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Abstract. We consider the i.i.d. Bernoulli field µp with occupation density
p ∈ (0, 1) on a possibly non-regular countably infinite tree with bounded degrees.
For large p, we show that the quasilocal Gibbs property, i.e. compatibility with
a suitable quasilocal specification, is lost under the deterministic transformation
which removes all isolated ones and replaces them by zeros, while a quasilocal
specification does exist at small p.

Our results provide an example for an independent field in a spatially non-
homogeneous setup which loses the quasilocal Gibbs property under a local
deterministic transformation.
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1. Introduction

The Bernoulli field supported on the countable vertex set of a graph is the
basic object in site percolation theory, see [18], [5] and [10]. By definition of the
model, each vertex carries an independent Bernoulli variable taking the value 1
with probability p ∈ (0, 1) and 0 else. One is then interested in connectedness
properties of the set of occupied sites, in particular the existence and properties
of infinite connected clusters, in their dependence on the parameter p (the occu-
pation density). There is special interest in the concrete cases that the graph is
a lattice, or a tree, both cases being similar in the very basic sense that at small
p < pc there is a.s. no infinite cluster, while there is an infinite cluster for large
p > pc. The Bernoulli fields on lattices and trees behave also very differently,
in another sense, namely in the following fundamental aspect: Whereas there
is a.s. uniqueness of the infinite cluster on lattices (see [1]), this is no longer
true for regular trees, where the uniqueness of the infinite cluster is lost at a
second transition value for p, see e.g. Theorem 8.24 in [23]. This is an example
for the richness of statistical mechanics on trees, and underlines that care is
needed when we make predictions from lattice behaviour to tree behaviour and
vice versa.

In the present paper we study the Bernoulli field µp on trees under the local
transformation T which removes from a random configuration all isolated sites,
but keeps all clusters of size at least two fixed, including the infinite clusters,
see below (2.2) and Figure 1. Our trees are not assumed to be regular, but
the case of regular trees is included. We may view the transformation T as a
cleansing or straightening-out of the configuration of occupied sites where the
“dust” of isolated sites is removed. This transformation therefore has a fla-
vor of a renormalization group (or coarse-graining) transformation in statistical
physics, where short-range degrees of freedom are integrated out, compare [29]
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and [14]. For different motivations from stochastic geometry, see the introduc-
tions of [20] and [11], and also [6] and [2] where thinning processes, such as
the discrete Matérn process, are discussed. We then ask for properties of the
image measure µ′p and we are interested in locality properties in the precise
sense of representability of its conditional probabilities in terms of a quasilocal
specification, see below (2.1).

Studies of local transforms of infinite-volume systems in statistical mechanics
have been performed in a number of different geometries, types of systems and
transformations, see [26], [24], [28], [27], [13], [19], [21], [3], [8], [22], [12], [9], [4].
It has been found that strongly interacting systems under local maps may
become not quasilocally Gibbsian, i.e. become non-representable in terms of
quasilocal specifications, while weak interactions tend to lead to Gibbsian be-
havior.

What to expect from the Bernoulli field on a graph under the projection T ,
in the region of large p? Typical configurations have very few isolated sites, so
removing these sites does not seem to change the measure very much. Hence one
may conjecture that the image field µ′p is still nicely behaved, with continuous
conditional probabilities. On the contrary it was proved recently [20] that on
the integer lattice of dimension at least 2, µ′p is non-Gibbs, see also [11]. This
provides an example of a measure on the lattice which is not just weakly coupled
but even independent and nonetheless becomes non-Gibbsian under a strictly
local transform (with finite range 1). The companion measure which arises
as the projection to isolates (discrete Matérn process) was shown to behave
rather differently, namely quasilocal Gibbs for small enough and large enough
p, see [11].

In our present work we ask whether trees and lattices behave the same or
we may see differences, as we do when it comes to the uniqueness of the infinite
cluster. Our focus is on regimes of large p, as these have found to be the singular
ones on the lattice. Another strong motivation for us is to generalize from a
spatially homogeneous situation, and study not only regular trees, but also allow
for possibly inhomogeneous trees as our base spaces.

Main result and techniques

Our main result is Theorem 1 which states that on trees with bounded
degrees, the Bernoulli field under removal of isolates is non-Gibbsian at large
enough p, with a lower bound on the threshold depending on the upper bound
of the local degrees. In the opposite small density regime, it is Gibbsian, i.e it
possesses a quasilocal specification.

Our proof of the interesting part, namely the non-existence of a quasilocal
specification, is based on the two-layer method (see for example [29] and [8]),
which we apply to our setup of inhomogeneous trees. This first step we combine
with a detection and an analysis of an internal phase transition on the first-
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layer and the proof that this phase transition indeed becomes visible on the
second-layer, see Section 3 and Figure 1. In this way it builds on [20], [11], but
develops the new essential tool of type-changing cutsets, see below, to handle
the inhomogeneous tree situation.

The first-layer in our case is the independent Bernoulli field on the tree, the
second-layer is coupled to the first-layer via the deterministic removal transfor-
mation, keeping from the first-layer configuration the clusters of sizes greater or
equal than two on the same tree, see Figure 1. In order to study properties of
the measure on the second-layer, we need to study the conditional system on the
first-layer, given second-layer configurations and their non-local perturbations.

Let us now outline some key points of our proof which are novel and tree-
specific and give an idea why they do not rely on spatial homogeneity. Note that
the proof of an analogous lattice statement of [20] is based on shifting alternating
configurations on the lattice. This does not have an analogy on the inhomoge-
neous tree, as the graph itself lacks any shift-invariance. So our argument has
to be new and different. The particular conditioning on the second-layer we
choose to prove non-Gibbsianness is the fully empty conditioning, the resulting
associated system on the first-layer then becomes a model of particles which
are conditioned to stay isolated (physically speaking: a hardcore gas). For our
discontinuity proof we show the existence of a phase transition for the latter at
large density which can be induced by variations of shapes of volumes arbitrarily
far away. On the tree, this means more precisely that there are two measures
whose configurations, up to local fluctuations, typically resemble the alternating
configurations of (3.1). These can be selected by appropriate balls of even or
odd radii uniformly in the ball sizes, see Proposition 1. It is important to under-
stand that inhomogeneous degrees do not spoil this selection argument. As the
new and essential tree-typical part of the actual proof we then analyze energy
and entropy of appropriately defined type-changing cutsets, see Definition 1 and
Figure 3. We then perform our analysis in terms of the pushout method, intro-
duced in Definition 2, which recursively creates all cutsets of a fixed type. The
energy of a cutset is defined in terms of a count of the number of net replace-
ments of zeros by ones needed to relate the two alternating configurations in the
inside of the cutset, for which we provide a closed expression on the regular tree
and suitable bounds on the general tree. Summarizing, our proof shows that
it is not percolation in the original Bernoulli field µp which is relevant for the
non-quasilocality of the image measure, but rather the hidden phase transition
of hardcore particles on the inhomogeneous tree.

The remainder of the paper is organized as follows. Section 2 provides the
basic definitions and the setting of the model. Moreover, we present the precise
statement of our main result Theorem 1 on Gibbs properties of the Bernoulli
field on trees under the removal of isolated sites. The proof of this statement
is split into the Sections 3 and 4. In the first part, Section 3, we relate the
(transformed) second-layer model to a suitably constrained first-layer model
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which is conditioned on isolation of spins. In the second part, Section 4, we
finally provide the selection argument for the two distinct groundstates of the
first-layer constrained model and prove Proposition 1. Here, we develop the
pushout method for the analysis of energy and entropy of type-changing cutsets.

2. Model and main results

Let us state some definitions and constructions, which are needed to under-
stand the work of this paper. This section is based on the constructions in the
book of Georgii [17].

Countably infinite trees. We will investigate random variables indexed
by the vertices of a countably infinite tree (V,E) with root ρ, where V contains
the vertices and E ⊂ {e ⊂ V : |e| = 2} the (unoriented) edges. If two vertices
x, y ∈ V form an edge {x, y} ∈ E, they are called nearest neighbors and we write
x ∼ y. For any Λ ⊂ V we set ∂Λ := {y ∈ V \Λ : y ∼ x, x ∈ Λ} and Λ̄ := Λ∪∂Λ.
As usual the distance d(x, y) between two vertices x, y ∈ V is defined by the
length of the unique shortest path from x to y. Let W ⊂ V , then (W,EW ) can
be regarded as a subgraph in the sense that EW :=

{
{x, y} ∈ E : x, y ∈W

}
.

Spin configurations. A spin configuration is a map assigning to each
vertex x ∈ V a value ωx ∈ {0, 1} =: Ω0 and we write ω = (ωx)x∈V . Thus,
the configuration space is defined as Ω := {0, 1}V =

{
ω = (ωx)x∈V : ωx ∈

{0, 1} ∀x ∈ V
}

, with the underlying product σ-algebra F :=
(
P(Ω0)

)⊗V
gen-

erated by the spin projections σx : Ω −→ Ω0, ω 7→ ωx, x ∈ V . If σx = 0, we
say the vertex x is unoccupied and if σx = 1, it is occupied. Let p ∈ (0, 1) and
µp := Ber(p)⊗V denote the Bernoulli-p product measure on (Ω,F). Then the
process (σx)x∈V is called the Bernoulli-p field on (V,E).

Let us introduce some further notations. First of all, ΩΛ := {0, 1}Λ is the
restriction of the configuration space on the subset Λ ⊂ V . Given Λ ⊂ V ,
the map σΛ : Ω −→ ΩΛ defined by ω 7→ ωΛ := (ωx)x∈Λ denotes the projection
onto the coordinates in Λ. Let Λ ⊂ ∆ ⊂ V , ω ∈ ΩΛ and η ∈ Ω∆\Λ, then the
concatenation ωη ∈ Ω∆ is defined by σΛ(ωη) = ω and σ∆\Λ(ωη) = η. We will
consider events depending only on spins in a certain subset. Therefore, it is
useful to define for ∆ ⊂ V F∆ := σ

(
σx, x ∈ ∆

)
, the σ-algebra on Ω generated

by all events occurring in ∆.

Quasilocal specifications. We are interested in analyzing constraints for
the Bernoulli field on the tree with bounded degrees. In order to describe
the behaviour of these constraints on the model, we will need the notion of
specifications. These are families γ = (γΛ)ΛbV of proper probability kernels
each from (Ω,FΛc) to (Ω,F ) satisfying a consistency relation. A kernel γΛ for
Λ b V is said to be proper if γΛ(A|ω) = 1A(ω) for all A ∈ FΛc . Two kernels γΛ

and γ∆ with Λ ⊂ ∆ b V should be compatible in the sense that the following
consistency relation (γ∆γΛ)(A|ω) = γ∆(A|ω) holds for all A ∈ F and ω ∈ Ω.
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A local function is a FΛ-measurable function f : Ω→ R for a Λ b V . Then,
a specification γ = (γΛ)ΛbV is called quasilocal if for each Λ b V and every
local function f : Ω→ R the following holds

lim
n→∞

sup
ζ,η∈Ω

ζΛn=ηΛn

∣∣∣∣ ∫ f(ω)γΛ(dω|ζ)−
∫
f(ω̃)γΛ(dω̃|η)

∣∣∣∣ = 0, (2.1)

where
(
Λn
)
n∈N is a cofinal sequence, i.e. Λn ⊂ Λm b V for all n ≤ m and⋃∞

n=1 Λn = V .

Gibbs measures and the quasilocal Gibbs property. Let γ = (γΛ)ΛbV

be a specification and µ ∈ M1(Ω,F ) a probability measure on the infinite
volume. We call µ a Gibbs measure for the specification γ if it satisfies the
DLR-equation

µ(A|FΛc) = γΛ(A|·) µ-almost surely

for all Λ b V and A ∈ F . The set of all Gibbs measures for γ is denoted by
G (γ). µ is called quasilocally Gibbs if there is a quasilocal specification γ such
that µ ∈ G (γ).

Projection to non-isolation. We are interested whether this property
is preserved under the projection to the non-isolated spins. This is the deter-
ministic map T : Ω → Ω removing the isolated spins of a configuration and is
visualized in Figure 1. Note that all images in this paper are drawn for regular
trees, while our analysis is more general. In more detail, for a configuration
ω ∈ Ω, the map T is given in a vertex x ∈ V as

(Tω)x := ω′x := ωx

(
1−

∏
y∈∂x

(1− ωy)

)
. (2.2)

The main result of this paper is the following Theorem 1, which states loss
of the Gibbs property of the Bernoulli field µp under the transformation T at
sufficiently large p. Let Ω′ := T (Ω) ⊂ Ω be the image of T and for any Λ ⊂ V
let F ′Λ := FΛ ∩ Ω′. Consider the second layer measure µ′p on (Ω′,F ′V ) defined
by

µ′p := µp ◦ T−1. (2.3)

Theorem 1. Consider a countably infinite tree (V,E) which is bounded in the
sense that there is a number 2 ≤ dmax < ∞ such that each vertex has at least
3 and at most dmax + 1 nearest neighbours. Then, there exist 0 < p1(dmax) <
p2(dmax) < 1 such that for the independent Bernoulli field µp the following holds
true:

a) For p ∈ (0, p1(dmax)), the transformed measure µ′p is quasilocally Gibbs.

b) For p ∈ (p2(dmax), 1), the measure µ′p is not quasilocally Gibbs.



Bernoulli field on trees under the removal of isolates 647

Figure 1: An example of a spin configuration on the binary tree and the applica-
tion of the map T. Every coloured dot is an occupied site and every uncoloured
dot is unoccupied. The blue coloured dots mark the isolated occupied sites.

Remark 1. Answering a question of a referee, we conjecture the theorem could
hold more generally even in situations with a small enough density of vertices
which fail our assumptions on uniform minimal and maximal degree. Clearly
some assumptions on the growth of the tree are necessary, as the example of the
thinned Bernoulli field on the line Z shows, which we naturally expect it to be
quasilocally Gibbs. (Nevertheless, preliminary investigation seems to show that
also this one-dimensional process displays some remarkable fine properties which
are worth an in-depth study.) Now, to find natural conditions on the growth rate
of the tree implying non-quasilocality and provide proofs for it would require
serious investigations. This would put another layer of complexity on top of the
ideas of the paper in the present form, which we believe should be the subject
of further research.

3. Part 1 of the proof: Two-layer representation on trees

The above theorem extends the results obtained in [20] regarding the sit-
uation on the lattice Zd with d ≥ 2 to the geometry of trees with bounded
degrees. In particular, it also covers (tree) graphs which are not regular. Note
that the proof of an analogous lattice statement of [20] is based on shifting al-
ternating configurations on the lattice, which does not have an analogy on the
inhomogeneous tree, so our argument is different. Part a) of Theorem 1 follows
from a direct adaption of the argumentation used in [20] based on Dobrushin-
uniqueness theory. In contrast to this, the proof of the more involved part b),
which will be given below, takes into account the specific geometry of the tree.
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Our goal is to show that there is no quasilocal specification γ′ for the im-
age measure µ′p. In order to prove this statement, we will use the two-layer
approach. The symbols describing second-layer quantities will carry a prime,
to distinguish them from the objects in the first-layer. We will investigate the
all-zero configuration 0′ ∈ Ω′ and show that this configuration is an essential
discontinuity for any quasilocal specification γ′ which is compatible with the
image measure µ′p. For the purpose of proving this, consider the constrained
first-layer model T−1(0′) supported on isolated configurations. It exhibits two
distinct alternating ground states ω0 and ω1 which are defined as

(ω0)x :=

{
0 if d(ρ, x) is even,

1 if d(ρ, x) is odd
and (ω1)x :=

{
1 if d(ρ, x) is even,

0 if d(ρ, x) is odd.

(3.1)
They can be transformed into each other by flipping all spins (i.e. changing each
unoccupied vertex to an occupied one and vice versa) of the configuration.

Each of these ground states can be evoked by a fitting boundary condition.
This is the ball BR(ρ) := {x ∈ V : d(x, ρ) ≤ R} around the root with even (for
ω0) or odd (for ω1) radius R ∈ N0 and a fully occupied configuration outside
of these balls. In the following, we will abbreviate BR(ρ) by BR. Let us define
a probability measure for the constrained first-layer model for these types of
boundary conditions:

νBR
(ωBR

) := µp
(
σBR

= ωBR

∣∣TBR
(σBR

1Bc
R

) = 0′BR

)
.

This is the measure conditioned on isolation on BR and fully occupied boundary
condition 1Bc

R
outside of BR.

Now we can prove, with the following proposition, that the two alternating
configurations lead to a phase transition in the first-layer model constrained on
isolation.

Proposition 1 (Phase transition first-layer model). For the type-1 balls
B2R+1, the following inequality holds for all x ∈ B2:

sup
R∈N≥2

νB2R+1
(σx 6= ω1

x) ≤ ε(p), with lim
p↑1

ε(p) = 0.

The similar statement holds for the type-0 balls B2R.

This proposition states that the spins in B2 keep some of the information
from the boundary with a long-range dependence. We will postpone the proof
to Subsection 4 and continue with the proof of Theorem 1. In order to use the
result of Proposition 1, we need to relate the first-layer measure to the second-
layer conditional probabilities. For this purpose, consider the configuration
ω′∗ := 1′B1

0′Bc
1
∈ Ω′ (see Figure 2). Then,
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Figure 2: The configuration ω∗ ∈ Ω on the binary tree.

Lemma 1 (Relation between the first- and second-layer measure).
Let R ∈ N, then:

µ′p(σ
′
B2

= ω′∗B2
| 0′BR+1\B2

1′BR+2\BR+1
)

µ′p(σ
′
B2

= 0′B2
| 0′BR+1\B2

1′BR+2\BR+1
)

=
p

1− p
νBR+1

(σB2 = ω0
B2

). (3.2)

The proof of this lemma can be found in [20]. Combining Proposition 1 and
Lemma 1 then allows us to prove Theorem 1. To ease readability, we will omit
the projections in the notation, e.g. will abbreviate expressions like µ′p(σ

′
Λ = ω′Λ)

by µ′p(ω
′
Λ), unless the projections are necessary for understanding.

Assume, there is a specification γ′ for the image measure µ′p. Let us relate
the conditional probabilities on the left side of equality (3.2) to the specification
γ′. From the DLR-equation, we obtain the two statements:

µ′p(ω
′
B2
| 0′B2R+1\B2

1′B2R+2\B2R+1
) ≥ inf

ω′
(B2R)c

γ′B2
(ω′B2

| 0′B2R\B2
ω′(B2R)c)

=: aR(ω′B2
),

µ′p(ω
′
B2
| 0′B2R\B2

1′B2R+2\B2R
) ≤ sup

ω′
(B2R)c

γ′B2
(ω′B2

| 0′B2R\B2
ω′(B2R)c)

=: bR(ω′B2
). (3.3)

If γ′ were quasilocal, we would have |aR(ω′B2
) − bR(ω′B2

)| R→∞→ 0. This would
imply, together with Remark 2 below that

aR(ω′∗B2
)

bR(ω′∗B2
)

R↑∞−−−→ 1 and
aR(0′B2

)

bR(0′B2
)

R↑∞−−−→ 1. (3.4)

Now, consider the right side of (3.2). The proposition implies

νB2R
(σB2

= ω0
B2

) = 1− νB2R
(σB2

6= ω0
B2

) ≥ 1− |B2|ε(p) (3.5)
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and similarly νB2R+1
(σB2 = ω0

B2
) ≤ νB2R+1

(σρ = 0) ≤ ε(p). Combining this
with (3.3) and (3.5) leads to

ε(p)

1− |B2|ε(p)
≥
νB2R+1

(σB2
= ω0

B2
)

νB2R
(σB2 = ω0

B2
)
≥
aR(ω′∗B2

)

bR(ω′∗B2
)

aR(0′B2
)

bR(0′B2
)
.

Considering R → ∞ for p ∈ (0, 1) sufficiently large (i.e. ε(p) sufficiently small)
implies that (3.4) is not satisfied. Hence, a specification for µ′p can not be
quasilocal. This finishes the proof of Theorem 1.

Remark 2. Let ω′B2
= ω′∗B2

or ω′B2
= 0′B2

. Then, for any p ∈ (0, 1) there is a
positive constant c(p) such that for all R ∈ {2, 3, . . .} we have bR(ω′B2

) ≥ c(p).

The proof of this remark is presented in the Appendix. It can be adapted to
the respective statement for the lattice Zd with lattice dimension d ≥ 2, which
proof was not explicitly given in [20]. For this, consider the observation window
B3 ⊂ Zd instead of B2 ⊂ Zd.

4. Part 2 of the proof: Cutsets and pushout method

It remains to prove the Proposition 1. The proof is based on flipping spins in
the interior of certain volumes surrounding the vertices in B2. For this purpose,
we will construct cutsets with a type and introduce the pushout method.

We will confine the proof to the type-1 boundary condition. The proof for
the type-0 boundary condition proceeds analogously. We need to upper bound
the probability νB2R+1

(ωρ = 0) to see a value in the root which is different from
that of the preferred ground state ω1. Note that similar argumentation will
give the same upper bound for the other vertices in B2. Consider an arbitrary
path from the origin to the boundary. Regarding the isolation constraint in the
first-layer, we can not insert an alternating pattern along the path starting with
a zero in the root ρ. Therefore, there needs to be at least one pair of unoccupied
nearest neighbor vertices in the path from the root to the boundary. Among this
set, containing the pairs of zeros, we are interested in such pairs minimizing the
distance to the root. This leads to the following definition of a type-changing
cutset, which is illustrated in Figure 3.

Definition 1. Consider a tree (V,E) with bounded degrees and a root ρ ∈ V .
The children of a vertex x are the dx nearest neighbours of x which are farther
away from ρ than x. Fix the orientation pointing away from the root. In more
detail, the directed edges are given by the set ~E := {〈x, y〉 : {x, y} ∈ E, d(ρ, y) =
d(ρ, x) + 1}.

a) For ∅ 6= Λ ( V , we call ~L(Λ) := {〈x, y〉 ∈ ~E : x ∈ Λ, y ∈ V \Λ} the cutset
for Λ.
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b) A subset ~L ⊂ ~E is called a type-changing cutset of type 0/1 iff it is the
cutset for a finite subtree Λ b V with root ρ such that every leaf of Λ has
an even/odd distance to the root. In both cases, we call the vertices of

the subtree Λ the interior of the cutset ~L, denoted by int(~L). For s = 0, 1,
we set

C (s, V ) := {~L ⊂ ~E : ~L type-changing cutset of type s}.

c) Let us denote the boundary of a cutset ~L ⊂ ~E with ∂~L := {y ∈ V :

〈x, y〉 ∈ ~L} ⊂ V and the closure as cl(~L) := int(~L) ∪ ∂~L ⊂ V .

d) A configuration ω ∈ T−1(0′) is adapted to a type-changing cutset ~L of
type s if ωint(~L) = ωs

int(~L)
, where ωs is the the groundstate of type s (see

(3.1)) and ω∂~L = 0∂~L.

Remark 3. Note that our type-changing cutsets should not be confused with
the tree-contours which were used in [16], [7] whose geometric part consists of
subtrees.

In particular, let ~L be a type-changing cutset and ω ∈ T−1(0′) a configura-

tion being adapted to ~L. Note that ~L specifies the configuration in the closure
cl(~L), while there may be many adapted configurations which differ on the out-
side. This distinguishes the notion of being adapted to a cutset from that of
being compatible to a contour in the Peierls argument.

An example of a type-changing cutset of type 0 is illustrated in Figure 3.
Concerning the considerations made before, every different-valued spin inside
of the ball B2R+1 with respect to the preferred ground state ω1 has to be

surrounded by a type-changing cutset ~L ∈ C (0, B2R+1). Therefore, we obtain

νB2R+1
(ωρ = 0) ≤

∑
~L∈C (0,B2R+1)

νB2R+1

(
ω : ω is adapted to ~L

)
.

Now, let us take a look at each term of the sum. Let ~L ∈ C (0, B2R+1) be a
type-changing cutset of type 0, then we have

νB2R+1

(
ω : ω is adapted to ~L

)
=
W (ω0

int(~L)
)(1− p)|∂~L|ZB2R+1\cl(~L)

ZB2R+1

, (4.1)

where W (ωΛ) :=
∏
x∈Λ(1 − p)1−ωxpωx are the Bernoulli weights of a subset

Λ b V . Moreover, ZΛ is the partition function over all configurations in Λ ⊆
B2R+1 being compatible with the boundary condition outside of B2R+1 under
the isolation constraint. The idea is to flip all the spins of the configuration
ω on int(~L). For large p, this will lead to an energetically more favourable
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Figure 3: An illustration of the type-1 boundary condition B5(ρ) on the binary
tree together with an isolated configuration inside of the ball. The pictured
configuration is unoccupied at the root, hence it is adapted to a type-changing
cutset ~L ∈ C (0, B5(ρ)) of type 0, which cuts off the rooted subtree, where the

configuration resembles the groundstate ω0, from the outside B5(ρ)\int(~L). The

cutset edges are dashed and coloured in blue and the boundary ∂~L is dashed
and orange. The interior int(~L) of the cutset is pictured on the right side.

configuration, since we flip more unoccupied vertices to occupied vertices. The
net replacements inside of ~L are given by

N
~L
repl := |{x ∈ int(~L) : ω0

x = 0}| − |{y ∈ int(~L) : ω0
y = 1}|. (4.2)

Furthermore, the flipping results in an allowed configuration for the model
constrained on isolation, because int(~L) is surrounded by a layer of zeros and
we can lower bound the partition function as follows

ZB2R+1
≥W (ω1

int(~L)
)(1− p)|∂~L|ZB2R+1\cl(~L).

Consequently, we obtain that the l.h.s. of (4.1) is bounded from above by(
1−p
p

)N~L
repl . Thus,

νB2R+1
(ωρ = 0) ≤

∑
~L∈C (0,B2R+1)

(1− p
p

)N~L
repl (4.3)

and it remains to determine a specific expression for the replacements of these
cutsets. For the purpose of bounding the number of cutsets having a specific
number of replacements, we will relate the replacements of each cutset with the
number of vertices in the interior. By the assumption of bounded degrees of the
tree, the number of possible cutsets with a given number n of vertices in the
interior then growths at most exponentially fast with n (see Lemma 4 below).
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(a) The initial cutsets (b) Pushout and Merging operation

Figure 4: Algorithmic construction of type-changing cutsets.

Pushout method

In order to relate the number of net replacements N
~L
repl in a cutset to the

number of vertices |int(~L)| in the interior, we introduce a pushout method on the

tree with bounded degrees. In more detail, let us consider an arbitrary cutset ~L
in C (0, V ) or C (1, V ) and the respective initial cutset ~L0 with smallest possible

interior. Starting from ~L0, we can obtain ~L by a unique (up to permutations of
the order) sequence of finitely many pushout operations of the cutset edges (see
Figure 4). While pushing out these cutset edges, one can count the number of

vertices in the interior |int(~L)| and the net replacements N
~L
repl.

Definition 2. Let 〈x, y〉 ∈ ~E be an oriented edge of the tree (V,E) with
bounded degrees. Assume that y has d children z1, . . . , zd and further assume
that each zi has dzi children vi1, . . . , vidzi . The pushout operation applied to the
cutset edge 〈x, y〉 is a map π〈x,y〉 : C (s, V )→ C (s, V ), where s = 0 if d(ρ, x) is

even and s = 1 if d(ρ, x) is odd. This map is defined as follows, π〈x,y〉(~L) = ~L′

if 〈x, y〉 ∈ ~L and π〈x,y〉(~L) = ~L otherwise. Here, ~L′ emerges by removing the

cutset edge 〈x, y〉 from ~L and replacing it by the
∏d
i=1 dzi edges 〈zi, vij〉 (see

Figure 4 (b)).

Lemma 2. Every cutset ~L ⊂ ~E of type s ∈ {0, 1} can be obtained from the

initial cutset ~L0 of the respective type by a finite number of pushout operations.

Proof. The result is based on the following algorithm, which is visualized in
Figure 4:

1. If ~L is the initial cutset of type s (see Figure 4 (a)), then terminate.

Otherwise, let n := d(ρ, ∂~L) = maxv∈∂~L d(ρ, v) ≥ 2. Note that n is odd if
~L is of type zero and even otherwise.
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2. Choose any v ∈ ∂~L ∩ ∂Bn−1(ρ) and let y denote the unique ancestor of v
two steps back from v (grandparent). By definition of the cutset together
with its fixed type and of the number n, all children of y are starting
points of cutset edges (see the r.h.s. of Figure 4 (b)).

3. Perform a merging operation, i.e. replace these cutset edges by the directed
edge with end point y (see the l.h.s. of Figure 4 (b)). Substitute ~L by the
so obtained cutset.

4. Go back to step 1.

This algorithm terminates, as finitely many repetitions will decrease the finite
number n by steps of size two eventually leading to ~L0. Substituting the merging
operation with the pushout operation and applying these steps in reversed order
gives us the statement of the lemma. 2

Performing the pushout operation on an edge of a cutset ~L alters the rele-

vant quantities, the number |int(~L)| of vertices in the interior and N
~L
repl of net

replacements of zeros by ones in int(~L) needed to remove (in terms of flipping

the spins) ~L, in the following way:

Remark 4. If ~L is a type-changing cutset of type 0 or 1 and 〈x, y〉 ∈ ~L is such

that y has dy children, then for the new cutset ~L′ obtained by performing the
pushout operation on 〈x, y〉 the following holds true:

a) |int(~L′)| = |int(~L)|+ dy + 1 and

b) N
~L′

repl = N
~L
repl + dy − 1.

This leads to the following statement

Lemma 3. If ~Ln is a type-changing cutset of type 0 which is obtained from the
initial cutset ~L0 by n pushout operations, then we have the following bounds

a) |int(~Ln)| ≤ 1 + n(dmax + 1)

b) N
~Ln

repl ≥ 1 + n(dmin − 1) =: rn.

For ~Ln a type-changing cutset of type 1, the same statements hold true with n
replaced by n+ 1.

The proof of this lemma relies on an induction on the number of pushout
operations needed to construct a cutset starting with the initial cutsets (see
Lemma 2 and Figure 4).
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Resumming in (4.3) over the number of pushout operations needed to con-

struct a cutset ~L we arrive at:

νB2R+1
(ωρ = 0) (4.4)

≤
∞∑
n=0

∣∣{~Ln ∈ C (0, V ) : ~Ln is obtained by n pushouts }
∣∣(1− p

p

)rn
.

To bound the combinatorial weight, we apply the following Lemma, which
is a well-known result also used e.g. in [16].

Lemma 4. Let G be a graph of maximal degree dmax + 1. Then the number of
connected subgraphs Γ ⊂ G with k edges, containing a given vertex is bounded
from above by

(dmax + 1)2k.

The proof is an immediate extension of a result for the lattice in [15] to the
setup of a general graph with bounded degrees, which follows from Lemma 3.38
in [15].

Remark 5. Let W b V be a connected subset of V . Then the relation between
the edges and the vertices of the subgraph reads |W | = |EW |+ 1.

Lemmas 3 and 4 and Remark 5 give for any n ∈ N0

|{~Ln ∈ C (0, V ) : ~Ln is obtained by n pushout operations}
∣∣

≤ (dmax + 1)2n(dmax+1). (4.5)

Combining (4.4) and (4.5) with the lower bound in Lemma 3 b) yields

νB2R+1
(ωρ = 0) ≤

∞∑
n=0

(dmax + 1)2n(dmax+1)
(1− p

p

)1+n(dmin−1)
. (4.6)

Note that the right hand side of (4.6) goes to zero for p ↑ 1, which concludes
the statement of Proposition 1.

Appendix

Proof of Remark 2. Let ω′B2
= ω′∗B2

or ω′B2
= 0′B2

. The definition of

bR(ω
′

B2
) and Bayes’ formula yield

bR(ω
′

B2
) ≥ µ′p(ω

′

B2
| 0′B2R\B2

1′B2R+2\B2R
)

=
1

1 +
µ′p(0′

B2R\B2
1′
B2R+2\B2R

| (ω
′
B2

)c)

µ′p(0′
B2R\B2

1′
B2R+2\B2R

| ω′B2
)

µ′p((ω
′
B2

)c)

µ′p(ω
′
B2

)

, (A.1)
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where µ′p((ω
′

B2
)c) := µ′p(σ

′
B2
6= ω

′

B2
). It remains to bound the denominator

from above. From the definition of the transformed measure µ′p it follows

µ′p(0
′
B2R\B2

1′B2R+2\B2R
| (ω

′

B2
)c)

µ′p(0
′
B2R\B2

1′B2R+2\B2R
| ω′B2

)

µ′p((ω
′

B2
)c)

µ′p(ω
′
B2

)

=
µ′p((ω

′

B2
)c0′B2R\B2

1′B2R+2\B2R
)

µ′p(ω
′
B2

0′B2R\B2
1′B2R+2\B2R

)

=
[∑
ωB2

∑
ωB2R\B2

f(ωB2
ωB2R\B2

)1{TB2
(ωB2

ωB2R\B2
)6=ω′B2

}

× µp(ωB2ωB2R\B2
1B2R+2\B2R

)
]

×
[∑
ω̃B2

∑
ω̃B2R\B2

f(ω̃B2 ω̃B2R\B2
)1{TB2

(ω̃B2
ω̃B2R\B2

)=ω
′
B2
}

× µp(ω̃B2
ω̃B2R\B2

1B2R+2\B2R
)
]−1

. (A.2)

Here, f(ωB2ωB2R\B2
) := 1{TB2R\B2

(ωB2
ωB2R\B2

1B2R+2\B2R
)=0′

B2R\B2
}. Recall that

µp = Ber(p)⊗V and (A.2) reads∑
ωB2

W (ωB2
)
∑
ωB2R\B2

W (ωB2R\B2
)f(ωB2

ωB2R\B2
)1{TB2

(ωB2
ωB2R\B2

) 6=ω′B2
}∑

ω̃B2
W (ω̃B2)

∑
ω̃B2R\B2

W (ω̃B2R\B2
)f(ω̃B2

ω̃B2R\B2
)1{TB2

(ω̃B2
ω̃B2R\B2

)=ω
′
B2
}
,

(A.3)
where we recall that W (ωΛ) =

∏
x∈Λ(1 − p)1−ωxpωx are the Bernoulli weights

of a subset Λ b V . Now let ω̂B2
be any configuration which satisfies ω̂B2\B1

=
0B2\B1

and TB2
(ω̂B2

) = ω′B2
. In the case ω′B2

= ω′∗B2
, the only possible choice is

ω̂B2
= ω∗B2

. In the case ω′B2
= 0

′

B2
, we may simply take ω̂B2

= 0B2
. Restricting

the denominator of (A.3) to the term with ω̃B2 = ω̂B2 provides the upper bound∑
ωB2

W (ωB2
)
∑
ωB2R\B2

W (ωB2R\B2
)f(ωB2

ωB2R\B2
)1{TB2

(ωB2
ωB2R\B2

)6=ω′B2
}

W (ω̂B2
)
∑
ω̃B2R\B2

W (ω̃B2R\B2
)f(ω̂B2

ω̃B2R\B2
)1{TB2

(ω̂B2
ω̃B2R\B2

)=ω
′
B2
}

,

(A.4)
where we note that in the case ω′B2

= ω′∗B2
this upper bound becomes an equality.

The assumption ω̂B2\B1
= 0B2\B1

guarantees that the indicator in the denom-
inator is constantly one and the inequality f(ωB2ωB2R\B2

) ≤ f(ω̂B2ωB2R\B2
)

holds for all ωB2 and ωB2R\B2
. Moreover, we can upper bound the indicator in

the numerator by one. Hence, we obtain the upper bound for (A.4)∑
ωB2

W (ωB2)

W (ω̂B2)
=

1

W (ω̂B2)
<∞, (A.5)
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which is an R-independent upper bound. Combining (A.1)–(A.5) concludes the
proof of Remark 2.
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