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(PRELIMINARY VERSION – DO NOT CITE)

ALEXANDER B. IVANOV AND LUCAS MANN

We introduce the (pro-)unramified site of a scheme and study its properties. It turns out that
it posesses enough contractible objects, similar to the pro-étale site of Bhatt–Scholze [BS15]. In
general, the (pro-)unramified site is less well-behaved than the (pro-)étale site. However, we show
that for a certain class of schemes, which we call combs and which form a basis for the v-topology
on the category of schemes, the pro-unramified site behaves in a nice way. In particular, in a
sufficiently v-local setup we prove an unconditional base change result for unramified sheaves in
Theorem 4.2, which parallels [Sch18, Corollary 16.10] for étale sheaves on diamonds (note that
this can fail for étale sheaves on schemes when the base change map is not flat). We use this
in §5 to develop a 5-functor formalism for solid sheaves on schematic v-stacks, analogous to the
5-functor formalism in the work of Fargues–Scholze [FS, Chapter VII].

Outline. In §1 we define the pro-unramified site of a scheme, describe its contractible objects
(in Theorem 1.33) and prove that for geometrically unibranch schemes, satisfying an additional
condition, the pushforward from (pro-)unramified to (pro-)étale abelian sheaves is exact (Theo-
rem 1.40). In §2 we compare the pro-étale site with the v-site of a scheme and prove that pullback
from pro-étale sheaves to v-sheaves is fully faithful (on the level of abelian categories); this is
a schematic analogue of [Sch18, Proposition 14.7] for diamonds. In §3 we restrict to combs
(i.e., sufficiently v-local schemes) and prove that for them the pullback from pro-unramified
sheaves to v-sheaves is fully faithful. In §4 we use all the theory set up before to prove the
unconditional base change (Theorem 4.2) for unramified torsion sheaves (whose order is coprime
to the characteristic) on combs, and to study the usual four functors for unramified sheaves.
Finally, in §5 we exploit the above results to define (by v-descent from combs) the category of
solid sheaves on a schematic v-stack and to define the five functors on it, closely following the
approach of [FS, Chapter VII]. ;

Notation and prelimilaries. We abbreviate quasi-compact and quasi-separated by “qcqs”,
and quasi-compact open by “qc open”. For a scheme X we sometimes denote by |X| the
underlying topological space.
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1. The pro-unramified site of a scheme

1.1. Some notation and preliminaries. Let S be the category of spectral spaces with spectral
maps and Sf the full subcategory of finite spectral spaces. Recall that S ∼= Pro(Sf ). For X ∈ S,
let Xc (resp. Xgen, resp. π0(X)) denote the set of closed points (resp. generic points of
irreducible components, resp. the set of connected components) of X. We write Xcons for X
endowed with the constructible topology. Recall that for X ∈ S, a subset Z ⊆ X is closed in
the constructible topology if and only if it is pro-constructible, i.e., intersection of constructible
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subsets. Recall that for X ∈ S, π0(X) is naturally a profinite set, and the map πX : X ↠ π0(X),
sending a point of X to its connected component is a quotient map [Sta14, 0906]. If X is clear
from the context, we also write π for πX . Finally, recall that the image of a spectral map between
spectral spaces is pro-constructible [Sta14, 0A2S].

We will use these facts without further reference below.

1.2. Straight spectral spaces. To any spectral space X, Hochster attached a dual spectral
space X∗, which has the same underlying set, but in which the closed sets are precisely the
pro-(qc open) subsets of X [Hoc69, Prop. 8]; X 7→ X∗ : S → S is a (covariant) duality functor.
In particular, X∗∗ = X and if f : X → Y is a map in S, then the induced map f∗ : X∗ → Y ∗ is
again spectal. Note that if X ∈ Sf , then the opens in X∗ are precisely the closed subsets in X.

Lemma 1.1. Let X ∈ S. Then π0(X) = π0(X
∗) and Xgen = (X∗)c.

Proof. For the first claim, it suffices (by duality) to check that if Y ⊆ X is connected, then Y
is also connected in X∗. For the second claim, note that for x ∈ Xgen, the intersection of all
quasi-compact opens containing x equals {x}, which implies x ∈ (X∗)c. □

Recall from [BS15, Lemma 2.1.8] that S admits all small limits, and the forgetful functor
S → Sets commutes with them.

Lemma 1.2. X 7→ X∗ commutes with all small limits.

Proof. As S = Pro(Sf ), it is enough to show that (i) if X = lim←−i
Xi ∈ S with Xi ∈ Sf , then the

natural continuous bijection X∗ → lim←−i
X∗

i is a homeomorphism, and (ii) fiber products in Sf
commute with (·)∗. (i) follows by noticing that T ⊆ X∗ is closed if and only if T =

⋂
i(X →

Xi)
−1(Ui) for some Ui ⊆ X∗

i closed, which implies that T is closed in lim←−i
X∗

i . For (ii), let

X → Z ← Y be maps in Sf . Recall from [BM21, proof of 2.1.8], that the topology on X ×Z Y
is induced from the product topology on X × Y . We must show that the continuous bijection
(X ×Z Y )∗ → X∗×Z∗ Y ∗ is closed. Any closed subset of (X ×Z Y )∗ is a (finite) union of (finite)
intersections of sets of the form TA,B = (A × B) ∩ (X ×Z Y )(⊆ X × Y ) with A ⊆ X, B ⊆ Y
open. It suffices to show that TA,B is closed in X∗ ×Z∗ Y ∗, which is obvious. □

In contrast to X → π0(X) there is no such natual map for Irr(X). Instead, the situation is

somewhat dual. We have the injection Irr(X)
∼→ Xgen ↪→ X sending an irreducible component

to its generic point, and we may give Irr(X) the induced topology. With this topology, Irr(X)
does not need to be quasi-compact (see Example 1.4). However, if it is, then it is a profinite set
as the next lemma shows.

Lemma 1.3. Let X be a spectral space with Xgen quasi-compact. Then Xgen is pro-(qc open)
and hence pro-constructible, and a profinite set.

Proof. We claim that for any y ∈ X ∖Xgen, there is some quasi-compact open U ⊇ Xgen with
y ̸∈ U . As y ̸∈ Xgen, we have {y}∩Xgen = ∅. As qc opens form a basis for the topology, we may

for any x ∈ Xgen find some quasi-compact open x ∈ Vx ⊆ X ∖ {y}. Then {Vx∩Xgen}x∈Xgen is an
open covering of Xgen, hence it has a finite subcovering. Thus there are some x1, . . . , xn ∈ Xgen,
such that

⋃n
i=1 Vxi ⊇ Xgen. As

⋃n
i=1 Vxi is also quasi-compact, the claim follows. The claim

now implies that Xgen is the intersection of all quasi-compact opens containing it, hence pro-(qc
open). As Xgen is spectral (by the first claim and [Sta14, 0902]) and its points do not admit
non-trivial specialization relations, it follows from [Sta14, 0905] that it is profinite. □

Note that for the set of closed points Xc ⊆ X the situation is somewhat dual: Xc is always
quasi-compact [Sta14, 00ZM], and it is pro-constructible in X if and only if it is closed.
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Example 1.4. (The first part of this example was explained to us by P. Scholze.) For n ≥ 1,
let Xn be the finite T0-space, with n + 1 points x1, . . . , xn and ηn, such that {xi} is clopen for
1 ≤ i < n; {xn, ηn} is clopen and irreducible with generic point ηn. For n ≥ 2, let Xn → Xn−1

be the map given by xi 7→ xi (1 ≤ i ≤ n − 2), xn−1 7→ ηn−1, ηn 7→ ηn−1, xn 7→ xn−1. Let
X = lim←−n

Xn. Then Xc is not closed (and hence not pro-constructible). Consequently, (X∗)gen

is not pro-constructible and hence not quasi-compact.

We have a dual version of [BS15, Lemma 2.1.4].

Lemma 1.5. For a spectral space X the following are equivalent:

(i) Xgen is quasi-compact and any surjection
∐

i Vi → X, with all Vi open in X∗, admits a
section.

(ii) Xgen is quasi-compact and any connected component of X has a unique generic point.

For such a space the composition Xgen → X → π0(X) is a homeomorphism.

Proof. Condition (i) is equivalent toX∗ being w-local. Indeed, by Lemma 1.3, quasi-compactness
of Xgen implies its pro-constructibility, and (as the constructible topologies on X and X∗ agree)
Lemma 1.1 then implies that (X∗)c is pro-constructible. Being stable under specialization, (X∗)c

is then also closed. Similarly, Lemma 1.1 shows that condition (ii) for X is equivalent to the
assertions that each connected component of X∗ has a unique closed point and that (X∗)c is
closed. The result now follows from [BS15, Lemma 2.1.4] for X∗. □

Recall that V ⊆ X is closed constructible if and only if X ∖V is qc open. As V ⊆ X is
open in X∗ if and only if its complement is the union of quasi-compact opens of X, each map∐

i Vi → X as in Lemma 1.5(i) admits a refinement with all Vi ⊆ X closed constructible. We
have the following dual version of [BS15, Def. 2.1.1].

Definition 1.6. A spectral space is straight if it satisfies the equivalent conditions of Lemma
1.5. A map X → Y of straight spectral spaces is straight, if it is spectral and f(Xgen) ⊆ Y gen.
Denote by i : Sstr → S the subcategory of straight spaces with straight maps.

Remark 1.7. The functor X 7→ X∗ restricts to a covariant duality Swl → Sstr. (Note that
X 7→ X∗ does not preserve closed subsets, but does preserve pro-constructibles.) By duality,
basic properties of w-local spaces ( [BS15, 2.1.3, 2.1.4, 2.1.6, 2.1.9, 2.1.10] respectively) carry
over to straight spaces:

(1) Let X ∈ Sstr, Z ⊆ X a pro-(qc open) subspace. Then Z ∈ Sstr.
(2) Let Z ⊆ X be pro-(qc open). We say that X is straight along Z, if Xgen ⊆ Z. The

straightification of X along Z is the set Z̃ of all specializations in X of points in Z. As

Z is pro-constructible, Z̃ is closed in X.
(3) A spectral space X, which is straight along a straight pro-(qc open) subspace Z ⊆ X

with π0(Z) ∼= π0(X) is also straight.
(4) Sstr admits all small limits and the inclusion Sstr → S preserves these limits.
(5) Recall that the inclusion Swl → S admits a right adjoint X 7→ Xwl, and that Xwl is

a pro-(Zariski localization) of X [BS15, 2.1.10-12] (in loc. cit., Xwl was denoted XZ).
Dually, Sstr → S admits a right adjoint X 7→ Xstr. On the level of Sf it is given by

Xstr =
∐

x∈X {x}, and in general by passing to the pro-category as in [BS15, proof
of Lemma 2.1.10]; the composite (Xstr)gen → Xstr → X is a homeomorphism for the
constructible topology on X. Moreover, Xstr = ((X∗)wl)∗.

(6) A map Y → X is a closed constructible localization if Y =
∐

i Yi with Yi → X (iso-
morphic to) an immersion of a closed constructible subset. A pro-(closed constructible
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localization) is a cofiltered limit of such maps. Dualizing the fact that Xwl → X is a pro-
(Zariski localization), we get that Xstr → X is surjective and a pro-(closed constructible
localization).

Lemma 1.8. We have Swl = Pro(Swl ∩ Sf ) and Sstr = Pro(Sstr ∩ Sf ).

Proof. By duality it suffices to show the first equality. We claim that any X ∈ Swl can be
written as a cofiltered limit of finite w-local spaces along w-local maps. Write X = lim←−i

Xi as

a cofiltered limit with Xi ∈ Sf . Then Xwl = lim←−i
Xwl

i (with all transition maps w-local). By

adjunction and as X is w-local, the natural pro-open cover Xwl → X admits a w-local section
s : X → Xwl, which is necessarily an isomorphism onto a closed subspace (e.g., as this holds for
affine schemes and by [Hoc69, Theorem 6]). For each i, let Yi be the closure of the image of

X
s
↪→ Xwl → Xwl

i . Being closed in a w-local space, Yi is w-local itself; moreover, it is clear that
{Yi}i form an inverse system of finite w-local spaces, along w-local transition maps. Clearly, s
factors through an inclusion X → lim←−i

Yi(⊆ lim←−Xwl
i = Xwl), which is bijective as X ⊆ Xwl is

closed. As lim←−i
Yi also has the subspace topology of Xwl, this is an isomorphism, and the claim

is proven. □

1.3. w-local straight spaces. We say that a map Y → X in S is a topological v-cover if any
specialization relation x⇝ y in X lifts to Y (in this section we simply write “v-cover”, because
there is no risk of confusion). The combination of w-locality and straightness splits all v-covers
by locally closed constructible subsets:

Lemma 1.9. For a spectral space X the following are equivalent:

(i) Xgen is quasi-compact, Xc is closed and any surjection
∐

iCi → X splits if it satisfies
the following two conditions:
(a) Ci = Ui ∩ Vi with Ui ⊆ X open, and Vi ⊆ X∗ open, and
(b)

∐
iCi → X is a v-cover.

(ii) X is w-local and straight

Proof. (ii) follows from (i) by [BS15, Lemma 2.1.4] and Lemma 1.5, as (b) is vacuous for open
(resp. closed constructible) covers. Now assume (ii), and let

∐
iCi → V be as in (i). We may find

Ui =
⋃

k U
′
ik and Vi =

⋃
j V

′
ij with all U ′

ik,X ∖V ′
ij quasi-compact open. Then Ci =

⋃
j,k(U

′
ik∩V ′

ij).

It is easy to check that the refinement {U ′
ik ∩ V ′

ij}ijk of our covering satisfies condition (b).

Replacing
∐

iCi → X by this refinement, we may assume that Ui and X ∖Vi are quasi-compact
open in X. For x ∈ π0(X), let xc (resp. ηx) denote the closed (resp. generic) point of the
connected component Xx ⊆ X corresponding to x. By condition (b), we may, for any x ∈ π0(X)
find an i = i(x), such that ηx ⇝ xc lifts to Ci = Ui∩Vi. Then, Ui ⊇ Xx (as Ui is open and contains
xc) and similarly, Vi ⊇ Xx. Moreover, recall that Xgen is profinite by Lemma 1.3. We claim
that in the above situation Ci∩Xgen is a clopen neighboorhood of ηx ∈ Xgen. Indeed, Ui∩Xgen

is open and, in fact, quasi-compact neighboorhood of ηx in Xgen (indeed, recall that by Lemma
1.3, Xgen is pro-constructible, hence retrocompact in X). Thus U ∩ Xgen ⊆ Xgen is clopen.
Similarly, (X ∖Vi) ∩Xgen ⊆ Xgen is quasi-compact open, hence clopen subset of Xgen. Hence
its complement Vi∩Xgen is a clopen neighboorhood of ηx inXgen, and the claim follows. Further,
note that Xc is profinite. Dually to the preceeding claim, one shows that Ci ∩ Xc is a clopen
neighboorhood of xc in Xc. Both compositions Xc → X → π0(X) and Xgen → X → π0(X)
are continuous bijections of profinite sets, hence homemorphisms [Sta14, 08YE]. Projecting
Ci ∩ Xgen and Ci ∩ Xc down to π0(X) and intersecting the images, we get a (still clopen)
neighboorhood Nx ⊆ π0(X) of x, with the property that for all y ∈ Nx, Xy ⊆ Ci (this inclusion
follows by the same argument which showed Xx ⊆ Ci above). Finally, {Nx : x ∈ π0(X)} is a
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clopen covering of the profinite set π0(X). We may refine it by a finite disjoint clopen covering
{Nj}j [Sta14, 08ZZ]. This induces a clopen covering {XNj}j of X. Over each XNj ,

∐
iCi → X

obviously admits a section, and these sections glue to one section over the whole of X. □

Definition 1.10. Denote by Swls ⊆ S the subcategory of w-local straight spectral spaces with
w-local straight spectral maps.

Example 1.11. Any profinite set is w-local straight. The spectrum of any local domain is
w-local straight. Finite disjoint unions of w-local straight spaces are w-local straight.

Clearly, we have Swls = Swl ∩ Sstr within S. Moreover, X 7→ X∗ restricts to a duality
functor on Swls. For any X ∈ Swls, the inclusions Xgen ↪→ X ←↩ Xc induce homeomorphisms
Xgen ∼= π0(X) ∼= Xc.

Lemma 1.12. Swls admits all small limits, and the inclusion Swls → S preserves these limits.

Proof. This follows formally from [BS15, Lemma 2.1.9] and Lemma 1.2. □

We now construct the right adjoint of the inclusion Swls → S. Recall that π0(X
wl) ∼= Xcons

[BS15, Lemma 2.1.10]. Similarly, let

T (X) := {(x, y) ∈ X ×X : x⇝ y}

be the set of all specialization relations in X. We define the constructible topology on T (X)
as follows. For a presentation X = lim←−i

Xi with all Xi ∈ Sf , note that the natural map

T (X) → lim←−i
T (Xi) is bijective. Via this bijection, we declare the constructible topology on

T (X) to be the inverse limit of discrete topologies on all T (Xi). This is independent of the
choice of the presentation X = lim←−i

Xi.
We will abbreviate locally closed constructible by l.c.c.

Lemma 1.13. The inclusion Swls → S has a right adjoint X 7→ Xwls. The counit Xwls → X is
a pro-(l.c.c.) v-cover. We have π0(X

wls) ∼= T (X), where T (X) is equipped with the constructible
topology.

Proof. As in [BS15, proof of Lemma 2.1.10], for the construction of the adjoint it suffices to
work with finite T0-spaces and to construct, for each X ∈ Sf , a functorial l.c.c. cover Xwls → X

with Xwls w-local and straight, such that (a) X 7→ Xwls carries maps to w-local straight maps,
(b) π0(X

wls) ∼= T (X). We take

Xwls =
∐

x⇝y∈T (X)

Tx⇝y.

where Tx⇝y := {z ∈ X : x ⇝ z ⇝ y} = {x} ∩ Xy (where Xy is the set of all generalizations
of y) is locally closed in X. Given a map f : Y → X in Sf , we send it to the map induced by
Tx⇝y → Tf(x)⇝f(y). The conditions (a),(b) are easily checked.

To prove that X 7→ Xwls is indeed an adjoint to inclusion, it suffices (as in loc. cit.) to show
that any spectral map h : Y → X with Y ∈ Swls, X ∈ S factors uniquely through a w-local

straight map h′ : Y → Xwls. For ? ∈ {c, gen}, let g? : Y ? ↪→ Y
h→ X and s? : Y ↠ π0(Y )

∼→ Y ?

be the induced maps. Pick x ⇝ y in X with g−1
gen(x) ̸= ∅ and g−1

c (y) ̸= ∅. Then replacing Y

by the clopen (cf. loc. cit.) subset s−1
gen(g

−1
gen(x)) ∩ s−1

c (g−1
c (y)), we may assume that h factors

through Tx⇝y. Then we define the lift h′ by sending Y to Tx⇝y ⊆ Xwls. □

Lemma 1.14. The functor X 7→ Xwl : S → Swl from Remark 1.7 restricts to the right adjoint
of the inclusion Swls → Sstr. The analogous statement holds for X 7→ Xstr : S → Sstr.
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Proof. This follows from Lemma 1.8 by checking that the construction of Xwl in [BS15, 2.1.10]
preserves straight spaces and straight maps. The second claim follows by duality. □

Remark 1.15. Lemma 1.14 gives another construction of Xwls: the functors X 7→ Xwls,
X 7→ Xstr 7→ (Xstr)wl and X 7→ Xwl 7→ (Xwl)str are naturally isomorphic (it suffices to check
this on finite T0-spaces). In particular, T (X) ∼= π0(X

wls) ∼= (Xwl)cons ∼= (Xstr)cons. Moreover,
using this and (the dual of) [BS15, Remark 2.1.11], we can describe Xwls, (Xwls)gen as follows:

Xwls = lim←−
{Yi↪→Xwl}

∐
i

Yi ⊇ (Xwls)gen = lim←−
{Yi↪→Xwl}

∐
i

Yi

where the limit is taken over the cofiltered category of all constructible stratifications {Yi ↪→
Xwl}. The space Xstr ∈ Sstr from Remark 1.7(5) admits a similar description.

1.4. Quasi-(pro-unramified) morphisms. Following [Sta14, 02G5], we call a morphism of
schemes G-unramified, if it is formally unramified and locally of finite presentation. Recall also
the notion of schematic v-covers from [BS17].

Definition 1.16. Let f : Y = SpecB → SpecA = X be a morphism of affine schemes.

(1) f is called pro-unramified, if B = lim−→Bi is a filtered colimit of G-unramified A-algebras.

(2) f is called quasi-(pro-unramfied) if there exists a pro-unramified morphism Y ′ = SpecC →
Y which is a v-cover, such that the composition Y ′ → Y → X is pro-unramified.

We have the corresponding notions of ind-unramified and quasi-(ind-unramified) maps of rings.

Lemma 1.17. (1) Pro-unramified (resp. quasi-(pro-unramified)) maps are stable under
composition and base change.

(2) Quasi-(pro-unramified) maps are local on the target and source, with respect to the topol-
ogy given by quasi-(pro-unramified) v-covers of affine schemes. In particular, they are
so Zariski-locally.

(3) Any immersion of affine schemes is pro-unramified.
(4) Let X be an affine scheme, Y a pro-unramified X-scheme and Z any affine X-scheme.

Any X-map Y → Z is pro-unramified.
(5) Pro-unramified maps have flat diagonal (i.e., are weakly unramified, cf. Definition 1.18).
(6) Any map Y → X with flat diagonal is formally unramified, i.e., Ω1

Y/X = 0.

(7) A map is G-unramified if and only it is pro-unramified and of finite presentation.

Proof. (1): The claim for composition of pro-unramified maps follows from the same claim for
unramified maps [Sta14, 02G9] along with approximation results [Sta14, 01ZM and 0C4W]1.
The claim for base change of pro-unramified maps follows fom the same claim for unramified
maps [Sta14, 02GA]. The assertions for quasi-(pro-unramified) maps follow formally from the
assertions about pro-unramified maps (and similar ones for v-covers). (2): This formally follows
from the definitions, (1) and stability of v-covers under composition and base change. (3): By
(1) it suffices to show it for closed and for open immersions separatly. Moreover, any closed
immerison can be written as an inverse limit of of finitely presented ones, so that we are done
by [Sta14, 02GB and 02GC]. (4): factor f : Y → Z as the graph followed by second projection
Y → Y ×X Z → Z. Now Y → Y ×X Z is pro-unramified by (3), and Y ×X Z → Z is pro-
unramified by (1). We conclude by (1). (5): If Y = limi Yi → X with all Yi G-unramified
X-schemes, then the diagonal of Yi → X is open, hence flat. Inverse limit of these is the
diagonal of Y → X, which is hence also flat. (6): The question is local on the source, so we may
assume Y and X are affine. Let f : A → B be a map of rings, such that B ⊗A B → B is flat.

1Already here it becomes important to use G-unramified maps (instead of unramfied ones) in Definition 1.16(1).
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By [Sta14, 08S2], ΩB/A is the conormal sheaf of the diagonal ∆f , which is a closed immersion.
In general, if α : Z ↪→ X is a flat closed immersion of schemes, then the conormal sheaf CZ/X = 0

vanishes. Indeed, we may assume X = SpecA and Z = SpecA/I are affine; then CZ/X
∼= I/I2.

Flatness of Z ↪→ X is equivalent to I being a pure ideal of A (by [Sta14, 04PU,04PW]). But then,
by [Sta14, 04PS (2)], I2 = I and we are done. (7): This follows from (5), (6) and [Sta14, 02G5].

□

By Lemma 1.17(2) the notion introduced in part (2) of the following definition is well-behaved.

Definition 1.18. Let f : Y → X be a morphism of schemes.

(1) f is called weakly unramified, if the diagonal ∆f : Y → Y ×X Y is flat.
(2) f is called quasi-(pro-unramified) if for any y ∈ Y there are open affine neighboorhoods

y ∈ V ⊆ Y and f(x) ∈ U ⊆ X with f(V ) ⊆ U , such that f : V → U is quasi-(pro-
unramified).

(3) We denote by Xpu the full subcategory of X-schemes, whose objects are quasi-(pro-
unramified) morphisms Y → X. We endow it with the structure of a site by declaring
covers to be those in the v-topology, cf. [Sta14, 0ETB and 0ETH].

(4) We call an object U ∈ Xpu pro-unramified affine if we can write U = lim←−i
Ui as a small

cofiltered limit of G-unramified maps Ui → X, such that all Ui are affine schemes. We
denote the full subcategory of Xpu spanned by pro-unramified affine objects by Xaff

pu .

Remark 1.19. As in [BS15, Rem.4.1.2], we can avoid set-theoretic issues by (re)defining Xpu

using only quasi-(pro-unramified) maps Y → X with |Y | < κ for a fixed uncountable strong
limit cardinal, larger than |X|.

Lemma 1.20. Let X be a scheme.

(1) Any immersion and any weakly étale map is quasi-pro-unramified.
(2) Quasi-(pro-unramified) maps are stable under composition and base change.
(3) All X-maps between quasi-pro-unramified X-schemes are quasi-pro-unramified.
(4) The category Xpu has finite limits. The subcategory spanned by affine quasi-pro-unramified

maps Y → X has all small limits. All limits agree with those in X-schemes.
(5) Any map in Xaff

pu is pro-unramified.

Proof. (1): the claims are local on target and source, and hence follows from Lemma 1.17(3)
resp. [BS15, Theorem 2.3.4] respectively. (2): follows from Lemma 1.17(1),(2). (3): the claim is
Zariski-local on X, the target and the source. For affine schemes, it follows from 1.17(4). (4):
X is a final object of Xpu and if Y1 → Y2 ← Y3 are maps in Xpu, then the X-scheme Y1 ×Y2 Y3
is in Xpu, as follows from parts (2) and (3) of the lemma. (5): similar as [BS15, Lemma 4.2.2]
(using [Sta14, 02GG] to ensure unramifiedness of maps at the finite level). □

General quasi-pro-unramified maps can be quite complicated. For example, if Y → X is
quasi-pro-unramified, and Y ↪→ Y ′ is any nilpotent thickening of X-schemes, then Y ′ is also
quasi-pro-unramified over X. This is compensated by the following (probably well-known) fact.

Lemma 1.21. Let F be a sheaf on Xv (resp. Xpu). Let Z → Y be a universal homeomorphism
in Xv (resp. Xpu). Then F (Y )→ F (Z) is bijective.

Proof. This follows as Z → Y is a v-cover and the diagonal Z → Z ×Y Z is a surjective closed
immersion (cf. the proof of [Sta14, 0F6V]), hence also a v-cover. □

Remark 1.22. Instead of Xpu, one might also consider the category of all weakly unramified
X-schemes. This, however, seems not to lead to a well-behaved site in general. E.g., there is
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no reason for Lemma 1.20(3) to hold for weakly unramified maps. Note also that quasi-(pro-
unramified) does not imply weakly unramified (as it would be the case for the analogous notions
of quasi-(pro-étale) and weakly étale maps).

Lemma 1.23. Let X be any scheme. The topos X∼
pu of small sheaves is algebraic. A generating

system of qcqs objects stable under fiber products is given by Xaff
pu . If X is affine, Xaff

pu is the
category of all pro-unramified X-schemes, it has the structive of a site (with v-covers) and
(Xpu)

∼ ∼= (Xaff
pu )

∼.

Proof. The first two facts follow from the finitary nature of v-covers and the fact that for any
Y ∈ Xpu, there is a v-cover

∐
i Yi → Y with Yi ∈ Xaff

pu , which is a formal consequence of the
definitions. For affine X, [BS15, Remark 4.2.5] applies in our situation. □

Remark 1.24. In contrast to the pro-étale site of a scheme X, Xpu is not subcanonical. How-
ever, it follows from descent results of Rydh [Ryd10] that it is subcanonical up to relative semi-
normalization, i.e., up to universal homeomorphisms inducing isomorphisms on residue fields.

More precisely, for Y ∈ Xpu let hY (T ) = HomX(T, Y ), and let h#Y denote its sheafification. If

T is reduced, then hY (T ) ↪→ h#Y (T ) is injective by [Ryd10, Proposition 7.2]. Moreover, for a

pro-unramified v-cover T ′ → T in Xaff
pu , we have the weak normalization T ′ → T T ′/wn → T ,

i.e., T T ′/wn → T is the maximal separated universal homeomorphism, such that T ′ → T T ′/wn is
schematically dominant, cf. [Ryd10, 7.3 and Appendix B]2. Note that T T ′/wn ∈ Xpu. (Relative)
weak normalization is functorial in T ′, so we may form

T pu/wn := lim←−
T ′→T

T T ′/wn,

where the cofiltered limit is taken over all (fine enough) covers of T in Xaff
pu . (Note that by

Lemma 1.21, we have h#Y (T ) = h#Y (T
pu/wn) for all T .) It is clear that if T = T pu/wn, then T is

reduced and for any cover T ′ → T in Xpu, T
′ → T is weakly normal. Thus, [Ryd10, Theorem

7.4 and Remark 7.5] show that for any Y ∈ Xaff
pu , we have h#Y (T ) = hY (T

pu/wn).

Lemma 1.25. A presheaf F on Xpu is a sheaf if and only if it satisfies the two conditions:

(i) For any v-cover V → U in Xaff
pu , the sequence F (U)→ F (V )⇒ F (V ×U V ) is exact.

(ii) F is a Zariski sheaf.

Proof. Same as the proof of [BS15, 4.2.6] (or [Sta14, 0ETM] for the v-topology). □

Over a field the situation is as nice as possible:

Lemma 1.26. Let k be a field and let X ∈ (Spec k)pu. Then Xred ∈ (Spec k)proet, cf. [BS15,
Example 4.1.10]. We have (Spec k)∼pu

∼= (Spec k)∼proet.

Proof. The last claim follows from the first and Lemma 1.21. Write f : X → Spec k for the
structure map. We may assume X is affine. By assumption there exists a pro-unramified v-

cover X ′ g→ X, such that X ′ is affine and fg is pro-unramified. By Lemma 1.17(5) and as k is
absolutely flat, fg is weakly étale. Thus, by [Sta14, 092E and 092F], X ′ is the spectrum of an
absolutely flat ring (and in particular, reduced). As X ′ → X is a v-cover, X has no non-trivial
specialization relations, i.e., Xred is the spectrum of an absolutely flat ring by [Sta14, 092F].
As X ′ is reduced, g factors through gred : X

′ → Xred. As gred is surjective and Xred absoultely
flat, gred is faithfully flat. As gred and fg are weakly unramified (by Lemma 1.17), we conclude
by [Sta14, 092K (1)] that fred : Xred → Spec k also is. As fred is automatically flat, it is weakly
étale. □

2In fact, it is easy to see that (as T ′ → T is pro-unramified) TT ′/wn → T induces isomorphisms on residue fields,
and hence coincides with the semi-normalization of T in T ′. Cf. [Sta14, 0EUL].
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1.5. Straight affine schemes. It turns out that the pro-unramified site has enough contractible
objects, just as the pro-étale site in [BS15, §2.2].

Definition 1.27. Let A,B be rings, and f : A→ B a homomorphism.

(1) We call A straight if A is reduced and SpecA is straight. If A,B are straight, we call f
straight, if Spec f is straight.

(2) We call f a closed constructible localization if B =
∏n

i=1A/Ii, where for all i, Ii ⊆ A is
a finitely generated ideal.3 An ind-(closed constructible localization) is a filtered colimit
of closed constructible localizations.

Thus, an affine scheme X = SpecA is w-local straight if it is reduced, Xgen is quasi-compact,
Xc ⊆ X is closed, and each connected component of X is the spectrum of a local domain. We
note that rings A with (SpecA)gen quasi-compact were studied by Olivier [Oli68].

Lemma 1.28. The inclusion of the category of straight (resp. w-local straight) rings and maps
into the category of all rings has a left adjoint A 7→ Astr (resp. A 7→ Awls). For ? ∈ {str, wls} we
have Spec(A?) = (SpecA)?. The unit A→ Astr (resp. A→ Awls) is an ind-(closed constructible
v-cover) (resp. an ind-(l.c.c.) v-cover).

Proof. Using Remark 1.15, (SpecA)str, (SpecA)wls admit natural scheme structures as inverse
limits of the reduced induced scheme structures on all finite steps. As straight rings are reduced,
the claims about adjunction follow in the same way as [BS15, Lemma 2.2.4]. It remains to prove
that A → Astr and A → Awls are v-covers. As A → Awl is pro-etale surjective, hence v-
cover, it suffices to do this for A 7→ Astr. By Remark 1.15, SpecAstr → SpecA is surjective
and an inverse limit of finite disjoint unions of closed immersions. Note that these properties
hold after any base change. Thus, by [Ryd10, Remark 2.5(1)], it suffices to show that for
any surjection f of affine schemes, which is an inverse limit of finite disjoint unions of closed
immersions, f is specializing and f cons is submersive. Any surjective spectral map is submersive
in the constructible topology [Ryd10, Remark 2.3]. Also, if fi : Yi → Y is an inverse system of
specializing maps between affine schemes, then a compactness argument (for the constructible
topology) shows that lim←−i

fi : lim←−i
Yi → Y also is. As closed immersions are specializing, this

finishes the proof. □

Although A → Awls is a v-cover, not every topological v-cover (in the sense of §1.3) in
(SpecA)pu is a v-cover, as the following example shows.

Example 1.29. Let X be an affine line with one node x over a field. Then SpecOsh
X,x has two

branches, and let Y be one of them (so Y ⊆ SpecOsh
X,x is an irreducible component). Then

(X ∖ {x})
∐

Y → X is a topological v-cover, but not a v-cover, as its base change to SpecOsh
X,x

is not. Using [Sta14, 0395], it is not hard to show that if X is a qcqs geometrically unibranch
scheme, then for all f : Y → X in Xpu, f is a topological v-cover ⇔ f is a v-cover.

We call a subset Y of an affine scheme X pro-(principal open) if it is the intersection of the
principal open subsets D(f) ⊆ X containing it.

Proposition 1.30. Let X = SpecA be an affine scheme. Let Z ⊆ X be a subset, such that

π : X → π0(X) restricts to a homeomorphism Z
∼→ π0(X). Let Z̃ ⊆ X be the set of all

generalizations of points in Z. Then Z̃ is a pro-(principal open) of X. Moreover, Z is pro-

constructible in X if and only if Z̃ is w-local.

3Recall that a closed subset Z ⊆ SpecA is constructible if and only if there exist a finitely generated ideal I ⊆
with Z = V (I).
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The assumption on Z is equivalent to the following two conditions: (i) π induces a bijection
between Z and π0(X), and (ii) Z with its subspace topology induced from X is quasi-compact.

Proof. The last assertion holds by [Sta14, 08YE]. For x ∈ π0(X) denote by px the unique point
of Z lying over x. The connected component π−1(x) is closed in X, equipped with its canonical
scheme structure (cf. [Sta14, 04PX]); let Ax denote its global sections. Let p̄x be the image of
px under A↠ Ax. Consider the multiplicative subset S = A∖

⋃
x∈π0(X) px of A. We show that

Z̃ = SpecS−1A, which is pro-(principal open). The inclusion Z̃ ⊆ SpecS−1A is clear. To show
the converse, note that S consists of all elements a ∈ A such that for all x ∈ π0(X) the image
ax ∈ Ax of a lies in Ax∖ p̄x. We claim that for all x ∈ π0(X), S maps surjectively onto Ax∖ p̄x
under A ↠ Ax. Assuming this for a moment, we can prove SpecS−1A ⊆ Z̃: let q ∈ X, let

x = π(q) and let q̄ be the image of q in Ax. Assume that q ̸∈ Z̃, i.e., q̄ ̸⊆ p̄x. Then there is some
α ∈ q̄∖ p̄x. By the claim, there is a lift a ∈ S of α along A↠ Ax. But all such lifts lie in q (as
ker(A↠ Ax) ⊆ q). Thus q ∩ S ̸= ∅, i.e, q ̸∈ SpecS−1A.

Next, we prove our claim about S. Let ax ∈ Ax∖ p̄x. Let a ∈ A be an arbitrary lift of ax.
The set Ua = {q ∈ X : a ̸= 0 in κ(q)} is an open neighbourhood of px in X. Then Ua ∩ Z ⊆ Z
is an open neighbourhood of px. The assumptions imply that Va = π(Ua ∩Z) is open in π0(X),
and for each y ∈ Va, we have ay ∈ Ay ∖ p̄y. Now choose any quasi-compact open (hence clopen)
subset x ∈ V ⊆ Va, and let eV ∈ A denote the idempotent element corresponding to V (so,
eV + eπ0(X)∖V = 1). Replacing the lift a by eπ0(X)∖V + eV a we obtain a new lift a of ax which
satisfies ay ∈ Ay ∖ p̄y for all y ∈ π0(X). With other words, a ∈ S. This proves the claim.

Finally, suppose additionally that Z is pro-constructible inX. Then Z is also pro-constructible

in Z̃, as follows, e.g., from [Sta14, 09YF] by writing Z as an intersection of constructible subsets

of X ( [Sta14, 09YF] applies because Z̃ and X are both affine and hence Z̃ ⊆ X is retrocompact).

As by construction Z is also stable under specializations in Z̃, Z is closed in Z̃ [Sta14, 0903].

As π induces a homeomorphism between Z and π0(X) = π0(Z̃), it follows that Z̃ is w-local.

For the coverse direction, note that w-locality of Z̃ implies that Z is closed in Z̃, which is itself
pro-constructible in X. Hence Z is pro-constructible in X. □

The closed set of closed points of a w-local scheme with its reduced structure is cut out by
the Jacobson ideal [BS15, Lemma 2.2.3]. This has the following dual version:

Corollary 1.31. Let X = SpecA be straight. Then Xgen = SpecS−1A is a pro-(principal open)
subset of X, where S = A∖

⋃
pminimal p. Moreover, S−1A is an absolutely flat ring.

Proof. This follows from Proposition 1.30, and the characterization of absolutely flat rings as
reduced ones with Hausdorff spectrum. □

The proof of Proposition 1.30 shows that if X is qcqs, all connected components of X are
irreducible, and the set Xgen of their generic points is quasi-compact, then X → π0(X) is open.
This is not an equivalence, so we may ask the following question:

Question 1.32. Under which assumptions on a (qcqs) scheme X is the quotient map X →
π0(X) open?

We have the following analogue of [BS15, 2.3.4, 2.3.7 and 2.4.9] for the pro-unramified site.

Theorem 1.33. (1) Any qcqs scheme X admits a pro-unramified v-cover X ′ → X, such that
X ′ is a w-contractible straight affine scheme. Moreover, if Y → X is a map of affine
schemes, then one may choose X ′, Y ′ as above, such that there exists a commutative
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diagram

Y ′ //

��

X ′

��

Y
f
// X

with Y ′ → X ′ w-local and straight.
(2) Let X be an affine scheme. Then X is w-contractible straight if and only if any any

quasi-(pro-unramified) v-cover f : Y → X admits a splitting.

Proof. (1): We may assume X,Y are affine. By [BS15, Lemma 2.3.7] we may find faithfully
flat pro-étale maps X1 → X and Y1 → Y with a w-local map Y1 → X1 lifting Y → X and
such that X1, Y1 are w-(strictly local). Passing to straightification as in Lemma 1.28, we obtain
a w-local straight map Y2 := (Y1)

str → (X1)
str =: X2 lifting f , where X2 → X is a pro-

unramified v-cover, and similarly for Y . Next, choose any continuous surjection T → π0(X2)
with T extremally disconnected. Replacing X2 by (X2)T (cf. §) and Y2 by Y2 ×X2 (X2)T , we
have achieved, by [BS15, Lemma 2.4.9], that now X2 is w-contractible straight (note that the
map Y2 → X2 remains w-local straight after this replacement). Similarly, we may replace Y2 by
(Y2)T ′ for some T ′ ↠ π0(Y2) with T ′ extremally disconnected, to make Y2 w-contractible.

(2): First, we prove the ’only if’ direction. It suffices to treat the case that Y → X is a
pro-unramified v-cover. By part (1) we may also assume that Y is w-contractible straight.
Using w-locality (resp. straightness) of Y and X, one checks that the union Y1 (resp. Y2) of all
connected components of Y , whose closed (resp. generic) point hits Xc (resp. Xgen), is closed
in Y . As f is a v-cover, it follows that under Y1 ∩ Y2 → X all specialization relations xgen ⇝ xc
(where xgen (resp. xc) is the generic (resp. closed) point of a connected component of X) lift.
In particular, Y1 ∩ Y2 → X is surjective on sets of connected components. Replacing Y by the
closed reduced subscheme Y1∩Y2, we get a w-local straight map Y → X. As π0(X) is extremally
disconnected, we may find a section s of π0(Y ) ↠ π0(X). Replacing Y by the closed reduced
subscheme Ys(π0(X)), we get f : Y → X which is pro-unramified (by Lemma 1.20(1)), w-local
straight, and π0(f) is a homeomorphism. We claim that then f is an isomorphism. It suffices to
check this on each connected component, i.e., we may assume that f : Y = SpecB → X = SpecA
is a local dominant pro-unramified map, with A striclty Henselian. Write B = lim−→i

Bi with Bi

(G-)unramified A-algebra. We may assume all Bi are reduced. By [Sta14, 04GL], A → Bi is
surjective, and hence an isomorphism as SpecBi → SpecA is dominant. Thus also A→ B is an
isomorphism.

Conversely, assume any quasi-pro-unramified v-cover of X splits. Then, in particular, any
pro-étale cover splits, so X is w-contractible. Moreover, by assumption (and by Lemma 1.28),
the straigthification Xstr → X admits a section s. By duality (cf. §1.2), we may regard s as
a section s∗ to the map of spectral spaces (X∗)wl → X∗. As this map comes from some map
of rings, the section s∗ will be a homeomorphism onto a closed subset. Dualilizing back, s is
thus induces a homeomorphism onto a pro-(qc open) subset of Xstr. Thus, by Remark 1.7, X
is straight. □

Corollary 1.34. For any scheme X, the topos X∼
pu is locally weakly contractible.

1.6. Comparison with the unramified site. Now we discuss the subsite of Xpu of objects
which are locally of finite presentation.

Lemma 1.35. Let f : Y → X be a map of schemes. Then the following are equivalent:

(i) f is quasi-(pro-unramified) and locally of finite presentation.
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(ii) There exists a G-unramified v-cover g : Z → Y , such that the composition Z → X is
G-unramified.

Proof. (ii) ⇒ (i) is clear. (i) ⇒ (ii): By assumption there is some pro-unramified v-cover
Z → Y , such that Z → X is pro-unramified. Write Z = lim←−i

Zi as a cofiltered limit with all Zi

G-unramified. As f is of locally of finite presentation, Z → X factors through Zi → Y for some
i [Sta14, 01ZC]. As Zi → X is G-unramified and f locally of finite presentation, [Sta14, 02GG]
implies that Zi → Y is G-unramified. As Z → Y is a v-cover, also Zi → Y is. □

Definition 1.36. Let X be any scheme. We denote by Xunr (resp. Xaff
unr) the full category of

all objects in Xpu (resp. Xaff
pu ) which are locally of finite presentation over X.

Clearly, Xunr is a site with respect to the the topology from Xpu. Also, if X is affine, Xaff
unr is

a site and it generates the same topos as Xunr. For any X we have a map of sites

ν : Xpu → Xunr,

which induces a map of associated topoi.

Lemma 1.37. Let X be a scheme.

(i) Let F be a sheaf on Xunr. Then for any U ∈ Xaff
pu with a presentation U = lim←−i

Ui, one

has ν∗F (U) = lim−→i
F (Ui).

(ii) The functor ν∗ : X∼
unr → X∼

pu is fully faithful. Its essential image consists of exactly

those sheaves F which satisfy F (U) = lim−→i
F (Ui) for any U ∈ Xaff

pu with presentation

U = lim←−i
Ui.

(iii) Let F be a sheaf on Xpu. If {Yi → X} is a cover in Xpu, such that F |Yi is in the
essential image of ν∗ for each i, then F is also in the essential image of ν∗.

Proof. (i): We follow the proof of [BS15, Lemma 5.1.1], exploiting Lemma 1.25. One has to be
careful at one point: Let A be a ring, B → C a G-unramified map of ind-unramified A-algebras,
which is a v-cover. Let B = lim−→i

Bi be a presentation of B with all Bi G-unramified over A.

As B → C is of finite presentation, we may assume that B → C comes as base change of some
map B0 → C0 of finite presentation; let also Ci = Bi ×B0 C0. Then by [Sta14, 0C4W], Bi → Ci

is G-unramified for i ≫ 0. Now (crucially) by [Ryd10, Theorem 6.4], as B → C is a v-cover,
Bi → Ci is too for i ≫ 0. The rest of the proof of [BS15, Lemma 5.1.1] applies verbatim. (ii),
(iii): same as [BS15, Lemma 5.1.2 and 5.1.4]. □

We have the analogue of [BS15, Corollary 5.1.6] (and [Sch18, 14.8]).

Lemma 1.38. Let K ∈ D+(Xunr). Then the adjunction map K → Rν∗ν
∗K is an equivalence.

If U ∈ Xaff
pu with presentation U = lim←−i

Ui with Ui ∈ Xaff
unr, then RΓ(U, ν∗K) ∼= lim−→i

RΓ(Ui,K).

Proof. The proof of [BS15, Corollary 5.1.6] applies (instead of [BS15, Theorem 2.3.4] we use
Lemma 1.23). □

The following consequence of Lemma 1.37 allows to reduce many questions about unramified
sheaves to connected components.

Corollary 1.39. Let X be a scheme. Then the collection of pullback functors f∗
x : Shv(Xunr)→

Shv(xunr) for all x ∈ π0(X) is conservative.

Proof. We may assume that X is affine. Let α : F → G be a map of sheaves on Xunr such that
the pulled back maps αx : f

∗
xF

∼−→ f∗
xG are isomorphisms for all x ∈ π0(X). We first show that

α is injective. Suppose it is not the case. Then there are some U ∈ Xunr and some s, t ∈ F (U)

such that s ̸= t and α(s) = α(t). Note that for all u ∈ π0(U) the map αu : f
∗
uF

∼−→ f∗
uG is an



5-FUNCTOR FORMALISM FOR SOLID SHEAVES ON SCHEMES (PRELIMINARY VERSION – DO NOT CITE)13

isomorphism, where fu : u→ U is the inclusion (namely, every such u admits a map to U ×X x
for some x ∈ π0(X)). Thus we can replace X by U and assume that s, t ∈ F (X) are global
sections from now on. Pick any x ∈ π0(X) and write it as the intersection x =

⋂
iXi of its

clopen neighbourhoods in X. By Lemma 1.37 we have F (x) = lim−→i
F (Xi) (where we view F

as a sheaf on Xpu) and by assumption on α we know that the images of s and t in F (x) must
agree. It follows that there is some i such that s and t agree on Xi. Repeating this argument
for all x ∈ π0(X) we deduce that s and t agree on an open cover of X and are thus equal. This
proves injectivity of α. Surjectivity is proven similarly (using the established injectivity). □

1.7. Comparison with pro-étale site. For a scheme X we have the map of sites

µ = µX : Xpu → Xproet and µ = µX : Xunr → Xet.

Theorem 1.40. Let X be a geometrically unibranch and straight scheme. Then, for both ver-
sions of the functor µ, we have µ∗µ

∗ ∼= id and µ∗ is exact on abelian sheaves.

Corollary 1.41. If X is straight and geometrically unibranch, RΓ(Xpu, µ
∗F ) = RΓ(Xproet,F )

for any sheaf F on Xproet.

This corollary applies in particular to all integral normal schemes. To prove Theorem 1.40,
we first show some lemmas.

Lemma 1.42. Let f : Y → X be a weakly étale map of affine schemes with X straight. Then
Y gen is quasi-compact, hence a pro-(principal open) subscheme of Y (cf. Corollary 1.31). More-
over, Y gen = Xgen ×X Y .

Proof. By Corollary 1.31, Xgen is a pro-(principal open) subscheme of X. In particular, it is
affine, and hence the spectrum of an absoltely flat ring. Thus Xgen ×X Y ⊆ Y is also a pro-
(principal open) affine subscheme of Y , and it suffices to show that topologically it agrees with
Y gen. As f is flat, generalizations must lift along f , and it follows that Y gen ⊆ Xgen ×X Y On
the other hand, Xgen×X Y → Xgen is the base change of f , hence weakly étale. Thus, as Xgen is
absolutely flat, also Xgen×X Y is. In particular, Xgen×X Y admits no non-trivial specialization
relations, and as it contains Y gen and is pro-open in Y , it cannot contain any other point of
Y . □

Lemma 1.43. Let X be a geometrically unibranch scheme. Let Y → X be weakly étale. Then Y
is geometrically unibranch. If moreover, X is straight and Y is w-local, then Y is also straight.

Proof. Let y ∈ Y with image x ∈ X. For the first claim it suffices to show that Osh
Y,y has a

unique minimal prime ideal. There is a local map Osh
X,x → Osh

Y,y [Sta14, 04GU]. The composition

SpecOsh
Y,y → Y → X is weakly étale (as both maps are). As also SpecOsh

X,x → X is weakly

étale, also Osh
X,x → Osh

Y,y is [BS15, Prop.2.3.3(4)]. By Olivier’s theorem [BS15, Theorem 2.3.5],

this map is an isomorphism. Thus Osh
Y,y is a geometrically unibranch local ring, as Osh

X,x is.
Now assume additionally that X is straight and Y w-local. By Lemma 1.42, Y gen is quasi-

compact. Moreover, Y is reduced by [Sta14, 094Y]. It remains to show that the local ring at
any closed point y of Y is a domain. If x ∈ X is the image of y, we have Osh

X,x
∼= Osh

Y,y (by

Olivier’s theorem). But as X was geometrically unibranch, this is a domain by [Sta14, 06DM],
hence OY,y also is. □

Proof of Theorem 1.40. First we deal with µ : Xpu → Xproet. For exactness of µ∗, let F → G
be a surjection in Ab(Xpu). By [BS15, Lemma 2.4.9] it suffices to show that F (U) → G (U) is
surjective for all w-contractible U ∈ Xproet. As straight w-contractible schemes are contractible
objects for Xpu by Theorem 1.33(2), it simply suffices to show that U itself is straight. But this
follows from Lemma 1.43. The isomorphism µ∗µ

∗ ∼= id follows by a similar argument.
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Now we deal with µ : Xunr → Xét. To show exactness of µ∗, it suffices to show that for any
geometric point x̄ ∈ X, H i((SpecOsh

X,x̄)unr,F ) for any i > 0 and any abelian sheaf F on Xunr.

But SpecOsh
X,x̄ is w-contractible (by construction) and straight (by Lemma 1.43). Hence it is

contractible in Xpu by Theorem 1.33(2), and all higher cohomology vanishes. Finally, µ∗µ
∗ ∼= id

follows from the same claim for Xpu → Xproet, [BS15, Lemma 5.1.2] and Lemma 1.37. □

Let us single out one argument used in the proof of Theorem 1.40:

Lemma 1.44. Let X be a straight affine scheme. Let Y ∈ Xaff
pu be straight. Then the union of all

connected components Y2 of Y , whose image in X contains the generic point of the corresponding
connected component of X, is closed. If, moreover, X is geometrically unibranch, the composition
Y2 → Y → X is pro-étale.

Proof. For the first claim, cf. the proof of Theorem 1.40. The second claim follows from the
first and Lemma 1.45. □

Lemma 1.45. Let X be an affine integral and geometrically unibranch scheme. Let f : Y → X
be a pro-unramified map with Y connected. Suppose the generic point of X lies in the image of f .
Then f is pro-étale. Moreover, one can write Y = lim←−i

Yi with Yi irreducible étale X-schemes.

Proof. Write Y = lim←−i
Yi with all Yi G-unramified X-schemes. For each i, replacing Yi by the

connected component of Yi containing the image of Y , we may assume that Yi is connected.
Let η ∈ Y be such that f(η) is the generic point of X. The irreducible component of Yi which
contains the image of η dominates X. Then [Sta14, 0GS9] shows that Yi → X is in fact étale
and Yi is irreducible. □

For Y ∈ Xpu, let h
#
Y be as in Remark 1.24. In some cases we have a simple formula for the

restriction of a h#Y to Xproet:

Lemma 1.46. Let X be geometrically unibranch straight affine scheme. For straight Y ∈ Xaff
pu ,

let Y2 be as in Lemma 1.44. Then µ∗(h
#
Y ) = hproetY2

.

Proof. Let T ∈ Xaff
proet be w-local (those form a basis of Xproet). By Lemma 1.43, T is itself

straight and geometrically unibranch. By Lemma 1.44, any cover of T in Xaff
pu admits a pro-

étale refinement. Then faithfully flat descent implies that hY (T ) → h#Y (T ) is bijective. As
Xproet is subcanonical and µ∗ is given by restriction, it remains to show that any X-map T → Y
factors (necessarily uniquely) through a map T → Y2. But if T0 is a connected component of
T , whose image in Y (resp. X) is contained in the connected component Y0 (resp. X0), then
–as T → X is proetale,– the image of T0 → X0 contains the generic point of X0, and hence the
image of Y0 → X0 does too. Thus Y0 ⊆ Y2, so T → Y factors through Y2 at least topologically.
But T is straight, hence reduced, i.e., it factors also scheme-theoretically. □

Lemma 1.47. Let X be a geometrically unibranch straight affine scheme. Then µ∗ preserves
qcqs sheaves.

Proof. A sheaf on Xpu is qcqs if and only if it can be realized as the coequalizer of some maps∐
j∈J h

#
Zj
⇒

∐
I∈I h

#
Yi

with I, J finite. Changing the presentation if necessary, we may replace

Yi’s and Zj ’s by some v-covers. Hence we may assume all of them to be straight. Now the result
immediately follows from Lemma 1.46 and Theorem 1.40. □
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2. Pro-étale and pro-unramified sites vs. the v-site

In this section we compare the sites Xproet (and Xpu) to Xv. In full generality, our results
for Xpu are not as good as for Xproet, and we will remedy this in §3 by studying Xpu for a very
nice class of schemes (which form a basis for the v-topology).

First we need some preparations. In §2.1 and §2.2 we show some refinement results about
v-covers, and in §2.3 we investigate the Henselization of a morphism.

If X is a qcqs scheme, and T → π0(X) is a continuous map from a profinite set, we denote by
XT the scheme T×π0(X)X, constructed in [BS15, Lemma 2.2.8]. It is a pro-(Zariski localization)
of X, π0(XT ) = T , and |XT | is the fiber product T ×π0(X) X in topological spaces.

2.1. Refining v-covers by w-local v-covers. The following proposition tells that any v-cover
Y → X with X,Y w-local can be refined by a w-local v-cover.

Proposition 2.1. Let X,Y be w-local schemes and f : Y → X a v-cover. The union Y1 of all
connected components of Y , whose image in X meets Xc is a closed (reduced) subscheme of Y .
Moreover, Y1 → X is a w-local map and a v-cover.

Proof. For y ∈ π0(Y ), let yc denote the unique closed point of y. Consider the set

S := {y ∈ π0(Y ) : f(yc) ∈ Xc}
Note that S ⊆ π0(Y ) is closed, as it is equal to the preimage of the closed subset Xc ⊆ X

under the composition π0(Y )
∼→ Y c ↪→ Y → X. Thus Y1 ⊆ Y , which is the pull-back of S

under Y → π0(Y ), is also closed, and hence w-local [BS15, 2.1.3]. We equip Y1 with the reduced
subscheme structure. Moreover, the map Y1 → X is w-local by construction and it remains to
show that it is a v-cover. It suffices to do so after pullback to all connected components of X.
Hence we may assume that X is connected (and hence local).

Lemma 2.2. Let X = SpecA for a local ring A. Let V a valuation ring and let g : SpecV → X
be a morphism. Then there exists a valuation ring W ⊆ V with the same fraction field, such
that g extends to a map SpecW → X, whose image contains the closed point of X.

Proof. Replacing X by Xred we may assume X is reduced. Replacing X by the irreducible
component containing the image of SpecV → X, we may assume X is integral. Replacing X
by the closure of the image of SpecV → X, we may assume that SpecV → X dominant. Now
SpecV → X corresponds to an injection A ↪→ V , and the result follows from Lemma 2.3. □

Lemma 2.3. Let A ⊆ V be a local subring of a valuation ring. Then there is a valuation subring
W ⊆ V with the same fraction field, which dominates A.

Proof. For a local ring R, denote by mR its maximal ideal, and by κR its residue field. Let
Ā be the image of A → V → κV . Clearly, Ā is non-zero and hence a local ring. Let W̄ any
valuation ring in κV , dominating Ā, i.e., Ā ⊆ W̄ and mĀ ⊆ mW̄ . Now, put W = {x ∈ V : x
mod mV ∈ W̄}. Then W ⊆ V is a valuation ring in Frac(V ), and mW is the preimage of mW̄ .
Thus A ⊆W and mA ⊆ mW , i.e., W dominates A. □

Now we can finish the proof of Proposition 2.1. Let V be a valuation ring and h : Spec(V )→ X
a morphism. Applying Lemma 2.2 we can extend h to some map SpecW → X, whose image
contains the closed point x0 of X. As the fraction fields of V,W coincide, V is necessarily a
Zariski localization of W , i.e., V = W [w−1

i : i ∈ I] for some elements wi ∈W . By assumption on
Y → X, there is a faithfully flat extension of valuation rings W ⊆W ′, and a map SpecW ′ → Y
lifting SpecW → X. The (set-theoretic) image Z of SpecW ′ → Y is contained in a connected
component Y0 of Y , and the image of Z in X contains x0. Thus the image of Y0 in X contains
x0, and hence, by continuity, the closed point of Y0 maps to x0. With other words, Y0 ⊆ Y1.
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Hence SpecW ′ → Y factors through Y1. Now let V ′ = W ′[w−1
i : i ∈ I](= V ⊗W W ′), which is a

Zariski localization of W , hence a valuation ring itself. Clearly, SpecV ′ → SpecV is surjective,
and being the restriction of SpecW ′ → SpecW , it is also flat. As SpecV ′ ↪→ SpecW ′ → Y1 lifts
SpecV ↪→ SpecW → X, we are done. □

Remark 2.4. The last claim of Proposition 2.1 becomes false, when “v-cover” is replaced by
“arc-cover” everywhere. Indeed, if V is a valuation ring of rank ≥ 2 and p ⊆ V is a prime ideal,
which is neither 0, nor maximal, then Y = SpecV/p ⊔ SpecVp → SpecV = X is an arc-cover
by [BM21, Cor. 2.9], and Y1 = SpecV/p→ X is not surjective.

2.2. Componentwise dominant refinement of v-covers. We also can prolong valuations
to the generic point. We use this to prove a statement which is in a sense dual to Proposition
2.1. Recall that a quasi-compact morphism is dominant if and only if its image contains the
generic points of all irreducible components of the target [Sta14, 01RL].

Proposition 2.5. Let X,Y be affine schemes, such that Xred, Yred are straight. Let f : Y → X
be a v-cover. The union of all connected components Y2, whose image in X meets Xgen is a
closed (reduced) subscheme of Y . Moreover, Y2 → X is a v-cover.

Proof. As Xgen is quasi-compact and all connected components are irreducible, Xgen → X →
π0(X) is a homeomorphism (and similarly for Y ). By Lemma 1.3,Xgen, Y gen are pro-constructible.
For y ∈ π0(Y ), let ηy denote the generic point of the corresponding component. Let S = {y ∈
π0(Y ) : f(ηy) ∈ Xgen}. Then S ⊆ π0(Y ) is closed, as it is the image under the homeomorphism

Y gen ∼→ π0(Y ) (from Lemma 1.5) of the subset Y gen ∩ f−1(Xgen), which is pro-constructible,
and hence quasi-compact. Now, Y2 is simply the preimage of S under Y → π0(Y ), hence closed.
It remains to show that Y2 → X is a v-cover. Therefore we need a lemma on extension of
valuations.

Lemma 2.6. Let A be a local domain and p ∈ SpecA. Let V be a valuation ring and SpecV →
SpecA/p a dominant map. Then there exists a valuation ring W , a dominant map SpecW →
SpecA, a prime ideal q of W and a faithfully flat map V → W/q of valuation rings, such that
the diagram

SpecW // SpecA

SpecW/q
?�

OO

// SpecV // SpecA/p
?�

OO

commutes and the square is Cartesian up to reduction, i.e., SpecW/q = (SpecW/pW )red.

Proof. Applying [Sta14, 03C3] to Ap and the field extension Frac(A/p) ⊆ Frac(V ) gives a local
ring B with residue field Frac(V ) together with a local and flat map Ap → B, such that mB = pB.
Being flat, SpecB → SpecAp is dominant. Choosing an irreducible component SpecB′ ⊆
SpecB, whose image contains the generic point of SpecAp and replacing B by B′, we get a local
domain B with a dominant map SpecB → SpecAp such that mB = pB (however, we may loose
flatness). Let now W1 be some valuation ring with fraction field Frac(B) dominating B. The
closed subscheme Spec(W1/mBW1) of SpecW1 has a generic point, which corresponds to a prime
ideal p1 of W1, and replacing W1 by (W1)p1 , we may assume that

√
mBW1 = mW1 , i.e., the fiber

of SpecW1 → SpecB over the closed point has exactly one point. Now, the local map B ↪→W1

induces an extension of residue fields Frac(V ) = κB ⊆ κW1 . Choose V
′ ⊆ κW1 to be any valuation

ring containg V such that V → V ′ is faithfully flat (this is possible by [Sta14, 00IA]). Let now
W be the composition of W1 and V ′, i.e., W = {x ∈ W1 : xmodmW1 ∈ V ′} (cf. [Sta14, 088Z]).
As m1 maps to p ∈ SpecA, the composition A → B → W1 factors through a map A → W .



5-FUNCTOR FORMALISM FOR SOLID SHEAVES ON SCHEMES (PRELIMINARY VERSION – DO NOT CITE)17

By construction it is clear that the generic point of SpecW (which coincides with the generic
point of SpecW1) goes to the generic point of SpecA. Note that mW1 ⊆ W and W/mW1 = V ′.
Let q =

√
pW ∈ SpecW (cf. Lemma 3.1(1)). It is enough to show that q = mW1 . Clearly,

q ⊆
√
mBW1 ⊆ mW1 . Thus q corresponds to a point in SpecW1. Thus q maps to p ∈ SpecA

(indeed, if p′ ∈ SpecA is the image of q, we clearly have p′ ⊇ p; but as q ∈ SpecW1, we have
p′ ∈ SpecAp, i.e., p

′ ⊆ p). Now, by construction, the preimage of p in SpecB is the point mB,
and its preimage in SpecW1 is the point m1, i.e., we have m1 = q. □

Returning to the proof of Proposition 2.5, we may assume that X is connected. Let V be a
valuation ring and SpecV → X a map. We apply Lemma 2.6 to the local domain obtained by
localizing X at the image of the closed point of SpecV . This gives W,V ′, q and the dominant
map SpecW → X as in the lemma. As Y → X is a v-cover, there is some faithfully flat
map W → W ′ of valuation rings, and a map SpecW ′ → Y lifting SpecW → X. The map
SpecW ′ → Y factors over a connected component of Y , which necessarily must lie in Y2, as its
image in X contains the generic point of X. □

Combining Propositions 2.1 and 2.5 we deduce the following.

Corollary 2.7. Let Y → X be a v-cover of affine w-local schemes, whose reductions are straight.
Then the union Z of all connected components of Y , whose image in X meets Xgen and Xc is
a closed (reduced) subscheme of Y , and Z → X is a v-cover.

2.3. Henselization. To prove fully faithfullness of pullback λ∗
X : X∼

proet → X∼
v in §2.4, we need

to study Henselizations of morphisms. All schemes in this section are affine, except the converse
is explicitly stated. Let X be a scheme. For any X-scheme Y → X we have the Henselization

Y → λX◦(Y ) := HensX(Y )→ X

of Y , which is defined as limY→U→X U , with U affine étale over X, cf. [BS15, Definition 2.2.10].
Then Y 7→ λX◦(Y ) is a functor, and any X-map Y → Z with Z pro-étale over X factors through
a unique X-map λX◦(Y )→ Z. As one should expect, Henselization only depends on a pro-étale
neighboorhood:

Lemma 2.8. Let Y → X ′ → X be morphisms with X ′ → X pro-étale. Then λX′◦(Y ) ∼= λX◦(Y )
canonically.

Proof. Exploiting the universal property of λX◦(Y ) (and [BS15, 2.3.3(4)]) one checks that
λX◦(Y ) satisfies the universal property of λX′◦(Y ), proving the lemma. □

Next, we study how to compute the Henselization.

2.3.1. Reduction to case π0(Y ) = π0(X). Let f : Y → X be any morphism. It induces a map

π0(Y ) → π0(X) and hence factors through a map f̃ : Y → Xπ0(Y ). Then π0(f̃) is the identity.
As Xπ0(Y ) → X is a pro-(Zariski localization), Lemma 2.8 shows that λX◦(Y ) = λXπ0(Y )◦(Y ).

With other words, when computing the Henselization of f , we may without loss of generality
assume that π0(f) is an isomorphism. We have the following consequence.

Lemma 2.9. For any morphism f : Y → X we have π0(λX◦(Y )) = π0(Y ).

Proof. By the above discussion we may assume that π0(f) is a homeomorphism. Write T :=

π0(λX◦(Y )). Then π0(f) factors as π0(Y )
g→ T

h→ π0(X), and it follows that h is surjective.
As continuous bijections of profinite sets are homeomorphisms, it suffices to show that h is
bijective. Suppose this is not the case. Consider two maps α, β : T → T , where α := idT and

β : T
h→ π0(X)

π0(f)−1

→ π0(Y )
g→ T . As h is not injective, we have α ̸= β. Now note that we
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have a canonical map canλX◦(Y ) : λX◦(Y )→ T ×π0(X)X, corresponding to π0(canλX◦(Y )) = idT ,
and that α, β induce maps α × idX , β × idX : T ×π0(X) X → T ×π0(X) X. Composing these

maps with can, we obtain two X-morphisms α̃, β̃ : λX◦(Y ) → T ×π0(X) X. Note that α̃ ̸= β̃,

as π0(α̃) = α ̸= β = π0(β̃). Let τ : Y → λX◦(Y ) denote the canonical map. One easily checks

(using can ◦ τ = (g× idX) ◦ canY ) that α̃τ = β̃τ . With other words, α̃, β̃ are two different maps,

through which the X-map α̃τ = β̃τ : Y → T ×π0(X) X factors. As T ×π0(X) X is pro-étale over
X, this contradicts the universal property of λX◦(Y ). Thus h must be bijective. □

2.3.2. Reduction to w-local maps. First we need a lemma.

Lemma 2.10. Let f : Y → X be a morphism such that Y is w-local and π0(f) is a homeomor-
phism. Then f(Y c) is pro-constructible in X and profinite, and Y c → f(Y c) is a homeomor-
phism.

Proof. Being the image of Y c → Y → X, f(Y c) ⊆ X is pro-constructible. By [Sta14, 0902],
f(Y c) is itself a spectral space. As Y is w-local and π0(Y ) ∼= π0(X), it is clear that Y c → f(Y c) is
a continuous bijection. Moreover, f(Y c) does not admit any non-trivial specialization relations,
as all points lie in different connected components of X. It follows that f(Y c) is a profinite
space [Sta14, 0905]. □

We can reduce the computation of Henselizations with w-local source to the case of w-local
maps inducing a homeomorphism on connected components.

Proposition 2.11. Let f : Y → X be a morphism, such that Y is w-local and π0(f) is a

homeomorphism. Then the set Ỹ X of all generalizations of f(Y c) is a w-local pro-(principal

open) affine subscheme of X, satisfying π0(Ỹ
X) ∼= π0(Y ) and (Ỹ X)c = f(Y c). Moreover, f

factors through a map f̃ : Y → Ỹ X , which is w-local. We have λX◦(Y ) = λ
Ỹ X◦(Y ).

Proof. Proposition 1.30 applied to f(Y c) ⊆ X along with Lemma 2.10 show the first claim. The

(topological) image of f is contained in Ỹ X . Clearly, f factors through Y → U for any open

neighborhood U of Ỹ X . As Ỹ X is the limit over all such neighboorhoods, f factors through a

unique map f̃ : Y → Ỹ X . The w-locality of f̃ is clear, as by construction we have f̃(Y c) = (Ỹ X)c.

(Note also that we have a distinguished section π0(Ỹ
X) = π0(X)

∼→ π0(Y )
∼→ Y c ∼→ f̃(Y c).)

The last claim follows from Lemma 2.8 as Ỹ X → X is pro-etale. □

2.3.3. Henselization over a w-strictly local base. We have the following lemmas.

Lemma 2.12. Let X be the spectrum of a strictly Henselian ring, let Z be a connected affine
scheme. Any weakly étale map Z → X, whose image contains the closed point of X, is an
isomorphism.

Proof. First assume Z that is pro-étale over X. Write Z = limn Zn → X with Zn → X étale.
Replacing Zn by the connected component containing the image of Z → Zn, we may assume
that each Zn is connected. As the image of Zn → X contains the closed point of X, it admits a
section sn : X → Zn. The image of the section is open (as Zn → X, and hence sn, is étale) and
closed (as Zn → X is separated). Hence, as Zn is connected, sn is surjective, i.e., provides an
inverse to Zn → X. Thus Zn → X is an isomorphism for each n, and hence Z → X is too.

In general, by [BS15, Theorem 2.3.4] we may find some faithfully flat pro-étale map Z ′ → Z,
such that Z ′ → Z → X is pro-étale. By the above Z ′ → X is an isomorphism, i.e., Z → X
admits a surjective section, which implies that Z → X is an isomorphism. □
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Lemma 2.13. Let X be w-strictly local and let Y → X be a map such that the image of each
connected component of Y contains the closed point of the corresponding component of X. Then
λX◦(Y ) = Xπ0(Y ).

Proof. By §2.3.1, we may assume that π0(Y ) = π0(X). By Lemma 2.9, π0(λX◦(Y )) = π0(Y ).
The assumption on Y → X remains valid for Y → Xπ0(Y ). Lemma 2.12 now shows that
λX◦(Y )→ X is an isomorphism. □

2.3.4. Henselization of w-contractible schemes. As a w-contractible scheme is w-local [BS15,
2.4.2], the w-locality claim in the following lemma makes sense.

Lemma 2.14. Let f : Y → X be any map with Y w-contractible. Then λX◦(Y ) is w-contractible
and the map h : Y → λX◦(Y ) is w-local.

Proof. The first claim is a formal consequence of the definition of w-contractibility and the fact
that faithfully flat and pro-étale maps are stable under base change. We omit the details. Now
we prove that h is w-local. Suppose that h(Y c) ̸⊆ λX◦(Y )c. Similar as in §2.3.2, let Y ′ ⊆ λX◦(Y )

be the pro-open subscheme of all generalizations of h(Y c). Then ι : Y ′ ̸=
↪→ λX◦(Y ) and h factors

through a map Y → Y ′. Via tι, Y ′ is a pro-étale X-scheme, and the universal property of
λX◦(Y ) gives a map γ : λX◦(Y )→ Y ′. Now one verifies using the universal property of λX◦(Y )
that ιγ = idλX◦(Y ), which is absurd. This gives a contradiction and we are done. □

It is not clear to us whether the implication “Y w-strictly local ⇒ λX◦(Y ) w-strictly local”
holds, as we cannot show that λX◦(Y ) is w-local in this case.

Corollary 2.15. Let Y → X be a morphism with Y w-contractible. Then λX◦(Y
c) ∼= λX◦(Y )

canonically.

Proof. By functoriality, we have a map g : λX◦(Y
c) → λX◦(Y ) in Xproet, which by Lemma 2.9

induces an isomorphism on connected components. By Lemma 2.14, source and target are w-
contractible. Moreover, as any closed point of λX(Y c) lifts to Y c, Lemma 2.14 also implies that
g is w-local. Thus g admits a section. Each connected component of the source and the target is
the spectrum of a strictly Henselian ring, hence g is an isomorphism componentwise by Lemma
2.12. This implies that g is an isomorphism. □

Lemma 2.16. Let X be a scheme. Let Z, Y be w-contractible X-schemes. Let f : Z → Y be an
X-morphism, which is a w-local v-cover. Then the following hold:

(i) λX◦(Z)→ λX◦(Y ) is faithfully flat pro-étale.
(ii) λX◦(Z ×Y Z)→ λX◦(Z)×λX◦(Y ) λX◦(Z) is faithfully flat pro-étale.

Proof. (i): It suffices to show that λX◦(Z)→ λX◦(Y ) is surjective. Lemmas 2.14, 2.9 imply (as
Z, Y are w-local) that Z → λX◦(Z) maps Zc bijectively to λX◦(Z)c, and similarly for Y . It
follows that λX◦(f) maps λX◦(Z)c into λX◦(Y )c. Thus λX◦(f) is w-local. Moreover, π0(λX◦(f))
is surjective by Lemma 2.9, as Z → Y is a v-cover. Now we conclude by Lemma 2.12.

(ii): By Lemma 2.8, it is harmless to replace X by λX◦(Y ). In particular, by Lemma 2.14, we
may assume that X is w-contractible and Y → X is w-local. Let T → Z ×Y Z be any v-cover
of Z ×Y Z with T w-local (which exists by [BS17, Lemma 6.2]). Then we have surjections

π0(T )↠ π0(Z ×Y Z)↠ π0(Z)×π0(Y ) π0(Z).

(first map is surjective as T → Z ×Y Z is a v-cover; for the surjectivity of the second map, note
that if Z1, Z2 are two connected components of Z lying over the same component of Y , then
Z1 ×Y Z2 ̸= ∅). The composition Z → Y → X is w-local, as both maps are. Thus λX◦(Z) =
Xπ0(Z) by Lemma 2.13. Next, let T1 be the closed subscheme of T defined in Proposition 2.1,
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relative to the composed map T → Z ×Y Z → Y , which is a v-cover. Thus T1 → Y is w-local,
hence the composition T1 → Y → X is too, and we deduce λX◦(T1) = Xπ0(T1) by Lemma 2.13.
By functoriality of λX◦ we have maps

Xπ0(T1) = λX◦(T1)→ λX◦(Z ×Y Z)→ λX◦(Z)×X λX◦(Z) = Xπ0(Z)×π0(X)π0(Z)

Thus it suffices to show that the composition π0(T1) ↪→ π0(T )↠ π0(Z)×π0(Y )π0(Z) is surjective.
With other words, we have to show that for any connected components Z1, Z2 of Z lying over
the same component Y0 of Y , there is a connected component T ′ of T , mapping to Zi under
the i-th projection pi : Z ×Y Z → Z, whose image in Y meets the closed point of Y0. There
is a distinguished connected component Z ′ of Z1 ×Y0 Z2, which contains the closed irreducible
(cf. the proof of Corollary 3.6) subscheme z1 ×y0 z2 (zi = closed point of zi, y0 closed point of
Y0). Now, any component T ′ of T which lies over Z ′ ⊆ Z1×Y0 Z2, and whose image contains an
arbitrary closed point of z1 ×y0 z2, does the job. □

Remark 2.17. Lemma 2.16 suffices for our purposes. However, note that stronger result –the
scheme-theoretic analog of [Sch18, Lemma 14.5]– does not hold. Indeed, Y → λX◦(Y ) can
fail to be surjective, even if X is the spectrum of a strictly Henselian ring, such that |X| is
not homeomorphic to the spectrum of a valuation ring. Indeed, under these assumptions, let
Y → X be a w-local v-cover, such that all connected components are spectra of valuation rings
(it exists by [BS17, Lemma 6.2]). Then #π0(Y ) > 1, λX◦(Y ) = π0(Y ) ×π0(X) X (by Lemma
2.13). It follows that α : Y → λX◦(Y ) is not surjective (in fact, π0(α) is a homeomorphism by
Lemma 2.9, and restricted to each of the connected components α cannot be surjective).

2.4. Pullback from Xproet to Xv. From now on, we again consider arbitrary (not necessarily
affine) schemes. The identity of a scheme X induces a map of topoi λ = λX : X∼

v → X∼
proet.

Lemma 2.18. Suppse X is affine. Let F ∈ X∼
proet. For any affine w-contractible Y ∈ Xv, we

have λ∗F (Y ) = F (λX◦(Y )).

Proof. Let λp denote the presheaf pullback along λ. For any Y ∈ Xv we have λpF (Y ) =
F (λX◦(Y )) by the universal property of λX◦(Y ). We have the natural map α : λpF (Y ) →
λ∗F (Y ). Suppose Y is w-contractible. We have to show that αY,F is an isomorphism.

Let s ∈ ker(α). Then there is some v-cover g : Z → Y , such that g∗s = 0 ∈ λpF (Z) =
F (λX◦(Z)). Refining Z, we may assume that it is w-contractible. Let Z1 ⊆ Z be the closed sub-
scheme from Proposition 2.1 (relative to Z → Y ). Then Z1 is w-strictly local, and if T ↠ π0(Z1)
is any surjection with T extremally disconnected, Z2 := T ×π0(Z1)Z1 will be w-contractible, and
the composition Z2 → Z1 → Y is a w-local v-cover (as both maps are). Thus, replacing Z by Z2,
we may assume that Z is w-contractible and that Z → Y is w-local v-cover. Now, by Lemma
2.16(i), λX◦(Z)→ λX◦(Y ) is faithfully flat pro-étale. Thus s = 0, as F is a sheaf.

For surjectivity of α, note that to give a section t ∈ λ∗F (Y ) is equivalent to give some v-cover
Z → Y (which, as above, we may assume to be w-local with Z being w-contractible) plus a
section tZ ∈ λpF (Z), such that p∗1tZ = p∗2tZ , where pi is the ith projection Z ×Y Z → Z and p∗i
are induced by functoriality of λX◦ in the commutative diagram below:

λpF (Y ) // λpF (Z)
p∗1

//

p∗2 // λpF (Z ×Y Z) = F (λX◦(Z ×Y Z))

F (λX◦(Y )) // F (λX◦(Z))
π∗
2 //

π∗
1

// F (λX◦(Z)×λX◦(Y ) λX◦(Z))

β

OO

The right square is commutative (with the lower horizontal maps induced by the two projections
πi : λX◦(Z) ×λX◦(Y ) λX◦(Z) → λX◦(Z)). By Lemma 2.16(ii), β is injective, and hence π∗

1tZ =
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π∗
2tZ . By Lemma 2.16(i), λX◦(Z) → λX◦(Y ) is a pro-étale covering, thus tZ comes from a

section in F (λX◦(Y )) = λpF (Y ). This finishes the proof. □

Proposition 2.19. Let X be an arbitrary scheme. The following hold:

(i) For any F ∈ X∼
proet, the adjunction map F → λ∗λ

∗F is an isomorphism. The pullback
functor λ∗ : X∼

proet → X∼
v is fully faithful.

(ii) Suppose X is qcqs. The essential image of λ∗ consists of all v-sheaves F on Xv satisfying
the following two conditions:
(a) For any w-contractible X-scheme Y , the restriction F (Y )→ F (Y c) is bijective.
(b) For any X-morphism g : Z → Y between two absolutely flat w-contractible X-

schemes, such that π0(g) is an homeomorphism, the induced map F (Y )→ F (Z)
is bijective.

(iii) λ∗ preserves all small limits.
(iii)’ Let f : Y → X be a map of schemes. Then f∗ : Y ∗

proet → X∗
proet preserves all small limits.

(iv) Let f : Y → X be a v-cover of schemes. Then f∗
proet : X

∼
proet → Y ∼

proet is faithful.
(v) Let f : Y → X be a v-cover. Let F ∈ X∼

v . If f∗F comes by pullback from Yproet, then
F satisfies (b) and the injectivity part of (a) from part (ii).

Proposition 2.19(ii) is the pro-étale analogue of Gabber’s criterion for a v-sheaf to be étale
[HS21, Lemma 5.5]. Also, a result of Gabber [HS21, ...] shows that if a v-sheaf is étale after
some v-cover, then it is étale itself. We do not know whether there is a similar statement for
pro-étale sheaves, but Proposition 2.19(v) at least generalizes the easy part of Gabber’s result.

Proof. (i): The second claim follows from the first, using adjunction. The first claim is pro-étale
local on X, so we may assume X is affine. As w-contractible affine Y ∈ Xproet form a base for
Xproet, it suffices to check that F (Y )→ λ∗λ

∗F (Y ) is an isomorphism for all such Y . But this
follows from Lemma 2.18.

(ii): F ∈ X∼
v comes from the pro-étale site if and only if the natural map λ∗λ∗F → F is

an isomorphism. As w-contractible X-schemes Y , such that each connected component is the
spectrum of an aic valuation ring form a basis for v-topology (see Lemma 3.12), this is equivalent
to λ∗λ∗F (Y )→ F (Y ) being an isomorphism for all such Y . By Lemma 2.18, this is equivalent
to F (λX◦(Y ))→ F (Y ) being bijective for all such Y .

Suppose now that (a) and (b) hold. Let Y be as above. Then we have

F (Y ) ∼= F (Y c) ∼= F (λX◦(Y )c) ∼= F (λX◦(Y )),

by (a) for Y , (b) for Y c → λX◦(Y )c, and (a) for λX◦(Y ) respectively This gives sufficiency.
Conversely, assume that F comes from Xproet. By Corollary 2.15 F (Y ) ∼= F (λX◦(Y )) ∼=
F (λX◦(Y

c)) ∼= F (Y c), whence (a). For (b), note that λX◦(Z) and λX◦(Y ) coincide.

(iii): The claim is pro-étale local on X, so we may assume that X is affine. Then the claim
follows from Lemma 2.18 and the fact that evaluation of a sheaf commutes with limits. To
deduce (iii)’ consider the commutative diagam of sites

Yv
fv

//

λY

��

Xv

λX

��

Yproet
fproet

// Xproet

As f∗
v and λY,∗ are just restriction functors, we have

λ∗
XF (Y ) = λY,∗f

∗
vλ

∗
XF (Y ) = λY,∗λ

∗
Y f

∗
proetF (Y ) = f∗

proetF (Y ),
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where the last equality holds by (i). As the functor F 7→ λ∗
XF (Y ) preserves small limits by

(iii), the same holds for f∗
proetF (Y ), and (iii)’ follows.

(iv): As above, we have f∗
proetF = λY,∗λ

∗
Y f

∗
proetF = λY,∗f

∗
vλ

∗
XF . Using this, for any F ,G ∈

X∼
proet, we have the maps on Hom-spaces:

(F ,G )Xproet

λ∗
X→ (λ∗

XF , λ∗
XG )Xv

f∗
v→ (f∗

vλ
∗
XF , f∗

vλ
∗
XG )Yv

λY,∗→ (f∗
proetF , f∗

proetG )Yproet

The first map is bijective by (i). The second map is injective as f is a v-cover and λ∗
XF , λ∗

XG
are v-sheaves. The last map is bijective because the restriction of λY,∗ to the essential image of
λ∗
Y is a quasi-inverse to λ∗

Y (again, by (i)). □

(v): By part (ii), we know that f∗F = F |Yv satisfies the conditions (a) and (b), and we have
to show that F satisfies the same conditions. First we check (b). Therefore, we may assume
that X is itself absolutely flat and w-contractible, and that g : Z → X is a map such that Z is
absolutely flat and w-contractible and π0(g) is a homeomorphism. We then have to show that
F (X)→ F (Z) is bijective. Refining Y by a w-contractible v-cover and then replacing Y by Y c,
we still have that Y c → X is a v-cover (as X is absolutely flat, any surjection is a v-cover). Thus
we may assume that Y is also absolutely flat and w-contractible. As π0(g) is a homeomorphism,
we have π0(Z) ×π0(X) π0(Y ) ∼= π0(Y ). Consider the pullback g′ : Z ′ := Z ×X Y → Y of g. We
have the map

π0(Z
′)→ π0(Z)×π0(X) π0(Y ) ∼= π0(Y )

This map is bijective, since the the spectrum of the tensor product of two fields over a third, which
is separably closed, is non-empty and connected. Hence it is a homeomorphism, i.e., π0(Z

′) ∼=
π0(Y ). As Z ′ → Z and Y → X are v-covers, we have F (X) = Eq(F (Y ) ⇒ F (Y ×X Y )) and
F (Z) = Eq(F (Z ′)⇒ F (Z ′ ×Z Z ′)). Now we have

F (Z ′) = F (λY (Z
′)) = F (Y ),

by (b), respectively by Lemma 2.13, as π0(λY (Z
′)) ∼= π0(Z

′) ∼= π0(Y ). In particular, we deduce
F (X) → F (Z) is injective. To show the surjectivity of this map it suffices to check that the
natural map F (Z ′ ×Z Z ′) → F (Y ×X Y ) is injective. Via the first projection, Y ×X Y is a
Y -scheme, and thus by Lemma 2.13 (and condition (b) for F |Yv),

F (Y ×X Y ) = F (λY (Y ×X Y )) = F (π0(Y ×X Y )×π0(Y ) Y ),

where the map π0(Y ×X Y )→ π0(Y ) is induced by the first projection. Similarly, F (Z ′×ZZ
′) =

F (π0(Z
′ ×Z Z ′) ×π0(Y ) Y ). Thus it suffices to check that the natural map π0(Z

′ ×Z Z ′) →
π0(Y ×XY ) is surjective. Let y1, y2 ∈ Y be two points with the same image x ∈ X, corresponding
to ȳ1, ȳ2 ∈ π0(Y ). Let z ∈ Z be the unique point lying over x. For i = 1, 2, pick any point
z′i of Z

′ lying over z and yi. Then z′1 ×z z
′
2 is a non-empty subscheme of Z ′ ×Z Z ′ lying over

y1 ×x y2 ⊆ Y ×X Y , and hence mapping to the connected component (ȳ1, ȳ2) ∈ π0(Y ) ×π0(X)

π0(Y ) = π0(Y ×X Y ) (this last equality follows in the same way as π0(Z
′) ∼= π0(Y ) above). This

proves (b) for F . Now we prove injectivity in (a). We may assume that X is w-contractible,
and have to show that F (X) → F (Xc) is injective. Using Proposition 2.1 to refine the v-
cover Y → X, we may assume that Y is w-contractible and Y → X is a w-local v-cover. As
Xc is absolutely flat, Y c → Xc is a v-cover. Thus, F (X) = Eq(F (Y ) → F (Y ×X Y )) and
F (Xc) = Eq(F (Y c) → F (Y c ×Xc Y c)). As, by assumption, F (Y ) = F (Y c), we deduce that
F (X)→ F (Xc) is injective.

Remark 2.20. Let X be a scheme. As in §1.7 we have the map of sites µ : Xpu → Xproet. The
same arguments as in Lemma 2.18 and Proposition 2.19(i) show that for any sheaf F on Xproet

and any w-contractible Y ∈ Xpu, one has F (Y ) = F (λX,◦(Y )), and that ν∗ : X∼
proet → X∼

pu is
fully faithful.
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Without additional assumptions on X, the situation with λ∗ : X∼
pu → X∼

v is worse than with
Xproet. First, there is an obvious analogue of Henselization for the pro-unramified site. For any
X-scheme Y → X we put

Y → λpu,X◦(Y ) := lim
Y→U→X

U → X (2.1)

where the limit is taken over all maps Y → U with U affine and unramified over X. Moreover,
Lemmas 2.8-2.14 and Lemma 2.16(i) admit appropriate generalizations. For later use, we record
one of them.

Lemma 2.21. Let X = SpecA with A local strictly Henselian domain. Let Y be a connected
affine scheme. Any pro-unramified map f : Y → X, whose image contains the closed and the
generic point of X, is an isomorphism.

Proof. Write Y = SpecB = lim←−i
Yi, with Yi = SpecBi connected and Yi → X unramified. As

the closed point of X is in the image of Yi → X, and Yi is connected [Sta14, 04GL] shows that
A→ Bi is a surjection. It follows that A→ B is surjective, i.e., Y → X is a closed immersion.
As its image contains the generic point of X, it is a nil-immersion. As A is a domain, it is an
isomorphism. □

On the other hand, Lemma 2.16(ii) fails in the context of pro-unramified maps:

Example 2.22. Let X = Y = SpecA, where A is the strict Henselization of the local ring of
A2 (over a field) at the origin, and let Z = Spec

∏
i∈I Vi, where the product is indexed over the

discrete set I of equivalence classes of all rank two valuations on A, and Vi is the corresponding
valuation ring. Then λpu,X◦(Z) ∼= XβI . Pick i ̸= j ∈ I. We have a corresponding connected
component Z0

∼= X of λpu,X◦(Z) ×X λpu,X◦(Z). The pullback of Z0 along λpu,X◦(Z ×Y Z) →
λpu,X◦(Z)×X λpu,X◦(Z) is isomorphic to λpu,X◦(Spec(Vi⊗A Vj)). But Spec(Vi⊗A Vj)→ SpecA
factors through Spec(κA)

∐
Spec(Frac(A)) → SpecA (where κA is the residue field of A), so

cannot be a v-cover.

3. Combs

In this section we consider a class of affine schemes, which we call combs, which serve as a
basis for the schematic v-topology. If X is a comb, Xpu is rather well-behaved and we are able
to show analoga of the (most) results for the proetale site from §2.

3.1. Valuation rings. First we recollect some (well-known or easy) facts about spectra of
valuation rings.

Lemma 3.1. Let V be a valuation ring and X = SpecV . Then the following hold:

(1) Any radical ideal of V is either prime or the unit ideal.
(2) For any non-empty subset S ⊆ X, there is a unique point in X, which specializes (resp.

generalizes) to all x ∈ S (”specializing/generalizing limit of S”).
(3) (cf. [BM21, Remark 2.2]) A proper subset S ⊂ X is open (resp. closed) constructible

if and only if S is stable under generalization (resp. specialization) and there exists an
immediate specialization p ⇝ q in X –i.e., (V/p)q has rank one– with p ∈ S and q ̸∈ S
(resp. p ̸∈ S and q ∈ S). Moreover, constructible opens coincide with principal opens.

(4) (cf. [BM21, Remark 2.2]) For any two distinct points p ⇝ q, there exists points p ⇝
p1 ⇝ q1 ⇝ p, such that p1 ⇝ q1 is an immediate specialization.

(5) Let A be a V -algebra, which is a local domain. Assume that f : Y = SpecA→ X maps
the closed (resp. generic) point to the closed (resp. generic) point. Then A is faithfully
flat over V .
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(6) Let W be a valuation ring and let f : SpecW → X be a map. Then f is surjective ⇔
f faithfully flat ⇔ f is a v-cover ⇔ the image of f contains the closed and the generic
points of SpecV .

(7) Let ∅ ̸= S ⊆ X be pro-constructible. Then S contains both of its limit points (see (2)).

Proof. (1) is well-known, and we omit a proof. (2) easily follows (from (1) and) the fact that
all ideals of p are totally ordered by inclusion. (3): first claim is easy, and the second follows
from the following obersevation (which uses (1)): For f ∈ V non-zero and non-unit, the ideal
p =

⋃
n f

nV is the maximal prime ideal contained in fV , q =
√
fV is the minimal prime

ideal containing f . Moreover, p ̸= q, so that (V/p)q has rank 1, and f is a pseudo-uniformizer
in (V/p)q. (4): Apply the last claim of (3) to D(f) for any f ∈ q∖ p. (5): By assumption
V → A is injective. As A is a domain, it follows that A is torsion-free V -module, and hence
flat over V [Sta14, 0539]. By the going-down theorem [Sta14, 00HS], f(Y ) is thus stable under
generalization. As f(Y ) contains the closed point of X, we see that f(Y ) = X, and we are
done. (6): this is well-known, cf. [Ryd10, Prop. 2.7]. (7): being pro-constructible, S is itself
spectral [Sta14, 0902]. Now, S is irreducible, and if the generalizing limit of S is not in S, then
S does not contain a generic point. If the specializing limit of S is not in S, then S is not
quasi-compact. □

Lemma 3.2. Let V denote a valuation ring and X = SpecV .

(1) In X, the quasi-compact open subsets are precisely the principal opens.
(2) Following subsets of X coincide:

(a) quasi-compact pro-open subsets
(b) pro-(quasi-compact open) subsets
(c) pro-(principal open) subsets
(d) subsets of the form SpecVp for p ∈ X.

(3) Any subset of X, which is the intersection of a closed with a quasi-compact pro-open
subset is of the form Spec(V/p)q for some points p⇝ q of X.

Proof. (1) is clear as the principal opens D(f) are totally ordered by inclusion. (2): that (b) =
(c) follows from (1) and (d) = (c) is clear. A pro-(principal open) is pro-constructible, hence
quasi-compact, whence (c) ⊆ (a). To show that (a) ⊆ (d) it suffices to show that a quasi-
compact pro-open is the set of generalizations of a given point. Being pro-open it is closed
under generalization, and if it does not have a point to which all other specialize, one easily
shows that it is not quasi-compact. (3) follows from (2). □

Recall that a ring is absolutely integrally closed (or aic) if every monic polynomial over it
admits a root [BM21, Def. 3.22], and that for a valuation ring this is equivalent to the fraction
field being algebraically closed. Note that if V is an aic valuation ring, then for any p ⇝ q ∈
SpecV , (V/p)q is also an aic valuation ring.

Lemma 3.3. Let X = SpecV be an aic valuation ring and let f : Y → X be a map with Y
connected affine.

(1) If f is weakly étale, then f induces an isomorphism Y
∼→ SpecVp, for some prime ideal

p of V .
(2) Suppose that f is pro-unramified, or that f is weakly unramified and Y is path-connected.4

Then f induces an isomorphism Y
∼→ SpecVp/qVp for some prime ideals q⇝ p of V .

In particular, in both cases Y is itself an aic valuation ring.

4There exist connected affine schemes, which are not path-connected, cf. [Ele].
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Proof. (1): By 3.1(7), f(Y ) contains a unique closed point p. Thus f factors through the pro-
open subscheme SpecVp of X. Note that Vp is an aic valuation ring and hence strictly Henselian.
As Y is connected affine, f ′ : Y → SpecVp is weakly étale (by [BS15, Proposition 2.3.3(4)]) and
its image contains the closed point of SpecVp, the map f ′ is an isomorphism by Lemma 2.12.

(2): By Lemma 3.1(7), f(Y ) contains a unique closed point p and a unique generic point q.
Replacing V by the aic valuation ring Vp/qVp, we may assume that f(Y ) contains the closed
and the generic point of X. If f is pro-unramified, we conclude by Lemma 2.21. If Y is
irreducible, then f is flat (by Lemma 3.1(5)), and hence weakly étale. Then we conclude by (1).
Finally, assume that f is weakly unramified and Y path-connected. If suffices to show that Y is
irreducible. If not, then by path-connectedness, there are two irreducible components Y1, Y2 with
Y1 ∩ Y2 ̸= ∅. We may replace Y by Y1 ∪ Y2 (closed reduced subscheme), as Y1 ∪ Y2 ↪→ Y → X
is weakly unramified. Let qi ⇝ pi (i = 1, 2) be the generic resp. closed points of f(Yi). By the

above, f : Yi
∼→ SpecVpi/qiVpi . As Y1 ∩ Y2 is closed in Y1, Y2, p1 = p2. Wlog, assume q2 ⇝ q1.

Let yi be the point of Yi be the point of Yi lying over q1. As Y1 ∩ Y2 is a proper closed subset
of Yi, yi ̸∈ Y1 ∩ Y2. Thus, the fiber of Y ×X Y → X over q1 consists of four points, mapping to
(yi, yj), i, j ∈ {1, 2} under the both projections to Y . Only two of these four points lie in the
image of ∆f . But all four specialize to the unique point of Y ×Y lying over p1. Thus the image
of ∆f is not stable under generalization, i.e., f is not weakly unramified. □

The following approximation property generalizes [BM21, Lemma 2.20].

Lemma 3.4. Let f : V →W be a faithfully flat map of valuation rings. Then f can be written
as a filtered colimit of maps fi : Vi →Wi, where

(1) All Vi ⊆ V , Wi ⊆W are valuation subrings of finite rank and V = lim−→i
Vi, W = lim−→i

Wi.

(2) All fi and all transition maps Vi → Vj, Wi →Wj are faithfully flat.

If in addition V and W are aic, Vi and Wi may be chosen aic too.

Proof. Let K,L be the fraction fields of V,W . For each subfield Li ⊆ L of finite transcendence
degree over the prime field, Ki := Li ∩K has finite transcendence degree over the prime field
by [Sta14, 030H]. Let Vi = V ∩Ki and Wi = W ∩Li. As in the proof of [BM21, Lemma 2.20], Vi,
Wi are valuation subrings of V,W of finite rank and all transition maps Vi → Vj , Wi →Wj are
faithfully flat. As SpecV = lim←−i

| SpecVi|, SpecV → SpecVi is surjective, as all transition maps

are (and similarly for W ). Clearly, we have Vi ⊆ Wi. Moreover, as all maps SpecV → SpecVi,
SpecW → SpecWi and SpecW → SpecV are surjective, the same holds for Spec fi, with other
words, fi is faithfully flat. In the case of aic valuation rings V,W , a similar argument –with
Li varying through all algebraically closed subfields of L of finite transcendence degree over the
prime field– applies, once we note that the intersection of two algebraically closed subfields of a
field is again algebraically closed. □

The following lemma presents a property which is particular for aic valuation rings only, and
which we crucially will use below.

Lemma 3.5. Let V be a domain with separably closed field of fractions. Let A1, A2 be two
domains, which are flat V -algebras. Then Spec(A1 ⊗V A2) is irreducible.

In particular, this applies when V is an aic valuation ring and A1, A2 are domains and torsion-
free V -algebras.

Proof. Over a valuation ring, any torsion-free module is flat, hence the last claim. For the
first, put η = SpecFrac(V ), ηi = SpecFrac(Ai). As Frac(V ) is separably closed, η1 ×η η2 is
irreducible by [Sta14, 037Q and 038F]. Thus it suffices to show that any point of Spec(A1⊗V A2)
admits a generalization in η1 ×η η2. As A ⊗V B is flat over V , going-down shows that any



26 ALEXANDER B. IVANOV AND LUCAS MANN

point of Spec(A1 ×V A2) admits a generalization which lies over η ∈ SpecV . Pulling back
along η ↪→ SpecV , we may assume that V is a field. Next, applying going-down to the flat
extension A1 → A1 ⊗V A2, we see that any point of Spec(A1 ⊗V A2) generalizes to a point in
η1 ×η SpecA2. Similarly, applying going-down to the flat extension A2 → Frac(A) ⊗V A2, any
point of η1 ×η SpecA2 generalizes to a point of η1 ×η η2, and we are done. □

Corollary 3.6. Let W1 ←W3 →W2 be maps of aic valuation rings, such that W1⊗W3 W2 ̸= 0.
Then Spec(W1 ⊗W3 W2) is irreducible.

Proof. For i = 1, 2 let pi = ker(W3 → Wi). As Wi is a domain, pi is a prime ideal. As ideals of
W3 are totally ordered by inclusion, we may by symmetry assume p2 ⊆ p1. We have

Spec(W1 ⊗W3 W2) = Spec(W1 ⊗W3/p1 W2/p1W2)← Spec(W1 ⊗W3/p1 W2/
√
p1W2),

where the right map is a homeomorphism (as Sred → S is a universal homeomorphism for
any scheme S). Note that W3/p1 → W2/

√
p1W2 is injective (indeed, α : W3/p1 → W2/p1W2

is injective, and so if x ∈ ker(W3/p1 → W2/
√
p1W2), then α(x)n = 0 for some n > 0 and

hence also xn = 0; but W3/p1 is a domain, so x = 0.) By Lemma 3.1(1), W2/
√
p1W2 is an aic

valuation ring. Thus, replacing W3 by W3/p1 and W2 by W2/
√
p1W2, we may assume that the

maps W1 ←W3 →W2 are injective. Now the result follows from Lemma 3.5. □

Example 3.7. Corollary 3.6 fails for (aic) striclty Henselian rings W3, even if W1,W2 are aic
valuation rings. In fact, let W3 = Osh

A2
k,0

be the strict Henselization of the local ring of the affine

plane over a field k at the origin, let C1, C2 be two different irreducible curves in A2
k passing

through 0 with generic points η1, η2, and let W3 → W1, W3 → W2 be two local and dominant
maps into rank 2 valuation rings, such that for i = 1, 2 the image of SpecWi → A2

k contains ηi.
Then Spec(W1 ⊗W3 W2) will not be connected. This can be adapted to the case that W3 is aic.

We will also need the following result.

Proposition 3.8. Let V → W be a flat map of aic valuation rings. Let X be a flat scheme
over V . Assume that X is geometrically unibranch and irreducible, and that X ×V Frac(V ) is
normal. Then the pullback XW = X ×V W is geometrically unibranch.

Proof. Let s (resp. η) denote the special (resp. generic) point of SpecW ; let s0, η0 be their
images in SpecV . By flatness, η0 is the generic point of SpecV . It suffices to show that for
any geometric point x of XW , SpecOsh

XW ,x is irreducible. We may assume that x lies over s

(otherwise localizing W at the image of x). Let n > 1 be any integer invertible in V and let
Λ = Z/nZ denote the constant étale sheaf on SpecV . We have the functors of vanishing cycles
RΨV = RΨ(V,X,η0,s0), RΨW = RΨ(W,XW ,η,s) as in [Hub96, §4.2], and by [Hub96, Prop. 4.2.4],

RΨ commutes with base change along V → W . In particular, we have R0ΨW (Λ) = R0ΨV (Λ).
AsX is geometrically unibranch, R0ΨV (Λ) = Λ. It thus follows that R0ΨW (Λ) = Λ. Computing
the stalk at x, this implies that Γ(SpecOsh

Xw,x ×XW
XW,η,Λ) = Λ, i.e., SpecOsh

Xw,x ×XW
XW,η

is connected (where XW,η is the generic fiber of XW ). Now XW,η = Xη0 ×η0 η is normal
by [Sta14, 038O], as η0 is algebraically closed and as Xη0 is normal by assumption. Hence XW,η

is geometrically unibranch. By Lemma 3.5, XW and hence also XW,η are irreducible. Noting

that SpecOsh
Xw,x ×XW

XW,η → XW,η is pro-étale, Lemma 3.9 shows that SpecOsh
Xw,x ×XW

XW,η

is in fact irreducible, and we are done. □

It remains to prove the following lemma.

Lemma 3.9. Let S be an irreducible and geometrically unibranch scheme. Let T → S be
pro-étale with T connected and qcqs. Then T is irreducible.
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Proof. Write T = lim←−i
Ti as a cofiltered limit with Ti étale over S. We may assume all Ti are qcqs.

As T is connected, we may assume that all Ti are too. As Ti → S is étale, all generic points of Ti

lie over the generic point of S; but as Ti is qcqs, it follows that Ti has only finitely many generic
points. In particular, Ti has only finitely many connected components, which are, a posteriori,
clopen in Ti. Replacing each Ti with the connected component containing the image of T , we
may thus assume that all Ti are connected. As S is geometrically unibranch, [Sta14, 0CB4]
implies that irreducible components of Ti are disjoint. But as there are only finitely many of
them, it follows that each of them is clopen in Ti. By connectedness, this implies that Ti is
irreducible. Now, T → Ti is pro-étale, hence maps generic points to generic ones. As Ti are
irreducible and |T | = lim←−i

|Ti|, T has at most one point, which maps to the generic point of Ti

for each i. With other words, T is irreducible. □

3.2. Geometry of combs.

Definition 3.10. (i) An affine scheme is a comb, if each of its connected components is the
spectrum of an aic valuation ring. It is an extremally disconnected comb if in addition
the space of connected components is extremally disconnected.

(ii) A product comb is an affine scheme of the form Spec
(∏

i∈I Ai

)
where I is a (discrete)

set and Ai are aic valuation rings for all i ∈ I.
(iv) Let f : Y → X be a map of combs. We call f w-local (resp. straight) if f(Y c) ⊆ Xc

(resp. f(Y gen) ⊆ Xgen).

Note that the affine scheme as in (ii) is indeed a comb, cf. [BS17, Lemma 6.2] and [BM21,
Lemma 3.24]. An aic valuation ring is strictly Henselian. Thus any w-local comb is w-strictly
local; it is w-contractible if and only if its space of connected components is extremally discon-
nected. We also have:

Lemma 3.11. Let f : Y → X be a map of combs. Then the following hold.

(i) If X is a product comb, then X is w-contractible and straight.
(ii) f(Y gen) ⊆ Xgen if and only if f is flat.
(iii) Suppose that f is surjective. If Y and f are w-local, then X is. If Y is straight and f

flat, then X is straight.
(iv) If π0(f) is a homemorphism, then f surjective ⇔ f faithfully flat ⇔ f is a v-cover.
(v) X is geometrically unibranch.

Proof. (i): w-contractibility follows from [BS17, proof of Lemma 6.2] and [BS15, Lemma 2.4.8].
To show that a product comb SpecA with A =

∏
i∈I Ai is straight, consider the absolutely

flat ring Agen =
∏

i∈I Frac(Ai). We have π0(SpecA
gen) ∼= π0(SpecA) = βI (the Stone–Çech

compactification of the discrete set I), the first map induced by A → Agen. Let t ∈ βI,
corresponding to the ultrafilter U on I. Let At resp. Agen

t denote the global sections of the
(affine) connected component of SpecA resp. Spec(Agen) corresponding to t. The natural map

At = lim−→
W∈U

∏
i∈W

Ai → Agen
t = lim−→

W∈U

∏
i∈W

Frac(Ai) = Agen
t

is the filtered colimit of injective ring maps, hence is itself injective. Thus the image of
Spec(Agen

t ) → SpecAt is precisely the generic point of SpecAt. It follows that the image of
Spec(Agen)→ SpecA is precisely (SpecA)gen. As Spec(Agen) is qcqs, it follows that (SpecA)gen

pro-constructible.

(ii): Flatness can be checked componentwise, and a map V → W of valuation rings is flat
if and only if it is injective. (iii): Suppose Y, f are w-local. As f is surjective and w-local,
we have f(Y c) = Xc. As Y is w-local, f(Y c) is pro-constructible, hence closed in X. The
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proof of the second assertion is similar. (iv) is clear by Lemma 3.1(6). (v) follows directly
from [Sta14, 06DM]. □

Note that by Lemma 3.11(v), all results of §1.7 apply to straight combs. It is well-known that
locally in the v-topology, any qcqs scheme is a product comb:

Lemma 3.12. Any qcqs scheme admits a v-cover which is a product comb.

Proof. This follows from (the proof of) [BM21, Prop. 3.26] (or, the combination of [BM21,
Lemma 3.23] and the proof of [BS17, Lm.6.2]). □

We record the following convenient statement about refinement of v-covers of nice combs.

Lemma 3.13. Let X be a w-contractible straight comb. Then any v-cover Y → X admits a
refinement by a v-cover f : Z → X such that Z is a w-contractible straight comb, π0(f) is a
homeomorphism and f is faithfully flat.

Proof. By Lemma 3.12 there exists a v-cover Y ′ → Y with Y ′ a product-like comb. Then Y ′ → X
is a v-cover. By Corollary 2.7 and Lemma 3.1(5) the union of connected components Y ′′ ⊆ Y ′,
which are faithfully flat over their respective component in X, is a v-cover of X and a closed
reduced subscheme of Y ′. As π0(X) is extremally disconnected, the surjection π0(Y

′′)→ π0(X)
admits a splitting s. The image of s is closed and as Y ′′ → X is componentwise faithfully flat,
it is clear that Z := (Y ′′)s(π0(X)) → X is still a v-cover. □

Lemma 3.2 admits a (partial) generalization to combs:

Lemma 3.14. Let X be a comb. The following subsets of X coincide:

(a) quasi-compact pro-open subsets
(b) pro-(quasi-compact open) subsets
(c) pro-(principal open) subsets.

Proof. Any principal open is quasi-compact, hence (c) ⊆ (b). Any pro-(quasi-compact open)
is pro-constructible, hence quasi-compact, hence (b) ⊆ (a). To show (a) ⊆ (c), let U ⊆ X be
a quasi-compact pro-open subset. The image π0(U) of U under X → π0(X) is quasi-compact,
hence closed. Note that Xπ0(U) ⊆ X is pro-(principal open) (indeed, π0(X)∖π0(U) is covered
by clopen subsets V which it contains; if eV + eπ0(X)∖V = 1 are the corresponding idempotents
on X, Xπ0(U) =

⋂
V D(eπ0(X)∖V )). Thus we may assume that π0(U) = π0(X) by replacing X

by Xπ0(U). Now, any connected component of U is quasi-compact pro-open, hence contains a
(relatively) closed point (by Lemma 3.2(2)). If U c is the set of those points, then it is clear that
U is precisely the set of generalizations of U c. Using that U is quasi-compact, it is easy to check
directly that U c is quasi-compact (cf. Lemma 3.15). Now we conclude by Proposition 1.30. □

Lemma 3.15. Let T be a spectral topological space. Then the subset T c ⊆ T of closed points is
quasi-compact. If, additionally, any connected component of T has a unique closed point, then
T c is a profinite set and the composition T c → T → π0(T ) is a homeomorphism.

Note that in the last statement of the lemma, T c is itself spectral, but the inclusion T c → T
is spectral if and only if T c ⊆ T is closed (which does always not hold). This lemma shows that
the last claim of [BS15, Lemma 2.1.4] holds even without the assumption that T c is closed.

Proof. The first claim is [Sta14, 00ZM]. For the second assertion of the lemma, note that the
assumption implies that T c → T → π0(T ) is a bijection. As T c is quasi-compact by the above
and π0(T ) is profinite [Sta14, 0906], the result follows by [Sta14, 08YE]. □

By Lemma 3.2(1), any intersection of a quasi-compact open U of the combX with a connected
component of X is a principal open. However, it is not clear whether U itself must be principal.



5-FUNCTOR FORMALISM FOR SOLID SHEAVES ON SCHEMES (PRELIMINARY VERSION – DO NOT CITE)29

3.3. The pro-unramified site of a comb. The pro-unramified site of a comb is well-behaved.
As any comb X is affine, the sites Xaff

pu and Xpu generate the same topos. We consider Xaff
pu ,

and provide a quite explicit topological description of it.

Lemma 3.16. Let X be a comb and Y ∈ Xaff
pu . Then Y is a comb. Moreover, Y is isomorphic

to the intersection of a pro-(qc open) with a closed subset of Xπ0(Y ), which meets every connected

component of Xπ0(Y ). If, in addition, Y ∈ Xaff
unr, then this subset of Xπ0(Y ) is l.c.c.

Proof. By Lemma 1.17(3),(4), any connected component Y0 of Y is pro-unramified over the
corresponding connected component X0 of X. Thus, by Lemma 3.3(2), Y0 is itself the spectrum
of an aic valuation ring, and identifies with a subset of X0. As Y is affine, it is a comb. For
the second claim, let f : Y → X be the structure map. Replacing X by Xπ0(Y ) we may assume
that π0(f) is an isomorphism. By the above, Y identifies with the subset f(Y ) of X. First,
f(Y ) is pro-constructible, hence its intersection with any connected component X0 of X is. By
Lemma 3.1(7), f(Y ) ∩X0 contains a closed point. The collection f(Y )c of all those points (for
varying X0) is precisely the set of all closed points of f(Y ), and the above shows that f(Y )c is in
bijection with π0(X). As f(Y ) is pro-constructible, it is spectral [Sta14, 0902]. Thus, by Lemma
3.15, Z := f(Y )c is quasi-compact. Applying Proposition 1.30 we get a pro-(principal open) set

Z̃ ⊆ X of all generalizations of points in Z, and it is clear that Y → X factors through a map

f̃ : Y → Z̃. We claim that f̃(Y ) ⊆ Z̃ is closed. As it is pro-constructible, it suffices to show
that it is stable under specialization, which can be done componentwise. But this is clear as, by

Lemma 3.3(2), the intersection of f(Y ) with a connected component SpecV of Z̃ is isomorphic
to SpecV/p for some prime ideal p of V .

Finally, assume that Y ∈ Xaff
unr. This remains to hold after the above replacement of X by

Xπ0(Y ) (as π0(Y )→ π0(X) is the base change of a map of finite sets, and hence Xπ0(Y ) → X is of
finite presentation, so that also Y → Xπ0(Y ) is of finite presentation). But then, with notation as

in the previous paragraph, it suffices to show that f(Y ) ⊆ X is l.c.c. By the above, f(Y ) = Z̃∩C
for some pro-(qc open) Z̃ ⊆ X and closed C ⊆ X, both uniquely determined by f(Y ) ⊆ X. By

Chevalley’s theorem [Sta14, 054K], f(Y ) is constructible, hence f(Y ) =
⋃n

i=1(Z̃i ∩ Ci) with Z̃i,

X ∖Ci qc open. Note that f(Y ) =
⋃n

i=1 Z̃i∖
⋃n

i=1Ci, as this clearly holds in each connected

component of X. As Z̃, C are determined by f(Y ), it follows that Z̃ =
⋃n

i=1 Z̃i and C =
⋃n

i=1Ci,

so that Z̃ and X ∖C are qc open. The lemma is proved. □

We call a topological space a topological comb, if it is homeomorphic to the topological space
underlying a comb. For any topological comb S and any continuous map T → π0(S) with T
profinite, we have the fiber product ST = S ×π0(S) T in topological spaces. If S = |X| for a
comb X, then ST = |XT |.

The following definition is very similar to that of affinoid pro-étale maps over a topological
comb [Sch18, Def. 7.20]. The difference is that maps between schemes (unlike maps between
adic spaces) need not be generalizing.

Definition 3.17. Let S be a topological comb. Let Spu be the category of all triples (T, α, Y ),
where T is a profinite set, α : T → π0(S) a continuous map and Y ⊆ ST a subset, which is the
intersection of a closed subset and a quasi-compact pro-open subset, subject to the condition that
Y meets any connected component of ST . Morphisms (T, α, Y ) → (T ′, α′, Y ′) are continuous
maps β : T → T ′, satisfying α1 = α2β and – if βS : ST → ST ′ denotes the induced map –
βS(Y ) ⊆ Y ′. We make Spu a site by declaring covers to be those families of maps, which can be
refined by a finite family, which is a topological v-cover.

Moreover, we define Sunr to be the subsite consisting of those triples (T, α, Y ) where Y is l.c.c.
in ST , with the same covers.
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Lemma 3.18. Let X be a comb and |X| the underlying topological comb. Then the functor

Xaff
pu → |X|pu, Y 7→ (π0(Y ), π0(Y )→ π0(X), |Y |)

defines an equivalence of categories. This restricts to an equivalence of categories Xaff
unr → |X|unr.

Proof. By Lemma 3.16 we get a functor (note that by Lemma 3.14, pro-(qc open) agrees with
quasi-compact pro-open). Fully faithfullness follows from Lemma ??. It remains to show essen-
tial surjectivity. Given (T, α, Y ) ∈ |X|pu, we may pullback to XT and so assume that T = π0(X)
and α = id. It now suffices to show that any quasi-compact pro-open subset U ⊆ X meeting
every connected component of X is in fact affine. But this follows from Lemma 3.14. The last
statement is immediate from the last claim of Lemma 3.16. □

The unramified site of an arbitrary comb is well-behaved:

Lemma 3.19. Let X be a comb. Any cover in Xunr splits.

Proof. We can apply the proof of [Sch18, 7.16]: It is enough to show that any v-cover f : Y → X
with Y ∈ Xaff

unr splits. Restricted to any connected component of X, f admits a section by
Lemma 3.3. By the finiteness assumption, we may spread it out, and so deduce that Y → X splits
Zariski locally on X. But any Zariski cover of X splits (with Fargues’s argument, [Sch18, Lemma
7.2]). □

Recall the unramified analogue λpu,X◦(·) of Henselization from (2.1).

Lemma 3.20. If f : Y → X is a map of combs, then λpu,X◦(Y ) corresponds under the equiva-

lence of Lemma 3.18 to (π0(Y ), π0(f), f̃(Y )), where f̃ : Y → Xπ0(Y ) is the natural map.

Proof. Observe that the argument in the proof of Lemma 3.16 applies equally good to f̃(Y ),
showing that it is the intersection of a pro-(qc open) with a closed subset of Xπ0(Y ). Now,

Lemma 3.18 implies that the universal property characterizing λpu,X◦(Y ) holds for f̃(Y ) ∈ Xaff
pu ,

which corresponds to (π0(Y ), π0(f), f̃(Y )). □

Lemma 3.21. Let X be a comb.

(i) Let Y be a comb and let f : Y → X be any map. Then Y → λpu,X◦(Y ) is a v-cover. In
particular, if Y1 → Y2 is a v-cover of combs over X, then λpu,X◦(Y1) → λpu,X◦(Y ) is a
v-cover.

(ii) Let Y1 → Y3 ← Y2 be maps of combs over X. Then λpu,X◦(Y1×XY2)→ λpu,X◦(Y1)×λpu,X◦(Y3)

λpu,X◦(Y2) is an isomorphism in each of the following cases:
(a) for i = 1, 2, Yi → Y3 is w-local, or
(b) for i = 1, 2, Yi → Y3 is flat, or
(c) Y3 = X.

Proof. (i): The map g : Y → λpu,X◦(Y ) is surjective (cf. Lemma 3.20) and π0(g) is a home-
omorphism. Thus the first assertion follows from Lemma 3.1(6). The second assertion is
a consequence of the first. (ii): Let us prove case (a). From Lemma 3.22 it follows that
π0(Y1 ×Y3 Y2) → π0(Y1) ×π0(Y3) π0(Y2) is a homeomorphism, and we may reduce to the case
when Yi (i = 1, 2, 3) and X are connected. Then the right hand side of the claimed isomor-
phism corresponds (via Lemma 3.18) to the subset im(Y1 → X) ∩ im(Y2 → X) of X. On
the other side, as Y1 ×Y3 Y2 is connected, λpu,X◦(Y1 ×Y3 Y2) is connected, and corresponds to
some subset of X = SpecV , of the form SpecVp/qVp, which (at least) contains the image of
Y1 ×Y3 Y2 → X (in fact, it is equal to this image). Thus, it suffices to show that topologically
im(Y1 ×Y3 Y2) = im(Y1 → X) ∩ im(Y2 → X) in X. The inclusion ⊆ is clear, so let us prove the
other one. Using locality of the maps, for i = 1, 2 the image Zi of Yi in Y3 is a closed subset of
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Y3 (e.g., by Lemma 3.1(7)). Then either Z1 ⊆ Z2 or Z2 ⊆ Z1. Wlog, assume Z1 ⊆ Z2. Hence
the same holds for the images of Yi in X, i.e., im(Y1 → X) ∩ im(Y2 → X) = im(Y1 → X).
Any x ∈ im(Y1 → X) may be lifted to a point y1 ∈ Y1, and if y3 is the image of y1 in Y3, then
y3 ∈ Z1 ⊆ Z2; so y3 lifts to a point y2 ∈ Y2, and y1×y3 y2 ⊆ Y1×Y3 Y2 is non-empty. This proves
the claim, and hence (a). The proof of case (b) is similar; (c) straightforwardly follows from
Lemma 3.18 and Lemma 3.22 (we will not make use of (b) and (c), so we omit the details). □

Lemma 3.22. Let Y1 → Y3 ← Y2 be maps of X-combs. Then π0(Y1 ×Y3 Y2) → π0(Y1) ×π0(Y3)

π0(Y2) is a homeomorphism onto the closed subset of those (y1, y2) ∈ π0(Y1)×π0(Y3) π0(Y2), for
which the (topological) images of the components y1 and y2 in Y3 intersect non-trivially.

Proof. Clearly, the image is precisely the claimed subset. As the left side is profinite, the
image is quasi-compact, and as the right side is profinite, the image is a closed subset, hence
itself profinite. By [Sta14, 08YE], it suffices to show the injectivity of the map. It is a direct
consequence of Corollary 3.6. □

Remark 3.23. The analogue of [Sch18, Lemma 14.5(ii)] (which is a slightly stronger version of
Lemma 3.21(ii)) does not hold in our setup. E.g., let X = SpecV , Y3 = SpecW be spectra of
aic valuation rings, and let f : Y3 → X be a map, such that for some point p ∈ X, the preimage
in Y3 contains more than one point. Let p1 ⇝ p2 ⇝ p3 ⇝ p4 be distinct points of Y3, such that
f(p2) = f(p3) = p. Let Y1 = Spec(W/p1)p2 and Y2 = Spec(W/p3)p4 be connected combs over
Y3. Then Y1 ×Y3 Y2 = ∅, but p ∈ λpu,X◦(Y1)×λpu,X◦(Y3) λpu,X◦(Y2) ⊆ X.

Remark 3.24. If X is a comb, then for an X-scheme the map Y → λpu,X◦(Y ) does not in
general need to be a v-cover.

3.4. Relation between v- and pro-unramified sites of a comb. Let X be a comb. We
have the morphism

λpu = λX,pu : X
∼
v → X∼

pu

of topoi.

Lemma 3.25. Let X be a comb and F ∈ X∼
pu. Let Y ∈ Xv be a comb. If Y is either w-local or

straight, then λ∗
puF (Y ) = F (λpu,X◦(Y )). Moreover, for any Z ∈ Xv, such that Z → λpu,X◦(Z)

is a v-cover, the natural map F (λpu,X◦(Z))→ λ∗
puF (Z) is injective.

Proof. This follows from Lemma 3.21 in the same way as the analogous claim for diamonds
follows from [Sch18, Lemma 14.5], cf. the proof of [Sch18, Lemma 14.6]. To be able to apply
Lemma 3.21(ii), we use the fact that any v-cover S′ → S of w-local (resp. straight) schemes can
be refined by a w-local (resp. straight) v-cover by Proposition 2.1 (resp. Proposition 2.5). For
the last assertion, note that the assumption on Z → λpu,X◦(Z) to be a v-cover implies that for
any v-cover T → Z, the induced map λpu,X◦(T )→ λpu,X◦(Z) is a v-cover. □

Now we are able to prove an analogue of [Sch18, Prop. 14.7] for the pro-unramified site of a
comb. Moreover, part (v) of the proposition below gives an important descent statement.

Proposition 3.26. Let X be a comb. Then the following hold.

(i) For any F ∈ X∼
pu, the adjunction map F → λpu,∗λ

∗
puF is an isomorphism. The pullback

functor λ∗
pu : X

∼
pu → X∼

v is fully faithful.
(ii) The essential image of λ∗

pu is the full subcategory of all F ∈ X∼
v satisfying the following

condition: for any surjective map g : Z → Y of w-local combs over X with π0(g) home-
omorphism, the pullback F (Y ) → F (Z) is bijective. Here, one can replace ’w-local’ by
’straight’ resp. ’w-local straight’; also one can assume Z to be a product comb.

(iii) λ∗
pu preserves all small limits.
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(iii)’ If f : Y → X is a map of combs, then f∗
pu : X

∼
pu → Y ∼

pu preserves all small limits.
(iv) Let F be a sheaf of abelian groups (resp. groups) that comes via pullback from Xet.

Then Riλpu∗F = 0 for all i > 0 (resp. for i = 1).
(v) Let X be a comb. Let F be a v-sheaf on X. Let f : Y → X be a v-cover such that f∗F

comes via pullback from Ypu. Then F comes via pullback from Xpu.

Proof. (i): This follows from Lemma 3.25, cf. the proof of Proposition 2.19(i). (ii): Suppose
F is in the essential image. By Lemma 3.25, it suffices to show that for Z → Y as in the
statement, λpu,X◦(Z)→ λpu,X◦(Y ) is an isomorphism. But this holds by Lemma 3.20. For the
converse direction, it suffices to handle the case of w-local straight combs, and moreover (by
Lemma 3.11(i)) we may additionally assume that Z in the condition is a product comb. By
Lemma 3.12, it suffices to show that (λ∗

puλpu∗F )(Z) → F (Z) is a bijection for each product
comb Z ∈ Xv. But by Lemma 3.20 the condition in (ii) applies to Z → λpu,X◦(Z) (note that
λpu,X◦(Z) is w-local straight, cf. Proposition ??), so exploiting Lemma 3.25 and the condition
in (ii), we get (λ∗

puλpu∗F )(Z) = F (λpu,X◦(Z)) = F (λpu,X◦)(Z).

(iii): For an inverse system Fi of sheaves on Xpu, we have to show that λ∗
pu(lim←−i

Fi) =

lim←−i
λ∗
puFi. It suffices to show that equality holds after evaluation at each w-local comb in Xv.

But this follows from Lemma 3.25 and the fact that evaluation commutes with inverse limits of
sheaves. (iii)’ follows from (iii) in the same way as in Proposition 2.19.

(iv): It suffices to show that H i(Xv,F ) = 0. As i > 0, there is some v-cover X ′ → X, such
that s|X′ = 0. We may write X ′ = lim←−j

Xj for Xj → X finitely presented v-cover for each j.

As F is étale, H i(X ′,F ) = lim−→j
H i(Xj ,F ). Thus, replacing X ′ by Xj for sufficiently big j,

we may assume that X ′ → X is finitely presented. Restricted to each connected component
X ′ → X has a section, as follows (for example) from [Ryd10, Prop. 2.7(viii)] and the fact that
any faithfully flat finitely presented morphism over a strictly henselian ring admits a section. As
X ′ → X is finitely presented, each such section Xt → X ′×X Xt (t ∈ π0(X)) extends to an open
neighboorhood of the closed point of Xt, which necessarily contains XT for some t ∈ T ⊆ π0(X)
quasi-compact open (by Lemma 3.15). Then s|XT

= 0. As finitely many of such XT ’s cover X,
we have s = 0.

(v): It suffices to check the condition from (ii). I.e., we have to show the following: if
g : X ′ → X is a surjective map of w-local straight combs with π0(g) homeomorphism, and
f : Y → X is a v-cover such that f∗F comes by pullback from Ypu, then F (X) → F (X ′) is
bijective. Refining Y → X, we may by Lemma 3.13 assume that Y is w-local straight, that
π0(f) is a homeomorphism and that f is faithfully flat. Let Y ′ = Y ×X X ′ and let Y ′′ → Y ′

be any v-cover by a product comb. Let Y ′′′ ⊆ Y ′′ be the union of all connected components
of Y ′′ which are faithfully flat over their respective image components in X ′ and in Y . As
X ′ and Y are w-contractible and straight, Y ′′′ is closed in Y ′′ by Propositions 2.1 and 2.5.
We claim that Y ′′′ → Y and Y ′′′ → X ′ are v-covers. Therefore, let X0 ⊆ X be a connected
component and let X ′

0 ⊆ X ′ and Y0 ⊆ Y be the connected components lying over it. Both
are faithfully flat over X0. By Corollary 3.6, X ′

0 ×X0 Y0 is irreducible. Let η be its generic
point (which lies over the generic points of X ′

0 and Y0) and let x be any point in the closed
subscheme (X ′

0)
c ×Xc

0
Y c
0 (which lies over the closed points of X ′

0 and Y0). By irreducibility,
η ⇝ x is a specialization relation in X ′

0 ×X0 Y0. It lifts to a specialization relation η′ ⇝ x′ in
a connected component Y ′′

0 of the v-cover Y ′′. This component necessarily lies in Y ′′′, and our
claim follows from Lemma 3.1(5). Finally, using that π0(Y ) is extremally disconnected, choose a
continuous section s : π0(Y )→ π0(Y

′′′); the image of s is closed. Moreover, from the claim (and
as π0(Y )→ π0(X) ∼= π0(X

′) is surjective) it follows that the closed subscheme Z := (Y ′′′)s(π0(Y ))

of Y ′′′ is still a v-cover of Y and of X ′. Thus we have F (X) = Eq(F (Y )⇒ F (Y ×X Y )) and
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F (X ′) = Eq(F (Z) ⇒ F (Z ×X′ Z)). As π0(Z) = π0(Y ), the assumption on F and part (ii)
imply that F (Y ) = F (Z). Thus F (X)→ F (X ′) is injective. For surjectivity, regard Y ×XY as
an Y -scheme via the first projection, and note that F (λpu

Y ◦(Y ×XY )) = λp
Y,pu(F |Ypu)(Y ×XY )→

F (Y ×X Y ) is injective by Lemma 3.25, as Y ×X Y → λpu
Y ◦(Y ×X Y ) is a v-cover (by Corollary

3.6 and as each connected component of Y is faithfully flat over X. As also F (Y )→ F (Y ×XY )
factors through this injection, we have F (X) = Eq(F (Y ) ⇒ F (λpu

Y ◦(Y ×X Y )). Similarly, we
have F (X ′) = Eq(F (Z) ⇒ F (λpu

Z◦(Z ×X′ Z))). It suffices to show that F (λpu
Z◦(Z ×X′ Z)) →

F (λpu
Y ◦(Y ×X Y )) is injective, or that λpu

Z◦(Z ×X′ Z) → λpu
Y ◦(Y ×X Y ) is a v-cover. But this is

clear as λpu
Y ◦(Y ×X Y ) = Yπ0(Y )×π0(X)π0(Y ) and similarly for the other side. □

4. Unramified sheaves

4.1. Base change for unramified sheaves. Let V be an aic valuation ring. By Lemma
3.1(3), the locally closed constructible subsets of X = SpecV are precisely the subsets of the
form Spec(V/p)q, where p, q are radical ideals of principal ideals.

Lemma 4.1. Let X = SpecV for an aic valuation ring V . Any Y ∈ Xaff
unr is isomorphic over

X to a finite disjoint union of locally closed constructible subsets of X.

Proof. By Lemma 1.17(7), Y → X isG-unramified. Using [BM21, Lemma 2.20] and that Y → X
is finitely presented, we can reduce to the case that V has finite rank, i.e., |X| is finite. But
in this case it is clear that Y has only finitely many irreducible components, as the same holds
for all fibers of Y → X. In particular, Y has finitely many connected components, and we may
assume that Y is connected. But then we are done by Lemma 3.3(2) and the fact that the image
of the finitely presented map Y → X is constructible. □

Theorem 4.2. Consider a cartesian diagram of schemes

Y ′ Y

X ′ X

g′

f ′ f

g

where X, Y and Y ′ are combs. Let F be an abelian torsion sheaf on Yunr whose torsion is prime
to char(Y ). Then the natural map

g∗Rf∗F
∼−→Rf ′

∗g
′∗F

is an isomorphism of sheaves on X ′
unr.

Proof. In the following proof we will repeatedly make use of the fact that the claimed base-change
property is stable under cofiltered limits of cartesian diagrams in the sense of [Sta14, Lemma
0EZT]. Namely, the proof of loc. cit. holds verbatim for the unramified site in place of the étale
site if we replace the reference to [Sta14, Lemma 0EYM] by Corollary 5.2.

If g is in Xunr then the claim is clear (see [Sta14, 0D6G]). By the previous paragraph the claim
also follows in the case that g is a cofiltered inverse limit of qcqs objects inXunr. In particular the
claim is true if g is the inclusion of a connected component. Combining this with the observation
that by Corollary 1.39 it is enough (for general g) to show the claimed isomorphism after pullback
to the connected components of X ′, we easily reduce to the case that X ′ is connected. Then g
factors over a connected component of X, so by a similar argument we can also assume that X
is connected. Thus from now on we are in the situation that X and X ′ are the spectra of aic
valuation rings.

Let Z := π0(Y )×X, so that we get the diagram of cartesian squares
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Y ′ Y

Z ′ Z

X ′ X

g′

f ′
1 f1

f ′
2 f2

g

It is enough to show that the claimed base-change holds in both squares of the diagram. In
the top square we note that the map π0(Y ) → π0(Z) induced by f1 is a homeomorphism. To
prove base-change in this diagram we can as before reduce to the case that the bottom spaces
are aic valuation rings, which now even implies that the upper right space is an aic valuation
ring. Factoring the right vertical map over its scheme-theoretic image we can further reduce to
the cases that the right vertical map is either flat or a closed immersion. We are thus left with
the following cases:

(a) X, X ′ and Y are spectra of aic valuation rings and f is flat.
(b) X, X ′ and Y are spectra of aic valuation rings and f is a closed immersion.
(c) X and X ′ are spectra of aic valuation rings and Y = S ×X for some profinite set S.

To prove the desired equivalence of (derived) sheaves in these cases, it is enough to show that
they agree after applying RΓ(U ′,−) for all U ′ ∈ X ′aff

unr. Fix such a U ′ and consider the diagram

V ′ Y ′ Y

U ′ X ′ X

j′

f ′′

g′

f ′ f

j g

where both squares (and hence also the whole rectangle) are cartesian. We need to show that
the natural map

RΓ(U ′, j∗g∗Rf∗F )
∼−→RΓ(U ′, j∗Rf ′

∗g
′∗F )

is an isomorphism. By [Sta14, 0D6G] we have base-change in the left square, so that the right-
hand side of the desired equivalence becomes RΓ(U ′, Rf ′′

∗ j
′∗g′∗F ). Thus the claimed equiva-

lence boils down to showing that the base-change along the big rectangle holds after applying
RΓ(U ′,−). Note that by Lemma 4.1 (and Lemma 3.3) we can write U ′ as a finite disjoint union
of spectra of aic valuation rings, which easily reduces us to the case that U ′ is a spectrum of an
aic valuation ring. Thus, by replacing X ′ by U ′, Y ′ by V ′, g by j ◦ g and g′ by j′ ◦ g′ we reduce
to showing that the claimed base-change holds after applying global sections, i.e. we are left
with showing that the natural map

RΓ(X ′, g∗Rf∗F )
∼−→RΓ(X ′, Rf ′

∗g
′∗F )

is an isomorphism (while we maintained the assumptions in cases (a), (b) and (c) above). Let
U ⊂ X be the scheme-theoretic image of X. Then U ↪→ X is pro-unramified and thus U is
again the spectrum of an aic valuation ring (cf. Lemma 4.1) and g factors over U . As discussed
above we know that base-change along pro-unramified maps holds, so we are free to replace X
by U and thus assume that g is flat. We can now further replace X by the set-theoretic image
of g (which is pro-open and thus affine) to reduce to the case that g is faithfully flat.

So far all our arguments were rather formal. In all of the above cases (a), (b) and (c) we
are further allowed to assume that g is faithfully flat and we only need to show the desired
isomorphism of sheaves after applying RΓ(X ′,−). In what follows, we will reduce this claim to
an étale base-change result by Huber.
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For any scheme S let µ = µS : Sunr → Sét be the projection of sites from Section 1.7 and
for any map h : S → T let us denote hét : Sét → Tét the associated morphism on étale sites
(while h : Sunr → Tunr denotes the morphism of unramified sites). Note that all of X, X ′, Y
and Y ′ are geometrically unibranch and straight: For the first three spaces this is easy to see
(cf. Lemma 3.11.(v)); for the last one it follows from Corollary 3.6 and Proposition 3.8 in case
(a) and is easy in case (b) (where Y ′ is the spectrum of an aic valuation ring) and in case (c)
(where Y ′ = S × X ′). In particular on all of these spaces µ∗ is exact by Theorem 1.40 and
since g and g′ are flat it follows from Lemma 4.4 that µ∗ commutes with pullback along these
maps (in case (c) one easily passes to connected components in order to reduce to the setting of
Lemma 4.4). Clearly µ∗ = Rµ∗ also commutes with (derived) pushforward along f and f ′, so we
can commute µ∗ past all the functors in the claimed base-change isomorphism. More concretely,
denoting Fét := µY,∗F we get

RΓ(X ′, g∗Rf∗F ) = RΓ(X ′
ét, µX′,∗g

∗Rf∗F ) = RΓ(X ′
ét, g

∗
étRfét,∗µY,∗F )

= RΓ(X ′
ét, g

∗
étRfét,∗Fét),

RΓ(X ′, Rf ′
∗g

′∗F ) = RΓ(X ′
ét, µX′,∗Rf ′

∗g
′∗F ) = RΓ(X ′

ét, Rf ′
ét,∗g

′∗
étµY,∗F )

= RΓ(Y ′
ét, g

′∗
étFét).

Thus, proving the desired isomorphism of the above two complexes leaves us with an étale base-
change in the situation at hand. But this was proved by Huber in [Hub96, Corollary 4.2.7]. □

Remark 4.3. In the proof of Theorem 4.2 we reduced to the case that g is surjective by replacing
X be the image U ⊂ X of g. This is possible because U → X is pro-unramified and we work
with unramified sheaves. This is the place where it is crucial that we work with unramified
sheaves and not with étale sheaves!

Lemma 4.4. Let S be the spectrum of an aic valuation ring. Let g : T → S be a flat map, with
T qcqs, geometrically unibranch and straight. Then the following hold:

(i) g∗proetµS∗ ∼= µT∗g
∗
pu as functors S∼

pu → T∼
proet,

(ii) g∗étµS∗ = µT∗g
∗
unr as functors S∼

unr → T∼
ét .

Proof. (ii) reduces to (i) by fully faithfullness of the functors ν∗X,τ : Xpτ → Xτ forX ∈ {S, T} and
τ ∈ {ét,unr}, and the fact that ν∗XproetµX∗ ∼= µX∗ν

∗
Xpu, which are immediate from [BS15, Lemma

5.1.2] and Lemma 1.37. To prove (i), let F ∈ S∼
pu. It suffices to check that g∗proetµS∗F (T ′) =

µT∗g
∗
puF (T ′) for any w-contractible T ′ ∈ Tproet. As T ′ is w-contractible (and as µS,∗ is just

restriction of sheaves), one immediately checks that (g∗proetµS∗F )(T ′) = F (λS◦(T
′)), where λS◦ is

the Henselization over S. On the other hand, T ′ is straight by Lemma 1.43 and our assumptions.
Thus T ′ is a contractible object of Tpu by Theorem 1.33(2), and just as above one immediately
gets (µT∗g

∗
puF )(T ′) = F (λSpu◦(T

′)). It remains to show that λS◦(T
′) = λSpu◦(T

′). For τ ∈
π0(T

′), let T ′
τ ⊆ T ′ denote the corresponding component, and let λSpu◦(T

′)τ be the corresponding
connected component of λSpu◦(T

′). As T ′ is w-contractible and straight, Lemma ?? shows that
for each τ ∈ π0(T

′), λSpu◦(T
′)τ is simply the image of T ′

τ → T ′ → S. As T ′ ∈ Tproet and T → S
is flat, T ′ → S is flat, and hence im(T ′

τ → T ′ → S) is a quasi-compact pro-open subscheme of S,
and in particular, pro-étale over S. Thus λS◦(T

′) = λSpu◦(T
′) holds componentwise, and hence

also globally. □

Theorem 4.2 implies the following analogue of [Sch18, Theorem 16.1].
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Corollary 4.5. Let f : Y ′ → Y be a map of combs. Consider the diagram of sites

Y ′
v

λY ′
//

fv

��

Y ′
pu

fpu

��

Yv
λY // Ypu

Let F be a small torsion sheaf of abelian groups with torsion prime to the characteristic. Then
the base change morphism

λ∗
Y R

ifpu∗F
∼→ Rifv∗λ

∗
Y ′F

is an isomorphism. Moreover, if Ỹ ∈ Yv is a comb, then the natual map

H i((λY ◦(Ỹ )×Y Y ′)pu,F )→ H i((Ỹ ×Y Y ′)v,F )

is an isomorphism.

Proof. As in the beginning of the proof of [Sch18, Theorem 16.1] it suffices to show the last

claim and moreover, for this it suffices to show that whenever X̃
f→ X

g← X ′ are maps of combs

with λX◦pu(X̃) = X and F is an abelian torsion sheaf on X ′
unr (satisfying the assumption in

the corollary), then the natural map H i(X ′
unr,F ) → H i((X̃ ×X X ′)unr,F ) is an isomorphism.

Write f ′ : X̃ ×X X ′ → X ′ and g̃ : X̃ ×X X ′ → X̃ for the base changed maps. In the following
computation all maps are between the unramified sites. Using Theorem 4.2 for the first equality
we have

Rf∗Rg̃∗f
′∗F = Rf∗f

∗Rg∗F = Rg∗F ,

where the last equality holds by assumption on f and as higher (unramified) cohomology on the

comb X̃ vanishes. This implies the claim by taking global sections. □

4.2. Category of unramified sheaves on a scheme. Fix a ring Λ. By Proposition 3.26(iii),
for any comb X, the functor λ∗

X is exact on the level of abelian categories; we write Lλ∗
X =

λ∗
X : D(Xpu,Λ) → D(Xv,Λ) for the derived functor. We start with the analogues of [Sch18,

Propositions 14.10 and 14.11].

Lemma 4.6. Let X be a comb. The categories D(Xpu,Λ), D(Xunr,Λ) are left-complete and the
pullback functors

ν∗X : D(Xunr,Λ)→ D(Xpu,Λ), λ∗
Xν∗X : D(Xunr,Λ)→ D(Xv,Λ)

are fully faithful. The same statements hold for D+.

Proof. This follows from Proposition 3.26 and Lemmas 1.37, 1.38 in the same way as [Sch18,
Propositions 14.10 and 14.11]. To get the result in the unbounded case, we need to ensure that
Xpu (resp. Xunr) have basis for topology consisting of such U such that H i(U,F ) = 0 for all
i > 0 and all sheaves F on Xpu (resp. Xunr). For Xpu we can, by Theorem 1.33, take the

w-contractible straight U ∈ Xpu. For Xunr we can, by Lemma 3.19, take all objects in Xaff
unr. □

From Corollary 4.5 and Lemma 4.6, the analogue of [Sch18, Theorem 14.12] follows with the
same proof:

Proposition 4.7. Let f : Y ′ → Y be a v-cover of combs. Suppose A ∈ D(Ypu,Λ) or A ∈
D(Yv,Λ). If f∗A ∈ D(Y ′

unr,Λ) (resp. f∗A ∈ D+(Y ′
unr,Λ)), then A ∈ D(Yunr,Λ) (resp. f∗A ∈

D+(Yunr,Λ)).
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Definition 4.8. Let Y be a small v-stack. We define Dunr(Y,Λ) ⊆ D(Yv,Λ) as the full subcat-
egory consisting of all objects A ∈ D(Yv,Λ) such that f∗A ∈ D(Yunr,Λ) for all f : X → Y with
X comb.

By Proposition 4.7 this definition makes sense, we haveDunr(Y,Λ) = D(Yunr,Λ) if Y is a comb,
and it suffices to test containement in Dunr after pullback to a single v-cover by a comb. Also
note that Lemma 4.6 implies that for any stack Y , Dunr(Y,Λ) is left-complete as isomorphisms
may be tested after a v-cover.

Question 4.9. For a general scheme X we have the categories Dunr(X,Λ) and D(Xunr,Λ). The
latter seems not to be well-behaved. Still, one might ask about the relation of these categories:
is Dunr(X,Λ) the left-completion of D(Xunr,Λ) and can this be realized inside D(Xpu,Λ)? With
other words, do the analogues of [BS15, 5.3.2] and [Sch18, 14.15] hold?

Proposition 4.10. Let Y be a small v-stack and A ∈ D(Yv,Λ). Then A ∈ Dunr(Y,Λ) if and
only for each i ∈ Z, the v-sheaf H i(A)[0] lies in Dunr(Y,Λ).

Proof. Same as the proof of [Sch18, Proposition 14.16]. □

Lemma 4.11. Let f : Y ′ → Y be a map of combs. Assume that nΛ = 0 for some n prime to
p. Then for any A ∈ D(Y ′

unr,Λ) ⊆ D(Y ′
pu,Λ), the base change map λ∗

Y Rfpu∗A → Rfv∗λ
∗
Y ′A in

D(Yv,Λ) is an isomorphism.

Proof. The proof of [Sch18, Corollary 16.4] applies. □

Just as in [Sch18, 16.6 and 16.7] we can relate unramified and pro-unramified pushforward on
combs.

Lemma 4.12. Let f : Y ′ → Y be a qcqs morphism of combs.

(i) Let F be a sheaf of abelian groups on Ypu. Then the base change map ν∗Y R
ifunr∗A →

Rf i
pu∗ν

∗
Y ′A is an isomorphism for each i ≥ 0.

(ii) For any A ∈ D(Y ′
unr,Λ), the base change map ν∗Y Rfunr∗A→ Rfpu∗ν

∗
Y ′A in D(Ypu,Λ) is

an isomorphism.

4.3. Four functors on unramified sheaves. Let f : Y ′ → Y be a map of v-stacks. As
in [Sch18, §17], there is a pullback functor f∗

v : D(Yv,Λ) → D(Y ′
v ,Λ), inducing by restriction a

functor

f∗ : Dunr(Y,Λ)→ Dunr(Y
′,Λ).

By Lurie’s adjoint functor theorem, both admit right adjoints, which we denote by Rfv∗, Rf∗. If
Y, Y ′ are combs, then f∗ and Rf∗ identify with the functors f∗

unr and Rfunr∗ between D(Yunr,Λ)
and D(Y ′

unr,Λ).

Proposition 4.13 (Analogue of [Sch18], Proposition 17.6). Let f : Y ′ → Y be a qcqs map
of small v-stacks. Then for any A ∈ D+

unr(Y
′,Λ), one has Rfv∗A ∈ D+

unr(Y,Λ) and therefore
Rf∗A = Rfv∗A. Moreover, for such A, the formation of Rf∗A commutes with arbitrary base
changes.

If Rf∗ has finite cohomological dimension, then the above claims hold with D+ replaced by D.

Proof. We may assume that Y is a comb and choose a hypercover X ′
• → Y ′ (over Y ) such that

each Xn is a comb. Let g′• : X
′
• → Y denote the resulting map. Let A ∈ D+

unr(Y
′,Λ). Then

Rfv∗A is the limit of the simplicial object Rg′•v∗A|′X•
. By Lemmas 4.11 and 4.12, for each i ≥ 0,

Rg′iv∗A|′Xi
∈ D+(Yunr,Λ) and there is some n ≥ 0, such that all of them lie in D≥−n(Yunr,Λ).

Thus also their derived limit, Rfv∗A, lies in D+(Yunr,Λ). The claim Rf∗A = Rfv∗A follows
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from it (cf. [Sch18, §17]). Commutation with base change follows formally as v-pushforward
commutes with v-slices.

The last statement follows from the previous ones exploiting left-completeness and Proposition
4.10 in the same way as in the proof of [Sch18, Proposition 17.6]. □

Lemma 4.14. Let Y be a v-stack.

(i) The tensor product −⊗L
Λ − : D(Yv,Λ)×D(Yv,Λ)→ D(Yv,Λ) restricts to a functor

−⊗L
Λ − : Dunr(Y,Λ)×Dunr(Y,Λ)→ Dunr(Y,Λ)

(ii) For any A ∈ Dunr(Y,Λ), the functor − ⊗L
Λ A : Dunr(Y,Λ) → Dunr(Y,Λ) admits a right

adjoint RHom(A,−) : Dunr(Y,Λ)→ Dunr(Y,Λ). For varying A, this defines a functor

RHomΛ(−,−) : Dunr(Y,Λ)
op ×Dunr(Y,Λ)→ Dunr(Y,Λ).

Proof. (i): Note that when Y is a comb, Dunr(Y,Λ) is equipped with a natural tensor product,
commuting with pullback along Yv → Yunr. Then the claim follows as the containment in
Dunr(Y,Λ) can be checked v-locally. (ii): The proof is formal and the same as in [Sch18, Lemma
17.8]. □

Note that, just as in [Sch18], the inner hom is not the same as the restriction of the inner
hom of D(Yv,Λ). Purely formal we have the following property.

Lemma 4.15. Let Y ′ → Y be a map of small v-stacks. Then there is a natural equivalence

Rf∗RHomΛ(f
∗A,B) ∼= RHomΛ(A,Rf∗B)

of functors Dunr(Y,Λ)
op ×Dunr(Y,Λ)→ Dunr(Y,Λ)

Proof. The same as in [Sch18, Corollary 17.9]. □

Question 4.16. Suppose that nΛ = 0 for some n coprime to p. Does the assignment X 7→
Dunr(X,Λ) define a 6-functor formalism on v-stacks, staisfying the usual properties?

To prove this, one would have to establish the proper base change for unramified cohomology.
(Conversely: would PBC suffice?)

4.4. Relation of etale and unramified cohomology. Suppose that nΛ = 0 for some n
coprime to p. For any v-stack X, Dét(X,Λ) and Dunr(X,Λ) are both full subcategories of
D(Xv,Λ) consisting of complexes, which a v-cover by a(ny) comb become étale resp. unramified.
Note that Dét(X,Λ) is contained in Dunr(X,Λ), as this is obviously true for any comb. As both
are by definition full subcategories of D(Xv,Λ), the embedding

µX : Dét(X,Λ)→ Dunr(X,Λ)

is fully faithfur. With other words, the canonical map id → RµX∗µ
∗
X : Dét(X,Λ) → Dét(X,Λ)

is an equivalence.
We deduce that unramified cohomology agrees with étale cohomology on étale complexes.

Lemma 4.17. Let X be any v-stack. For any A ∈ Dét(X,Λ), we have RΓét(X,A) ∼= RΓunr(X,µ∗
XA).

Proof. We have RΓunr(X,µ∗A) = RHom(Λ, µ∗
XA) = RHom(Λ, A) = RΓét(X,A), where we use

that Dét(X,Λ) ⊆ Dunr(X,Λ) is a fully faithful embedding. □
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5. Solid Sheaves on Schemes

In the previous section we have constructed the pro-unramified siteXpu associated to a scheme
X and established many of its properties. We will now study the category of abelian sheaves on
Xpu more closely, which will eventually lead to the definition of solid sheaves on Xpu. We will
later use these results mostly in the case that X is a comb, but all the results of this section
hold (with essentially the same proofs) on more general schemes. We therefore state everything
in its natural generality.

This section is structured as follows.

5.1. Cohomology and Colimits. In the following we will often let τ be either the étale site
Xét or the unramified site Xunr of a scheme X. In either case we denote by pτ the associated
pro-site, i.e. Xproet or Xpu respectively. In [BS15, Corollary 5.1.6] it was shown that for a pro-

étale U = lim←−i
Ui ∈ Xaff

proet and any étale sheaf F on X we have Hk(U,F ) = lim−→i
Hk(Ui,F ). In

the following we will generalize this result by allowing more general limits for U = lim←−i
Ui and

by showing the same result also for the unramified site. We start with the following observation:
Like in the pro-étale setting we get a derived version of Lemma 1.37. The following analog

of [Sta14, Theorem 09YQ] holds (cf. [Sta14, Definition 0EZL] for the notion of systems of sheaves
on (Xi)i).

Proposition 5.1. Let (Xi)i∈I be a cofiltered inverse system of qcqs schemes with affine transition
maps and let τ ∈ {ét, unr}. Let (Fi)i be a system of τ -sheaves on (Xi)i. Denote X = lim←−i

Xi

and F = lim−→i
f∗
i Fi, where fi : X → Xi is the projection. Then the natural map

lim−→
i

Hn(Xi,τ ,Fi)
∼−→Hn(Xτ ,F )

is an isomorphism for n = 0, resp. n = 0, 1, resp. all n, if the Fi are sheaves of sets, resp.
sheaves of groups, resp. sheaves of abelian groups.

Proof. We only prove the abelian case in detail. This proof is the same as that of [Sta14, Theorem
09YQ]: For any qcqs scheme Y let Yτ,qcqs denote the subsite of qcqs schemes over Y . Then all
cohomologies can be computed on the sites Xτ,qcqs and Xi,τ,qcqs. By [Sta14, Lemma 09YP] the
claim reduces to showing that the natural functor of sites

lim−→
i

Xi,τ,qcqs
∼−→Xτ,qcqs

is an equivalence. By [Sta14, Lemma 09YL] the colimit of sites on the left-hand side is computed
as follows: The underlying category is the colimit of categories and the site is the coarsest site
such that all the induced maps Xi,τ,qcqs → Xτ,qcqs are continuous (in the sense of [Sta14, Defi-
nition 00WV]). To show the claimed equivalence, let us first show that it is true on underlying
categories. By [Sta14, Lemma 01ZM] this reduces to showing the following claim: Pick some
i0 ∈ I and some qcqs map Ui0 → Xi0 with pullbacks U → X and Ui → Xi for i ≥ i0 and
assume that U ∈ Xτ ; then there is some i ≥ i0 such that Ui ∈ Xi,τ . In the case τ = ét this
follows immediately from [Sta14, Lemma 07RP]. In the case τ = unr we employ Lemma 1.35
to get a G-unramified v-cover V ↠ U such that the composition V → X is G-unramified.
Then by [Sta14, Lemma 01ZM] the map V → U comes via pullback from a map Vi → Ui for
some i ≥ i0, which by [Ryd10, Theorem 6.4] becomes a v-cover after possibly enlarging i and
by [Sta14, Lemma 0C4W] becomes G-unramified after enlarging i. By [Sta14, Lemma 0C4W]
again, we can further assume that the composition Vi → Ui → X is G-unramified, because
V → X is so. But then Lemma 1.35 implies that Ui → Xi is in Xi,unr,qcqs, as desired. This
finishes the proof that the above claimed equivalence holds on the underlying categories. It
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follows easily from [Sta14, Lemma 07RR] (in the case τ = ét) and [Ryd10, Theorem 6.4] (in the
case τ = unr) that the equivalence also holds on the level of sites. □

For later use we also record the following relative version of Proposition 5.1, in analogy
with [Sta14, Lemma 0EYM]:

Corollary 5.2. Let (fi : Xi → Si)i∈I be a cofiltered diagram of qcqs maps of schemes with all
transition maps being affine. Let f : X → S denote the limit of the diagram and for all i ∈ I let
gi : X → Xi and hi : S → Si denote the projections. For fixed τ ∈ {ét, unr} let (Fi)i be a system
of τ -sheaves on (Xi)i with colimit F = lim−→i

g∗i Fi. Then the natural map

lim−→
i

h∗iR
nfi,∗Fi

∼−→Rnf∗F .

is an isomorphism of sheaves on Sτ for n = 0, resp. n = 0, 1, resp. all n, if the Fi are sheaves
of sets, resp. sheaves of groups, resp. sheaves of abelian groups.

Proof. We will only treat the case of abelian sheaves in detail. One can directly implement
the proof of [Sta14, Lemma 0EYM], but we prefer the following alternative route: It follows
formally (by inducting over finite (co)limits in derived∞-categories and countable colimits over
truncations) that Proposition 5.1 holds more generally in the case that (Fi)i is a system of
sheaves in D(Ab(Xi,unr)) which are uniformly left-bounded in the sense that Hk(Fi) = 0 for
k ≪ 0 independent of i. Applying this to the system (Rfi,∗Fi)i we deduce that

RΓ(S, lim−→
i

h∗iRfi,∗Fi) = lim−→
i

RΓ(Si, Rfi,∗Fi) = lim−→
i

RΓ(Xi,Fi) = RΓ(X,F )

= RΓ(S,Rf∗F ),

i.e. the claimed isomorphism of (derived) sheaves holds on global sections. But given any
U ∈ Sτ , we know (e.g. by the proof of Proposition 5.1) that U comes via base-change from some
Ui ∈ Si,τ . Note that the claim is stable under the base-change along Ui → Si, so we can apply
the same argument to U in place of S to also obtain the equivalence of sections on U . □

We now prove a different incarnation of Proposition 5.1 where all the Xi’s are replaced by
arbitrary qcqs sheaves on the pro-étale (resp. pro-unramified) site of some base scheme. The
idea is to reduce this result to the case that all Xi’s are representable by schemes by constructing
a functorial resolution of the qcqs sheaves in terms of qcqs representable sheaves. This is enabled
by the following lemmas.

Lemma 5.3. Let X be a qcqs scheme, τ ∈ {ét,unr} and let (Ui)i∈I be a (small) diagram of qcqs
sheaves on Xpτ . Then U := lim←−i

Ui is qcqs.

Proof. Every limit can be constructed from fiber products and products, so it is enough to
handle these two cases separately. For fiber products the claim is true in any algebraic topos
(see [AGV71, VI.2.2]). We are left with the case of a product U =

∏
i Ui. Choose a well-ordering

on I and replace Ui by U ′
i :=

∏
j<i Uj . Arguing by transfinite induction (and using that finite

products of qcqs objects are qcqs by the fiber product case; here we need that X is qcqs) we
reduce the claim to showing that a cofiltered limit lim←−i∈I Ui of qcqs sheaves is qcqs.,, Then by

transfinite induction one can easily construct a diagram (Vi → Ui)i of sheaves on Xpτ such that

each Vi is representable by an object in Xaff
pτ and for every i ∈ I the map

Vi ↠ lim←−
j<i

Vj ×(lim←−j<i
Uj) Ui
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is surjective. It follows easily that the map

V := lim←−
i

Vi → U

is surjective (surjectivity of sheaves on Xpτ can be checked on weakly contractible objects, so
the claim reduces to a surjectivity of maps of sets, which is easily verified). On the other hand
we have V ∈ Xaff

pτ so that V is qcqs. It follows that U is quasicompact. One argues similarly to
see that V ×U V = lim←−i

Vi ×Ui Vi is quasicompact, proving that U is quasiseparated. □

Lemma 5.4. Let X be a scheme, τ ∈ {ét,unr}, I a directed set and (Ui)i∈I a diagram of qcqs
sheaves on Xpτ . Then U := lim←−i

Ui is qcqs and there is a cofinal subset I ′ ⊂ I and a diagram

(Vi → Ui)i∈I′ of sheaves on Xpτ with the following properties:

(i) Each Vi is representable by a weakly contractible object in Xaff
pτ .

(ii) All the maps Vi → Ui and the map V := lim←−i
Vi → U are surjective.

Proof. We can assume that I has a final object 0 ∈ I. Pick any cover X ′ ↠ U0 by some qcqs
scheme X ′ ∈ Xpτ and replace Ui by U ′

i := Ui ×U0 X
′. It is enough to prove the claim for the

system U ′
i of pro-τ sheaves on X ′: Then the surjectivity of U ′ := lim←−i

U ′
i = U ×U0 X ′ → U

implies that U is quasicompact and by the same argument applied to U ′
i ×Ui U

′
i one obtains

that U ′ ×U U ′ is quasicompact, hence U is qcqs. Moreover the diagram (Vi → U ′
i)i induces the

diagram (Vi → Ui)i. Thus we can replace X by X ′ to assume that X is qcqs from now on.
Any limit of qcqs sheaves on Xpτ is qcqs by Lemma 5.3, so in particular U is qcqs. Let Z

be the set of pairs (J, (Vj → Uj)j∈J) where J ⊂ I is a subset and (Vj → Uj)j∈J is a diagram of
maps of sheaves on Xpτ such that the following properties are satisfied:

(a) Each Vj is representable by a weakly contractible object in Xaff
pτ .

(b) For every pair J ′′ ⊂ J ′ ⊂ J of subsets of J the map

VJ ′ ↠ VJ ′′ ×UJ′′ UJ ′

is surjective.

We put a partial order on Z by letting (J, (Vj → Uj)j∈J) ≤ (J ′, (V ′
j → Uj)j∈J ′) if J ⊂ J ′, no

element of J ′ \ J is less than an element of J , and Vj = V ′
j for all j ∈ J .

Let S ⊂ Z be a totally ordered subset. We claim that S has an upper bound in Z . Indeed, the
underlying full subcategory J ⊂ I of that upper bound will be the union of the full subcategories
Js ⊂ I of the objects s ∈ S. There is then an obvious (and unique) choice of the diagram (Vj →
Uj)j∈J extending the diagrams on all s ∈ S. It is clear that the obtained pair (J, (Vj → Uj)j∈J)
satisfies condition (a). To verify condition (b) we can pass to a cofinal subset of S and hence
assume that S is well-ordered. Let J ′′ ⊂ J ′ ⊂ J be given. By possibly enlarging J ′′ we can
assume that no element of J ′ \ J ′′ is less than an element of J ′′. For s ∈ S let J ′

s := J ′ ∩ Js and
J ′
<s := J ′ ∩

⋃
t<s Jt and similarly for J ′′

s and J ′′
<s. By definition of s > t, no element of Js \ Jt is

less than an element of Jt and by the assumption on J ′′ and J ′ no element of J ′
t \J ′′

t is less than
an element of J ′′

s ; together this implies that there are no relations between elements of J ′
<s \J ′′

<s

and elements of J ′′
s \ J ′′

<s and hence

VJ ′
<s∪J ′′

s
= VJ ′

<s
×VJ′′

<s
VJ ′′

s
.

Now use the surjectivity of

VJ ′
s
↠ VJ ′

<s∪J ′′
s
×(UJ′

<s∪J′′
s
) UJ ′

s

to inductively prove the desired surjectivity of VJ ′ ↠ VJ ′′ ×UJ′′ UJ ′ .
By Zorn’s lemma there is a maximal element (I ′, (Vi → Ui)i∈I′) in Z . We claim that I ′ ⊂ I

is cofinal. If this is not the case then there is some i0 ∈ I \ I ′ which is not smaller than any
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element of I ′. Consider the subsets J := {i0} ∪ I ′ ⊂ I and J ′ := {i ∈ I ′ | i ≤ i0}. Let Vi0 ∈ Xaff
pτ

be any weakly contractible cover of Ui0 ×UJ′ VJ ′ (this fiber product is qcqs by Lemma 5.3).
We claim that the thus produced pair (J, (Vj → Uj)j∈J) satisfies conditions (a) and (b) above
and hence contradicts the maximality of I ′. It is clear that the pair satisfies (a). Condition
(b) follows easily from the fact that surjectivity is preserved by base-change (note that e.g.
UJ = UI′ ×UJ′ Ui0). □

We are finally in the position to prove the promised commutation of cohomology and limits
of qcqs sheaves:

Proposition 5.5. Let X be a scheme, τ ∈ {ét, unr}, (Ui)i∈I a cofiltered system of qcqs sheaves
on Xpτ and F a sheaf on Xτ (viewed as a sheaf on Xpτ via the fully faithful embedding). Then
U := lim←−i

Ui is qcqs and the natural map

lim−→
i

Hn(Ui,F )
∼−→Hn(lim←−

i

Ui,F )

is an isomorphism for n = 0, resp. n = 0, 1, resp. all n, if F is a sheaf of sets, resp. a sheaf of
groups, resp. a sheaf of abelian groups.

Proof. We only handle the case that F is a sheaf of abelian groups; the other cases are similar
(but easier). By Lemma 5.4 U is qcqs and we can inductively find a cofinal subset I ′ and a
diagram (Vi,• → Ui)i∈I′ such that each Vi,• → Ui is a truncated hypercover by weakly contractible

objects Vi,k ∈ Xaff
pτ and such that V• := lim←−i

Vi,• → U is still a truncated hypercover. Then F is

acyclic on each Vi,k and hence also on each Vk by Proposition 5.1. Thus by the Čech-to-sheaf-
cohomology spectral sequence (see e.g. [Sta14, Lemma 01GY]) the cohomologies Hn(Ui,F ) and
Hn(U,F ) are computed as the Čech cohomology with respect to the hypercovers Vi,• → Ui and
V• → U (for n small enough, depending on the truncation of our hypercovers). Thus the claimed
isomorphism follows from the fact that filtered colimits are exact. □

5.2. Relative Pontrjagin Duality. The Pontrjagin duality functor is the functor

A 7→ D(A) := Hom(A,R/Z)

on the category of locally compact abelian groups A, where Hom denotes continuous group
homomorphisms equipped with the compact-open topology. It is a classical result that D is
contravariant autoduality, so in particular the natural map A→ D(D(A)) is an isomorphism for
all locally compact A. Via restriction this gives an equivalence of the category of discrete abelian
groups to the opposite of the category of compact abelian groups. We will now formulate and
prove a version of this result in the relative setting, i.e. for groups over some fixed compact
Hausdorff space X.

In the following we will often speak of the étale site Xét and the pro-étale site Xproet of a
profinite set X. There are obvious definitions for that (e.g. Xproet consists of pro-étale sets over
X with covers being finite jointly surjective families of maps). One can also view Xét and Xproet

as the corresponding sites of the scheme Spec C(X, k) for any algebraically closed field k, which
immediately implies that all the results for the pro-étale site of schemes are valid for Xproet as
well.

Definition 5.6. LetX be a compact Hausdorff space, viewed as a qcqs condensed set (cf. [Sch19,
Theorem 2.16.(i)]). A condensed abelian group over X is a commutative group object A in the
category of condensed sets over X, i.e. it is a condensed set A with a map A → X together
with a multiplication map A ×X A → A, an inversion map A → A and a neutral element map
X → A (all maps are over X).
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Definition 5.7. Let X be a compact Hausdorff space and A → X a condensed abelian group
over X.

(a) A is called compact (over X) if A is qcqs as a condensed set (equivalently the map
A→ X is qcqs).

(b) A is called discrete over X if the pullback of A to every profinite set Y → X is an étale
sheaf on Y (i.e. lies in the image of the functor Shv(Yét) ↪→ Shv(Yproet)).

Definition 5.8. Let X be a compact Hausdorff space and A → X a condensed abelian group
over X. The relative Pontrjagin dual of A is the condensed abelian group over X defined as

DX(A) := HomX(A,R/Z)

Here, R/Z is implicitly viewed as the relative condensed abelian group R/Z×X → X and the
HomX denotes the internal Hom in the category of abelian sheaves on the slice topos (∗proet)/X .

Lemma 5.9. Let X be a compact Hausdorff space and A → X a compact abelian group over
X. Then

RHomX(A,R) = 0

Proof. We argue as in the proof of [Sch19, Theorem 4.3.(ii)]. Namely, by the Breen-Deligne
resolution [Sch19, Theorem 4.5] there is a resolution F (A)• → A→ 0 of A of the form F (A)i =⊕ni

j=1 ZX [Ari,j ], where for any map j : Y → X of sheaves we denote ZX [Y ] := j!Z and for any
integer r ≥ 0, Ar denotes the r-fold fiber product of A overX. By the vanishing of R-cohomology
on compact Hausdorff spaces (see [Sch19, Theorem 3.3]), for every compact Hausdorff space
X ′ → X, RHomX(A,R)(X ′) is computed by the complex

0→
n0⊕
j=0

C(Ar0,j ×X X ′,R)→
n1⊕
j=0

C(Ar1,j ×X X ′,R)→ . . .

Since all Ar0,j ×X X ′ are qcqs (and hence compact Hausdorff) the same argument as in the
proof of [Sch19, Theorem 4.3.(ii)] shows that the above complex of Banach spaces is acyclic, as
desired. □

Lemma 5.10. Let X be a compact Hausdorff space and A→ X a condensed abelian group over
X.

(i) If A is discrete over X then DX(A) is compact over X.
(ii) If A is compact over X then DX(A) is discrete over X.

Proof. Pulling back to any cover X ′ ↠ X by some profinite set X ′, we can assume that X itself
is profinite.

We first prove (i), so assume that A is discrete over X, i.e. given by a sheaf on Xét. The
site Xét is generated by maps j : U → X such that U is a disjoint union of clopen subsets of X.
Write Z[U ] := j!Z; then the shape of U shows that Z[U ] is a direct sum of direct summands of
the sheaf Z on Xét. By general properties of sites there is a resolution⊕

j∈J
Z[Vj ]→

⊕
i∈I

Z[Ui]→ A→ 0

of sheaves on Xét, with Vj and Ui of the same shape as U . Thus we get an exact sequence

0→ DX(A)→
∏
i∈I

DX(Z[Ui])→
∏
j∈J

DX(Z[Vj ]).
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Letting ji : Ui → X denote the structure map we get by adjunction DX(Z[Ui]) = ji∗R/Z, which
as above is a direct sum of direct summands of the sheaf R/Z on Xproet and hence is qcqs. It
follows that DX(A) is a limit of qcqs sheaves on Xproet and hence qcqs by Lemma 5.3, as desired.

We now prove (ii), so assume that A is qcqs. Applying RHomX(A,−) to the short exact
sequence 0→ Z→ R→ R/Z→ 0 on Xproet and using Lemma 5.9 we get an isomorphism

DX(A) = HomX(A,R/Z) ∼−→ Ext1X(A,Z).

For every U ∈ Xproet, the Breen-Deligne resolution (cf. [Sch19, Theorem 4.5]) produces a se-
quence

Ep,q
1 =

np∏
j=1

Hq(Arp,j ×X U,Z)⇒ Extp+q(A,Z)(U),

where Ar denotes the r-fold fiber product of A over X. To see that Ext1(A,Z) is étale we
need to verify that for every U = lim←−i

Ui ∈ Xproet with all Ui ∈ Xét the canonical map

lim−→i
Ext1(A,Z)(Ui)

∼−→Ext1(A,Z)(U) is an isomorphism. But by the above spectral sequence this

amounts to showing that the map lim−→i
Hq(Ar ×X Ui,Z)

∼−→Hq(Ar ×X U,Z) is an isomorphism.
But this is Proposition 5.5. □

Lemma 5.11. Let X be a compact Hausdorff space and let f : A → A′ be a map of condensed
abelian groups over X. Suppose that A and A′ are both discrete or both compact and for every
point x ∈ X the fiber fx : Ax → A′

x is an isomorphism. Then f is an isomorphism.

Proof. We can w.l.o.g. assume that X is profinite. If A and A′ are compact then they are repre-
sentable by compact Hausdorff spaces and f is a continuous bijection, hence a homeomorphism.
If A and A′ are discrete and hence étale sheaves on X then Ax and A′

x are the stalks of A and
A′ at x (e.g. write x = lim←−i

Ui for a system of open neighbourhoods Ui of x) and the claim is
also clear. □

Theorem 5.12. Let X be a compact Hausdorff space. Then for every compact or discrete
abelian group A over X the canonical map

A
∼−→ DX(DX(A))

is an isomorphism. In particular DX is an equivalence of categories

{discrete abelian groups over X} ∼←−→ {compact abelian groups over X}op

Proof. Given a discrete or compact groupA overX, by Lemma 5.10 the map f : A→ DX(DX(A))
is a map of both discrete or both compact abelian groups over X. Thus by Lemma 5.11, to see
that f is an isomorphism it is enough to check this on all fibers fx. But then the result follows
from standard Pontrjagin duality (see e.g. [Sch19, Theorem 4.1.(iii)]). To get the equivalence of
categories, it is only left to check full faithfulness of DX ; but this is formal using the adjointness
of tensor and Hom:

HomX(DX(A),DX(A′)) = HomX(DX(A),HomX(A′,R/Z))
= HomX(A′,HomX(DX(A),R/Z))
= HomX(A′,DX(DX(A)))

= HomX(A′, A). □
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5.3. Limits and Colimits of Abelian Sheaves. The previous subsections culminate in the
following results about the behavior of abelian sheaves on the pro-étale and the pro-unramified
site. These results can be seen as generalizations of similar results in [Sch19] and are thus crucial
for setting up the theory of solid sheaves.

We start with the vanishing of higher inverse limits of qcqs sheaves on the pro-étale and the
pro-unramified site:

Proposition 5.13. Let X be a qcqs scheme and let (Ki)i∈I be a cofiltered inverse system of
qcqs pro-étale sheaves of abelian groups on X. Then for all n > 0 the higher inverse limit

Rn lim←−
i

Ki = 0,

in the category of pro-étale sheaves on X, vanishes. If X is straight and geometrically unibranch
then the same holds for cofiltered inverse limits of qcqs pro-unramified sheaves.

Remark 5.14. In [FS, Proposition VII.1.6] the analogous result for diamonds only stated for
étale constructible sheaves Ki. This is enough to set-up the theory of solid sheaves, but with a
little more effort (namely the relative Pontrjagin duality, Theorem 5.12) we get the result for all
qcqs sheaves.

Proof of Proposition 5.13. We first reduce the case of pro-unramified sheaves to the case of pro-
étale sheaves. By Theorem 1.33 it suffices to show that for any w-contractible straight U ∈ Xaff

pu ,
we have Γ(Upu, R

n lim←−i
Ki) = 0. We have RΓ(Uproet,−) = Γ(Uproet,−) and (by Theorem 1.33)

also RΓ(Upu,−) = Γ(Upu,−). By Theorem 1.40 we also have Rµ∗ = µ∗. As R lim←− commutes
with Rµ∗, we thus have

Γ(Upu, R lim←−
i

Ki) = Γ(Uproet, µ∗R lim←−
i

Ki) = Γ(Uproet, R lim←−
i

µ∗Ki).

Now, µ∗Ki is again qcqs by Lemma 1.47 and so the claim about pro-unramified sheaves re-
duces to the claim about pro-étale sheaves. In the case of pro-étale sheaves, the proof goes
as in [FS, VII.1.6]. It is enough to show that for any w-contractible U ∈ Xproet we have
Γ(Uproet, R

n lim←−i
Ki) = 0. Since Γ(U,−) is limit-preserving (always) and exact (as U is w-

contractible), we can pull out R lim←−i
, reducing the claim to showing that

Rn lim
i

Ki(U) = 0.

Now we have Ki(U) = Ki(U
c) by Proposition 2.19(ii). Replacing X by U c we are reduced to

the case that X is the spectrum of an absolutely flat ring. Now |X| is extremally disconnected
set. In particular any qc open of |X| is clopen, hence still extremally disconnected. It follows
that every qcqs étale map V → X is a Zariski localization and thus the site Xproet is equivalent
to the site |X|proet of profinite sets over |X|. Thus, we are reduced to the case of a profinite set
|X|.

By Theorem 5.12 we have Ki = DX(Fi) for some discrete abelian groups Fi = DX(Ki) over
X, i.e., Fi are sheaves on Xet, or equivalently, on |X|. Now R/Z is an injective sheaf on X
by [FS, VII.1.7], so in particular, Ki = RHom(Fi,R/Z), and then

R lim←−
i

Ki(X) = R lim←−
i

RHom(Fi,R/Z) = RHom(lim−→
i

Fi,R/Z)

= Hom(lim−→
i

Fi,R/Z).

Thus, the higher cohomologies of R lim←−i
Ki(X) vanish, as desired. □
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Proposition 5.15. Let X be a qcqs scheme.

(i) Let (Ki)i∈I a cofiltered system of qcqs sheaves of abelian groups on Xproet and F an
étale sheaf of abelan groups on X. Then the natural map

lim−→
i

RHom(Ki,F )
∼−→RHom(lim←−

i

Ki,F )

is an isomorphism.
(ii) Let K be a qcqs sheaf of abelian groups on Xproet and (Fi)i∈I a filtered system of pro-

étale sheaves on X. Then the natural map

lim−→
i

RHom(K ,Fi)
∼−→RHom(K , lim−→

i

Fi)

is an isomorphism

Proof. By the Breen-Deligne resolution (cf. [Sch19, Corollary 4.8], which can be directly adapted
to any site, as everything is functorial), for any sheaves of abelian groupsM and N on Xproet

and every U ∈ Xproet there is a functorial spectral sequence

Ep,q
1 =

np∏
j=1

Hq(Mrp,j ×X U,N ) =⇒ Extp+q(M,N )(U).

Thus (i) reduces to

Hk(lim←−
i

Kr
i ×X U,F) = lim−→

i

Hk(Kr
i ×X U,F),

for all k, r ≥ 0 and qcqs U . This is Proposition 5.5. Similarly (ii) reduces to

Hk(Kr ×X U, lim−→
i

Fi) = lim−→
i

Hk(Kr ×X U,Fi),

which is [Sta14, Lemma 0739]. □

5.4. Solid sheaves. Now we define solid sheaves first on combs and then on arbitrary v-stacks;
then we consider functors between the respective sheaf categories. Using our previous results,
we may follow [FS, §VII.1-2] in a quite formal way.

Let X be a comb. For j : U → X in Xpu, we write Ẑ[U ] = j!Z. If one can write U as a

cofiltered inverse system of qcqs objects ji : Ui → X in Xunr, then we put Ẑ■[U ] = lim←−i
Z[Ui].

This is independent of the presentation U = lim←−i
Ui, hence well-defined. We have a map Ẑ[U ]→

lim←−i
Ẑ[Ui] = Ẑ■[U ].

Definition 5.16. Let X be a comb. A sheaf F ∈ Shv(Xpu, Ẑ) is called solid, if for all U ∈ Xaff
pu

as above, the natural map Hom(Ẑ■[U ],F )→ F (U) is an isomorphism.

As in [FS, VII.1.2], Proposition 5.1 implies that unramified torsion sheaves are solid:

Corollary 5.17. For any n ≥ 1 and any F ∈ Shv(Xunr,Z/nZ), ν∗F is solid, where ν : Xpu →
Xunr is the natural map of sites.

As in [FS, Theorem VII.1.3], the category of solid sheaves satisfies various nice properties:

Proposition 5.18. Let X be a comb. The category of solid Ẑ-sheaves on X is an abelian

subcategory of Shv(Xpu, Ẑ), stable under all limits, colimits and extensions. It is generated by

the finitely presented objects Ẑ■[U ] for U ∈ Xaff
pu , and the inclusion into Shv(Xpu, Ẑ) admits a

left adjoint F → F■, that commutes with all colimits. Let F ∈ Shv(Xpu, Ẑ). The following
statements are equivalent.
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(i) The Ẑ-sheaf F is finitely presented in Shv(Xpu, Ẑ), and is solid.

(ii) The Ẑ-sheaf F is solid and is finitely presented in the category of solid Ẑ-sheaves on X.

(iii) The Ẑ-sheaf F can be written as a cofiltered inverse limit of torsion constructible un-
ramified sheaves.

Let X be a comb. Consider the category of torsion constructible unramified sheaves on X,

which is the smallest full subcategory of Shv(Xunr, Ẑ), which contains junr!Z/nZ for all n ∈ Z≥1

and all (j : U → X) ∈ Xaff
unr, and is closed under finite limits and colimits.

Lemma 5.19. Any torsion constructible unramified sheaf on the comb X is representable by a
comb.

Proof. This is true for the sheaves junr!Z/nZ ... □

Lemma 5.20. Let (Yi)i∈I be a cofiltered system of combs. Then Y = lim←−i
Yi is a comb and the

natural map |Y | → lim←−i
|Yi| is a homeomorphism.

Proof. The last claim in [Sta14, 0CUF]. For the first claim, note that any connected component
Z of Y is the inverse limit of the connected components Zi ⊆ Yi to which it maps. Now the
claim follows from the fact that a filtered colimit of valuation rings is a valuation ring. □

Proof of Proposition 5.18. This follows from Proposition 5.1, Proposition 5.13, Corollary 5.17,
Lemma 5.19, Lemma 5.20 in the same way as [FS, Theorem VII.1.3]. □

Lemma 5.21. Let f : Y → X be a map of combs. Then f∗
pu preserves solid sheaves and

commutes with solidification. If f is a v-cover and F ∈ Shv(Xpu, Ẑ) such that f∗F is solid,
then F is solid.

Proof. The proof is the same as in [FS, Proposition VII.1.8], where we use Proposition 3.26(i),(iv)
instead of [Sch18, Proposition 14.7]. □

We now define (derived) solid sheaves on arbitrary small v-stacks.

Definition 5.22. Let X be a v-stack and let F be a sheaf of Ẑ-modules on X. Then F is
called solid if for all maps f : Y → X from a comb X, the pullback f∗F is solid. We let

D■(X, Ẑ) ⊆ D(Xv, Ẑ) be the full subcategory of all A ∈ D(Xv, Ẑ) such that for each i ∈ Z the
cohomology sheaf H i(A) is solid.

By Lemma 5.21 it suffices to check solidness of a sheaf after pullback to a single v-cover by a
comb. As the category of solid sheaves is stable under (co)kernels and extensions, D■(X, Ẑ) is
a triangulated subcategory of Dv(X, Ẑ). We have the solid version of Proposition 3.26(i),(iv):

Lemma 5.23. Let X be a comb, and let F be a solid sheaf of Ẑ-modules on Xpu. Let λ : Xv →
Xpu be the natural map of sites. Then F → Rλ∗λ

∗F is an isomorphism.

Proof. Again, the proof is the same as for [FS, Proposition VII.1.11], where we use Proposi-
tion 3.26(i,iii,iv) instead of the analogous results from [Sch18]. □

Lemma 5.24. Let X be a comb. For all A ∈ D■(X, Ẑ) and all j : U → X in Xaff
pu , the map

RHom(Ẑ■[U ], A)→ Rj∗A|U is an isomorphism.

Proof. As [FS, Proposition VII.1.12], this first reduces to the case that A is concentrated in
degree 0 by a Postnikov limit argument. Then, by using Breen’s resolution, one reduces to the
case that A is finitely presented, in which case it is a limit of constructible unramified sheaves
by Proposition 5.18. For such sheaves, the result now follows from Proposition 5.1. □
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As in [FS, Proposition VII.1.13-14] this gives the derived solidification and the solid tensor
product:

Corollary 5.25. Let X be a comb. The inclusion D■(X, Ẑ) ⊆ D(Xpu, Ẑ) admits a left adjoint

A 7→ A■ : D(Xpu, Ẑ)→ D■(X, Ẑ)

commuting with any base change. Moreover, D■(X, Ẑ) identifies with the derived category of

solid Ẑ-sheaves on X and A 7→ A■ with the left derived functor of F → F■.
Furthermore, the kernel of A 7→ A■ is a tensor ideal; there is a unique symmetric monoidal

structure −
■
⊗

L
− on D■(X, Ẑ), making A 7→ A■ symmetric monoidal; −

■
⊗

L
− commutes with

all colimits and pullbacks and is the left derived of functor of the induced symmetric monoidal

structure on solid Ẑ-sheaves.

From now on we let Λ be any solid Ẑp-algebra on the pro-unramified (equivalently, pro-étale)
site of a point. We denote its pullback to any small v-stack X again by Λ.

Definition 5.26. Let X be any small v-stack. We denote by D■(X,Λ) ⊆ Dv(X, Ẑ) be the full

subcategory of all A ∈ Dv(X,Λ), whose image in Dv(X, Ẑ) is solid.

Let Y → X be a map of small v-stacks, so that we have the pullback functor f∗ : D■(X,Λ)→
D■(Y,Λ). It admits a right adjoint Rf∗, which coincides with the restriction of Rfv∗, generalizing
Proposition 4.13.

Lemma 5.27. Let Y → X be a map of small v-stacks. Let A ∈ D■(Y,Λ) ⊆ D(Y,Λ). Then
Rfv∗A ∈ D(Xv,Λ) lies in D■(X,Λ). In particular, Rfv∗ : D(Yv,Λ)→ D(Xv,Λ) restricts to the
right adjoint Rf∗ : D■(Y,Λ)→ D■(X,Λ).

Proof. One formally reduces to the case that Λ = Ẑp. We may follow the proof of [FS, Propo-
sition VII.2.1]. By Lemma 5.21 we may reduce to the case that X is a comb. Then, taking
simplicial resolution of Y , we may assume that Y is a comb, too. Next, we may reduce to the
case that A is a constructible unramified sheaf sitting in degree 0, where the result follows from
Proposition 4.13. □

Proposition 5.28. Let X be a small v-stack. The inclusion D■(X,Λ) ⊆ D(Xv,Λ) admits a
left adjoint

A 7→ A■ : D(Xv,Λ)→ D■(X,Λ)

commuting with any base change. Moreover, the kernel of A 7→ A■ is a tensor ideal. In

particular, there is a unique symmetric monoidal structure −
■
⊗L

Λ− on D■(X, Ẑ), making A 7→ A■

symmetric monoidal; the functor −
■
⊗ L

Λ− commutes with all colimits and pullbacks.

Proof. For the existence of the left adjoint, we may reduce to the case that X is a comb, as
being solid can be checked v-locally. Then, for a comb X, the proof of [FS, Proposition VII.1.15]
carries over to our situation, where we use Lemma 3.21 instead of [Sch18, Lemma 14.5] and (the
proof of) Proposition 3.26(iii) instead of [Sch18, Lemma 14.4].

Now, commutation with any base change is a consequence of Lemma 5.27, and the property of
being a ⊗-ideal follows from the existence of the left adjoint for f∗

v (cf. [FS, proof of Proposition
VII.2.2]). □

We also have the analogue of [FS, Proposition VII.2.3] (with the same proof).
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Proposition 5.29. Let X be a small v-stack and let A,B ∈ D■(X, Ẑp) be concentrated in

degree 0. Then A
■
⊗LB sits in cohomological degrees −1 and 0. If X is a comb, and A = lim←−i

Ai,

B = lim←−i
Bi are finitely presented solid Ẑp-sheaves written as limits of constructible unramified

sheaves killed by some integer coprime to p, then the natural map A
■
⊗ LB → R lim←−i,j

Ai ⊗L Bj

is an isomorphism.

The existence of the solid tensor product −
■
⊗ L

Λ− leads as usual to an internal Hom on solid

sheaves, i.e., there is a (partial) right adjoint to −
■
⊗ L

Λ−,
RHomΛ(−,−) : D■(X,Λ)op ×D■(X,Λ)→ D■(X,Λ),

which equals the restriction of the RHomΛ(−,−) on D(Xv,Λ).
Just as in [FS, VII.2.4] we have the “unrestricted basechange” for solid sheaves.

Proposition 5.30. Let

Y ′

f ′

��

g′
// Y

f
��

X ′ g
// X

be a cartesian diagram of small v-stacks. For all A ∈ D■(Y,Λ) the base change map g∗Rf∗A→
Rf ′

∗g
′∗A in D■(X

′,Λ) is an isomorphism. For any map f : Y → X of small v-stacks and all
A,B ∈ D■(X,Λ), the map

f∗RHomΛ(A,B)→ RHomΛ(f
∗A, f∗B)

is an isomorphism.

Proof. This follows from Lemma 5.27 as pushforward on the v-site commutes with arbitrary
base change. The claim about RHom follows from the fact that solid RHom agrees with the
restriction of the RHom on the v-site, which satisfies the claimed formula. □

Finally, we can introduce the left adjoint f♮ of f∗ on solid sheaves (homology functor) with
the same properties as in [FS, VII.3].

Proposition 5.31. Let Y → X be a map of small v-stacks.

(1) The functor f∗ : D■(X,Λ)→ D■(Y,Λ) admits a left adjoint

f♮ : D■(Y,Λ)→ D■(X,Λ).

The natural maps

f♮(A
■
⊗ L

Λf
∗B)→ f♮A

■
⊗ L

ΛB

RHomΛ(f♮A,B)→ Rf∗RHomΛ(A, f
∗B)

are isomorphisms for all A ∈ D■(Y,Λ), B ∈ D■(X,Λ)
(2) Formation of f♮ is functorial in maps Λ→ Λ′.
(3) For any cartesian diagram

Y ′

f ′

��

g′
// Y

f
��

X ′ g
// X
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of small v-stacks and any A ∈ D■(Y,Λ), the natural map

f ′
♮g

′∗A→ g∗f♮A

is an isomorphism.

Proof. This follows from Proposition 5.28, Proposition 5.30, Proposition 5.28 in the same formal
way as [FS, Proposition VII.3.1]. □

Note that f♮ equals the composition

D■(Y,Λ) ⊆ D(Yv,Λ)
f∗
v−→ D(Xv,Λ)→ D■(X,Λ)

where the first functor is the fully faithful embedding and the last functor is solidification from
Proposition 5.28.

5.5. Homology of the affine space. If n < ∞, then fn : An → SpecFq is smooth, so that
fn♮ = fn![2n], so that fn♮Λ = Λ[0]. We prove the following general result, covering the infinite
dimensional affine space.

Theorem 5.32. Let n ≤ ∞ and let f : X → Y be a morphism, which is v-locally on Y a trivial
An-bundle. Then the natural transformations of functors

f♮f
∗ → id→ f∗f

∗ : D■(Y,Λ)→ D■(Y,Λ)

are equivalences. In particular, f♮Λ ∼= Λ[0] ∼= f∗λ.

Proof. As being an isomorphism can be checked v-locally, we may assume that f : X = An
Y → Y

is the n-dimensional affine space over a comb Y . Both equivalences are equivalent to f∗ being
fully faithful, so it suffices to prove that f∗f

∗K ∼= K is an equivalence for any K ∈ D■(Y,Λ). As
D■(Y,Λ) is left-complete (cite), we have K ∼= R limm τ≥−mK. As both f∗ and f∗ commute with
limits, it suffices to prove the claim whenK ∈ D+

■(Y,Λ). For suchK, we haveK ∼= lim−→ τ≤nK and

f∗ being a functor on D+, commutes with this colimit [Sta14, 0739]. Thus, it suffices to show the
claim for K bounded, and even for K concentrated in one degree. Any such K can be written as
a quotient coker(α : F1 → F2) with Fi = lim−→j

j♮Λ being filtered colimit of solid generators. Now

f∗ will not in general commute with cokernels, but we may do the following. Let F0 = ker(α), so
that K ≃ cone(F0[1]→ cone(α)). Now, as Λ = Zℓ it follows from [FS, Theorem VII.1.3] that F0

is again a filtered colimit of solid generators. Now, by [Sta14, 0739], f∗ commutes with filtered
colimits of objects concentrated in one degree. As f∗ also commutes with arbitrary limits, we
are reduced to show the result for abelian sheaves on Yunr. Then by Proposition 5.1 we are
reduced to the case that n <∞. But in this case f is smooth of dimension n and f !Λ = Λ[2n],
so that f♮ ∼= f![2n], and we are done. □
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