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Abstract. We consider stochastic dynamics of lattice systems with finite lo-
cal state space, possibly at low temperature, and possibly non-reversible. We
assume the additional regularity properties on the dynamics:

a) There is at least one stationary measure which is a Gibbs measure for an
absolutely summable potential Φ.

b) Zero loss of relative entropy density under dynamics implies the Gibbs
property with the same Φ.

We prove results on the attractor property of the set of Gibbs measures
for Φ:

1. The set of weak limit points of any trajectory of translation-invariant
measures contains at least one Gibbs state for Φ.

2. We show that if all elements of a weakly convergent sequence of measures
are Gibbs measures for a sequence of some translation-invariant summable po-
tentials with uniform bound, then the limiting measure must be a Gibbs measure
for Φ.

3. We give an extension of the second result to trajectories which are allowed
to be non-Gibbs, but have a property of asymptotic smallness of discontinuities.
An example for this situation is the time evolution from a low temperature Ising
measure by weakly dependent spin flips.

Keywords: Markov chain, PCA, IPS, non-equilibrium, non-reversibility, attractor

property, relative entropy, Gibbsianness, non-Gibbsianness, synchronisation
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1. Introduction

The study of non-equilibrium statistical mechanics models away from their
time-stationary equilibrium states and their relaxation or non-relaxation into
equilibrium is an active field of research in the theoretical physics community
as well as in the mathematics of Markov processes [32,34]. If there exists initial
data that does not converge into the equilibrium state (even in the presence of a
unique time-stationary measure) the model is called non-ergodic and examples
can be found in [2,22,24,37]. If there is relaxation of all initial data towards some
set of measures we call this set an attractor. In certain settings when there exists
a periodic orbit of measures, this phenomenon is also called synchronisation
and represents a common feature in many areas of science and engineering.
Examples are found experimentally and in simulations in the study of neuronal
pulses of the brain or digital communications receivers, and partially understood
theoretically, mostly in mean field like the Kuramoto model (see e.g. references
[1, 4, 16,17,39]).

The purpose of this note is to provide some criteria which allow to control
the approach to attractors beyond situations with weak interactions and beyond
reversible dynamics. The criteria will be formulated in terms of regularity of
trajectories, in a sense to be described below.

Restricting to translation-invariant statistical mechanics models on the lat-
tice makes available the powerful relative entropy techniques [6,34] highlighted
for example already in the Gibbs variational principle [15]. The main idea for
the dynamical models is to look at the change of the relative entropy density of
a given measure w.r.t. a time-stationary measure under the evolution. It turns
out, that this change is non-positive under rather general assumptions [6]. The
use of the relative entropy density as a Lyapunov function is subtle because
it is not a weakly continuous functional in the space of measures. More work
is needed, requiring some regularity of the time-evolved measures. Notice also
that the relative entropy density can not distinguish between different Gibbs
measures for the same potential. So, in the presence of phase-transition of the
equilibrium model, that is when there are more than one Gibbs measures corre-
sponding to the potential of the time-stationary measure, the entropy method
can at most ensure attraction of the whole set of Gibbs measures.

The relative entropy approach has been used to prove that measures having
zero entropy loss under the dynamics w.r.t. a time-stationary Gibbs measure
are Gibbs measures for the same potential in the examples of [3, 18, 20, 21].
These concern stochastic Ising models but also more general probabilistic cellu-
lar automata without reversibility assumption where the aspect of attractivity
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from initial states away from the invariant set was not discussed. In this note
we provide results on the limiting behavior of trajectories with general initial
data for general translation-invariant discrete-time Markov processes (DMP)

and continuous-time interacting particle systems (IPS) on {1, . . . , q}Zd

assumed
to have the above zero entropy loss property. The previous examples show that
this hypothesis is satisfied in a number of important cases. Let us also mention
the case of the well known symmetric exclusion process (SEP)(see for exam-
ple [32] Chapter VIII). Here the stationary measures µ are product measures
and zero entropy loss w.r.t. µ implies that the time-evolved measure is a mixture
of product measure.

One more specific motivation for this note comes from the investigation of
a class of non-equilibrium statistical mechanics models with d ≥ 3 proposed by
the authors in [22, 24]. Here the dynamics is given by a non-reversible prob-
abilistic cellular automaton (PCA) with exponentially localized updating rule
(see [24]) respectively by an IPS dynamics (see [22]). Both have the property to
create non-trivial periodic orbits of extremal translation-invariant Gibbs mea-
sures. The primary focus in [22,24] was to demonstrate that there can be models
showing non-ergodic behavior in the presence of a unique translation-invariant
time-stationary measure. Once this is established, it is natural to ask if and
how the dynamics drives any starting measure into the periodic orbit. That
this is indeed the case for a mean-field version of the IPS dynamics is one of the
main results in [23]. Let us mention again the Kuramoto model which also is a
mean-field statistical mechanics system driven by its Langevin dynamics. Here
similar results have been obtained see [1, 4, 16,17].

1.1. Strategy and main results

The main objective of the present paper is to give criteria for a given set of
measures, containing at least one invariant Gibbs measure w.r.t. PCA and IPS
dynamics, to be an attractor for a stochastic dynamics in a lattice setup. Let
us mention that if the dynamics has specific monotonicity properties like “at-
tractivity” (in the sense of stochastic domination being preserved by dynamics)
coupling arguments can be used to derive attractor properties, see [32] Chapter
III Section 2. Here we want to treat cases also beyond that.

The strategy is exemplified in the very special case of the stochastic Ising
model (also called Glauber dynamics) for a not necessarily ferromagnetic trans-
lation-invariant Hamiltonian with local spin space {±1} and finite range in-
teractions by Holley [20] and for not necessarily finite range but fast decaying
interactions by Higuchi and Shiga [18]. Here it has been proved that any limit
measure of a sequences of measures (propagated by the Glauber dynamics) must
be a Gibbs measure. The main tool in both cases is to consider translation-
invariant measures and the change in relative entropy density between those
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and the Gibbs measures under the dynamics. To be more precise, the strategy
is as follows. First it is shown, that the time-derivative of the relative entropy
density between measures away from the Gibbs measure and the Gibbs mea-
sures is non-increasing under time-evolution, i.e. g(νt|µ) := d

ds |s=th(νs|µ) ≤ 0

and thus since ∞ > h(νt|µ) ≥ 0, limt↑∞ g(νt|µ) = 0. This fact although is not
the crucial point since it is true for rather general transformations of measures as
mentioned above. What is important is to prove that while the relative entropy
density itself is semicontinuous also the time-derivative of the relative entropy
density is semicontinuous in the useful direction, more precisely one has upper
semicontinuity of νt 7→ g(νt|µ). The semicontinuity from above guarantees that
for a convergent sequence of measures where the sequence of time-derivatives
of the relative entropy densities goes to zero, also for the limiting measure the
time-derivative of the relative entropy density is zero, i.e. for limt↑∞ νt = ν∗ in
the weak sense we have

0 = lim
t↑∞

g(νt|µ) = g(ν∗|µ).

The final step of the proof is often referred to as “Holley’s argument” which
uses the zero entropy loss property of the limiting measures gL(ν∗|µ) = 0 to
show a single-site DLR equality for ν∗. In other words for the stochastic Ising
model any measure where the time-derivative of the relative entropy density is
zero has to be a Gibbs measure.

Investigating conditions under which the possible discontinuity of g(νt|µ)
for general models can be beaten, we arrive at the following results, assuming a
Holley regularity condition (Condition 2.1).

In our first main result, Theorem 2.1, we show that in both cases, discrete-
time and continuous-time stochastic dynamics, at least one weak ω-limit point (a
cluster point of the trajectory of measures in innite time where the convergence
is w.r.t. the weak topology) has to be a Gibbs measure for the same potential
as the time-stationary measure.

In our second main result, Theorem 2.2, we show that if all elements of a
weakly convergent sequence are Gibbs measures for a uniformly bounded se-
quence of some translation-invariant summable potentials, which means that
no Gibbsian pathologies persist along the trajectory for large times, then the
limiting measure must be a Gibbs measure for the same potential as the given
time-stationary Gibbs measure.

In our final result, Theorem 2.3, we show, that in case of the continuous-time
dynamics the second result holds under weaker conditions. The Gibbsianness
assumption on the trajectory may be replaced by a uniform non-nullness con-
dition together with martingale convergence of single-site conditional probabil-
ities uniformly in the trajectory. This can be seen as a property of asymptotic
smallness of non-Gibbsian pathologies under time-evolution. The proof is based
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on a representation of the relative entropy loss (valid for non-null probability
measures) we derive in Proposition 2.1. An explicit example for a sequence of
time-evolved measures which are non-Gibbs for all sufficiently large times but
satisfy the conditions is the initial low-temperature Ising model in zero field
under infinite-temperature Ising dynamics (see [7]).

2. Entropy decay under time-discrete and time-continuous interact-
ing systems

Consider translation-invariant probability measures µ and ν on the config-

uration space {1, . . . , q}Zd

equipped with the usual product topology and the
Borel sigma-algebra. For a finite set of sites Λ ⊂ Zd define the local relative
entropy via

hΛ(ν|µ) :=
∑

ωΛ∈{1,...,q}Λ
ν(ωΛ) log

ν(ωΛ)

µ(ωΛ)
.

and the relative entropy density via

h(ν|µ) := lim
Λ↑Zd

1

|Λ|
hΛ(ν|µ)

where Λ runs over hypercubes centered at the origin, whenever the limit exists.

We use notations like ωΛ := {σ ∈ {1, . . . , q}Zd

: 1ωΛ
(σ) = 1}, ω∆ωΛ\∆ :=

ω∆ ∩ ωΛ\∆, ∆c := Zd \∆ etc.

Further consider two types of translation-invariant Markovian dynamics on

{1, . . . , q}Zd

:

1. Discrete-time Markov Processes (DMP) characterized by time-homogen-
eous transition kernels P (σ, ·) which are also assumed to be continuous in
the first entry w.r.t. the product topology.

2. Interacting particle systems (IPS) characterized by time-homogeneous gen-
erators L with domain D(L) and its associated Markovian semigroup
(PLt )t≥0.

Standard examples of DMP are the so-called (strict) probabilistic cellular au-
tomata (PCA) characterized by the fact, that the transition kernels factorize,
i.e. P (σ, ηΛ) =

∏
i∈Λ Pi(σ, ηi), see [3]. Also more general PCA with exponen-

tially localized update kernel can be considered, see for example [24,38]. For the
IPS we adopt the exposition given in [32] Chapter I: In all generality we let the
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generator L be given via jump-measures c∆(η, dξ∆) in finite volumes ∆ ⊂ Zd,
continuous in the starting configurations η ∈ {1, . . . , q}Zd

Lf(η) =
∑
∆

∫
{ξ:ξ∆c=η∆c}

c∆(η, dξ)[f(ξ)− f(η)]

where the summation is over all finite sets of sites and f ∈ D(L). To ensure
well-definedness, the jump-measures must satisfy a number of conditions, most
importantly the single-site jump-intensities have to be bounded, i.e. for c∆ :=
supη c∆(η, {1, . . . , q}∆) we assume

∑
∆30 c∆ <∞.

The relative entropy density can be understood as a measure of closeness
between the probability measure in the first and second entry. Accordingly
the change in relative entropy density under the application of the dynamics
measures the change in distance between the two probability measures. Let us
recall some important facts about Gibbs measures and relative entropy densities.

Lemma 2.1. Let (ΩZd

,S) and (Ω̃Zd

, S̃) be measurable spaces of lattice con-

figurations and T any translation-invariant probability kernel from (ΩZd

,S) to

(Ω̃Zd

, S̃), i.e for all i ∈ Zd, Ã ∈ S̃ and η ∈ ΩZd

we have T (Ã|η) = T (Ãθ(i)|ηθ(i))
where Ãθ(i) denotes the lattice translates of Ã by i (respectively ηθ(i) the trans-
late of η by i). Then h(Tν|Tµ) ≤ h(ν|µ) for all translation-invariant probability

measures ν, µ on (ΩZd

,S).

For the proof see for example [6] Lemma 3.3.

Lemma 2.2. Let ν and µ be translation-invariant measures on the measurable
configuration space (Ω,S) and µ a Gibbs measure for the Gibbsian specification
γΦ. Then the relative entropy density h(ν|µ) exists and depends only on ν
and Φ.

For details on Gibbs measures and their definition via the DLR equation for
models given in terms of Gibbsian specifications γΦ see [15] Chapter 1 and 2.
The lemma is part of Theorem 15.30 in [15]. The Gibbs variational principle
states that under the conditions of the preceding lemma h(ν|µ) = 0 if and
only if ν is a Gibbs measure for the Gibbsian specification γΦ. Note, that
for the existence of h, the requirement of µ to be a Gibbs measure can be
relaxed considerably. The appropriate notion is that of asymptotically decoupled
measures as defined in [29,40].

Consider a model given in terms of the Gibbsian specification γΦ and a
translation-invariant DMP or IPS dynamics. Let us assume that for the dy-
namics the following zero entropy loss condition holds:
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Condition 2.1. There exists a translation-invariant and time-stationary Gibbs
measure µ for γΦ. Further, for any translation-invariant measure ν with

1 gP (ν|µ) := h(Pν|µ)− h(ν|µ) = 0 it follows that ν is a Gibbs measure for
γΦ (in the case of discrete-time dynamics),

2 gL(ν|µ) := limΛ↑Zd
1
|Λ|

d
dt |t=0

hΛ(PLt ν|µ) = 0 it follows that ν is a Gibbs

measure for γΦ (in the case of continuous-time dynamics).

Such a condition is proved to hold in continuous time for example for the
stochastic Ising model [20, 21, 32] or more general Glauber dynamics and even
non-reversible dynamics see [22]. In discrete time examples are given in [3, 24].

Remark. We provide another example where zero entropy loss implies Gibb-
sianness w.r.t. the same potential as the reference measure in the second slot,
however after also taking into account a global preservation of density of parti-
cles which is conserved by the dynamics.

Let us consider the above condition for the well known symmetric exclusion
process (SEP) on the d-dimensional integer lattice (see for example [32] Chapter
VIII)

Lf(η) :=
∑
x∈Zd

∑
y:y∼x

η(x)(1− η(y))[f(ηxy)− f(η)]

where y ∼ x denotes nearest neighbors relation of x and y, ηx,y stands for the
configuration equal to η except for the sites x and y where it is flipped. f is a
sufficiently smooth observable.

It is known that the extremal stationary measures are the product measures
µρ and a classification of their basins of attraction in terms of densities of the
initial measure can be given ( [32] Chapter VIII Theorem 1.47). A translation-
invariant ergodic (that is tail-trivial) initial measure with density ρ converges to
µρ. From this it is clear that the limit of any translation-invariant initial mea-
sure is the corresponding mixture over product measures. Product measures
are Gibbs measures without interaction, and product measures with different
densities are Gibbs measures for different specifications. On the one hand prod-
uct measures are simpler than the Gibbs measures with interaction and their
possible phase transitions we have encountered in our other examples. On the
other hand the SEP is more general than our other examples since possible
limits correspond to sets of specifications and not a single specification. Let
us see that our condition is consistent with this picture by showing that there
are no other ergodic measures with fixed density which have zero entropic loss
w.r.t. one of the µρ’s.

Equating the entropy loss of a translation-invariant measure ν w.r.t. one of
the invariant product-measures µρ in this case to zero, we immediately see that
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the dependence on ρ ∈ [0, 1] drops out. Indeed, by translation invariance

gSEP (ν|µρ)

=
∑
i∼0

∫
ν(dη)ν(σ0 = 1 σi = 0|η{0,i}c) log

ν(σ0 = 0 σi = 1|η{0,i}c)

ν(σ0 = 1 σi = 0|η{0,i}c)

=

d∑
i=1

∫
ν(dη)[ν(10 0ei |η{0,ei}c)− ν(00 1ei |η{0,ei}c)] log

ν(00 1ei |η{0,ei}c)

ν(10 0ei |η{0,ei}c)
.

This implies gSEP (ν|µρ) ≤ 0 and if we set gSEP (ν|µρ) = 0 we have

ν(10 0ei |η{0,ei}c) = ν(00 1ei |η{0,ei}c) (2.1)

for ν − a.a. η and i ∈ {1, . . . , d}. This implies ν(ηV |ηV c) = ν(πV (ηV )|ηV c) for
any finite volume V and any permutation πV (ηV ) of the finite configuration ηV .
Indeed, we can assume V to be a box since there exists a box B ⊃ V and if
we assume ν(ηB |ηBc) = ν(πB(ηB)|ηBc) for any permutation πB , of course also
ν(ηB |ηBc) = ν(πV (ηB)|ηBc) and thus

ν(πV (ηV )|ηV c) =
ν(πV (ηB)|ηBc)

ν(ηB\V |ηBc)
=

ν(ηB |ηBc)

ν(ηB\V |ηBc)
= ν(ηV |ηV c).

Further, any finite permutation σ can be realized as a finite product of nearest-
neighbor transpositions πi,j(ηB) = ηB\{i,j}(ηj)i(ηi)j where j ∼ i. If ηi = ηj ,
there is nothing to show. If ηi 6= ηj by (2.1), translation-invariance and the
elementary definition of conditional probability we have

ν(πi,j(ηB)|ηBc) = ν(πi,j(η{i,j})|η{i,j}c)ν(ηB\{i,j})|ηBc)

= ν(η{i,j})|η{i,j}c)ν(ηB\{i,j})|ηBc) = ν(ηB |ηBc).

From the invariance of the conditional probabilities w.r.t. finite permutations, it
follows, that ν is invariant w.r.t. finite permutations, in other words exchange-
able. By de Finetti’s Theorem (see [15], Example 7.16 and 7.31) it is thus a

mixture of product measures ν =
∫ 1

0
µρmν(dρ) where mν(dρ) is a unique prob-

ability measure on the product-measures together with the evaluation sigma-
algebra (for more details see [15], Chapter 7: Extreme decomposition). Since
the only tail-trivial mixtures of product measures are the pure product measures
themselves, our claim follows.

Let us state our first result about attractor properties.

Theorem 2.1. Assume Condition 2.1 holds with Gibbs measure µ for γΦ.
Let ν0 be any translation-invariant starting measure. Then the set C of all
weak limit points of the sequence νn := Pnν0 respectively νt := PLt ν0 contains
translation-invariant Gibbs measures for γΦ.
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Proof. First we note that the set C of all weak limit points is weakly compact.
Further, the map ν 7→ h(ν|µ) is lower semicontinuous by [15] Theorem 15.39 and
hence the infimum of ν 7→ h(ν|µ) as a map from C to R+

0 ∪ {+∞} is attained
in some ν∗ ∈ C.

Suppose h(ν∗|µ) > 0, then ν∗ in that case is not a Gibbs measure for the
same potential as µ by the Gibbs variational principle (see [15] Theorem 15.39).
Further by Condition 2.1 for the discrete-time case

h(Pν∗|µ) < h(ν∗|µ)

and for the continuous-time case for all t > 0

h(PLt ν∗|µ) < h(ν∗|µ).

But this is a contradiction since Pν∗ respectively PLt ν∗ are also weak limit points
by the continuity of P and PLt . 2

The preceding theorem in particular implies that for convergent trajectories
the then unique ω-limit measure (the then unique cluster point of the trajectory
in infinite time) must be a Gibbs measure for γΦ. Under Condition 2.1 this also
follows from the fact that the limiting measure is invariant for the dynamics
(see [32] Proposition 1.8. for the IPS case, the DMP case follows easily by the
same arguments).

2.1. Attractor properties along Gibbsian trajectories

The next result makes the assumption that all but finitely many elements
of the converging subsequence are translation-invariant Gibbs measures for a
uniformly bounded sequence of translation-invariant potentials. Here we define
the norm ‖Φ‖ :=

∑
A30 ‖ΦA‖∞. As we will see, the benefit from this is the

fact, that the change of entropy as a function of the first entry ν 7→ gP (ν|µ)
and ν 7→ gL(ν|µ) is continuous along such a sequence of measures. Let us note
that for the attractor property of the set of Gibbs measures, checking upper
semicontinuity of the change of the relative entropy density would be sufficient,
see also (2.13). This is what is in fact done in [18,20].

Theorem 2.2. Assume Condition 2.1 holds with Gibbs measure µ for γΦ.
Let ν0 denote an arbitrary translation-invariant starting measure. Further let
(νnk

)k∈N (resp. (νtk)k∈N) be any weakly convergent subsequence of the sequence
of time-evolved measures νn := Pnν0 (resp. νt := Ptν0 with tk ↑ ∞) and let ν∗
denote its weak limit. Suppose that

1. For all nk (resp. tk), the measures νnk
and νnk+1 (resp. νtk) are Gibbs

measures for some translation-invariant potentials Φnk
and Φnk+1 (resp.

Φtk).
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2. The sequences of potentials (Φnk
)k∈N and (Φnk+1)k∈N (resp. Φtk) are uni-

formly bounded, i.e. S := supk max{‖Φnk
‖, ‖Φnk+1‖} < ∞ (resp. S :=

supk ‖Φtk‖ <∞).

Then, necessarily ν∗ also is a Gibbs measure for γΦ.

Remark. 1. Notice that the map between potentials and Gibbsian specifications
is one-to-one when the equivalence relation of physical equivalence, [6,15], is used
on the space of potentials. For more details on the relation of specifications and
potentials see [26, 41], in particular for the regrouping of potentials see [27].
Hence one wants to exploit the theorem for useful choices of representatives
in the class of physically equivalent potentials. This is the same as looking at
equivalence classes of physically equivalent potentials in the definition of the
Banach space of potentials. In that sense we also prove, that limk→∞ Φnk

= Φ∗
(resp. limk→∞Φtk = Φ∗) exists with ‖Φ∗‖ ≤ S and γΦ = γΦ∗ .

2. However, having said this, the property of νnk
(resp. νtk) being Gibbs

may depend strongly on the starting measure, and we can not expect it to be
true universally, given the many examples of non-Gibbsian measures known to
appear under time-evolutions [7,8,10,12–14,19,28,30,31]. This is the reason for
our desire to relax the hypothesis and include cases of non-Gibbsian behavior,
see below.

Proof of Theorem 2.2. First notice that also the sequence (Pνnk
)k∈N is weakly

convergent with limk→∞ Pνnk
= Pν∗ since P is continuous.

Step 1: In order to see that (Φnk
)k∈N is a convergent sequence, we show

that (Φnk
)k∈N is a Cauchy sequence in the Banach space of Gibbs potentials with

norm
‖Φ‖0 :=

∑
A30 |A|−1‖ΦA‖∞ modulo physical equivalence. By [6] formula (2.65)

we can recover the corresponding potentials in the sense that

‖Φ1 − Φ2‖0 =
1

|Λ|

∥∥∥ log
dν1|Λ
dν2|Λ

∥∥∥
C
− o(|Λ|)
|Λ|

where also ‖f‖C := supc:constant ‖f − c‖∞. The error term may a priori depend
on the potentials Φ1 and Φ2. By the uniform boundedness of the sequence of
potentials, however the error term can be bounded by the uniform expression

const S |∂Λ|
|Λ| where ∂Λ denotes the boundary of Λ. Let ε > 0 and choose a cen-

tered cube Λ such that const S|∂Λ|/|Λ| < ε/2. Further by the weak convergence
of the measures there exists Nε such that

1

|Λ|

∥∥∥ log
dνns
|Λ

dνnt
|Λ

∥∥∥
C
<
ε

2

for all s, t ≥ Nε using also the uniform non-nullness of all measures in the
trajectory. Uniform non-nullness follows easily from the uniform boundedness
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of the potentials. Consequently for all s, t ≥ Nε

‖Φns − Φnt‖0 ≤
1

|Λ|

∥∥∥ log
dνns
|Λ

dνnt |Λ

∥∥∥
C

+ const S
|∂Λ|
|Λ|

< ε.

Notice that for the limiting potential we also have ‖Φ∗‖ ≤ S: Indeed, if we
assume ‖Φ∗‖ ≥ S + ε for some ε > 0 then there exists N ∈ N such that∑
A30,|A|≤N ‖ΦA,nk

− ΦA,∗‖∞ > ε/2 for all k ∈ N. But we have

lim
k→∞

∑
A30,|A|≤N

1

|A|
‖ΦA,nk

− ΦA,∗‖∞ = 0

for all N , a contradiction. Replacing nk by tk we get the same result for the
continuous-time case.

Step 2: For any translation-invariant starting measure ν0 we have that
h(νn|µ) (resp. h(νt|µ)) is a non-increasing sequence of non-negative numbers.
(Note that the relative entropy density is smaller than infinity, due to the finite
local state space and since the measure in the second slot is a Gibbs measure.)

This sequence hence has a limit (which may a priori be strictly bigger than
zero), but from this follows that the sequence of entropy losses g(νn|µ) (we write
g(νn|µ) for both gP (νn|µ) and gL(νtn |µ)) converges to zero. We would like to
conclude that from limn↑∞ νn = ν∗ in a weak sense and limn↑∞ g(νn|µ) = 0 it
follows that g(ν∗|µ) = 0. Then we know that ν∗ has to be Gibbs for γΦ by
Condition 2.1.

The discrete-time case: Now suppose that ν is a Gibbs measure for some
translation-invariant potential Φν and Pν is a Gibbs measure for some trans-
lation-invariant potential ΦPν and µ is a Gibbs measure for some translation-
invariant potential Φ. We use the decomposition of the relative entropy as
in [15] formula (15.32) into the pressure p of the potential for the measure in
the second slot, the expectation 〈·, ·〉 of the local energy density of the potential
of the measure in the second slot w.r.t. the first measure, and the relative entropy
density of the first measure, i.e.

h(ν|µ) = p(Φ) + 〈ν,Φ〉+ h(ν|u)

with 〈ν,Φ〉 := ν(
∑
A30 |A|−1ΦA) and p(Φ) := limΛ↑G |Λ|−1 logZΦ

Λ (ω) where
ZΦ

Λ (ω) is the partition function for Φ evaluated at some arbitrary boundary
condition ω outside Λ. We use this to write the entropy loss as

gP (ν|µ) = p(Φ) + 〈Pν,Φ〉+ h(Pν|u)− [p(Φ) + 〈ν,Φ〉+ h(ν|u)]

= 〈Pν − ν,Φ〉+ h(Pν|u)− h(ν|u).

The first term is weakly continuous in ν and causes no problems since also
P is continuous. For the second term, a priori, we have no knowledge about
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interchangeability of limits. Another way of considering this issue is to rewrite
the relative entropy density h(ν|u) = ν(h̃) as an ν-expectation of a certain
function h̃ as in [15] Theorem 15.20 where the function h̃ is not quasilocal but
tail measurable. Hence convergence of expected values w.r.t. a locally convergent
sequence of measures is not guaranteed. In fact if the identity

lim
k→∞

[h(Pνnk
|u)− h(νnk

|u)] = h(P ( lim
k→∞

νnk
)|u)− h( lim

k→∞
νnk
|u)

were true, the result would follow. As we will show now, the uniform Gibbsian-
ness assumption on the trajectory is sufficient to ensure such an identity. The
difference in specific entropies, assuming Gibbsianness of the two measures, can
be written as

h(Pν|u)− h(ν|u) = 〈ν,Φν〉 − 〈Pν,ΦPν〉+ p(Φν)− p(ΦPν).

The specific energy ν,Φ 7→ 〈ν,Φ〉 is jointly continuous w.r.t. the weak topology
for the probability measures and the topology of convergence for the potentials
(see [15] Remark 15.26 (2)). The same argument applies for the second term on
the r.h.s of the last display. By the first part of the proof the potentials are in fact
convergent and thus one can deduce interchangeability of limits. The pressure
terms are continuous as functions of the potentials in the topology of uniform
convergence generated by ‖ ·‖ (see [6] Proposition 2.58 (b) and Proposition 2.56
(d)) and hence limits in the entropic loss can be interchanged.

The Continuous-time case: We need to show for a Gibbsian sequence
(νtk)k∈N that

lim
k→∞

gL(νtk |µ) = gL( lim
k→∞

νtk |µ).

In what follows the representation of the entropy loss gL in terms of the pairing
given in (2.5) will be important. To derive this representation let us split gL
into several parts. We have

d

dt |t=0
hΛ(PLt ν|µ) =

∑
ωΛ

ν(L1ωΛ
) log ν(ωΛ)−

∑
ωΛ

ν(L1ωΛ
) logµ(ωΛ). (2.2)

By properties of the relative entropy density, namely Lemma 15.28 in [15] and
the Gibbsianness of the measures involved we can for the r.h.s. of (2.2) also
consider ∑

ωΛ

ν(L1ωΛ
)HΛ(ωΛξΛc)−

∑
ωΛ

ν(L1ωΛ
)Hν

Λ(ωΛξΛc) (2.3)

and the error is of boundary order. Here H and Hν are the Hamiltonians corre-
sponding to Φ and Φν and ξ is an arbitrary but fixed boundary condition. Let
us start by considering the infinite-volume limit of the first summand in (2.3).
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We show that for a general translation-invariant IPS L obeying welldefinedness
conditions as in [32] and for Λ ↑ Zd we have

| 1

|Λ|
∑
ωΛ

ν(L1ωΛ)HΛ(ωΛξΛc)− 〈ν,Φ〉L| → 0 (2.4)

where

〈ν,Φ〉L :=

∫
ν(dη)

∑
∆30

∫
c∆(η, dζ∆)

1

|∆|
∑

A∩∆ 6=∅

[ΦA(ζ∆η∆c)− ΦA(η)]. (2.5)

Notice that 〈ν,Φ〉L becomes ν(LH0) if the rates are just defined for single-site
jumps. In order to prove (2.4) let us write

1

|Λ|
∑
ωΛ

ν(L1ωΛ
)HΛ(ωΛξΛc)

=
1

|Λ|

∫
ν(dη)

∑
∆∩Λ6=∅

∫
c∆(η, dζ∆)

∑
A∩Λ6=∅

[ΦA(ζ∆∩ΛηΛ\∆ξΛc)− ΦA(ηΛξΛc)]

=
1

|Λ|

∫
ν(dη)

∑
∆⊂Λ

∫
c∆(η, dζ∆)

∑
A∩Λ6=∅

[ΦA(ζ∆ηΛ\∆ξΛc)− ΦA(ηΛξΛc)]

+
1

|Λ|

∫
ν(dη)

∑
∆∩Λ6=∅,∆ 6⊂Λ

∫
c∆(η, dζ∆)

×
∑

A∩Λ6=∅

[ΦA(ζ∆∩ΛηΛ\∆ξΛc)− ΦA(ηΛξΛc)]

=: I + II.

On the other hand, by translation invariance the pairing can be written as

〈ν,Φ〉L =
1

|Λ|
∑
i∈Λ

∫
ν(dη)

∑
∆3i

∫
1

|∆|
c∆(η, dζ∆)

∑
A∩∆6=∅

[ΦA(ζ∆η∆c)− ΦA(η)]

=
1

|Λ|
∑
i∈Λ

∫
ν(dη)

∑
∆3i,∆⊂Λ

∫
1

|∆|
c∆(η, dζ∆)

×
∑

A∩∆ 6=∅

[ΦA(ζ∆η∆c)− ΦA(η)]

+
1

|Λ|
∑
i∈Λ

∫
ν(dη)

∑
∆3i,∆ 6⊂Λ

∫
1

|∆|
c∆(η, dζ∆)

×
∑

A∩∆ 6=∅

[ΦA(ζ∆η∆c)− ΦA(η)]
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=
1

|Λ|

∫
ν(dη)

∑
∆⊂Λ

∫
c∆(η, dζ∆)

∑
A∩∆ 6=∅

[ΦA(ζ∆η∆c)− ΦA(η)]

+
1

|Λ|
∑
i∈Λ

∫
ν(dη)

∑
∆3i,∆ 6⊂Λ

∫
1

|∆|
c∆(η, dζ∆)

×
∑

A∩∆ 6=∅

[ΦA(ζ∆η∆c)− ΦA(η)]

=: III + IV.

Defining c∆ := supη c∆(η, {1, . . . , q}∆), for the bulk term I − III we have the
following estimate

|I − III| =
∣∣∣∣ 1

|Λ|

∫
ν(dη)

∑
∆⊂Λ

∫
c∆(η, dζ∆)

×
∑

A∩∆ 6=∅,A6⊂Λ

[ΦA(ζ∆η∆c)− ΦA(η)− ΦA(ζ∆ηΛ\∆ξΛc) + ΦA(ηΛξΛc)]

∣∣∣∣
≤ 4

|Λ|
∑
∆⊂Λ

c∆
∑

A∩∆ 6=∅,A6⊂Λ

‖ΦA‖

≤ 4

|Λ|
∑
i∈Λ

∑
∆3i,∆⊂Λ

1

|∆|
c∆
∑
j∈∆

∑
A3j,A 6⊂Λ

‖ΦA‖

≤ 4

|Λ|
∑
i∈Λ

∑
∆3i,∆⊂Λ

c∆ sup
j∈∆

∑
A3j,A 6⊂Λ

‖ΦA‖

≤ 4

|Λ|
∑
i∈Λ

∑
∆3i,∆ 6⊂Γ+i

c∆ sup
j∈∆

∑
A3j
‖ΦA‖

+
4

|Λ|
∑
i∈Λ

∑
∆3i,∆⊂Γ+i

c∆ sup
j∈∆

∑
A3j,A 6⊂Λ

‖ΦA‖

≤ 4‖Φ‖
∑

∆30,∆ 6⊂Γ

c∆ +
4

|Λ|
∑

i∈Λ,Ω+i⊂Λ

∑
∆3i,∆⊂Γ+i

c∆ sup
j∈∆

∑
A3j,A 6⊂Ω+i

‖ΦA‖

+
4

|Λ|
∑

i∈Λ,Ω+i 6⊂Λ

∑
∆3i,∆⊂Γ+i

c∆ sup
j∈∆

∑
A3j
‖ΦA‖

≤ 4‖Φ‖
∑

∆30,∆ 6⊂Γ

c∆ + 4
∑

∆30,∆⊂Γ

c∆ sup
j∈Γ

∑
A3j,A 6⊂Ω

‖ΦA‖

+ 4‖Φ‖
∑

∆30,∆⊂Γ

c∆|{i ∈ Λ : Ω + i 6⊂ Λ}| (2.6)

which is true for any finite set of sites Γ and Ω. By the summability assumption∑
∆30 c∆ < ∞ (see (3.3) in [32]) the volume Γ can be picked in such a way
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that the first summand is arbitrarily small. Now Ω can be chosen such that the
second summand becomes also small. By letting Λ ↑ Zd, the third summand of
(2.6) goes to zero.

Finally we need to show, that the error terms II and IV also go to zero in
the infinite-volume limit.

II =
1

|Λ|
∑
i∈Λ

∑
∆3i,∆ 6⊂Λ

∫
ν(dη)

∫
1

|∆ ∩ Λ|
c∆(η, dζ∆)

×
∑

A∩(∆∩Λ)6=∅

[ΦA(ηΛ\∆ζ∆\ΛcξΛc)− ΦA(ηΛξΛc)]

≤ 2
1

|Λ|
∑
i∈Λ

∑
∆3i,∆ 6⊂Λ

c∆ sup
i∈∆

∑
A3i
‖ΦA‖ = 2

∑
A30

‖ΦA‖
1

|Λ|
∑
i∈Λ

∑
∆3i,∆ 6⊂Λ

c∆

IV =
1

|Λ|
∑
i∈Λ

∑
∆3i,∆ 6⊂Λ

∫
ν(dη)

∫
1

|∆|
c∆(η, dζ∆)

∑
A∩∆ 6=∅

[ΦA(ζ∆η∆c)− ΦA(η)]

≤ 2
∑
A30

‖ΦA‖
1

|Λ|
∑
i∈Λ

∑
∆3i,∆ 6⊂Λ

c∆

In both cases, again by the final part of the proof of Theorem 15.23 in [15], one
verifies convergence to zero for Λ ↑ Zd.

As for the second summand in (2.3) the exact same arguments apply and
hence we can write

gL(ν|µ) = 〈ν,Φ〉L − 〈ν,Φν〉L. (2.7)

The mapping Φ 7→ 〈ν,Φ〉L is linear. It is also bounded since

|〈ν,Φ〉L| ≤ 2‖Φ‖0
∑
∆30

c∆ ≤ 2‖Φ‖
∑
∆30

c∆

which is a finite number by assumption (see [32] assumption 3.3). In particular
it is Lipschitz continuous with Lipschitz constant 2

∑
∆30 c∆. The mapping

ν 7→ 〈ν,Φ〉L is weakly continuous if

η 7→
∑
∆30

1

|∆|

∫
c∆(η, dζ∆)[H∆(ζ∆η∆c)−H∆(η)] =: FL,Φ(η)

is continuous. To see that this is indeed the case, notice that for all finite ∆̄ ⊂ Zd
the map

η 7→
∑

∆30,∆⊂∆̄

1

|∆|

∫
c∆(η, dζ∆)[H∆(ζ∆η∆c)−H∆(η)]
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is continuous as a finite sum of continuous function. Further this function is
convergent as ∆̄ ↑ Zd uniformly in η since

sup
η

∣∣ ∑
∆30,∆⊂∆̄

1

|∆|

∫
c∆(η, dζ∆)[H∆(ζ∆η∆c)−H∆(η)]− FL,Φ(η)

∣∣
= sup

η

∣∣ ∑
∆30,∆ 6⊂∆̄

1

|∆|

∫
c∆(η, dζ∆)[H∆(ζ∆η∆c)−H∆(η)]

∣∣
≤ 2‖Φ‖

∑
∆30,∆ 6⊂∆̄

c∆ → 0.

In particular the mapping (ν,Φ) 7→ 〈ν,Φ〉L is jointly continuous with respect to
the weak topology of measures and the ‖ · ‖-topology on the Banach space of
potentials. This finishes the proof. 2

Remark. Notice that in the expected value 〈ν,Φν〉L the behavior of the potential
for atypical configurations w.r.t. the measure is suppressed. This suggests that
the existence of a uniformly convergent potential could be relaxed. In this way
a weakening of the notion of a Gibbsian trajectory may do the job.

2.2. A representation of continuous-time entropy decay and more
general continuity conditions

There are numerous examples of IPS with trajectories that show non-Gibb-
sian behavior [8, 10, 12–14, 19, 28, 30, 31]. One very nice example is the infinite-
temperature Ising dynamics investigated in [7]. Here of course the ω-limit mea-
sure of any trajectory is the equidistribution. In this section we generalize
Theorem 2.2 to not exclude the possibility of non-Gibbsian measures in trajec-
tories of general IPS. We start with a representation of the entropy loss for IPS
similar to (2.7). Right away we can write

gL(ν|µ) = gL(ν) + 〈ν,Φ〉L (2.8)

where Φ is the potential for the L-invariant Gibbs measure µ and

gL(ν) := lim
Λ↑Zd

1

|Λ|
∑
ωΛ

ν(L1ωΛ
) log ν(ωΛ).

Let us express gL(ν) as a single-site density similar to −〈ν,Φν〉L but now for
probability measures ν that have the much weaker property of being non-null
instead ob being Gibbs measures.

Definition 2.1. We call a random field ν non-null if there exists a number δ > 0
and a version of the single-site conditional probabilities such that δ ≤ ν(η0|η0c)
for ν-a.a. η.
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Examples: 1. Gibbs measures for absolutely summable potentials as well as
almost Gibbsian measures as defined for example in [9, 36] are non-null.

2. Weakly Gibbsian measures in the sense of the definitions discussed in
[9,29,36] (where the potentials only have to be absolutely convergent pointwise
for a set of boundary conditions with full measure) are not necessarily non-null.
The same holds for the class of intuitively weakly Gibbs measures as defined for
example in [11].

3. Consider the so-called weakly dependent measures as defined in [33, 40],
these are slightly less general measures in the class of asymptotically decoupled
measures. Weakly dependent measures have the defining property that there
exists a number α(Λ) such that limΛ↑Zd α(Λ)/|Λ| = 0 and

e−α(Λ)ν(A)ν(B) ≤ ν(A ∩B) ≤ eα(Λ)ν(A)ν(B) (2.9)

for all measurable sets A and B where A depends only on sites in Λ and B
depends only on sites in Λc. If ν is a weakly dependent random field on Zd with
finite local state space which is also translation invariant, then ν is non-null.
Indeed we have for the ν-a.e. uniquely defined regular conditional probabili-
ties e−α(0)ν(η0) ≤ ν(η0|η0c) and by the translation invariance we can define
e−α(0) infη0:ν(η0) 6=0 ν(η0) =: δ > 0.

4. Consider trajectories from the infinite-temperature Ising dynamics inves-
tigated in [7] where νt(ηΛ) =

∫
ν0(dσ)

∏
i∈Λ Poist(σi → ηi). Clearly νt(η0|η0c) >

(1− e−2t)/2.

5. Any IPS dynamics with sitewise independent jumps on a finite local state
space, where the intensity matrix is irreducible and non-null.

Proposition 2.1. Let ν be a translation-invariant and non-null probability
measure and L a well-defined translation-invariant IPS generator (in the sense
of [32]), then

gL(ν) =

∫
ν(dη)

∑
∆30

∫
c(η, dξ∆)

1

|∆|
log

ν(ξ∆|η∆c)

ν(η∆|η∆c)
. (2.10)

Notice that the r.h.s. of (2.10) exists since∫
ν(dη)

∑
∆30

∫
c(η, dξ∆)

1

|∆|
| log

ν(ξ∆|η∆c)

ν(η∆|η∆c)
| ≤

∑
∆30

c∆
1

|∆|
log

1

infν-a.a η ν(η∆|η∆c)

≤ log
1

δ

∑
∆30

c∆ <∞
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where we used ν(η∆|η∆c) ≥ δ|∆| which can be verified using the chain rule
for conditional measures (which means writing a quotient of conditional prob-
abilities as a product of single site probabilities). Notice also, by the non-
positivity of (2.8) the r.h.s. of (2.10) is an element of (−∞,−〈ν,Φ〉L] where
−〈ν,Φ〉L ≤ 2‖Φ‖

∑
∆30 c∆ < ∞ and Φ is the potential for the L-invariant

Gibbs measure µ.

Proof of Proposition 2.1. Before taking the infinite-volume limit we have

1

|Λ|
∑
ωΛ

ν(L1ωΛ
) log ν(ωΛ)

=
1

|Λ|
∑
ωΛ

∫
ν(dη)

∑
∆∩Λ6=∅

∫
c(η, dξ∆)1ωΛ

(η) log
ν(ωΛ\∆ξ∆∩Λ)

ν(ωΛ)

=
1

|Λ|

∫
ν(dη)

∑
∆∩Λ6=∅

∫
c(η, dξ∆) log

ν(ξ∆∩Λ|ηΛ\∆)

ν(η∆∩Λ|ηΛ\∆)

=
1

|Λ|
∑
i∈Λ

∫
ν(dη)

∑
∆3i

∫
1

|∆|
c(η, dξ∆) log

ν(ξ∆∩Λ|ηΛ\∆)

ν(η∆∩Λ|ηΛ\∆)
.

On the other hand by translation-invariance the r.h.s. of (2.10) can be written
as

1

|Λ|
∑
i∈Λ

∫
ν(dη)

∑
∆3i

∫
1

|∆|
c(η, dξ∆) log

ν(ξ∆|η∆c)

ν(η∆|η∆c)
=: GL(ν).

Thus the finite-volume difference can be expressed as

GL(ν)− 1

|Λ|
∑
ωΛ

ν(L1ωΛ) log ν(1ωΛ)

=
1

|Λ|
∑
i∈Λ

∑
∆3i

1

|∆|

∫
ν(dη)

∫
c(η, dξ∆)[log

ν(ξ∆|η∆c)

ν(η∆|η∆c)
− log

ν(ξ∆∩Λ|ηΛ\∆)

ν(η∆∩Λ|ηΛ\∆)
].

(2.11)

By the martingale convergence theorem we have for all ξ∆ and cofinal increasing
sequences of finite volumes Λ ⊃ ∆

lim
Λ↑Zd

ν(ξ∆|ηΛ\∆) = ν(ξ∆|η∆c)

for ν-a.a. η and in L1. Hence for fixed finite ∆ ⊂ Zd and Λ ⊃ ∆ by the
non-nullness condition∣∣∣∫ ν(dη)

∫
c(η, dξ∆) log

ν(ξ∆|ηΛ\∆)

ν(ξ∆|η∆c)

∣∣∣
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≤
∫
ν(dη)

∫
c(η, dξ∆)

|ν(ξ∆|ηΛ\∆)− ν(ξ∆|η∆c)|
min{ν(ξ∆|η∆c), ν(ξ∆|ηΛ\∆)}

≤ 1

δ|∆|
sup
η̃

∫
c(η̃, dξ∆)

∫
ν(dη)|ν(ξ∆|ηΛ\∆)− ν(ξ∆|η∆c)|

≤ c∆
δ|∆|

max
ξ∆

∫
ν(dη)|ν(ξ∆|ηΛ\∆)− ν(ξ∆|η∆c)|

and hence by the martingale convergence this goes to zero in the infinite-volume
limit. For the second summand in (2.11) the same arguments apply and hence
for all ∆ we have∫

ν(dη)

∫
c(η, dξ∆)[log

ν(ξ∆|η∆c)

ν(ξ∆∩Λ|ηΛ\∆)
− log

ν(η∆|η∆c)

ν(η∆∩Λ|ηΛ\∆)
]

Λ↑Zd

−−−→ 0. (2.12)

For any finite volumes Γ and Ω we can split the sum in (2.11) and write

1

|Λ|
∑
i∈Λ

∑
∆3i

1

|∆|

∫
ν(dη)

∫
c(η, dξ∆)

[
log

ν(ξ∆|η∆c)

ν(ξ∆∩Λ|ηΛ\∆)
− log

ν(η∆|η∆c)

ν(η∆∩Λ|ηΛ\∆)

]
=

1

|Λ|
∑

i∈Λ:Γ+i⊂Λ

∑
∆3i,∆⊂Ω+i

1

|∆|

×
∫
ν(dη)

∫
c(η, dξ∆)

[
log

ν(ξ∆|η∆c)

ν(ξ∆∩Λ|ηΛ\∆)
− log

ν(η∆|η∆c)

ν(η∆∩Λ|ηΛ\∆)

]
+

1

|Λ|
∑

i∈Λ:Γ+i⊂Λ

∑
∆3i,∆ 6⊂Ω+i

1

|∆|

×
∫
ν(dη)

∫
c(η, dξ∆)

[
log

ν(ξ∆|η∆c)

ν(ξ∆∩Λ|ηΛ\∆)
− log

ν(η∆|η∆c)

ν(η∆∩Λ|ηΛ\∆)

]
+

1

|Λ|
∑

i∈Λ:Γ+i 6⊂Λ

∑
∆3i

1

|∆|

×
∫
ν(dη)

∫
c(η, dξ∆)

[
log

ν(ξ∆|η∆c)

ν(ξ∆∩Λ|ηΛ\∆)
− log

ν(η∆|η∆c)

ν(η∆∩Λ|ηΛ\∆)

]
=: I + II + III.

For the boundary term III we have

|III| ≤ 1

|Λ|
∑

i∈Λ:Γ+i 6⊂Λ

log
1

δ

∑
∆30

c∆
|∆ ∩ Λ|+ |∆|

|∆|

≤ #{i ∈ Λ : Γ + i 6⊂ Λ}
|Λ|

log
1

δ2

∑
∆30

c∆
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which goes to zero for Λ ↑ Zd. For the error term arising from the truncation
of the rates represented by II, pick Ω such that

∑
∆30,∆ 6⊂Ω c∆ < ε. As a

consequence we have

|II| ≤ log
1

δ2

∑
∆30,∆ 6⊂Ω

c∆ < log
1

δ2
ε

by the same estimate as for III. Finally for the bulk term I we can pick Γ(Ω)
such that in the martingale convergence (2.12) we have

sup
∆30,∆⊂Ω

∣∣∣∣∫ ν(dη)

∫
c(η, dξ∆)

[
log

ν(ξ∆|η∆c)

ν(ξ∆∩Λ|ηΛ\∆)
− log

ν(η∆|η∆c)

ν(η∆∩Λ|ηΛ\∆)

]∣∣∣∣ < ε

for all Γ(Ω)⊂Λ− i. Hence

I =
1

|Λ|
∑

i∈Λ:Γ(Ω)⊂Λ−i

∑
∆30,∆⊂Ω

1

|∆|

∫
ν(dη)

∫
c(η, dξ∆)

×
[
log

ν(ξ∆|η∆c)

ν(ξ∆∩Λ−i|ηΛ−i\∆)
− log

ν(η∆|η∆c)

ν(η∆∩Λ−i|ηΛ−i\∆)

]
≤ ε

∑
∆30,∆⊂Ω

1

|∆|
= Const ε.

This finishes the proof. 2

We know that with limk→∞ νtk = ν∗ weakly it follows

−〈ν∗,Φ〉L = lim
k→∞

gL(νtk)

by the continuity of 〈·,Φ〉L. By Condition 2.1 if ν∗ 6∈ G(γΦ) we have

−〈ν∗,Φ〉L > gL(ν∗).

Hence, in order to have the continuity result, it would be sufficient that

lim
k→∞

gL(νtk) ≤ gL(ν∗) (2.13)

which is upper semicontinuity of gL(·) along the trajectory. Of course this semi-
continuity may very well hold under less restrictive assumptions as in Theorem
2.2 where we stipulate uniform Gibbsianness of the trajectory.

For example in a situation where the potentials Φνtk still exist (as elements
of the Banach space with norm ‖ · ‖) but fail to be uniformly bounded, the
semicontinuity along a weakly convergent trajectory is determined by the semi-
continuity of the function ν 7→ 〈ν,Φν〉L. Uniform boundedness of the Φν ’s is
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just a natural way to ensure continuity, but (semi-)continuity may hold even
beyond such a requirement.

As another example take the infinite-temperature Glauber dynamics applied
to an initial low temperature zero magnetic field Ising state in dimensions d ≥ 2,
investigated in [7]. This model shows provably non-Gibbsianness for sufficiently
large times, without recovery of Gibbsianness along the trajectory. Still the
relative entropy of the time evolved measure relative to the independent mea-
sure goes to zero, and the measure converges to the independent measure by
elementary computations. For illustration let us use the representation from the
proposition above. We have for any time-evolved starting measure νt

gL(νt) =

∫
νt(dη) log

νt(η
0
0 |η0c)

νt(η0|η0c)

where νt(η
0
0 |η0c)/νt(η0|η0c) is bounded from above by (1 + e−2t)/(1− e−2t) and

from below by (1− e−2t)/(1 + e−2t) and hence∫
νt(dη) log

νt(η
0
0 |η0c)

νt(η0|η0c)
→ 0

as t ↑ ∞. But this is continuity of gL at the equidistribution along the trajec-
tory since the unique limiting measure is the equidistribution where of course
gL(eq) = 0.

In general it would be nice to find conditions on a weakly convergent se-
quence of measures limn↑∞ νn = ν∗ such that gL(νn) is upper semicontinuous.
In the following theorem we give conditions on the finite-volume conditional
probabilities of the convergent sequence of measures such that gL is continu-
ous. In particular, many cases of site-independent jump-processes satisfy these
conditions.

Theorem 2.3. Assume Condition 2.1 holds with Gibbs measure µ for γΦ. Fur-
ther assume that

1. The sequence (νtn)n∈N of translation-invariant measures, propagated by
some well-defined IPS L, converges weakly to ν∗ as tn ↑ ∞,

2. For all n ∈ N, νtn is non-null with uniform constant δ > 0 and

3. The martingale convergence theorem for the single-site conditional prob-
abilities holds uniformly in n ∈ N, more precisely for all ξ0 ∈ {1, . . . , q}
we have

lim
Λ↑Zd

lim sup
n↑∞

∫
νtn(dη)|νtn(ξ0|ηΛ\0)− νtn(ξ0|η0c)| = 0. (2.14)
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Then ν∗ is Gibbs for the same potential as µ.

Notice that the convergence

lim
Λ↑Zd

∫
νtn(dη)|νtn(ξ0|ηΛ\0)− νtn(ξ0|η0c)| = 0

always holds by the martingale convergence theorem since conditional probabil-
ities are uniformly integrable. Assumption three asks for the approach to zero
to be uniform over the sequence of measures. Let us check some examples:

Examples: 1. If νn ∈ G(Φn) is a weakly convergent sequence of Gibbs
measure for a sequence of potentials with uniform bound then∫

νn(dη)|νn(ξ0|ηΛ\0)− νn(ξ0|η0c)|

=

∫
νn(dη)

∫
νn(dσ)|νn(ξ0|ηΛ\0σΛc)− νn(ξ0|η0c)|νn(ηΛ\0|σΛc)∫

νn(dσ)νn(ηΛ\0|σΛc)

≤ Const
∑

A30,A6⊂Λ

‖ΦnA‖

where we used |ex−ey| ≤ |x−y|emax{|x|,|y|}. By the convergence of the sequence
of potentials (see step one in the proof of Theorem 2.2) and the uniform bound
there exists a finite volume Λ such that supn∈N

∑
A30,A 6⊂Λ ‖ΦnA‖ < ε. The

non-nullness requirement is also satisfied by the uniform boundedness of the
potentials.

2. For the infinite-temperature Glauber dynamics from [7] as mentioned
above we have the non-nullness bound (1−exp{−2tn})/2 which can be bounded
tn-independently for tn ≥ T . Further∫

νtn(dη)|νtn(ξ0|ηΛ\0)− νtn(ξ0|η0c)| ≤ exp{−2tn} (2.15)

and hence there exists a finite volume Λ such that (2.15) becomes small uni-
formly in tn.

3. In order to move at least one step away from independent spin-flip dynam-
ics to spatially dependent IPS consider the high-temperature spin-flip dynamics
from [7], Section 6, started either in another high-temperature Gibbs measure
or in the low-non-zero-temperature d-dimensional Ising model. From [35] we
learn that

νt(η0|η0c) =
∑

σ0=+,−

∫
ν0(dσ)Zt0(σ0c , η0c)−1 exp{−Ht

0(σ0σ0c , η0η0c)}
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where Ht is a time-dependent Hamiltonian for the joint two-step distribution
ν0(dσ)St(σ, dη) and Zt the corresponding normalization. This Hamiltonian
has nice locality properties collected in Theorem 6.3 in [7]. In particular it
is bounded uniformly also in t (see formula 6.7 in [7]) and hence νt is non-
null uniformly in t. The uniform martingale convergence can be verified using
formula 6.8 in [7].

The uniform L1-convergence of the single-site conditional probabilities (2.14)
together with the non-nullness assumption implies the same convergence to hold
for all finite-volume conditional probabilities. This is the statement of the fol-
lowing lemma which we use in the proof of Theorem 2.3.

Lemma 2.3. Assume conditions 1,2 and 3 of Theorem 2.3 to hold, then

lim
Λ↑Zd

lim sup
n↑∞

∫
νtn(dη)|νtn(ξ∆|ηΛ\∆)− νtn(ξ∆|η∆c)| = 0

for any finite-volume configuration ξ∆.

Proof. We use the fact that finite-∆ conditional probabilities can be expressed
by single-site conditional probabilities (compare Theorem 1.33 of [15]) which
allows us to get uniform convergence for finite ∆ from the single-site condition.
More precisely, let us begin with two sites ∆ = {1, 2}. We have that the two-site
conditional probabilities can be expressed via one-site conditional probabilities
by use of the identity

νtn(ξ1ξ2|ηΛ\{1,2}) = Fξ1ξ2

((
νtn(σ1|σ2ηΛ\{1,2}

)
σ1,σ2∈{1,...,q}2

)
where F is a function from the set of {1, . . . , q} × {1, . . . , q} matrices given by

Fξ1ξ2

((
aσ1,σ2

)
σ1,σ2∈{1,...,q}2

)
:=

aξ1ξ2∑
σ1∈{1,...,q} aσ1,ξ2/aξ2,σ1

.

By the uniform non-nullness hypothesis the matrix elements are uniformly
bounded against zero by δ > 0 and thus F is uniformly continuous on the
set of such matrices. Using the same function we may also write

νtn(ξ1ξ2|η{1,2}c) = Fξ1ξ2

((
νtn(σ1|σ2η{1,2}c

)
σ1,σ2∈{1,...,q}2

)
.

Hence, for any ε > 0 there exists a ρ > 0 such that∑
σ1,σ2∈{1,...,q}2

|νtn(σ1|σ2η{1,2}c)− νtn(σ1|σ2ηΛ\{1,2})| ≤ ρ (2.16)
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implies that |νtn(ξ1ξ2|ηΛ\{1,2}) − νtn(ξ1ξ2|η{1,2}c)| ≤ ε. From this follows that
the single-site condition with one fixed spin-value in the conditioning of the form

lim
Λ↑Zd

lim sup
n↑∞

∫
νtn(dη)|νtn(σ1|σ2η{1,2}c)− νtn(σ1|σ2ηΛ\{1,2})| = 0 (2.17)

for all σ1, σ2 implies the two-site condition

lim
Λ↑Zd

lim sup
n↑∞

∫
νtn(dη)|νtn(ξ1ξ2|η{1,2}c)− νtn(ξ1ξ2|ηΛ\{1,2})| = 0

for all ξ1, ξ2. To see this write the last integrand as a difference of the function
F at the corresponding arguments and decompose the range of integration over
the η-variable into the set where the condition (2.16) holds, and the complement
of this set.

Further note that the above single-site condition (2.17) itself follows from
our assumption (2.14)

lim
Λ↑Zd

lim sup
n↑∞

∫
νtn(dη)|νtn(σ1|η{1}c)− νtn(σ1|ηΛ\{1})| = 0

estimating the integrand in (2.17) by

|νtn(σ1|σ2η{1,2}c)− νtn(σ1|σ2ηΛ\{1,2})|

≤ 1

νtn(σ2|η{2}c)

q∑
η2=1

νtn(η2|η{2}c)
∣∣νtn(σ1|η2η{1,2}c)− νtn(σ1|η2ηΛ\{1,2})

∣∣
and using for the first term on the r.h.s. the uniform non-nullness bound δ.

The case of general ∆ follows from induction using a function analogous to
the above F to relate conditional probabilities in ∆ to those in ∆ \ {i} and the
singleton {i}. 2

Proof of Theorem 2.3. We have for the relative entropy loss gL(νtn |µ) = gL(νtn)
+〈νtn ,Φ〉L and need to show lim supn↑∞ |gL(νtn |µ) − gL(ν∗|µ)| = 0 since then

by Condition 2.1 ν∗ ∈ G(γΦ). The energy part 〈·,Φ〉L is continuous and poses
no problems. For the entropy part we can use the uniform non-nullness and
Proposition 2.1 to write

|gL(νtn)| =
∣∣∣∣∫ νtn(dη)

∑
∆30

∫
c(η, dξ∆)

1

|∆|
log

νtn(ξ∆|η∆c)

νtn(η∆|η∆c)

∣∣∣∣
≤ log

1

δ

∑
∆30

c∆ <∞.
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In order to truncate the (maybe infinite) sum, pick Γ such that

log
1

δ

∑
∆30,∆ 6⊂Γ

c∆ < ε/2

and Λ ⊃ Γ. Let us use the following short-hand notations

lΓn(ξ, η) := log
νtn(ξΓ|ηΓc)

νtn(ηΓ|ηΓc)
, lΓn,Λ(ξ, η) := log

νtn(ξΓ|ηΛ\Γ)

νtn(ηΓ|ηΛ\Γ)
,

lΓ(ξ, η) := log
ν∗(ξΓ|ηΓc)

ν∗(ηΓ|ηΓc)
, lΓΛ(ξ, η) := log

ν∗(ξΓ|ηΛ\Γ)

ν∗(ηΓ|ηΛ\Γ)
.

We can estimate the entropy difference

|gL(νtn)−gL(ν∗)|

≤ ε+

∣∣∣∣∫ ν∗(dη)
∑

∆30,∆⊂Γ

∫
c(η, dξ∆)

1

|∆|
[l∆(ξ, η)− l∆Λ (ξ, η) + l∆Λ (ξ, η)]

−
∫
νtn(dη)

∑
∆30,∆⊂Γ

∫
c(η, dξ∆)

1

|∆|

× [l∆n (ξ, η)− l∆n,Λ(ξ, η) + l∆n,Λ(ξ, η)− l∆Λ (ξ, η) + l∆Λ (ξ, η)]

∣∣∣∣
≤ ε+

∣∣∣∣∫ ν∗(dη)
∑

∆30,∆⊂Γ

∫
c(η, dξ∆)

1

|∆|
[l∆(ξ, η)− l∆Λ (ξ, η)]

∣∣∣∣
+

∑
∆30,∆⊂Γ

c∆
1

|∆|
‖l∆n,Λ − l∆Λ ‖∞

+

∣∣∣∣∫ [ν∗ − νtn ](dη)
∑

∆30,∆⊂Γ

∫
c(η, dξ∆)

1

|∆|
[l∆Λ (ξ, η)]

∣∣∣∣
+

∣∣∣∣∫ νtn(dη)
∑

∆30,∆⊂Γ

∫
c(η, dξ∆)

1

|∆|
[l∆n (ξ, η)− l∆n,Λ(ξ, η)]

∣∣∣∣
=: ε+A(Λ) +B(n,Λ) + C(n,Λ) +D(n,Λ).

All error terms become arbitrarily small. Indeed, for fixed Λ, lim sup
n↑∞

B(n,Λ) =

0 by the local convergence of the sequence of measures and the finiteness of
the local state space. The same holds for C(n,Λ) since the sum is finite and
l∆Λ are local and thus continuous functions. For A(Λ) we can use martingale
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convergence as in (2.12), more precisely we can estimate

A(Λ) ≤
∫
ν∗(dη)

∑
∆30,∆⊂Γ

∫
c(η, dξ∆)

1

|∆|

∣∣∣l∆(ξ, η)− l∆Λ (ξ, η)
∣∣∣

≤
∫
ν∗(dη)

∑
∆30,∆⊂Γ

∫
c(η, dξ∆)

1

|∆|

∣∣∣log
ν∗(ξ∆|η∆c)

ν∗(ξ∆|ηΛ\∆)

∣∣∣
+

∫
ν∗(dη)

∑
∆30,∆⊂Γ

∫
c(η, dξ∆)

1

|∆|

∣∣∣log
ν∗(η∆|η∆c)

ν∗(η∆|ηΛ\∆)

∣∣∣
≤

∑
∆30,∆⊂Γ

c∆
|∆|δ|∆|

max
ξ∆

∫
ν∗(dη)

∣∣∣ν∗(ξ∆|η∆c)− ν∗(ξ∆|ηΛ\∆)
∣∣∣

+
∑

∆30,∆⊂Γ

c∆
|∆|δ|∆|

max
η∆

∫
ν∗(dη)

∣∣∣ν∗(η∆|η∆c)− ν∗(η∆|ηΛ\∆)
∣∣∣

which goes to zero for Λ ↑ Zd. For D(n,Λ) we can use the same estimate as for
A(Λ) together with Lemma 2.3 and the fact that we can pick Λ large such that
lim supn↑∞D(n,Λ) becomes small. 2
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[25] B. Jahnel, C. Külske, E. Rudelli and J. Wegener (2014) Gibbsian and
non-Gibbsian properties of the generalized mean-field fuzzy Potts-model. Markov
Process. Relat. Fields 20 (4), 601–632.

[26] O.K. Kozlov (1974) Gibbs description of a system of random variables. Probl.
Inform. Trans. 10, 258–265.
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