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Abstract. We present classes of models in which particles are dropped on an
arbitrary fixed finite connected graph, obeying adhesion rules with screening.
We prove that there is an invariant distribution for the resulting height profile,
and Gaussian concentration for functions depending on the paths of the profiles.
As a corollary we obtain a law of large numbers for the maximum height. This
describes the asymptotic speed with which the maximal height increases.

The results incorporate the case of independent particle droppings but ex-
tend to droppings according to a driving Markov chain, and to droppings with
possible deposition below the top layer up to a fixed finite depth, obeying a
non-nullness condition for the screening rule. The proof is based on an analysis
of the Markov chain on height-profiles using coupling methods. We construct a
finite communicating set of configurations of profiles to which the chain keeps
returning.
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1. Introduction

Stochastic models for particle deposition have enjoyed much interest over the
years, motivated by applications ranging from car parking, physical chemistry
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to frequency assignment [2, 5, 6, 10, 17, 20, 23, 24]. In a series of papers particle
deposition models with a number of different deposition rules were considered
and exact solutions for models in solvable geometries were given [1, 8, 11, 12,
14, 19, 22]. Natural probabilistic questions to be studied in cases where no
closed solutions are available are limit laws for such processes in space [18, 21]
or time. In particular one would like to have a law of large numbers for the
maximum of the height variables and the behavior of the active or top region.
Moreover there is a branch in probability which is interested in the investigation
in concentration of measure properties for Markov chains and multidimensional
stochastic processes [3,4,15,16], and we also want to look at deposition models
in this spirit.

In the present paper we consider models of discrete-time Markov chains
describing the growth of adsorbed particles on a substrate. In our main example
particles are dropped on the vertices of a finite connected graph V according to
a discrete time Markov chain and obeying screening rules of adsorption. The
particles pile up to integer heights according to an exclusion interaction between
sites which are connected in V . Our last example softens the screening rule to
allow adsorption below the top layer.

We prove a strong law of large numbers for the maximal height and show
convergence of the height profile to a stationary state. As the number of de-
posited particles grows linearly in time when we keep the graph (and hence the
volume) fixed, we will look at the heights differences relative to the maximum.
This map from height configurations to relative heights is just the same as the
map from interface configurations to gradient configurations considered in mod-
els of interfaces in a Gibbs state [9, 13, 25] when issues of stability of interfaces
in the large volume limit are considered.

Now, in our situation we show the convergence of the height-profile as seen
from the maximum to an invariant distribution using a coupling method. Our
Markov chain has an unbounded state space, but the coupling turns out to be
very good, namely we are able to show that the distribution of the coupling time
can be controlled uniformly in the initial configurations. The physical reason
for this is the following: however rough a profile is, there is always a chain of
particle droppings which will make it flat and thereby erase the memory on
the past. An essential ingredient for this to turn into a proof in the context of
the general models we consider, is the construction of a finite set of profiles the
chain communicates to in a time s which is uniform in any starting configuration.
The construction of this set is slightly subtle in the case of a non-i.i.d. chain of
particle droppings where it is based on irreducibility and laziness of the driving
chain. In particular, from this coupling the law of large numbers for the maximal
height follows as a corollary from concentration results for path observables.
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2. The models and the main results

2.1. Independent particle droppings

Let G = (V, E) be a finite connected graph. Write i ∼ j if {i, j} ∈ E, that
is i, j are adjacent. Consider the Markov chain on the state space Ω := NV

0 of
height configurations h = (hj)j∈V obtained by choosing a site i ∈ V according
to a probability p(i) > 0, where p ∈ P(V ) is fixed, and adding a particle at i at
height max{hj ,dist (j, i) ≤ 1} + 1 where hj is the maximum height at which a
particle is already present at site j.

The formal definition is as follows. Denote by Ti : Ω → Ω the operator which
assigns to a configuration h the configuration Tih which is the configuration
obtained by adding a particle at i, i.e.

(Tih)j =

{
max{hk : dist (k, i) ≤ 1}+ 1, if j = i,

hj else.
(2.1)

Look at the discrete time Markov chain with transition matrix
(M(h, h′))h,h′∈Ω given by

M(h, h′) =

{
p(i), if h′ = Tih,

0 else.
(2.2)

We denote the value of the configuration at time t by h(t) = (hi(t))i∈V .
The model has the following property: If h′ ∈ Ω is such that h′j = hj + c for

all j ∈ V we have that
(Tih

′)j = (Tih)j + c

and hence we can define the action of Ti also on equivalence classes of height-
profiles w.r.t. constant shifts c. Let us extend the local state space to Z and allow
for arbitrary c ∈ Z. We may choose then a representative of these equivalence
classes in such a way that the height profile is zero at the maximum and negative
elsewhere. That is, we introduce the variable xi = hi −maxj∈V hj . This is the
height profile seen from the maximum.

According to the exclusion rules the process on x = (xi)i∈V is a Markov chain
again, now with state space S := (−N0)V and transition matrix M(x, x′) =
M(h, h′) when x is the equivalence class of h and x′ is the equivalence class
of h′. We will show convergence to an invariant distribution of this Markov
chain. In order to do this we need to prove recurrence, and therefore we need
to make use of the exclusion rules. To compare, consider the process in which
particles are added without exclusion. Then the distribution of the heights
becomes multinomial and the corresponding x-distribution won’t stabilize but
have fluctuations of the order of the square-root of the discrete time n.
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2.2. Markov chain particle droppings

Now the probability where to drop the next particle depends on where the
last time a particle has fallen.

Let v(t) denote a Markov chain with state space V and transition matrix

Av,v′ = P
(
v(t + 1) = v′ | v(t) = v

)
.

We call this the driving Markov chain.
We assume that A = (A(v, v′))v,v′∈V is irreducible (meaning that for all

v 6= v′ there exists a time s(v, v′) such that As(v,v′)(v, v′) > 0) and that it is
lazy (meaning that A(v, v) > 0 for all v ∈ V ).

This time look at the Markov chain (h(t), v(t)) with transition matrix
(
M(h, v; h′, v′)

)
h,v;h′,v′∈Ω×V

given by

M(h, v; h′, v′) =

{
A(v, v′), if h′ = Tv′h,

0 else.
(2.3)

We denote the value of the configuration at time t by (h(t), v(t)).

2.3. Main results

Our main goal will be the following theorem which provides a concentration
estimate for a specific important example of an observable. Generalizations to
other observables will become clear from the proof.

Theorem 2.1. Assume that we are given either a model of independent particle
droppings or, more generally Markov chain particle droppings on a connected
graph with more than two vertices. Then the following holds.

1. x(t) converges in law to an invariant distribution, independently of the
starting configuration.

2. Define mV (t) = maxj∈V hj(t) to be the total height of the particle profile.
Then there exists a positive constant c, depending on the model, such that

P
(|mV (t)− EmV (t)| > y

) ≤ 2 exp
(
− cy2

2t

)
(2.4)

where the bounds hold either if we take for P = Pπ the chain in equilib-
rium, or the chain started in any initial configuration.

3. There exists a constant C such that

sup
t

∣∣EπmV (t)− E0mV (t)
∣∣ ≤ C (2.5)
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where Eπ denotes the mean in equilibrium and E0 is the chain started in
the flat configuration hj = 0 for all j ∈ V .

From the theorem follows the SLLN for the variable mV (t)/t as t tends to
infinity and also the independence of the initial configuration.

3. Independent particle droppings — the proof

We will now give a self-contained presentation of the proof for the first
example of independent particle droppings.

3.1. Construction of communicating set — convergence to invariant
distribution

For each vertex i ∈ V we pick an i-dependent ordering a(i) =(a(i)
1 , . . . , a

(i)
|V |−1)

of the sites in the set V \{i}, starting with a
(i)
1 to be a nearest neighbor of i and

the additional property that d
(
a
(i)
k , {a(i)

1 , . . . , a
(i)
k−1}

)
= 1 where d is the graph

distance (see Figure 1). This means that a(i) describes a way how the set V can
be grown starting from i by adding nearest neighbors at each step. We call a(i)

the i-ordering.
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Figure 1. An example of an i-ordering.

For the given site i ∈ V let us write S(i) = {y ∈ S : yi = 0} (meaning that
the maximum is realized at i). We put particles according to the corresponding
i-ordering a(i) = (a(i)

1 , . . . , a
(i)
|V |−1) and look at the resulting configuration

T
a
(i)
|V |−1

. . . T
a
(i)
1

y =: x(i). (3.1)
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We note that the profile on the r.h.s. is independent of the choice of y ∈ S(i)

and stays bounded with minj∈V x
(i)
j ≥ −(|V | − 1) (see Figure 2).
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Figure 2. In the picture we consider a graph with 4 sites and edges
{{1, 2}, {2, 3}, {3, 4}}. Once the i= 2-ordering is given, starting from different
height profiles (black in the picture) having the maximum at the same vertex,
using (3.1) we end up with the same configuration in S1.

Let us put together these configurations and consider the finite subset

S1 = {x(i) : i ∈ |V |} (3.2)

denoting the complement by S2 = S \ S1.
We note the following lemma.

Lemma 3.1. There exists an α such that

inf
x∈S

M |V |−1(x, S1) ≥ α > 0 (3.3)

where M |V |−1 is given by the matrix product.

This is clear since any addition of a particle has a positive probability
and finitely many of those have to be considered, leading to the formula α =
mini∈V

∏|V |−1
j=1 p

a
(i)
j

. Next we have the following lemma.

Lemma 3.2. The equation πM = π for the invariant distribution has a solution
π ∈ P(S).

Proof. We can say that there is exponential killing on the infinite part of
the space S2 and the Markov chain comes back safely to S1. This makes it
“effectively finite state”. Now, to see this, let us introduce the four block-
matrices Mij = (M(x, y))x∈Si,y∈Sj , introduce the two vectors πi = (π(x))x∈Si
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for π ∈ P(S) and rewrite the equation πM = π for the invariant distribution π
in component form

(π1, π2)
(

M11 M12

M21 M22

)
= (π1, π2). (3.4)

This is equivalent to the form

π2 = π1M12(12 −M22)−1, (3.5)

π1(M12(12 −M22)−1M21 + M11) = π1

provided that (12 −M22)−1 =
∑∞

l=0 M l
22 exists. But to see the latter use the

norm ‖M22‖ = supx∈S2

∑
y∈S2

M22(x, y) and note that ‖M |V |−1
22 ‖ ≤ 1 − α,

by (3.3). Hence (M12(12 −M22)−1M21 + M11) is a well-defined positive matrix
on the finite space S1. It is even a stochastic matrix. In fact,

∑

y∈S1

(
M12(12 −M22)−1M21 + M11

)
(x, y)

=
∑

y∈S1

(
M12

∞∑

l=0

M l
22M21 + M11

)
(x, y) = Px(τS1 < ∞)

= 1− lim
R→∞

Px(τS1 > R) = 1− lim
R→∞

(1− α)R = 1 (3.6)

where
τS1 = inf

{
t ∈ N | x(t) ∈ S1

}
.

So the matrix has a Perron – Frobenius eigenvector to the eigenvalue 1, which
we call π∗1 (up to a positive multiple). This is (up to this multiple) the invariant
distribution restricted to S1. From this we get the invariant distribution π∗2
on the infinite part of the system by looking at the first equation of (3.5) and
normalizing. 2

Remark. If S1 = {x} is a single point then define the return time τx = inf{t ≥ 1:
W (t) = x} where W (t) is a random walk started at x. For a state y 6= x we
have that the non-normalized distribution at y is given by the expected num-
ber of visits from x to y before returning to y, i.e. [M12(12 − M22)−1]x,y =
Ex

∑∞
t=1 1{W (t) = y} 1{t < τx}. Normalization of the distribution then im-

plies that 1 = π(x) + π(x)(Exτx − 1) and so π(x) = 1/Exτx and π(y) =
(1/Exτx)Ex

∑∞
t=1 1{W (t) = y} 1{t < τx} for y 6= x.

Lemma 3.3. The Markov chain is uniformly communicating to S1 by which
we mean that there exists an α′ > 0 and a time s = 3(|V | − 1), called the
communication time, such that

inf
x∈S,x′∈S1

Ms(x, x′) ≥ α′ > 0. (3.7)
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Proof. The proof follows by noting that we can first: get into S1, second: go
from there into a state which has a prescribed maximum (possibly outside S1),
and third: go from that state into the corresponding state in S1. In formulas
it reads like this: Consider a starting configuration y ∈ S(i). Then, with the
above construction we have

T
a
(i)
|V |−1

. . . T
a
(i)
1

y = x(i) ∈ S1. (3.8)

We note that (Tj)|V |−1x(i) ∈ S(j) since sufficiently many particle droppings at j
are shifting the maximum to the point j. From that we get again by the first
step that

x(j) = T
a
(j)
|V |−1

. . . T
a
(j)
1

(Tj)|V |−1x(i) = T
a
(j)
|V |−1

. . . T
a
(j)
1

(Tj)|V |−1T
a
(i)
|V |−1

. . . T
a
(i)
1

y.

(3.9)

The proof is complete since j ∈ V was arbitrary. 2

Remark. From the above definition of a communication set S1 follows trivially
that any subset is also a communication set since the inf has to be taken over
fewer terms. While from a theoretical point of view it would be therefore suf-
ficient to consider a single point x0 ∈ S1 in our example for our chain, returns
are easiest understood when we talk about our definition of S1. The remark
will be clear after dealing with particle droppings according to a Markov chain
(see Figure 4 and Figure 5).

We have from this the convergence to the invariant distribution in total
variation:

Lemma 3.4.
‖Ms(x, ·)− π‖TV ≤ 1− (α′)2|V |. (3.10)

Proof. Call Xt the chain starting at x and Yt the one starting with initial distri-
bution π. Moreover call τ the random time of their first meeting in the product
coupling. After they meet for the first time they stay together. The coupling
inequality gives:

||Ms(x, ·)− π||TV ≤ Pc(τ > s)

≤ 1−
∑

y∈S

Px(Xs = y)Pπ(Ys = y) = 1−
∑

y∈S

Px(Xs = y)π(y)

≤ 1−
∑

y∈S1

Px(Xs = y)︸ ︷︷ ︸
≥α′

π1(y)︸ ︷︷ ︸
≥α′

≤ 1− (α′)2|V |. (3.11)

2

From the lemma follows the convergence by standard arguments, extending
the lemma to ‖Msk(x, ·)− π‖TV ≤ (1− (α′)2|V |)k for integer k and using that
the total variation distance is decreasing in the time t.
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3.2. Concentration properties of path functionals

Define, for t′ > t, the coupling matrix

Dt,t′ := sup
x,x′

Pc

(
X(t′) 6= X ′(t′) | X(t) = x,X ′(t) = x′

)
(3.12)

where Pc is the product coupling mentioned above. We have for times which
differ by the communication time s that

Dt,t+s ≤ 1− (α′)2|V | (3.13)

and this implies for general times

Dt,t′ ≤ (1− (α′)2|V |)b(t′−t)/sc. (3.14)

Lemma 3.5. Let g : Sn → R be a bounded measurable function. Then we
have a Gaussian concentration bound of the form

P
(|g − Eg| > y

) ≤ 2 exp
(
− 2y2

‖Dδg‖2
)

(3.15)

where

(δg)u = δu(g) = max
xu,x′u

g(x1, . . . , xu, . . .)− g(x1, . . . , x
′
u, . . .) (3.16)

is the variation at the time u.

Proof. In the following we give only the key steps in the proof of Lemma (3.5).
We refer to [3] for details where the same proof in the context of models with
finite state space was given. This is not a problem here since our observable
is bounded, and, most importantly the coupling matrix D satisfies the nice
bounds given above, in spite of our state space being unbounded, due to uniform
coupling speed.

Using the standard decomposition into Martingale differences and the Mar-
kov property, we can write

g − Eg =
n∑

i=1

Wi(x1, . . . , xi) (3.17)

with

Wi(x1, . . . , xi) = E
(
g | x1, . . . , xi

)− E(
g | x1, . . . , xi−1

)

≤ sup
x̄i∈S

∫
P
(
dx̃i+1, . . . , dx̃n | x̄i

)
g(x1, . . . , x̄i, x̃i+1, . . . , x̃n)

− inf
ȳi∈S

∫
P
(
dx̃i+1, . . . , dx̃n | ȳi

)
g(x1, . . . , ȳi, x̃i+1, . . . , x̃n)

=: Xi(x)− Yi(x). (3.18)
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Notice that the inf and sup appearing in the previous formula are well defined
since g is bounded. Then, we use a simple telescoping identity to rewrite g as a
sum of discrete gradients

g(x1, . . . , x̄i, x̃
(1)
i+1, . . . , x̃

(1)
n )− g(x1, . . . , ȳi, x̃

(2)
i+1, . . . , x̃

(2)
n ) =

n−i∑

j=0

∇12
i,i+jg (3.19)

where ∇12
i,i+jg is the difference between g’s evaluated at two points that are the

same except for the (i + j)th place. We define:

(δg)u = δu(g) = max
xu,x′u

g(x1, . . . , xu, . . .)− g(x1, . . . , x
′
u, . . .), (3.20)

and by construction we have

∇12
i,i+jg ≤ δi+j(g) 1

{
x̃

(1)
i+j 6= x̃

(2)
i+j

}
. (3.21)

Then using (3.18) and (3.21), it follows that

Xi(x)− Yi(x) = sup
x̄i,ȳi∈S

{ ∫
P
(
dx̃i+1, . . . , dx̃n|x̄i

)
g(x1, . . . , x̄i, x̃i+1, . . . , x̃n)

× P(
dx̃i+1, . . . , dx̃n|ȳi

)
g(x1, . . . , ȳi, x̃i+1, . . . , x̃n)

}

= sup
x̄i,ȳi∈S

{ ∫
Pc

(
dx̃

(1)
≥i+1, dx̃

(2)
≥i+1 | x̃(1)

i = x̄i, x̃
(2)
i = ȳi

)

× [
g
(
x1, . . . , x̄i, x̃

(1)
i+1, . . . , x̃

(1)
n

)− g
(
x1, . . . , x̄i, x̃

(2)
i+1, . . . , x̃

(2)
n

)]}

≤ sup
x̄i,ȳi∈S

n−i∑

j=0

δi+j(g)Pc

(
x̃

(1)
i+j 6= x̃

(2)
i+j | x̃(1)

i = x̄i, x̃
(2)
i = ȳi

)

≤
n−i∑

j=0

Di,i+jδi+jg =: (Dδg)i. (3.22)

The last ingredient is the following lemma from [7].

Lemma 3.6. Suppose F is a σ-field and Z1, Z2,W are random variables such
that

1. Z1 ≤ W ≤ Z2;

2. E (W | F) = 0;

3. Z1 and Z2 are F-measurable.
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Then, for all λ ∈ R, we have the inequality

E
[
exp(λW ) | F] ≤ exp

[λ2(Z2 − Z1)2

8

]
. (3.23)

This lemma, in the present situation, works putting W = Wi, Z1 = Xi−
E [g | Fi−1], Z2 = Yi −E [g | Fi−1] and F = Fi−1. Since, from (3.22) and (3.18)
we have

Wi ≤ Yi −Xi ≤ (Dδg)i, (3.24)

we obtain

E
[
exp(λWi) | Fi−1

] ≤ exp
[λ2(Dδg)i

8

]
. (3.25)

By the exponential Chebyshev inequality and iterating (3.25) by successive con-
ditional expectations with respect to Fn we compute

P
(
g − Eg ≥ y

) ≤ exp[−λy] exp
[λ2

8
‖Dδg‖2

]
. (3.26)

We choose the optimal λ = 4y/‖Dδg‖2 to obtain

P
(
g − Eg ≥ y

) ≤ exp
[
− 2y2

‖Dδg‖2
]
. (3.27)

The previous line of reasoning applies to −g and −W , proving (3.5). 2

3.3. The total height as an additive path functional

Let us come back now to our main application and consider the maximum of
the total height of the original process, started from the flat initial configuration
at zero, given by

mV (t) = max
j∈V

hj(t). (3.28)

The main idea is to write a formula as an additive functional of the Markov
chain along the path:

mV (t) = t−
t−1∑
u=1

1
{

max
j

hj(u + 1) = max
j

hj(u)
}
. (3.29)

We will rewrite the functions under the sum in terms of the x-process instead
of the original one using the following lemma using the following numbers.

Lemma 3.7.

max
j

hj(u + 1) = max
j

hj(u) ⇐⇒ #
{
j ∈ V | xj(u) 6= xj(u + 1)

}
= 1. (3.30)
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Proof. To see that the l.h.s. implies the r.h.s. note that under the assump-
tion maxj hj(u + 1) = maxj hj(u) we have #{j ∈ V | xj(u) 6= xj(u + 1)} =
#{j ∈ V | hj(u) 6= hj(u + 1)} = 1.

To see that the r.h.s. implies the l.h.s., let us suppose that maxj hj(u+1) =
maxj hj(u) + 1, and derive a contradiction. But indeed in that case we would
have #{j ∈ V | xj(u) 6= xj(u+1)} = #{j ∈ V | hj(u) 6= hj(u+1)−1} = |V |−1
which is different from 1 if |V | > 2. 2

So we have

mV (t) = t−
t−1∑
u=1

1
{
#{j ∈ V | xj(u) 6= xj(u + 1)} = 1

}
. (3.31)

In our case we have δv

(∑t−1
u=1 1

{
#{j ∈ V | xj(u) 6= xj(u+1)} = 1

}) ≤ 2 giving
us

P
(
mV (t)− EmV (t) > y

) ≤ exp
(
− y2

2
∑t

u=1

(∑
u′:u<u′<t Du,u′

)2

)

≤ exp
(
− y2

2t

|V |2(α′)4
s2

)
(3.32)

and the same bound for P(mV (t) − EmV (t) < −y). Both bounds hold if we
take for P = Pπ the chain in equilibrium or with a given initial condition, say
h = 0. Denote this chain by P0. Since our original interest was in the latter one
we need to note the closeness of the two expected values which follows again by
using the uniform bound on the coupling to compare the two distributions in
the second inequality of

∣∣EπmV (t)− E0mV (t)
∣∣ ≤

t−1∑
u=1

∣∣E0

(
1
{
#{j ∈ V | xj(u) 6= xj(u + 1)} = 1

})

− Eπ

(
1
{
#{j ∈ V | xj(u) 6= xj(u + 1)} = 1

})∣∣

≤
t−1∑
u=1

D0,u ≤ s

|V |(α′)2 . (3.33)

In particular we get the strong law of large numbers

lim
t↑∞

mV (t)
t

= 1−
∑
x,y

π(x)M(x, y)1
{
#{j ∈ V |xj 6= yj} = 1

}
. (3.34)

This is a particular example of an Ergodic Theorem for path observables
which enjoy the concentration property.
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4. Markov chain particle droppings — the proof

We consider the mapping from h(t) to x(t) as above and remark that (x(t),
v(t)) is a Markov chain again. Warning: It is not to be expected that the
marginal process x(t) is a Markov chain (of memory depth 1) now. It will be a
chain with a depth of memory 2 since the position of v(t) can be reconstructed
looking by (x(t), x(t− 1)).

It is useful to make explicit the graph (V, E) with undirected edges E defining
the piling-up rule, and the graph (V, EA) with directed edges EA = {(i, j) ∈ V ×
V : A(i, j) > 0}. The following considerations depend on A only through EA.

2
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Figure 3. Not all edges in the graph (V,E) (on the left) correspond to two
directed edges in the graph (V,EA). This may forbid us to put particles neigh-
boring each other in one step.

The first step is to extend the definition of S1 to the present setup. A prob-
lem might be that the driving Markov chain forbids us to put balls neighboring
each other in one step in the sense of the graph which defines our piling-up
rules (see Figure 3). What we need is to make sure that we can define a finite
set S̄1 to which the joint chain communicates uniformly. While in the indepen-
dent case we could just take the configurations which were grown from nearest
neighbor to nearest neighbor (along an i-ordering), here we have to add to it
connecting strings of allowed transitions in between. A slight discomfort is that
the maximum might change in a complicated way during this process of particle
additions following this string. However, this is not really important. What is
important is that a resulting configuration will only depend on the maximum of
the initial configuration and otherwise be independent on its form. Now, we can
ensure the latter by adding sufficiently many particles at the maximizing site
initially. By laziness it is a chain of allowed transitions and it ensures that all
influence of the configuration at any other site will be lost. This is formulated
in the following lemmata. The first lemma is treating a situation where the
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driving Markov chain drops a particle at the same position as the maximum.
The next lemma shows how the situation where the driving Markov chain is in
a different position than the maximum can be reduced to the first.

Lemma 4.1. Suppose that x ∈ S(i). Then there exists a finite integer s(i) and
a sequence (i = i1, i2, . . . , is(i)) ∈ V s(i) such that (ij , ij+1) ∈ EA is an allowed
transition and the configuration

x(i) := Tis(i) . . . Ti1(Ti)s(i)x (4.1)

is independent of the choice of the initial configuration in S(i) and has a bounded

depth minj∈V x
(i)
j ≥ −2s(i).

Proof. We choose for each vertex i ∈ V an i-ordering a(i) = (a(i)
1 , . . . , a

(i)
|V |−1) of

the sites in the set V \ {i}, which was defined above. We need to connect each
of the occurring pairs of neighboring vertices v = a

(i)
j , w = a

(i)
j+1 with a chain

of allowed transitions (v1 = v, v2, . . . , vs(v,w) = w) where s(v, w) is the shortest
length of an oriented path in EA. In particular every vertex in the string is
visited only once. Let us denote the string from v to w which we obtain by
the above by dropping the w from it by c(v, w) = (v1, . . . , vs(v,w)−1). Then we
concatenate the strings along the i-ordering and define

(i1, . . . , is(i))

:=
(
c(i, a(i)

1 ), c(a(i)
1 , a

(i)
2 ), c(a(i)

2 , a
(i)
3 )), . . . , c(a(i)

|V |−2, a
(i)
|V |−1), a

(i)
|V |−1

)
.

This string has the property that it contains the i-ordering as a substring and
therefore erases the influence of an initial configuration y ∈ S(i) when applied
to it, when the difference of the maximum at i and the configuration at any
other site was bigger than any possible number of occurrences of a site j in
(i1, . . . , is(i)) (see Figure 4). 2

Lemma 4.2. Suppose that x ∈ S(i) and v ∈ V . Then there exists a fi-
nite integer σ(i) and a sequence (i1 = v, i2, . . . , iσ(i) = i) ∈ V σ(i) such that
(ij , ij+1) ∈ EA is an allowed transition and

Tiσ(i) . . . Ti1x ∈ S(i). (4.2)

The lemma says we can go from any initial position of the driving Markov
chain and a height profile with maximum in i to a position with maximum again
in i and driving Markov chain also in i, just as the first lemma assumed.

Proof. First drop s(v, i) particles according to c(v, i). Then drop s(v, i) particles
at i to be sure that the maximum will be again at i. This proves the lemma
with σ(i) = 2 maxv s(v, i). 2
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Figure 4. An example of the procedure described in the proof of Lemma 4.1
on the graph with edges {{1, 2}, {2, 3}, {3, 4}}. Dropping particles according
to the concatenated strings along the i = 2-ordering (1, 3, 4) does not suffice to
obtain the same configurations in S̄1 (see the left pictures of (a) and (b)). If we
previously add s(i) balls to the top of the height profiles the configurations are
the same (see the right pictures of (a) and (b)).

In analogy to the independent case we put together these configurations and
consider the finite subset (which this time however will live in the product space
S̄ = S × V ) and define

S̄1 =
{
(x(i), is(i)) : i ∈ |V |} (4.3)

denoting the complement by S̄2 = S̄ \ S̄1.

Corollary 4.1. The Markov chain M is uniformly communicating to S̄1 with
a finite communication time s̄.

Proof. To prove that, for every joint configuration x̄ = (x, v) ∈ S̄1

inf
(x,v)∈S̄

x̄∈S̄1

M s̄
(
(x, v), x̄

) ≥ ᾱ′ > 0 (4.4)
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we repeat the argument of the independent case with a small modification: First
we get from (x, v) where x ∈ S(i) to a point (x′, i) where x′ ∈ S(i) in σ(i) steps
by the second lemma. We warn the reader that the x′ might be dependent on the
particular choice of x, v. Then we get from (x′, i) to x̄(i) = (x(i), a

(i)
|V |−1) in 2s(i)

steps by the first lemma. Then we get from there into the state j of the driving
Markov chain by means of the connecting string (c(a(i)

|V |−1, j), j) and adding
particles at j in an i- and j-independent number of steps. This is equivalent
to saying that the driving chain is ergodic. Using now laziness we can go from
there into a state which has a prescribed maximum by adding sufficiently many
particles at j (which will typically be outside of S̄1) called (x′′, j). In the third
step we go from that state into the corresponding state in S̄1 which has the
maximum at j (see Figure 5 for an illustration of this procedure). Note that
these procedures a priori might take a total number of particle droppings which
could depend on the (x, v). We can produce a number of particle droppings s̄
which will do the job for all (x, v) by adding more particles, if necessary, at the
steps where particles are dropped at the same site. This proves the lemma with
s̄ = 3 maxi∈V 2(s(i) + σ(i)). 2
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Figure 5. A schematic representation of the path from (x, v) ∈ S̄ to x̄ ∈ S̄1 in
the proof of Corollary 4.1.
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Let us compare to the independent case. Then the σ(i)-term is not needed,
one s(i)-term (needed to build up a sufficiently high maximum) can be dropped
in the independent case, and one s(i)-term is just |V |−1 (the length of a covering
string).

The previous considerations given in Section 2 give us now the existence
of an invariant distribution π̄ on S̄, along with the convergence to it, and the
bound on the coupling matrix

D̄t,t′ := sup
x̄,x̄′∈S̄

Pc

(
X̄(t′) 6= X̄ ′(t′) | X̄(t) = x̄, X̄ ′(t) = x̄′

)
(4.5)

where Pc is the coupling of X̄(t) = (X(v), v(t)) with X̄ ′(t) = (X ′(v), v′(t)). We
have for times at the distance of the communication time s̄ that

D̄t,t+s̄ ≤ 1− (ᾱ′)2|V | (4.6)

and this implies for general times

D̄t,t′ ≤
(
1− (ᾱ′)2|V |)b(t

′−t)/s̄c
. (4.7)

The concentration lemma can be formulated for observables ḡ : S̄n → R and
otherwise stays the same.

All estimates on the maximal height mV (t) carry over when α′ is replaced
by ᾱ′ and s is replaced by s̄. This finishes the proof of the theorem.

5. Extension to layer-dependent particle droppings

We will finally give an extension to a model of particle droppings which
allows also for deposition of particles below the top layer, albeit only with a
fixed finite depth. This however allows for a large class of deposition rules
and we will be very general here. On the other hand, we want to assume
a non-nullness condition of particle adsorption at any site to the top layer,
independently of the configuration and the position of the last dropped particle.
By the last requirement we exclude part of the difficulty dealt with in the case
of Markov-chain droppings.

The idea of such models is to consider adsorption with the possibility of
a finite depth penetration. Since this penetration has to depend also on the
configuration below the top height, i.e. by the exclusion between particles, we are
led to deal with a state space for our Markov chains, carrying more information
as in the models considered above, as we will describe now.

Take the set Ω̄ of finite subsets of V × N. V is again the vertex set of a
finite graph, and a site v ∈ V should be viewed as a point in the base plane.
Consequently the set Φ ∈ Ω̄ is meant to describe a particle configuration by
giving the places where particles are sitting, i.e. (v, h) ∈ Φ if and only if a
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particle is sitting above the site v at the height h and the set Φv = {h ∈ N:
(v, h) ∈ Φ} describes the places where particles are sitting above the fixed site v.
To each Φ ∈ Ω̄ we associate the height function h(Φ) = (hv(Φ))v∈V where
hv(Φ) = max Φv. We introduce the configuration obtained by adding a particle
at i applying the screening rule by TiΦ = Φ ∪ {(i, maxv:dist(v,i)≤1 hv(Φ) + 1)}
(see Figure 6 for an illustration). With this notation we have compatibility
with the previously defined action on the height profile, i.e. h(TiΦ) = Tih(Φ).
Denote the smaller set of configurations obeying nearest neighbor exclusion by
Ω = {Φ ∈ Ω̄: (v, h) ∈ Φ implies (w, h) 6∈ Φ if w ∼ v}. A growth process will be
defined on Ω.

z z
z

z
z

z z
z

z
z

zj

1 2 3 4 1 2 3 4

Figure 6. In this figure we demonstrate the operator T . Consider a config-
uration Φ (left figure). The application of Ti(Φ) basically puts a new par-
ticle on top of Φ above vertex i. As an example the figure on the right
shows the new configuration after deposition of a new particle at 2, i.e.
T2(Φ) = Φ ∪ {(2, maxv:dist(v,2)≤1 hv(Φ) + 1)} = Φ ∪ {(2, 5)}.

Let Φ(t) denote a Markov chain with state space Ω and transition matrix
M(Φ,Φ′) having the properties:

1. non-null screening rule: infi∈V,Φ∈Ω M(Φ, TiΦ) ≥ ε > 0;

2. M(Φ,Φ′) = 0 unless Φ′ = Φ ∪ {(v, h)} for a single particle in the k-layer
below the maximum, i.e. h ∈ {−k + hv(Φ), (Tv(h(Φ)))v} (see Figure 7);

3. layer-k-depth memory: M(Φ1, Φ′) = M(Φ2, Φ′) if Φ1 ∼k Φ2. Here we have
defined equivalence to the depth k, denoted by Φ1 ∼k Φ2 if h(Φ1) = h(Φ2)
(the height profile coincides) and

(Φ1)v ∩ [−k + hv(Φ1), hv(Φ1)] = (Φ2)v ∩ [−k + hv(Φ2), hv(Φ2)]

that is the k-depth layer below the height profile coincides.



Dependent particle deposition on a graph 205

To formulate the last condition let us subtract the maximum and define Ψv :=
{x : x+maxw∈V hw(Φ) ∈ Φv} and Ψ = ∪v(v×Ψv) to be the set of occupations
shifted by the maximum. As a result we have that the height function has the
maximum zero, i.e.

max
v

hv(Ψ) = 0.

We also want that

4. height-shift-invariance: M(Φ1, Φ′1) = M(Φ2, Φ′2) if Ψ(Φ1) = Ψ(Φ2) and
Ψ(Φ′1) = Ψ(Φ′2).

Denote by S the set of equivalence classes of images under Ψ w.r.t. looking at
the k-depth layer. So it is the space of possible height-profiles enlarged by the
information which sites below are occupied, up a depth k. It is clear that the
process has a lift on S as a Markov process.
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z
zj

z

z
z

z
zj
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Figure 7. According to the non-null screening rule (property 1 of the transition
matrix M) there is a positive probability that a dropping particle stops on the
top of the configuration (left picture). At the same time the second property
of M allows for a deposition below the top within a fixed depth k (right picture).

Theorem 5.1.

1. The law of Markov process Ψ(t) on the set of k-layer depth height-shift
equivalence classes S converges in total variation to an invariant distribu-
tion π̄ on S.

2. For each g : Sn → R bounded, the random variable g(Ψ(1), . . . , Ψ(n))
obeys the Gaussian concentration bound of Lemma 3.5, with a matrix
Dt,t′ ≤ A exp{−λ(t′ − t)} for all t′ ≥ t and zero else.

3. In particular the function mV (t) obeys the bound (2.4) and (2.5) of The-
orem 2.1 for suitable constants c and C.
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Outline of Proof. To prove the first assertion of the theorem we need to construct
a coupling, starting from any two layer configurations Ψ1,Ψ2 ∈ S. Let us do this
in several steps. Informally speaking one can go first to configurations with the
property that the height profile takes values in S1 (formulated for the top layer in
the same way as we did in the section on independent particle droppings) and
then create any desired allowed layer of thickness k by adding only particles
which happen to feel the screening which happens with non-null probability.
This can be done for any initial configuration, with the same outcome after
sufficiently many steps. In this way one can produce a coupling between any
two initial configurations with a uniform very small probability α̃ > 0 after some
very large time s̃. From that point everything in the proof stays the same.

Now we give some details. Suppose that h(Ψ) ∈ Si (meaning that the top
profile takes the maximum at i). Applying the sequence of particle additions
we look at the resulting configuration

Ψ̃j := T
a
(j)
|V |−1

. . . T
a
(j)
1

(Tj)|V |−1T
a
(i)
|V |−1

. . . T
a
(i)
1

Ψ. (5.1)

By the non-nullness screening condition we know that this has a probability
which is bounded uniformly below by α1 > 0. We can be certain that h(Ψ̃)
is equal to the previously defined x(j) independently of the initial condition.
However, this might not hold for the k-layer below. To cure for this we take
an arbitrary sequence a = (v1, v2, v3, . . . , vR) in which every vertex appears at
least k times, and apply the corresponding particle additions using the map Tvj .
This creates a configuration Ψj = TvR . . . Tv1Ψ̃j whose k-depth layer is indepen-
dent of the starting configuration Ψ. Define now the communication set in layer
space by putting S̄1 = {Ψj : j ∈ V }. This has the desired properties, and by the
previous argument proves the first part. The second part is a direct application
of the concentration statement of Lemma 3.5. To prove the third part we write

mV (t) = t−
t−1∑
u=1

1
{

max
j

hj(Φ(u + 1)) = max
j

hj(Φ(u))
}

= t−
t−1∑
u=1

1
{

A(Ψ(u + 1),Ψ(u))
}

(5.2)

where

A
(
Ψ(u + 1), Ψ(u)

)
=

{
#{j ∈ V | h(Ψ(u + 1))j − h(Ψ(u))j} ≤ 1

}
.

Note that we have written the inequality instead of equality in the last definition
in order to account for particle depositions below the top layer. From here the
proof of the concentration of the variable mV (t) stays the same as in the previous
two cases. This concludes the proof of the theorem. 2
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