermore, the vectors in the matrix ci,n+1 have a very easy form, such that
the contraction of the elements i, n+ 1 in the matroid Cd+1(Q) can be performed
in the matrix Cd+1(Q) through omission of the last columns corresponding
to Qn+1 and the rows of the form {i, n+ 1} with their corresponding columns.
The resulting matrix coincides, up to row-dependent multiplication with scalars,
with Cd(Q1, . . . , Qn). That these scalars do not affect the matroid is implied
by the assumptions on the coordinates.

The result of the Coning Theorem can be extended by looking at the deletion
or addition of an intermediate Qi. This is proved by relabelling the points
cyclically such that the point i becomes n+ 1, then using the Coning Theorem
and finally relabelling the points back to their original labels. Remark, that
relabelling does change the sign of rows in the matrix. That this is no problem
is explained in more details in [RS22b].

Proposition 6.8. Let Q = (Q1, . . . , Qn+1) be a configuration in general po-
sition in R3. Then the oriented matroid Cd(Q1, . . . , Qi−1, Qi+1, . . . , Qn+1) is
obtained by contracting the elements {i, j} with j ∈ [n+1]\{i}, and reorienting
the elements {j, k} with 1 ≤ j < i < k ≤ n+ 1.

We will now begin to consider k-triangulations in the context of oriented
matroids. For this, let q be a configuration of points in the plane. First, we will
show that the cofactor rigidity does not always realize △n,k by considering the
3-triangulation of the 9-gon K9 \ {[1, 6], [3, 7], [4, 9]}, which is dependent in C6
under certain circumstances.

Theorem 6.9. Consider the graph G = K6 \ {[2, 5], [3, 6]} embedded with six
points q in general position. Then, G is spanning in C3, hence it contains
a unique dependence and this dependence may not vanish at any edge other
than [1, 4].

Proof. Let G′ = G \ {[i, j]} for an edge [i, j] different from [1, 4] and assume
without loss of generality that i /∈ {1, 4}. Then the graph G′ \ i is the complete
graph K5 without one edge. For an example look at Table 6.1. In [CJT22]
it was proven that K5 is a circuit in C3 for any choice of points in general
position, thus, G′ \ i is independent by definition of a circuit and thus a basis.
By Corollary 6.7 we have that G′ is a basis too. But then, by definition of a
basis, the graph G is spanning and contains a circuit which does not vanish at
the edge [i, j].

Remark 6.8. Whether or not the dependence vanishes at [1, 4] is dependent
on the choice of points q. In Section 3.2 of [RS22b] is a more detailed discussion
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about this. The main result is this: The graph K6 \ {[1, 4], [2, 5], [3, 6]} is a
circuit, if the configuration q = (q1, . . . , q6) lies in Desargues position, i.e., if the
points lying on the parabola satisfy that the direct lines between q1 and q4, q2
and q5 and between q3 and q6 are concurrent. For example, the configuration
displayed below is in Desargues position.

−4 −2 2 4

10

20

q1

q2
q3 q4

q5

q6

x

x2

We can now prove that there are positions where the rows of the cofactor
matrix do not realize △9,3 as a basis collection.

1

23

4

5 6

1

3

4

5 6

Table 6.1: The graph G and the graph obtained by removing the vertex 2. This
graph is the complete graph on 5 vertices without the edge [3, 6].

Theorem 6.10. The graph K9\{[1, 6], [3, 7], [4, 9]} is a 3-triangulation of the 9-
gon, but it is dependent in the rigidity matroid C6(q1, . . . , q9) if the lines through
the points [q1, q6], [q3, q7] and [q4, q9] are concurrent.

Proof. We start with the graph K6 \ {[1, 6], [3, 7], [4, 9]} with vertices labelled
{1, 3, 4, 6, 7, 9}. Then its coning at the three vertices 2, 5 and 8 is the graph
K9 \ {[1, 6], [3, 7], [4, 9]}. This is visualized below, where the first graph is in
black and the coning is marked in red.

1

2

34

5

6

7 8

9

68



6.3 Obstructions for Realizablity 6 MATROIDS AND RIGIDITY

Since the graph in black is the graph considered in Theorem 6.9 without the
edge [1, 4], the statements follows from Proposition 6.8, Theorem 6.9 and Re-
mark 6.8.

In the end of this subsection we will show that cofactor rigidity does not
only fail to realize the multi-associahedron in some cases. The main result is
the next theorem.

Theorem 6.11. If k ≥ 3 and n ≥ 2k + 6 then no choice of points q in R2

in convex position makes C2k(q) realize the multi-associahedron △n,k as a fan.
The same happens for bar-and-joint rigidity with any choice of points along the
moment curve.

The plan is as follows: We first assume n = 2k + 3 and characterize when
exactly cofactor rigidity C2k does realize △n,k as a complete fan. Afterwards,
we can use this characterization and restrict the configuration of 2k + 6 points
to those of 2k+ 3 points to force a contradiction. The details of the proofs will
not be discussed here, but we will talk about their concepts.

Definition 6.12. We call a k-triangulation of the (2k + 3)-gon octahedral, if
its three missing edges have six distinct endpoints.

The triangulation in Theorem 6.10 is octahedral.

Remark 6.9. A k-relevant edge of the (2k + 3)-gon leaves k vertices on one
side and k+1 on the other. This also happens if we consider the corresponding
points of a convex configuration q. We call the half-plane on the side with k+1
points big half-plane.

Theorem 6.12. Let q = (q1, . . . , q2k+3) be a configuration in convex position
in R2. The following are equivalent:

1. C2k(q) realizes △2k+3,k as a complete fan.

2. For every octahedral k-triangulation T , the big half-planes defined by the
three edges not in T have non-empty intersection.

3. The big half-planes of all relevant edges have non-empty intersection.

The proof is based on similar considerations about the length of paths that
are created by removing three edges from the complete graph K2k+3 just like in
the proof of Corollary 3.16, in addition with some topological properties which
we did not discuss here. The theorem has a very interesting and nice implication.

Corollary 6.13. For every k there are configurations q such that C2k(q) real-
izes △2k+3,k as a fan. For example the vertices of a regular (2k + 3)-gon.
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Proof. Since the center of any (2k+3)-gon lies in the interior of the intersection
of all big half-planes this is true by 3.

We are now in the position to discuss the proof of Theorem 6.11 by using our
characterization of under which circumstances △2k+3,k is realized by C2k(q) to
produce a contradiction.

Sketch of the proof of Theorem 6.11. Let q = (q1, . . . , qn) be a configuration
in convex position. We will only show the case n = 2k + 6 since all cases
greater follow from Lemma 2.3 in [RS22b], which states that the reduced multi-
associahedra have the property of being monotone, that is, complexes of lower
values for n and k appear as links of certain subsets of a complex of higher
dimension. Thus, showing the contradiction for the smallest possible case yields
a contradiction for the higher cases.
Now let I1 = [n] \ {4, k + 5, k + 9} and I2 = [n] \ {2, 6, k + 7} such that q|I1
and q|I2 are configurations with 2k + 3 points. Here is an example for k = 3:
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Now the Lemma 3.13 in [RS22b] yields a contradiction, since for q|I1 to be
able to realize △2k+3,k the points (q1, q3, q5, qk+4, qk+6, qk+8) (the endpoints of
the removed edges) need to have another orientation than for q|I2 in order to
realize △2k+3,k. Thus, one of the two does not realize △2k+3,k and by the same
Lemma 2.3 in [RS22b] we conclude that q does not realize △2k+6,k.

6.4 Positive and Experimental Results
In this last subsection we will present the positive results on the realizability
of multi-associahedra via rigidity theory and the experimantal results of the
authors in [RS22b], which produced three new realizations as polytopes and
some non-polyotpal fan realizations.

Corollary 6.14. For n = 2k + 2, any choice of points q1, . . . , q2k+2 ∈ R2 in
convex position realizes △2k+2,k as a polytopal fan.
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Sketch of the proof. The proof is based on the fact that all k-triangulations
are K2k+2 without a diameter. Furthermore, since K2k+2 is a circuit, all the
k-triangulations are bases. The rest follows from considerations of assigned
signs, which yields the necessary topological property for any configuration to
realize △2k+2,k as a fan. But since we know that these multi-associahedra are
realizable as the k-simplex, this fan must be polytopal.

The next result can be obtained by using Theorem 6.12.

Corollary 6.15. For k = 2 and n = 7, any choice of q1, . . . , q7 ∈ R2 in convex
position realizes △7,2 as a fan.

Definition 6.13. The matrix H(p1, . . . , pn) in the statement of Theorem 6.4
is called the polynomial d-rigidity matrix with parameters t1, . . . , tn. We
denote it by Pd(t1, . . . , tn) and its corresponding matroid by Pd(t1, . . . , tn).

The first computational experiments were done using equispaced parameters.
Since all computations were done by computer, we omit further details on the
proofs.

Lemma 6.16. Let t = {1, 2, . . . , n} be equispaced parameters.

1. P4(t) realizes △n,2 as a complete fan for all n ≤ 13.

2. P4(t) realizes △n,2 as the normal fan of a polytope if and only if n ≤ 9.

3. The positions t = (−2, 1, 2, 3, 4, 5, 6, 7, 9, 20) for P4(t) realize △10,2 as the
normal fan of a polytope.

Remark 6.10. By Remark 6.2 and the fact that an affine transformation in
the space of parameters produces a linear transformation in the rows of P2k(t),
we can take without loss of generality t = (1, 2, . . . , n) as a representative for
equispaced parameters.

As a final result the authors provide one more polytopal realization and three
new fans.

Lemma 6.17. For the same positions t as in the third point of Lemma 6.16, the
matrix P6(t) realizes △10,3 as the normal fan of a polytope. Furthermore, equis-
paced positions along the circle realize △n,k as a fan for the pairs (11, 3), (12, 4)
and (14, 3).

6.5 Realizing △8,2

At the end of this section we will consider one more proof of polytopality, which
was already mentioned in the introduction. Five years after Conjecture 3.12 was
formulated by Jonsson, in 2009 Bokowski and Pilaud found a polytopal realiza-
tion for the 2-triangulations of the 8-gon and described its space of symmetric
realizations completely. They did this by realizing △8,2 as a symmetric oriented
matroid polytope and then as a symmetric polytope under the dihedral group.
Remark, that the dihedral group Dn is the symmetry group of the n-gon and
thus acts naturally on △n,k. By following the article [BP09] we consider their
approach.
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Definition 6.14. The space of symmetric realizations of △8,2 consists of
all polytopes P whose boundary complex ∂(P ) is isomorphic to △8,2, and such
that the natural action of the dihedral group D8 on △8,2 defines an action on P
by isometry.

For the next definition, let ∆ be a simplicial complex realized by the poly-
tope P via the isomorphism ϕ : ∆ → ∂(P ) as in Definition 3.14, and let G be a
group that acts on ∆ by

G×∆ → ∆, (g,E) 7→ gE.

This induces an action of G on ∂(P ) by

G× ∂(P ) → ∂(P ), (g, F ) 7→ gF = ϕ(gϕ−1(F )).

As mentioned at the beginning of this subsection the group G will be the dihedral
group D8.

Definition 6.15. We say that P is a symmetric realization under G, if its
action is symmetric, i.e., if for any g ∈ G the application

∂(P ) → ∂(P ), F 7→ gF

is an isometry of P .

Let us now talk about symmetric oriented matroids. For this, let P ⊂ Rd

be a symmetric realization under G of ∆ and let V be its set of vertices. For
any v ∈ V denote by v⃗ = (v, 1). Furthermore, for any v0, . . . , vd ∈ V we denote
by σ(vo, . . . , vd) the orientation of the simplex spanned by v0, . . . , vd, i.e., the
sign of the determinant of (v⃗i)0≤i≤d.

Definition 6.16. The application σ : V d+1 → {−1, 0, 1} is called the sym-
metric oriented matroid associated to P .

This map satisfies four properties, which we will not mention here but are
important for the computations in the proofs of the results. Before we continue,
we want to briefly elaborate the connection of σ with oriented matroids.

Remark 6.11. Consider the matroid defined through minimal linear depen-
dencies of the vectors v⃗i. If C = {v⃗0, . . . , v⃗d+1} is a circuit and {v⃗0, . . . , v⃗d} is a
basis, we can sign C with positive elements

C+ = {v⃗i | (−1)iσ(v⃗0, . . . , v⃗i−1, v⃗i+1 . . . , v⃗d+1) = 1}

and negative elements in the complement. Thus, the map σ gives rise to oriented
bases of an oriented matroid. In general, these maps are called chirotopes and
they can be used to define oriented matroids. For more details we refer to
Chapter 3.5 of [Bjö+00].

Now, label the 2-relevant edges on the octagon with letters, where the capital
letters mark the longest edges, thus, the diagonals:

a = [1, 4], b = [2, 5], . . . , e = [5, 8], f = [1, 6], . . . , I = [1, 5], . . . , L = [4, 8].

To determine the space of symmetric realizations the authors continued in two
steps.
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1. Enumerate all possible symmetric oriented matroids realizing △8,2.

2. Use this information to study the symmetric polytopes realizing △8,2.

For the first step it was sufficient to look for maps σ : {a, . . . , L}7 → {−1, 0, 1}
satisfying the four properties. The authors enumerated all possibilities by com-
puter.

Proposition 6.18. There are exactly 15 symmetric oriented matroids realiz-
ing △8,2.

For the second step, assume that P ⊂ R6 is a polytope realizing △8,2 and
which is symmetric under the action of D8. Let a, . . . , L denote its vertices
corresponding to the 2-relevant diagonals and define a⃗, . . . , L⃗ as before. At last,
consider the matrix M = (⃗a . . . L⃗), which can be transformed to the matrix

M̃ = N−1M =

(
I3 T 03×4

04×3 B I4

)
.

This matrix can be determined up to the submatrices T (which can be de-
termined uniquely) and B (which can be determined up to two values). The
matrix N is invertibel by a previous computation and its entries satisfy certain
inequalities which describe the realization space completely.

Proposition 6.19. The space of symmetric realizations of △8,2 is four dimen-
sional.

A concrete realization of △8,2 in R7 can be obtained by taking the convex
hull of the column vectors of N−1M .
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7 History and Summary

1992

2005

2009

2014

2022

2003

2008

2011

2016

The first appearance of multi-
triangulations was in the work of
Capoyleas and Pach in 1992 ([CP92]).
In 2003 Knutson and Miller intro-
duced subword complexes for arbitrary
Coxeter groups. They showed that
they are shellable spheres or balls and
conjectured the polytopality of spher-
ical complexes ([KM03]). Shortly af-
ter, in 2005, Jonsson proved that the
reduced multi-associahedra △n,k are
shellable simplicial spheres of dimen-
sion k(n − 2k − 1) − 1 and stated the
Conjecture 3.12 ([Jon05]). Pilaud and
Santos examined k-triangulations by
using k-stars in 2008 and proved the
trivial cases of polytopality of △n,k

for n ≤ 2k + 3 ([PS08]), although
they might have been mentioned in
earlier works. The first non-trivial
case was proved by Bokowski and
Pilaud in 2009. They determined
the space of symmetric realizations
of △8,2 completely ([BP09]). Stump
made the connection between subword
complexes and multi-triangulations in
2011 ([Stu11]), such that the Con-
jecture 3.12 is a positive answer in
type A to the conjecture of Knutson
and Miller. In 2014, Bergeron, Ce-
ballos and Labbé gave fan realizations
for n ≤ 2k+4 and n ≤ 11 for k = 3 via
Gale duality. Manneville realized △n,2

as a fan for n ≤ 13 in his article in
2016, which we did not discuss here
([Man16]). Finally, Ruiz and Santos
gave the three new cases of polytopal-
ity △9,2,△10,2 and △10,3 and a fan
realization for △13,4 using rigidity in
2022 ([RS22b]). In the same year they
showed that k-triangulations are bases
in the generic hyperconnectivity ma-
troid of dimension 2k in the article
Multitriangulations and tropical Pfaf-
fians ([RS22a]).
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The timeline should give a good overview about the most important state-
ments in this thesis concerning the fundamental conjecture. Although we do
not claim the completeness of all results up to today, in 2024, we summarize the
positive complementary results discussed in this thesis in Table 7.1.

Multi-Associahedron Realization

△n,1 Associahedron

△2k+1,k Point

△2k+2,k k-Simplex

△2k+3,k C2k(2k + 3)

△8,2 Symmetric polytope in R7

△9,2 Points on the moment curve via rigidity in R4

△10,2 Points on the moment curve via rigidity in R4

△10,3 Points on the moment curve via rigidity in R4

△n,k for n ≤ 2k + 4 Complete simplicial fan via Gale duality

△11,3 Fan realization for equispaced points

△14,3 Fan realization for equispaced points

Table 7.1: The summary of the results in this thesis.

Next to the positive results we should also mention the negative results. In
both the articles [BCL14] and [RS22b] we have seen obstructions for the realiz-
ability of multi-associahedra using the respective techniques. The use of Coxeter
signature matrices does not work for type An, where n ≥ 4, and to our knowl-
edge there is no general Coxeter signature matrix which solves this problem yet.
Even then, the polytopality of the corresponding multi-associahedra would still
have to be proven. Furthermore, no choice of points in convex position in the
plane makes cofactor or bar-and-joint rigidity realize △n,k as a fan if k ≥ 3
and n ≥ 2k + 6. A point that also requires consideration is that until now,
there is no proof of a general case except the trivial ones in Subsection 3.5 and
that the new singular cases of polytopality have been proven by computer. It
remains to be seen, if future approaches using presented techniques ore other
methods will be able to prove Conjecture 3.12, or maybe show that it is not
true in its generality.
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