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We study gradient models for spins taking values in the integers (or an
integer lattice), which interact via a general potential depending only on the
differences of the spin values at neighboring sites, located on a regular tree
with d + 1 neighbors. We first provide general conditions in terms of the
relevant p-norms of the associated transfer operator Q which ensure the ex-
istence of a countable family of proper Gibbs measures, describing local-
ization at different heights. Next we prove existence of delocalized gradient
Gibbs measures, under natural conditions on Q. We show that the two condi-
tions can be fulfilled at the same time, which then implies coexistence of both
types of measures for large classes of models including the SOS-model, and
heavy-tailed models arising for instance for potentials of logarithmic growth.

1. Introduction. Random fields with gradient interactions have been studied on graphs
with various geometries, foremost on the lattice, but also on different graphs, like infinite
trees [1, 3, 5, 8, 10, 14].

In the present paper we look at Z*-valued spin variables o, located on the vertices x of
a d-regular tree, where each site has d 4 1 neighbors, with gradient interaction given by an
even function V : Z¥ — R. The Hamiltonian of such a model becomes

Z V(ox —oy),

x~y

where the sum runs over pairs of nearest neighbors on the tree. We may assume without loss
that V (0) = 0. As there are no Gibbs measures on the line d = 1, we assume that d > 2, with
a particular interest in the case of large d 1 oo.

Our first aim is to prove existence and localization properties of corresponding Gibbs
measures, under minimal growth assumptions on the interaction. In concrete examples we
will be interested mainly in the case of local spin space dimension k = 1, but our method of
proof and our general estimates of Theorems 1 and 6 work equally well for the case of higher
k.

Gibbs measures on trees have been mostly studied for finite local spin spaces, including
the Ising model, the Potts models, and the discrete Widom—Rowlinson model. The translation
invariant (splitting) Gibbs measures can be described in terms of the roots of polynomials in
many such cases. Our present problem is more difficult as it is infinite-dimensional even for
the tree-automorphism invariant states, so we cannot hope for explicit solutions in the gen-
eral case. There may be no solutions at all, due to noncompactness of the local state space.
We will construct our measures via fixed points in suitable /”-balls in regimes of sufficiently
strong confinement, via a new contraction method. Some readers may feel reminded of Do-
brushin uniqueness which is a different contraction method (cp. [6] and Theorem 8.7 in [9])
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but this would work only in the additional presence of a confining single-site potential which
we don’t have, and prove uniqueness of the Gibbs measure. Dobrushin uniqueness makes no
assumptions on the structure of the underlying graph other than upper bounds on the number
of neighbors, but works only in regimes of weak interactions (small inverse temperatures) be-
tween the variables, showing near independence of variables at different sites. Our method is
based on the description of Gibbs measures on trees via the so-called boundary law equation
introduced by Zachary [19]. It works in suitable regimes of strong interactions (correspond-
ing to large inverse temperatures). Intuitively this means that the influence from the variables
at the neighbors to the variable at a given vertex needs to be strong enough to localize its
distribution also in infinite volume, for which large degrees d are beneficial. The method
yields an easy to handle model-independent criterion for existence of countably many dif-
ferent localized states (as there are countably many possible localization centers in the local
state space).

In the second main part we turn to the existence of delocalized gradient Gibbs measures.
Gradient Gibbs measures (GGM) play an important role in mathematical physics and prob-
ability in the description of interfaces [4, 8, 17, 18]. Gradient measures only describe incre-
ments, and do not carry information about the absolute height, as opposed to the proper Gibbs
measures. If they are delocalized it means that the gradient description is the only possible
one: In this case there is no proper Gibbs measure which would carry information also about
the absolute height, whose gradient distribution coincides with the delocalized gradient mea-
sure. In the present paper we will show that the existence problems for both fundamentally
different types of measures nevertheless allow for a unified treatment. For this we construct
a good set G4 with relevance for both problems, but where different norms have to be taken.
As a consequence of our approach, we obtain coexistence regions for both types of measures.

We will construct GGMs which depend on an internal parameter, the period g =
2,3,4,.... This provides us again, as in the case of proper Gibbs measures, with a count-
able family of measures, but for the GGMs this family is indexed by g. The reason for the
occurrence of the family of GGMs is much different than in the case of the proper Gibbs
measures, as GGMs for different g are structurally different (see Corollary 1).

On the other hand, we also provide examples for the surprising case where localized Gibbs
measures do exist, but (height period-q) delocalized gradient Gibbs measures cannot exist.
The construction of the latter involves nonsummable transfer operators on trees of sufficiently
large degrees.

1.1. Results. Itis convenient to describe the model equivalently in terms of the so-called
transfer operator Q which associates to an increment oy — 0oy = j € ZF along the oriented
edge (x, y) of the graph, the weight

0(j) = e BV

Clearly, logarithmic growth of V as a function of the increment then corresponds to polyno-
mial decay of Q.

1.1.1. Existence of localized Gibbs measures for gradient models. Main existence theo-
rem, possibly heavy-tailed transfer operators. As our first main general result, we prove in
Theorem 1 the existence of tree-automorphism invariant states concentrated around any given
i € Z¥, under the assumptions on the interaction which should be viewed as finiteness of the
d—gl-norm of Q, and smallness of its d + 1-norm on ZF \ {0}. More precisely, the existence
results hold whenever these two norms lie in a certain two-dimensional “good” set G4 which
depends only on the degree d of the tree. This allows for heavy-tailed Q, but includes also
cases of faster decay (e.g., SOS-model or the discrete Gaussian). Note that heavy-tailed O

trivially implies heavy-tailed single-site marginals for any Gibbs measure.
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As a further consequence of our method we also obtain the quantitative localization bounds
of Theorem 1 on the single-site marginal of the measure.

Existence of distinct localized Gibbs measures for Z,-clock models. With our method we
may also treat finite-spin Z; = {0, 1, ..., g — 1}-valued models with discrete rotation sym-
metry beyond the cases of explicitly solvable boundary law equations. This is relevant for
clock-models, but will also be relevant for Section 1.1.2. We prove the existence of ¢ distinct
ordered states, which are localized around a given spin value, together with quantitative con-
trol of the localization. This implies low-temperature ordering for general classes of models
(for which the Potts-model and the discrete rotator model with scalar-product interaction are
just special examples). The precise assumption on the interaction needed involves the analo-
gous pair of p-norms as for the Gibbs measures of the gradient models, but on the finite spin
space.

Ideas of proof. The method of proof for the gradient model is based on a study of Zachary’s
fixed point equation for boundary laws (which are positive measures on the single-spin space
ZK) in a suitable [P-space via a contraction argument. For each choice of spin value i €
7k we construct a boundary law solution on a suitable ball of boundary laws concentrated
around i. The optimal choice of the exponent p is determined by Zachary’s summability
condition (which is explained by the requirement to have summable single-site marginals
for the infinite-volume Gibbs measure corresponding to the boundary law). Given that, the
choice of the exponents of the two different Q-norms in the hypothesis of our theorem is again
optimal, and explained from Young’s convolution inequality which appears in the proof. We
do not need to assume convexity of the interaction. In this way we get nonuniqueness of
Gibbs measures via uniqueness of localized boundary law solutions in /”-balls. This general
setup turns out to be useful as it allows to approach also the existence problems for gradient
Gibbs measures below.

1.1.2. Existence of delocalized gradient Gibbs measures. Recall that a gradient specifi-
cation may admit gradient Gibbs measures even when it does not admit proper Gibbs mea-
sures. Examples of such gradient Gibbs measures for tree models described by Q have been
discussed and constructed in [15] and [10]. We consider gradient Gibbs measures which
can be constructed via g-height-periodic boundary laws for fixed height period g (see Sec-
tion 3.2). While some very specific small-g examples were already constructed in the case of
the SOS model in [10] via explicit solutions of polynomial equations, we are aiming here for
a general existence theory allowing also for arbitrarily large g.

Existence. In Theorem 3 we first provide a uniform-g existence result in terms of the 1-
norm of the transfer operator Q. In the second part we state that the very same condition of
Theorem 1 involving the good region G4 (under an additional summability assumption), also
ensures existence for large-enough periods g. A key idea of proof for this is to use continuity
of the existence criterion derived for the Gibbs measures at period g = co.

In this case we have found a coexistence region for localized Gibbs and delocalized gradi-
ent Gibbs measures. However, there is also another interesting regime for potentials of slow
growth, see Section 1.1.3: For large d the good region G; may extend into the region of
infinite 1-norm. If this is the case, our results imply that localized Gibbs measures exist, but
gradient Gibbs measures do not exist for any height-period g.

Localization vs. delocalization, two-layer construction of gradient measures. Theorem 4
explains the difference between proper localized Gibbs states, and the height-period g gradi-
ent Gibbs measures, via properties of both types of measures restricted to a semi-infinite path
on the tree. The corresponding random walk path localizes and has an invariant probability
distribution for the Gibbs measures, while the random walk delocalizes for the height-period
q gradient measures. In the context of these statements we also provide a new and useful view
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to the gradient Gibbs measures in terms of a two-layer hidden Markov model construction
which is very intuitive and interesting in itself.

Identifiability. We show under no further assumptions that different height-periods and dif-
ferent boundary law solutions (modulo height-shift) lead to different gradient Gibbs states,
using ergodicity. This extends previous partial identifiability results of [10] obtained by alge-
braic arguments.

1.1.3. Applications: Binary tree, large degree asymptotics, SOS-model, log-potential.
We discuss our general existence results of Theorem 1 and Theorem 3, in more detail for
the binary tree, and in the limit of large degrees d 1 co. On the binary tree we obtain an ex-
plicit form of the boundary curves of the good region G, ensuring existence of proper Gibbs
measure, see Figure 1 and Proposition 2.

For large degrees d, discussing the asymptotics of the region G,4, we show the existence
of localized states for 8 € (B(d), oo) with the model-independent form of the asymptotics
B(d) ~ % J 0 as d gets large, see Theorem 6. We also illustrate our general estimates with
the examples of two potentials, the SOS-model with potential

V(i) =1jl,
and the log-potential with
V(j)=1log(1 +1/1),

for various degrees d, for which we provide explicit numbers.

The paper is organized as follows. We present our results on Gibbs measures in Section 2,
on gradient Gibbs measures in Section 3, and discuss applications in Section 4. The proofs
are found in Section 5.

2. Existence of localized Gibbs measures.

2.1. Definitions. We consider a class of models with an integer-lattice 7K k > 1, as local
state space and the Cayley-tree 'Y = (V, L) of order d > 2 (i.e., the d-regular tree) as index
set and denote the configuration space (Z¥)" by Q.

More precisely, the Cayley tree I'? is an infinite tree, that is, a locally finite con-
nected graph without cycles, such that exactly d + 1 edges originate from each vertex.
Two vertices x,y € V are called nearest neighbours if there exists an edge [ € L con-
necting them. We will use the notation / = {x, y}. A collection of nearest neighbour pairs
{x,x1}, {x1, x2}, ..., {xn_1, y} is called a path from x to y. The distance d(x, y) on the Cay-
ley tree is the number of edges of the shortest path from x to y. In contrast to the set of
unoriented edges L we also consider the set of oriented edges L. An oriented edge pointing
from x to y is simply the pair (x, y) of vertices x, y € V. Furthermore, for any A C V we
define its outer boundary by

OA:={x¢ A:d(x,y)=1forsomey € A}.

Now assume that we have a nearest-neighbour interaction potential ¢ with corresponding
strictly positive transfer operator Q defined by

0p(¢) :=exp(—¢p(¢)) >0

for any edge b = {x, y} € L and ¢ € Z>.
The kernels of the Gibbsian specification (ya)accv then read

(1) yaloa =wp |w)=Za(wsn) ™" [] Qslwp).
PNA#D
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Hence the family (Qp)per is required to that for any finite subvolume A C V and any
configuration w € V the partition function Z (w) = Zx (w3 ) is a finite positive number (cp.
condition (3.1) in [19]).

In this paper we focus on the special case of tree-automorphism invariant symmetric gra-
dient interactions normalized at O, that is, for any edge b = {x, y} € L

Op(wy, wy) = Q(wy — wy) =exp(—BV (wx — wy)),

where the parameter 8 > 0 will be regarded as inverse temperature and V : Z¥ — [0, c0) is a
symmetric function with V (0) = 0.

DEFINITION 1. Let S =ZK, ZF\ {0}, Z, or Z, \ {0}.
For any 1 < p < oo consider the Banach space

1,(S) := {x eRS | [xllp.s:= (Z|x(j)|p>p < oo}.

jes

2.2. Well-definedness and the main result. Using this notation we are able to state our
first result, stating that finiteness of the %—norm of a transfer operator Q ensures well-
definedness of its asscociated Gibbsian specification.

LEMMA 1. If || Q] a5l 7k < 00 then the Gibbsian specification (1) is well defined, that

is, for any finite connected volume A C V and any boundary condition wya the partition
function Z 5 (wyp) is a finite number.

For any integer d > 2 define the good set

Ga:={(y,8) € (1,00) x (0, 00) | There exists an & > 0 such that

(2)
5+ yel <eand2dysi™! +2dsed < 1).

Using this notation, our main theorem reads as follows.

THEOREM 1. Fix any integer d > 2. For any strictly positive transfer operator Q with
00)=1sety:= ”Q”%’Zk and § := ||Q||d+1,zk\{o}-

If (y,8) € Gg then there exists a family of distinct tree-automorphism invariant Gibbs
measures (|4;);czx Which are equivalent under joint translation of the local spin spaces.

Moreover, the single-site marginal of each u; satisfies the following localization bounds:

(5 1—8e(y, 8)¢ )d+'<ui(60#i)<(8 1+ 8e(y, 8)? >d+1
1+ ye(y,8)d1 T pioo=i) ~ \ 1 —ye(y, 84! ’

where €(y, §) denotes the smallest positive solution to the equation
&= ysd + 4.
REMARK 1. Theorem 1 stays true if Z¥ is replaced by the ring Zg and Q is an even

function on Z,. Such models are called clock models (cp. [12, 16]) and Theorem 1 delivers
the existence of ordered phases in this case.
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2.3. Background on the relation between Gibbs measures and boundary laws. In this
subsection we summarize the key ingredient in constructing Gibbs measures to Markovian
specifications for tree-indexed models, the notion of a boundary law. The theory presented
goes back to Zachary [19].

DEFINITION 2. A family of functions {lxy}(x el with [, € [0, oo)Zk and [y # 0 is
called a boundary law for the transfer operators {Qbibe L if:

1. foreach (x, y) € L there exists a constant cxy > 0 such that the boundary law equation

(3) Lyy(wyx) = cxy 1_[ Z Qzx(wx, w)lx (w7)

2€3x\{y} w, €ZF

holds for every w, € Z* and
2. for any x € V the normalizability condition

) > (I X Qutonoitutwn) <o

Wy €TF “Z€IX w, €Tk

holds true.

Note that in [19] the functions I, are considered as equivalence classes of families of
functions, two functions being equivalent if and only if one is obtained by multiplying the
other one by a suitable edge-dependent positive constant. The more explicit definition above
is based on the notation used in [9]. Following this notation it is convenient to choose the
constants in such a way that the boundary law is normalized at 0, that is, I, (0) = 1 for all
(x,y) € L.

The following result of Zachary establishes a correspondence between the set of those
Gibbs measures which are also tree-indexed Markov chains (see Definition(12.2) in [9]) and
the set of normalizable boundary laws.

THEOREM 2 (Theorem 3.2 in [19]). Let (Qp)per be any family of transfer-operators
such that there is some ¢ € Q with Qy; jy(x,¢;j) > 0 forall {i, j} € L and any x € Zk.
Then for the Markov specification y associated to (Qp)per We have:

1. Each boundary law (lxy)(x’ el for (Qp)per defines a unique tree-indexed Markov
chain u € G(y) with marginals
(5) 1oavan = wavan) = (Za) "' ] bya(wy) [ Qoo

yeIA bNA£D

for any connected set A CC V where y € A, yp denotes the unique n.n. of y in A and Z
is the normalization constant which turns the r.h.s. into a probability measure.

2. Conversely, every tree-indexed Markov chain n € G(y) admits a representation of the
form (5) in terms of a boundary law (unique up to a constant positive factor).

2.4. Setup for the fixed-point method. Inthe case of tree-automorphism invariant gradient
interaction potentials the boundary law equation (3) simplifies to

(6) AO=c Y 0C¢—Hri,

jezk
where ¢ > 0 is any constant. A short calculation then shows that in this case A is normalizable
ifand only if A €/ a1 (ZF). The normalized homogeneous boundary law equation then reads

: A O
(7 A(i):<Q(l)+ZjeZk\{0}Q(l ])l)\.(])|>

1+ ez QUDIAGI
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fori € Zk \ {0} and A(0) = 1. Note that under the assumption || Q||; zx < oo equation (7) will
always have the trivial solution A = 1. This solution, however, is not an element of the space
I a1 (ZK), that is, will not lead to a finite measure.

Going over to the dth root, equation (7) is equivalent to

Q) + X jezjo) QG — NDIx(DI?
1+ ezmgoy QD Ix ()14

®) x(i) =

for i € Z* \ {0} and x(0) = 1.

Since a tree-automorphism invariant boundary law A = (A(i));cz« is normalizable if and
only if A €l a1 (ZF), the family x pointwisely given by x (i) := A(i )5 corresponds to a nor-
malizable boundary law if and only if x € I, 1(Z¥). We want to describe the set of solutions
to (8) by the set of fixed points to the operator T : [;1 (ZF \ {0} — lg41 (ZF \ {0}) given by

Q@) + X jezmjo) G — NIx()HI

9 T =
( ) (x)(l) 1+Zj€Zk\{0} Q(.])|x(])|d

in the subset
D :={x €ly1(ZF\ {0}) | x(i) = O for all i € Z¥\ {0}}.

Note that the condition x (i) > 0 for all i € ZF is automatically satisfied for any fixed-point of
T in lg1 (ZF\ {OD).

First we have to verify that 7' (/541 (Zk \{0}) Clg+1 (Zk \ {0}) that is, that T is indeed an
operator from the Banach space Iy 1(Z* \ {0}) into itself. This is ensured by the following
lemma.

LEMMA 2. Let || Q||% gk < 00. Then for any x € ld+1(Zk) we have

d
(10) ||T(x)”d+1’Zk\{()} = ||Q”d+1,Zk\{O} + “Q”%’Zk ”x”d—l—l,Zk\{O}

< Q.

2.5. A T-invariant set and Lipschitz-continuity. In this section we give a criterion based

on the %—norm and the d + 1-norm of a transfer operator Q ensuring that it is a contraction

mapping in a small neighborhood around zero. This will be a key ingredient in the proof of
Theorem 1 and explains the form of the good set.

PROPOSITION 1. Deﬁne Yy = || Q” %,Zk and § := ” Q”d+l,Zk\{O}'
Suppose that € > 0 satisfies the inequality

(11) s+yel <e.

Then, for the closed e-ball B;(0) C lg1 (ZK \ {0}) the following hold:

1. T(B,(0O)ND)C B, (0O)ND
2. Tip.)np is Lipschitz-continuous with respect to the d + 1-norm with constant

(12) L=2d(ye? ! +5¢9).
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3. Existence of delocalized gradient Gibbs measures. Existence of one Gibbs mea-
sure means that the Z or Z* symmetry is broken, so many Gibbs measures at different heights
also then exist. We have studied this question in the previous section. Gradient Gibbs mea-
sures never carry information about the heights, only about height differences, whether in the
localized or the delocalized regime. In the localized regime the expected height difference
between far-apart vertices remains uniformly bounded. In that case there are many different
possible expected heights, all compatible with the same gradient Gibbs measure. In delocal-
ized regimes (which we are studying in the present section) the height differences between
heights at far-apart vertices diverge. In this section we will describe a general existence the-
ory for g-periodic gradient Gibbs measures which are delocalized and structurally different
for different ¢g. The simplest example of this is the free state, corresponding to ¢ = 1. In the
free state all increment variables are i.i.d. with single-edge distribution given by normalizing
Q. For higher periods g the states become nontrivial, and can be understood via a two-layer
construction in which a g-state clock model appears as an internal building block, compare
also Remark 2 and Corollary 1. Explicit examples will be found for two specific models in
Section 4. All states we discuss are tree-automorphism invariant, and in particular have zero
tilt. Existence and properties of nontree automorphism invariant states, with or without tilt,
poses serious new challenges for future research beyond the present work.

3.1. Height-periodic boundary laws and their associated gradient Gibbs measures—
Preliminaries. In this section we restrict to the integers Z as local state space and deal
with the case of spatially homogeneous height-periodic boundary laws, that is, elements of
(0, 00)7 satisfying the boundary law equation (6) which are additionally periodic. For this,
we necessarily have to assume that Q € [1(Z). Writing Z; = {0, ..., g — 1} for the mod ¢
residue class ring, any g-periodic (¢ = 2, 3, ...) solution A, to the boundary law equation
(6) is obtained as a solution to the following ¢ — 1-dimensional system of equations:

Zk@Qﬂﬁjnﬂby _
= = s 1€ ,
Yiez, Qa(Drq() !

where Q (f) = Zlej Q) for all j_ € Zg and kq(f) = Ay (i) for any i € i. As a height-

periodic boundary law is not normalizable in the sense of Definition 2 there is no way of
constructing a Gibbs measure from it. However, it is still possible to assign a probability

a0 =

measure on the space of increments Z% which is a gradient Gibbs measure in the sense that
it obeys a DLR-equation with respect to the kernels (1). (cp. Thm. 4.1 in [15] and Thm. 3.8
in [10]).

First note that in the case of a g-periodic boundary law A, the function

QG — Drqg(j)
ZleZ Q(l - l))\q(l)
depends only on the increment i — j and the mod g value of j (or i equivalently) thus P,
can be considered as a real function P, on Z, x Z given by
Py, j—i):= P, j).

This means that it describes a g-periodic environment for a random walk. More precisely,
the following two-step procedure is done: First fix a path on the tree and perform a random
walk on Z; along the path, which will be referred to as the induced chain, or fuzzy chain with
transition matrix

P 7= [0,11; PG, J):=

. 2 . T . )
P Zg— [0,1]; PG, j—i):= Z_Pq(z,l),
lej—i
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that is,
Qq (i — j)rq())
Siez, Qqli — g ()
In the second step a random walk on the integer-valued gradient variables along the path is
performed conditional on the realization of the fuzzy chain.

Conditional on that the fuzzy chain has an increment s € Z, along an edge, the marginal
probability distribution of increments along this edge is the A,-independent measure on Z

o)
Q4(5)

Y riis
Pq(l,])=

(13) P2 15) =x(j€d)

3.2. A two-layer construction of gradient Gibbs measures. In this way we obtain the

following measure on the space of gradient configurations on the tree. Let @ denote the sta-
d+1

tionary distribution for the fuzzy chain given by a (i) = %, for i € Zy. Further consider

gl 44y
d
any vertex w on the Cayley tree and let Plf)'cs: denote the distribution of the tree-indexed fuzzy
chain (0} )xey on Z;/ with transition matrix Pq’ and conditioned on o], = 5. Then the measure

v*4 on the space of gradient configurations Z has finite-volume marginals given by

V(A =A)
_ g fe.
=Y a® Y P n) Tl pLGwyw ol —of)
(14) §ez, opE€L (x.y)eL.x,yeA
= 2 Pty [T #fGamloy—o)).
a/’\eZé\ (x,y)eL,x,yeA

where A C V is any finite set and w € A.

The measure P*¢' is exactly the distribution of the tree-indexed Markov chain on Z(‘I/
associated to the boundary law A, by the version of Theorem 2 for the finite local state space
7

q-

REMARK 2. Note that we obtain the gradient measure v*¢ by sampling first the hidden
fuzzy spin variables ¢’ and then the increment variables n according to (13), conditionally
independent on ¢’ over all edges. As both mechanisms are tree-automorphism invariant, also
the tree-automorphism invariance of the gradient measure is immediate.

REMARK 3. From full tree-automorphism invariance and symmetry of the underlying
potential it follows that the gradient Gibbs measure v*¢ has zero tilt, that is, E M, =0

for any (x, y) € L.

In the first theorem of this section we will give some criteria ensuring existence of height-
periodic boundary law solutions. Afterwards we will show that the associated gradient Gibbs
measures are distinct from the gradient spin projections of the localized Gibbs measures given
by Theorem 1.

3.3. Existence of gradient Gibbs measures. The existence criterion for a countable fam-
ily of gradient Gibbs measures indexed by g involves the same good set G4 as for the Gibbs
measures (see Theorem 1).
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THEOREM 3. Fix any integer d > 2. Let Q € [{(Z) be any strictly positive transfer oper-
ator with Q(0) = 1. Then the following hold true.

L If(1Ql1,z, 1 @ll1,z\{0}) € Ga then for any q > 2 there exist tree-auto-morphism invari-
ant GGMs coming from q-periodic boundary law solutions which are not equal to the free
state.

2. Further set Q(i) 1= SUp|j|>i| 0 (j) and assume that

d+1

(15) Z(Z Q(ij)) < 00.

i=1\j=1
If (ol a1l 7 | Qllat1,2\{0)) € G (the interior of the good set) then there exists a qo(Q, d)

such that for all g > qq there exist tree-automorphism invariant GGMs coming from q-
periodic boundary law solutions which are not equal to the free state.

REMARK 4. For the SOS-model Q (i) := exp(—p8li|), condition (15) is satisfied at any
B > 0. In the case of the logarithmic potential Q(i) := a Htl)ﬂ we have Q ¢ [1(Z) if B < 1.

On the other hand, for 8 > 1 even condition (15) is satisfied.

3.4. Localization vs. delocalization. Localized Gibbs measures and delocalized gradient
Gibbs measures can be distinguished by samples along paths, as the following theorem states.

THEOREM 4.  If A4 is a q-periodic boundary law solution for Q then the gradient Gibbs
measure v, associated to it via (14) is different from the projection of the localized Gibbs
measures given by Theorem 1. More precisely, the former one delocalizes in the sense that
via (W, =k) e 0 for any total increment W,, along a path of length n and any k € Z.

On the other hand, let v be the projection to the gradient space of any of the Gibbs mea-
sures whose existence is guaranteed by Theorem 1. Then v is localized in the sense that for
all k € Z the probability v(W, = k) has a strictly positive limit as n tends to infinity (see
(28)).

This shows that both types of measures behave fundamentally different.

3.5. Identifiability via boundary laws. Do different boundary laws really define different
gradient measures? The following theorem positively answers this question.

THEOREM 5. Let Q be any symmetric transfer operator for some gradient interaction
potential and let Ay, and )y, be two spatially homogeneous height-periodic boundary laws
for Q with minimal periods q1 and q», respectively. Then the following holds true for the
associated gradient Gibbs measures.

If v'ai = v*a2 then g = qo and there are some cyclic permutation p € Sq, and some
constant ¢ > 0 such that Ay, = chy, 0 p.

COROLLARY 1. Letq > 2 and Ay be some q-height-periodic boundary law for a transfer
operator Q. Let A9 C RY denote the g — 1-dimensional standard simplex and consider u, v €
A? as equivalent iff u = v o p for some cyclic permutation of coordinates p. Consider any
infinite path of edges by, by, . .. and the height-field along this path defined by prescribing a
fixed height at some vertex of the path. Then for any g € {2, 3, ...} the empirical distribution
of the mod-q projections of heights along the path almost surely converges to a deterministic
limit (az(0),...,05(q — 1)) € A4/ ~. The minimal period q of the underlying boundary
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FI1G. 1. The good set Gy embedded in the upper right quadrant of]Rz.

law can be recovered as the greatest common divisor of all g € {2, 3, ...} with the property

that the associated tentative boundary law 5»,; = (g (O)dd?, s ag(g — l)dd?) is indeed a
G-periodic boundary law for Q and v'i = v*a.

4. Applications. Theorems 1 and 3 state existence of (gradient) Gibbs measures if a
pair of certain p-norms of the transfer operator Q lies in the so called good set G4 (2). To
understand this good set better, we will look first at the extreme cases of the binary tree and
trees of large degrees, still for general potentials. Then, we will treat in more detail the SOS-
model (with exponentially fast decay of Q) and the log-potential (with polynomially slow
decay of Q) on general trees, where we discuss coexistence and noncoexistence of localized
Gibbs measures and delocalized gradient Gibbs measures.

4.1. Binary tree. In the case of the binary tree, the good set can be explicitly described
by the hypograph of a function pointwise given by a root of a polynomial equation of order
four. See Figure 1 for illustration.

PROPOSITION 2. Consider the binary tree. Then the good set G, C (1, 00) x (0, 00) is
bounded by the graph of the function § : (1, 00) — (0, 00) defined by

1 y3—1 1\3 1 1\3
8(7/):25 2 lt —<J/3+Z> —2)/—5 <y3+Z> -y
VO + i -y
3 —4
== 0 .
T (ry=)

REMARK 5. §(y) is the unique positive root to the equation
16y28% 4 24y38% 4 (16y° — 4y?)8 — 3y* = 0.

4.2. Large degree asymptotics. We have the following model-independent result for
large degrees d.

THEOREM 6. Let V be some symmetric gradient interaction potential for a 7ZF-valued
random field on the d-regular tree with V(0) =0 and v :=inf;czx\ 10y V(j) > 0. Let A > %
be any fixed number and set '

logd

=A .
Pra=Au"
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Model 00) ne 54()

, d+1 gy — 727 2 o,
SOS eXP(—,B|l|) tanh(T,B) d+1 (exp((d+l)ﬂ)7l )d'H
Log-potential - Qe(4fLp) — D Q@ (d + 1)p) — )T

oo 1

FIG. 2. The two models and their respective parameters. Here {(s) = 3721 75

tion.

denotes the Riemann zeta-func-

Assume that for the associated transfer operator Qg :=exp(—BV) we have || Qg, , | at1 gk <
oo for some d > 2. Then the following hold true.

1. There is a minimal degree dy > 2 such that for all d > dy there is a family of distinct
tree-automorphism invariant Gibbs measures (;);cyx for the transfer operator Qg at any
B=Baa.

2. In this range the measures |; satisfy the following concentration bounds:

(00 #£ i 1
i ( 0# ) < C—d_—>)000,
wi(op =1) d
where C > 0 is some constant.

The analogous large-degree existence results for the gradient Gibbs measures with local
state space Z can be derived under summability of O and condition (15).

4.3. Examples: SOS-model and log-potential. We illustrate the theory developed above
by two concrete examples with local state space Z for a range of finite degrees. In both cases,
the transfer operator (the potential respectively) is parametrized by the inverse temperature
B > 0. Hence the respective parameters y and § in Theorem 1 are both functions of 8 > 0
whose values are obtained by carrying out the corresponding series. For both models, the
values of the transfer operator 0 and the parameters y and § are given in Figure 2.

Inserting the functions y; and §4 into (11) and (12), that is, calculating both the size of the
minimal invariant ball and the value of the respective Lipschitz-constant as a function of 8,
numerical calculation with MATHEMATICA gives Figure 3 showing the infima of inverse
temperatures on which our method ensures the existence of an invariant ball with Lipschitz
constant smaller than one.

Let d > 2 and g > 2. Theorem 3 on the existence of (delocalized) gradient Gibbs mea-
sures and Theorem 1 on the existence of localized Gibbs measures were both formulated in

d Ba,sos Bd,Log
2 1.997 2.908
3 1.321 1.930
6 0.7240 1.057
7 0.6198 0.9297

100 0.06946 0.1005

1000 9.238 %1073 0.01334

1010 2.536% 1077 3.658 %1077

F1G. 3. Infima of inverse temperatures for which the pair of parameters yi(f) = ”Q”%,Z and

34 (B) = 1Qllg+1,z\(0} lies in the good set Gq. In this case, Theorem 1 guarantees the existence of a family
of tree-automorphism invariant Gibbs measures. In view of the second statement of Theorem 3 and Remark 4, the
Sfollowing holds true for delocalized gradient Gibbs measures. For the SOS-model above these thresholds also a
countable family of delocalized gradient Gibbs measures exist. For the logarithmic potential this is true if and
only if d <6, as delocalized gradient Gibbs measures cannot exist at inverse temperatures below 1. All numbers
are given with four-digit precision.
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terms of the same good set G4 C (1, 00) x (0, c0) but for different norms. More precisely,
the proof of Theorem 3 is based on showing that on condition of either the vector of the
L-norms (|| Qll1,z. | Q1l1,z\0p) or the pair (y,8) = (I Qllag1 7. | Qlla+1,2\(0)) considered in
Theorem 1 lying in the good set, the vector

(Vq’ Sq) = (“ Qq”d%l’zq, ||Qq||d+1,zq\{(‘)})

of respective norms of the fuzzy transfer operator lies in the good set G4 either for all g > 2,
or at least for all g sufficiently large, respectively. This then ensures existence of g-periodic
delocalized GGMs for the respective values of g.

Let us illustrate these different norms in the concrete examples of the SOS-model and
the log-potential. Figure 4 shows two numerically computed pictures of the good set for the
Cayley tree of order d = 3 supplemented with a few of such curves parametrized by 8. The
fact that

(g, ) 1= (1.8)

motivates our notation g = oo for the vector (y, §) in Figure 4. For the explicit computation

of the finite-g norms in the more complicated case of the log-potential we used that the

fuzzy transfer operators Q, can be expressed in terms of the Hurwitz zeta function ¢ (s, a) =
ZO:O m which is defined for R(s) > 1 and 0 < R(a) < 1.

5. Proofs. The proof of Lemma 1 will be postponed to the end of this section.

PROOF OF LEMMA 2. Noticing that the denominator of 7' (x) is bounded from below we
have

||T(X)Hd+1,zk\{0}§HQ(')+ > Q('—j)|x(j)|d

ezm0) d+1,Zk\{0}

<10z +| X Q- Dl

ez o) Hd+1,Zk\{0}

Let
.. x(i) ifi#0,
x(i):= .
0 ifi =0,

denote the extension of x to Z* by 0. Then the second term can be estimated from above by
a convolution in Iy (ZF)

H 06— ()
(16) JE7R\()

<[ ¥ oc-plol
jeZk

d+1,7k\{0} d+1,7F

= Q% ||y 22

Now we want to apply Young’s inequality for convolutions of Borel-measurable functions
on unimodal locally compact groups with respect to the Haar-measure (cf. Theorem 20.18 in
[11]) to I,(Z")

1
(17) et vl ze < ullp zillolly e 14~ =

where u(i) := Q(i), v(j) := |%(j)|¥ and ¢ = %, r=d+1,p= %
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Gs
1-norm

g=2
qg=4
g=0
B=1321
3 = 2059
T 1
1.9 2
(a) SOS-model with 8 € [1.2, 3]
1.8 -
1.6 o
v/.
1.4 - L*
,/V
.
=
1.2 s
P
=
./.
14 P
.
-
o P . <
- a
0.8 - Pl
_ P
7 '
0.6 - // g g
.
-
. s Gy
0.4 ¥ N — l-morm

(b) Model with log-potential and 3 € [1.9, 5]

2297

FIG. 4. The good set G for the Cayley tree of order d = 3 bounded from above by the numerically computed
solid line. It is supplemented with the curves (yq,dq) parametrized by B within the given ranges and the curve
Qll1,z: 1Qll1,z\(0}) of the 1-norms. The curves start from top right and enter the good set upon increase of
B. The asterisks mark the values at By on the different curves for which the (y, §)-curve enters the good set. The
circles mark the situation at B, where the curve of the 1-norm enters the good set. The numbers are given with

four-digit precision.

This gives

1T gy1.z000) = 1QNar 1,200y + 1@l 11

By our assumptions the r.h.s. now is a finite number, concluding the proof of the lemma.

d
d+l 7k
7L

= 1Qlg1,z0v0) + 1N gt XN 7010y
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The proof of Proposition 1 is based on the following lemma.
LEMMA 3. Forall x,y € D and any i € Z* \ {0} the following holds:
T (x)(@) = T (») ()]
Yo 06— Pl —y()H]

JEZR\{0}
H X ewlw!—yw)(em+ X 0=
keZk\{0} JEZF\{0}
PROOF OF LEMMA 3. Write T (x)(i) =: 1%/%;)) , that is, Z(x) and N (x) are the nominator

(denominator resp.) of 7'(x) as defined in (9). Then we have:

|T(x)(i) — T ()G

_|Z2&x) _ ZO) < 1Z(x) = Z(y)| +Z(y)|N(y)—N(X)|
N(x)  N(y) N(x) N(x)N(y)

<|Zx)=ZW[+ZW|N Q) -

where the second inequality follows from the fact that N(x) and N(y) are bounded from
below by 1. This completes the proof of the lemma. [

PROOF OF PROPOSITION 1.

1. The first statement of the Proposition follows immediately from Lemma 2.
2. To prove the second statement of the Proposition, that is, Lipschitz-continuity, consider
any x, y € B;(0) N D. By Lemma 3 and the triangle inequality we have

1T (x) — T(y)||d+1 Zk\{0}

= ¥ oc-ploy - ymd}H

JEZ\{0}

(18) +< Z Q(k)\x(k)d—)’(k)do

keZk\{0})

ez d+1,Zk\{0}

We start with estimating the second term. First note that y € B.(0) N D implies

(19) HQ()+ > oG —J)y(J)dH <e.

Jezv0) d+1,7k\{0}
In what follows, we employ the fact that for any real numbers a, b we have
ad —p!=(@—-b) (@ +ba®P 4 b 2a 4+ b0,
so forany j € V/ \ {0},
(D =y ()] < () = y(i)ld max( )
=dlx()) = yDI(xDI + ()T,

(20)
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For the prefactor of the second term on the r.h.s. of (18) we thus obtain

Y ob|xt? — yk)!|

keZk\{0}
<d Y Q®|xk) —yk)|xi)!
keZk\{0}
+d Y 0B)|xk) — y®)|yk)!
keZk\{0}

=d[Qlx - ! Iy zkvoy T d|Qlx — iy I ZA\{0}
<d|Qllg1, 75\ {0} Ix = yllas, Zk\{0} (”x”d+l 7\{0) + ”y”d+l Zk\{o})
<2d8e7|x = yllgy1.2000)
where the second inequality follows from applying a generalized version of Holder’s inequal-
ity
1 1 L 1 1 1
“uvw”l Zk\{0} = ”Lt” Zk\{O}”U”q Zk\{O}”w”r,Zk\{O}’ I= ; + 5 + ;
tou=Q0,v=|x—yland w = x4 (w = y d—1 , respectively) with p =g =d + 1 and
r= Zil It remains to estimate the first term on the r.h.s. of (18). Similar to (16), Young’s
inequality withr =d 4+ 1, p = % and g = % first gives

| X oc-ikG) - y(n"H

JEZF\{0}

< H S 06— PIEG? = 5G]
jezk

d+1,7k\{0}

d+1,7ZF
<11Qllagt 7|7 = 5] as1 0

d_.d
=y[x* -y ||%,Zk\{0}'

At this point we want to apply (20) in combination with Holder’s inequality in the form

21 luvlly < llullg, llvllg, where0 <gq,q1,g2 < oo and . =—+—

with g = %, gi=d+1and ¢ = % to obtain

||xd — ! ||L%1,Zk\{0}

<d|le = y1 T as g
<d|x — y||d+1,zk\{0}(”xdf1 ||di1 oy T [y ”%,Z"\{O})
— d”x - y”d+l Zk\{()}(||-x||d+1 Zk\ + ||)’||d+1 Zk\{()})

<2de" x = Yl a1z 00)-
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Inserting these estimates into (18), we arrive at

|70 =T g1, 200101
(22) <2dy e’ x = yllagr. 200 + 228 x = Y411 20 0)

=[x — )’||d+1,zk\{o}2d()/8d_1 +8d8).

Hence T is Lipschitz-continuous on B, (0) N D with constant
L= 2d(y8d_l + 58d),

which proves the second statement of the theorem. g

PROOF OF THEOREM 1 . Assume that d > 2 and (y, §) € G4. Then, by definition of
the set G4, there is some & > 0 such that the equations (11) and (12) are satisfied. From
Proposition 1 it follows that T leaves the the ¢-ball B.(0) C ld+1(Zk \ {0}) invariant and
that T restricted on B;(0) is a contraction mapping, hence Banach’s fixed point theorem
guarantees the existence of a (unique) fixed point x € B.(0). Going over to X € lg41 (ZF)

where
1 =0
=, '=
x() else,

and taking the dth power we finally obtain a spatially homogeneous boundary law solution
rel a1 (Z¥) with A(0) = 1. By Theorem 2 this normalizable boundary law solution corre-

sponds to a unique tree-automorphism invariant Gibbs measure o = u* for the Gibbsian
specification (1). As the transfer operator Q is obtained from a gradient interaction potential,
forany i € ZF the function A; on Z* given by A;(j) := A(j — i) will also satisfy the boundary
law equation (6). Hence we obtain a whole family (X;); 7« of boundary laws. To show that
they are distinct, we note that each A; is symmetric and, by construction, an element of the
g-ball in /411 (Z*) centered around the element that is one at site i and zero elsewhere. Since

¢ < 1 we conclude that the family (A;); 7« is pairwise distinct. This implies that the measures
Wi, I € 7K, each associated to the respective A; are also distinct which concludes the first part
of the proof.
In the next step we prove the localization bounds. First note that by construction of the
Gibbs measure p; we have the following single-site marginal:
d+1

23) Go=1) Mi) T @)
Holop=1) = = ; )
L+ i AT 1+ Zjennox (D)
hence
(24) mo(oo =1) — R
po(oo =0)
From this it follows
mo(oo # 0) . d+1
(25) m = ||X||d+1’Zk\{0}-
Now we want to approximate ||x ||Zﬂ’ 74\(0) by || Q||Zi{’ 74\(0)" First by the the fixed-point

property

x(i) — Q@) = T(x)(i) — Qi)
Y ez QU Ix()HI +Zﬁmea—mmmd
1+ im0y QDX 1+ ek g0y QD Ix (NI

=-00)
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Bounding the denominators from below by 1 then gives

. N |d
Ix = Qllgs1.z0(0) < 1Qllasrz0v0) D QD[]

JEZF\{0}
(26)
H Y 0¢—Px()] H :
GZk\{O} lek\{O}
Now, application of Holder’s inequality with 1 = d+r1 + % to the first term leads to

. N |d
10 as1.z0v0) Do QDD HCIT 41 010y %11 20 0y
JEZF\{0}

Applying the same estimate as in (16) to the second term, we arrive at
1l g1.2%\ 0y — 1@l g1, 24\ (0|
< llx = Qllg41,2x\(0y
<lol; Il + Qs gellxl
= d+1,ZK\{0} 1™ 1g 41,7k \ {0} Gl zk M gy 1,zk\ (0}
= Il 1 0 10y (8 + 7)-
Dividing both sides of the inequality by the positive number § and writing

1 :
A= g||x||d+1’zk\{0} we obtain

|A—1]<8|x|4, A,

d—1
721(\{0} + y||x||d+1’Zk\{0}

SO

8||x||d+1 ZK\{0) 1+ 5”x”3+1 ZK\{0)

<A<

1 +V||X||d+1 Zk\{o V||x||d+1 Zk\{()}
Recalling the definition of A and equation (25) and taking into account that x € B.(0) we
arrive at the second statement of the theorem
_sad d+1 d d+1
(8 1—6¢ ) - wo(og # 0) - (5 14 d¢ ) ‘
1+ yed-! ~ uo(op=0) T\ 1—yed-!

Note that the proof and hence the theorem stay true if Z¥ is replaced by the ring Zg as all
steps involving Holder’s and Young’s inequalities are also valid. [J

PROOF OF THEOREM 3. We look at the appropriate g-periodic boundary law solutions.
These can be rephrased in terms of length-g boundary law solutions for the g-spin model

with Qg (i) := 2 jei Q) =2 jez QU +¢j). Thus if
(27) (” Qq ” dzil’zq\{o}, || Qq ||d+1,Zq\{0}) € Gy

then existence of tree-automorphism invariant GGMs coming from ¢-periodic boundary law
solutions follows from the version of Theorem 1 for the local state space Z,. More precisely

define 0, (i) := gq(%; i € Z,, and note that (27) implies (| Q,,||# zv0p 19q a1z, \0) €

G4, hence the operator T given by (9) for Qq has a fixed point which provides the desired
solution.
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Now, forany 1 < p < o0

1Callr.z, = (Z Qq(")p); = (g(Z oG +qj)),,>;

i€y i=0 “jeZ
qg—1
<) > 0i+g)=10Qlhz<o
i=0 jeZ

and similarly || Qg |l p.z,\10} < 1Q1l1.z\{0}- This already proves the first statement of the theo-
rem.
To prove the second part, let p > d+1 and consider

T (0.0 £ (Z Q(i+qj))p ifie {—L%Jo E”

Jjez
0 else.

We have || Q, ||§ =D iez Jq() — QL%J (i)x(gisevenandi = %). Moreover, by the assump-
tion Q € [{(Z) the family (fy)4e(2,3,...; of nonnegative functions is pointwisely converging
to the function f(-) = Q(-)? on Z. Similarly QL%J (i)x(gisevenandi = %) 22°0 for any

fixed i € Z.
In the following we will construct an integrable majorant for the family (fy)geik k+1,...) tO

be able to apply dominated convergence. First, going over to Q, we set

e - (ZQ(i—i—qj))p ifie{—EJ,...,O,...,EJ},

JEZ
0 else.

Now for g € {2, 3, ...} define the function

o) if|i|sL%J,
8q :Z— [0, 00); 8q(i) = 3
i) if|i|>[§J,

which is supported on the whole integers Z. Clearly g, > fq > fq-As O (i) is by construction
monotonically decreasing in ||, we have

For() = fy() <0 if|i] < %J

= - ) 1
8q+10) — g4 () =4 fa+1() — f2()) <0 if EJ <|i| < {%J

Pili) = fi) =0 if]i] > %J

Thus the family (g4)qe(2,3,...) is decreasing. Hence we have f, < fq < g for all g €
{2,3...}. ~

As go(i) = (Zjez Q(i +2ij))? for all |i| > 1, integrability of g (more precisely of any
element of the family (g4)4e(2,3,...}) is equivalent to finiteness of the expression

> (ZQ1(1+2J)> —21+PZ< z<1+21>))p

i€Z\{0} \jeZ i=1
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From symmetry of Q and monotonicity in |i| it then follows that integrability of g is also
equivalent to

x [0 p
Z(Z Q(ij)) < 00.
i=1\j=1

By assumption (15) this holds true for p = d+1 and hence also for p = d + 1. From dominated
convergence it follows that

104111 4, qu(n—QLqJ<z>x(q1sevenandz— )q3>°°ZQ<i)"=||Q||§,Z

i€Z i€’

Similarly we have || Q4| p, Z4\(0} 12 | Oll p,z\{0y- The proof of the second statement is then
concluded by the assumption (|| Q”%,Z’ I Qlla+1,2\i0)) € G§. O

PROOF OF THEOREM 4. Let v denote the gradient Gibbs measure obtained by projecting
any of the localized Gibbs measures given by Theorem 1 to the space of gradient configura-
tions. Further let v* denote a fixed gradient Gibbs measure constructed from a g-periodic
boundary law A,. We will show that the marginals on a fixed path (b1, b2, ..., b,) of length
n differ as n becomes sufficiently large. More precisely, let ), := 0, — oy denote the gradient

spin variable along the edge b = (x, y) € L and set W, :==>_"_| ,. Then we have

vWa=k)=Y a@)P"(i,i+k),
i€Z
where P is the transition operator for the irreducible aperiodic tree-indexed Markov
chain (the localized Gibbs measure) associated to boundary law A given by P(i, j) =

.. . d+1
72182(16‘(’1-)_2()&)(1) > 0 and « is its stationary distribution given by «(i) = M) 21~ Existence

[l i

of the stationary distribution guarantees that the process is positive recurrent (cp. Theo-

rem 3.3.1 in [2]) and hence ergodic. Thus P"(i, j) = a(j) for any fixed (i, j) € 72 (see
Theorem 4.2.1 in [2]). Dominated convergence then gives

(28) v(Wa=k) =) a@)P"(i,i+k) "= Y a(ai+k) >0 foranykeZ.
i€Z i€eZ

I’L—)OO

On the other hand we will show that v*¢ (W, = k) "Z2°0 for any k € 7, that is, delocalization.
Let (b1, by, ..., b,) be again any fixed path of length n and 0/ = (O’;i)i:]’...’n+1 be the fuzzy
chain on Z; along this path with respect to P(;. We have

V(W =k) = Eg/[v (W, =k | 0”)].

Writing L (j) := Y{k e {1,....n} | o 04, — 0%, = Jj} for the empirical distribution of in-
crements of the fuzzy chain this then reads
nly ()
Wa=> > X].
j_'ezq a=1

Here the variables (X J ) jezya=l,.

Ly (j) are conditionally on ¢’ independent and, for fixed

] € Zg, also identically dlstrlbuted with distribution pg ( | ]) (cp. equation (13)) yet they are
not necessarily integrable.
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We will express the distribution of W,, via its characteristic function. By Fourier-inversion
for distributions on Z (cp. Thm 15.10 in [13]) we have

1 b4
v (W, =k|o') = 2—/ E[exp(iWyt) | 0’| exp(—itk)dt.
T J—n

Now for any fixed ¢ conditional independence gives

nLy () _
|E[exp(i Wnt) | o] exp(—itk)| = H l_[ Elexp(itX]) | o]
jez, a=l1

=J] }E[exp(itX{) |g’]|”LZ )
jez,
T - La/ -
= (l_naX|E[exp(itX{) | o/]|>nz’% n ()
J€Zq
i n
= (f_naX|E[eXp(itX{) | g/]|>
J€Zy

— (r__nax|E[exp(itX{T)]|X(Lfl/(f) > O))n
J€Zy

< (22X|E[exp(itX{)]|)n~

Exercise 11 of Chapter 9.5 (p.314) in [7] says that if f is the characteristic function of a law
P and if there are 5, t with # # 0 and 7 € R\ Q such that | f(s)| = | f(t)| = 1 then P must be
a Dirac measure. In other words, if P is not a Dirac measure then the set of points where the
characteristic function achieves an absolute value equal to 1 has Lebesgue measure 0. As QO
is strictly positive, the above aspects combine to

|E[exp(i Wyt) | o' exp(—itk)| "= 0  for r-a.a.

uniformly in ¢’. Thus by dominated convergence

1 e
— / |E[exp(iWut) | o'] exp(—itk)|dt "= 0
2 —7
uniformly in o’ which concludes the proof of the Theorem. [J
A

PROOF OF THEOREM 5. First assume that g; = ¢». From v*1 = v*a it follows that
the distributions of increments of the underlying fuzzy chain must be the same for both A4,
and A4,. Applying the Ergodic Theorem for Markov chains, the statement of the proof then
follows by the fact that observing the increments of the fuzzy chain along an infinite path on
the tree allows to identify the underlying boundary law up to permutational invariance and
multiplication by positive constants.

More precisely, similar to the proof of Theorem 4, we consider any path (b1, by, ..., b,) =
((x0, x1), (x1,x2), ..., (xy—1, xn)) of length n and let 6’ = (o;i)izl ..... a+1 denote the fuzzy
chain on Z, along this path with respect to the boundary law A,,. By the Ergodic Theorem
for Markov chains (e.g., Theorem 4.4.1 in [2]) we have

1 . n— -
( ZX{IE}(O';,-))_ = (O‘ql(k))lzezq as.,
i=0

n+1iz kez,




COEXISTENCE OF LOCALIZED GM AND DELOCALIZED GGM 2305

by O

where a4, (1) = 7+1 1s the stationary distribution of the fuzzy chain. Now write 0
Irgy oy
, T
oyt Z’j: 1 &b, where (&p,)i=1.....n denotes the increments of the fuzzy chain along this path.

Fixing any s € Z, and setting
'—s+Z$b =5 o], 0} = A +o],

where Af] = S — 0)20 is a Zg-valued measurable function, we obtain a further Markov chain
(@)i=t1nt1- As ey (T = xpe Af—“}(a;i) it follows that

- - dtl
I 5 noo iz s g (k= A3 )T
29 - (D AT ). — a1 )
(29) (l’l 1 ;}X{k} (fx, )>§EZ — (056]1( q1))keZq ( dil iz

q g1 Il a1
d

almost surely. Applying the same procedure to the fuzzy chain associated to the boundary
law A4, we arrive at

()‘612(1E AS ))keZ = C( q1 (1E - A;))/;EZ a.s.,

q

”)“qz la d+1 441
d \"a
wherec_(”Aql”il) > 0.

d
Hence there are some constant ¢ > 0 and some cyclic permutation p : Z; — Z4 such that

)“qz (]E) = C)“ql ()0 (IE)),

which proves the case of g1 = ¢».

In the general case let g denote the least common multiple of g and ¢>. Both A, and
Ay, are g-periodic, hence from the special case above we have that there are ¢ > 0 and some
cyclic permutation p : Zz — Zg with Ay, (k) = chg, (p (k)) for all k € Zg. By assumption g
and g are the minimal perlods of A4 and A4, respectively, which 1mphes q1 = q>. This
concludes the proof. [J

PROOF OF COROLLARY 1. First assume g = ¢q. In that case from equation (29) we al-
ready know that the empirical distribution converges to a deterministic limit from which we
can obtain the underlying boundary law by considering the dLH—th powers of its coordinates.

In the case g # g let t = lcm(q, g) denote the least common multiple. By A; we then
denote the z-periodic continuation of the boundary law A,. Note that for any k € {0, g — 1}
we have the disjoint partition

(30) k+qZ=Jk+(—1q+1Z).
=1

Similar to the proof of Theorem 5 consider a path (b1, b, ..., b,) = ((x0, x1), (x1,Xx2), ...,
(Xp—1,x,)) and let r;i denote the mod-¢ value of the total increment in Z; along the path up

to the vertex x; sampled by v*¢ and added up with some arbitrary starting value s + ¢Z. By
(30) it follows for any k € {0, ..., g — 1}

L - d+l
1 noo m Mk + (= DG — AS +17) @
3D ZX{k+qZ} T,) — Z i

j=1 12l s
d
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v*a-as., where Af_] , =58 — oy, denotes the difference between the true starting value of the
mod-¢ fuzzy chain (O')él_)nz() and s + t7Z.

If g is a multiple of ¢, then ¢ = g and we recover the values of boundary law A; from the
limit (31) for which v* = v*a.

If, on the other hand, the elementwise ddﬁ—th powers of the limit (31) result in a g-periodic
boundary law ):q for Q and v* = v*¢ then § must be a multiple of ¢. For, regarding Xq as
a t-periodic boundary law for Q it then must coincide with A; up to a cyclic permutation of
coordinates and g was assumed to be the minimal period of 2.

Summarizing these arguments leads to the statement of the corollary. [

PROOF OF PROPOSITION 2. A pair (y,6) € (1,00) x (0, 00) lies in G, if and only if
there exists an ¢ > 0 such that the inequalities

§+ye* <e,

(32) 2
L(y,8) =4ye+45e” <1,

are satisfied. The first one is solved if and only if § < %, that is, 1 > 4y 6. For 6 < §g :=
we have the minimal positive solution

1
4y

1
e, y)=—00—,/1—-45y).
2y
Inserting this solution in the second inequality we obtain
8
L(y.8)=2(1—/1-48y)+ —(1—/1—45y).
14

Writing /1 — 46y =:a(y, §) the inequality L(y, §) < 1 is equivalent to
a*(y,8)8 +8+y> <2a(y,8)(y* +3).

Squaring both (positive) sites of this inequalilty and expanding it in the powers of 4, this
again is equivalent to
16y26% 4 24y38% + 5(16y° — 4y%) — 3y* <0.

The equation 16y28% + 24y382 4+ §(16y° — 4y?) — 3y* = 0 is a quartic equation in § with
vanishing third-order coefficient for which we obtain, using MATHEMATICA, the unique
positive solution and series expansion in y ~!

1 y3—1 1\3 1 1\3
s()=7 |2 1‘; —<y3+z> —2r -5 <y3+1> -y
P +335 -y
3 —4
=— 0
gy touT)

It is now easily verified that 0 < §(y) < Ly for all y € (1, 00).
Hence it follows that (y, §) € (1, 00) x (0, co) lies in G if and only if § < é(y). O

PROOF OF THEOREM 6. By Theorem 1 existence of the family (it;); 7« is guaranteed if
the parameters 84(B) = [1Qgll 441,7¢\j0y and va(B) = 1Qp ”d—;‘,Zk lie in the set G4, that is, if

there exists an € > 0 such that the inequalities (11) and (12) are satisfied. For fixed A > % let
d > 2 be large enough such that || Qg,, , ||% < o0o.Thentheset M :={i € Z\ {0} | V(i) = v}
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is finite. By monotonicity of é4(8) and y4(B) in B it suffices to show that §;(84 4) and

va(Ba,a) liein Gq.
Using the short notation ¢ = gg, , :=exp(—p4 qv) and Q = Qp, , we have

8d(,3A,d):q(|M|+ ) (Q(J))dH)dL

jezamupoy 4

R [ G

JEZF\(MU{0})

By the assumption || Qg, , |l af1 < 0o the expression

M| + > Jem\(MUy 0})(Q(] ))d+1 is a finite number strictly decreasing with increasing

d and converging to |M | by dominated convergence. Hence the factor (|M| +
; 1

> ]ezk\(MU{O})(%)d—’_l)d_‘*‘l is bounded from above by a positive constant to the power

yEnt +1 In contrast to this, the first factor is given by some constant to the power logd ‘Thys, for

d+1-
any fixed 1 S <Ar<A there is a d; € N such that for all d > d;

logd A\ 75T logd
eXp<_A"di1)<|M|+ 2 (Q(J)> )+ feXp(_Alvdi1>'

jeznaupoy 4

Summarizing these observations and doing a first-order Taylor expansion we conclude that
there are % < Ay < Ay and dy > d; such that

<1-— Ay

= 2d+1

lo
33 ) < —A
(33) 1(Baa) _exp( e

d ) logd
foralld > d5.

Similarly we have that the family (y4(84.4))deN 1s bounded, hence in what follows we
will simply write y for the upper bound of this family.

In the next step we will give an upper bound on the minimal solution to the equation (11)
for large degrees. Fix any % < A3 <Ajyandsete =g(A3,d):=1— Agvljﬁ We will show
that there is a d3 > d» such that for d > d3 the function & satisfies the inequality ye +

84(Ba.a) < &. We have

logd \4 logd
og>+1Aog

-d
) < 1—A — ,
ye' + d(,BA,d)_V< 3vd+1 2Ud+1

SO yéd +64(Ba.q) < € is guaranteed by

(1 A logd )d t1-A logd
— A3v — Av
14 3 drl 2 d+

which is equivalent to

logd \¢ logd
34 1-A <(A—A
(34) < 3vd+1> (A2 3V i+l
Using first order Taylor-expansion the 1.h.s. can be bounded as

logd \¢ logd logd
1—A - dlog(1—A < —dA
V( 3”d+1> yexp( °g< 3"d+1)>—”exp< 3”d+1)

d 1\ @+t
< yexp(—d+ I logd) = )/(E) .

(35)
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Hence the quotient of the r.h.s. and the Lh.s. of equation (34) is bounded from below by

(Ay —Az)vlogd 4« (Ay—A3)v d logd 4—o
da+T = : - 00
Y d+1 Y d+1dm

which proves the existence of such a d3 as the r.h.s of (34) is strictly positive.
In the last step we insert € into the L.h.s. of equation (12) and obtain

2d 1 2d5 (ﬂ )_d <2d (1 —A 1 ) 1 2d<1 —A 1 ) 1
& 4+ & v + v .
Y d\PA,d = Y 3 / 1 3 / 1

Note that by Taylor expansion of the logarithm

logd \¢~! logd
1-A = logd+(d—1)log|l1—-A
a(1-aw2%) =exp(logd + @~ Diog(1 - 40 27 )

d+1

((1 -1, ) 1 d)

=ex ———Asv|lo .

P d+173")°8

Hence, by the assumption A3 > % this converges to zero as d tends to infinity. This shows
that there is a dy > d3 such that for all d > dy the upper bound ¢ satisfies the inequality (12)
concluding the proof of the first statement of the Theorem.

To prove the second statement of the theorem, the asymptotic upper localization bound, let
d > dp. Recall that by Theorem 1

Mi(Cfo#i)<(5 1+ 8e(y, 8)? >d+1

< exp(logd — A3vlogd>

pi(oo=10) ~ \' 1 —ye(y,8)!
Now the inequality (12) gives —ye?~! > §g? — ﬁ, hence

(5 1+ 8¢e(y, 8)4 >d+1 (5 14 8¢(y, 8)4 >d+1
<
1 —ye(y,8)d! 1+ 8e(y, ) — 57
1 d+1
()"
] — — L
2d(148¢9)
From inequality (33) we know that § <1 — logd and an approximation similar to that of (35)
q d
then gives 891! < %.

At last, the bound (1 — m)d“ > (1— ﬁ)d“ 200 exp(—%) concludes

i ] la—
wi(oo #1i) cclizxg

wi(op =1) d

for some constant C > 0. [

Finally we give the proof of the well-definedness of the model, using a variation of the
Young-inequality estimates seen before.

PROOF OF LEMMA 1.  Assume that || Q[ 441 ,« < 0o. We claim that for any finite con-
2 )

nected volume A C V and any family of weights (A;)qega Where A, € (0, oo)Zk ay) a1 (ZF)
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the following auxiliary expression:

ZaGan):= Y 1 baa(@y) [] Qb(s)

WAUIA yEIA bNA#D

=> > J] by [ Qs((mawan)s)
WIA NA yedA bNAH#D

(36)

=>. 11 ly(wy)<z I1 Qb((nAwaA)b)>
WIA yeIA NA bNA#D

=3 [] ty(@y)Za(@sn)
WHA yeIA

is finite. Here, as in Theorem 2, yx denotes the unique nearest-neighbor of y in A. From this
would follow the finiteness of the partition function Z (wya) for any boundary condition

The proof of the claim is done by induction on |A|. For convenience, we start with the
induction step, that is, we assume that the claim holds true for some finite connected volume

A C V and any family of weights (A;)qega Where A, € (0, oo)Zk N lddil(Zk). Letve V\A

be some adjacent vertex and (Aq)qecy(Auv) be some family of weights in (O, oo)Zk oy att (Zk).
Then we have
Zauwaavws Movvoy) = Za(Raarws Ao)s
where
W= T 2 Qul— i),
X€0v\vA jeZk
which follows by summing over spins for x € dv \ vp. To conclude the induction step

ZAuw (Aga\vs Agv\v,) < 00 it hence suffices to show that ||5\,v la+1 5% < o00.
d H

d 1 :
a=1a+1° gives

Y 0= DAe())

jezk

First, generalized Holder’s inequality for d factors, noting that diﬂ =>

[T 2 2nC—0ad| e I1

X€dv\va jeZk d xedv\vp

d+1,7k

Now, from Young’s inequality for convolutions with 1 + d%rl = dlﬂ + dLH it follows

[

xedv\vp

|5 0ue=im)| = TT 1@l il o <o,

k
JETk d+1.Z x€edv\va

which concludes the induction step. It remains to prove the initial step. In case of a single-
element volume A = {v} equation (36) simply reads

Zioy (Aaw)

=Y > [T Qv = jplGy)

P€ZK (1w Jar1) E(ZR)IFT yEd

=> T1 2. 0wl = Niy(H=

IT1 > 0w(=pniy()

”1,Zk

ieZk yedv jezk yeov jezk
Again, Holder’s inequality applied with 1 = Zzg d—}rl gives
0= G| = 0t — |
H Z Y ! 1,7k H Zk Y g1z

Y€ jeZk Y€V jeZ

and the rest of the proof follows from applying Young’s inequality as above. [
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