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Abstract. In this article we prove orthogonality relations for deep level
Deligne–Lusztig varieties of Coxeter type, attached to a reductive group
over a local non-archimedean field, which splits over an unramified ex-
tension. This extends results of [DI24], where the quasi-split case was
handled. This allows to construct new irreducible representations of
parahoric subgroups of p-adic groups.

1. Introduction

Let k be a non-Archimedean local field with residue characteristic p > 0,
integers Ok, uniformizer $ and residue field Fq. Let k̆ be the completion of

the maximal unramified extension of k, let Ok̆ denote the integers of k̆. Let

F denote the Frobenius automorphism of k̆ over k.
Let G be a reductive group over k, which splits over k̆. Let T ⊆ B

be a maximal torus and a Borel subgroup of G, such that T splits and B
becomes rational over k̆. Denote by U the unipotent radical of B and assume
that (T,U) is a Coxeter pair (see §2.1). In particular, T is elliptic and the
apartment of T in the reduced Bruhat–Tits building of G consists of one
point. Bruhat–Tits theory attaches to this point a (connected) parahoric
Ok-model G of G. For any r ≤ ∞ we can regard G(Ok̆/$

r) = Gr(Fq) as the

geometric points of a perfect Fq-scheme Gr. This is done via the (truncated,
if r < ∞) positive loop functor, see e.g. [Zhu17, §1.1] (or [DI24, §2]) for
details.

We fix now some r <∞ and write G = Gr. If G is defined over Ok, then G
is defined over Fq; in this case we also denote by F the geometric Frobenius
of G, so that GF = G(Fq). Moreover, if H ⊆ G is a subscheme, then we
denote by H its closure in G and by H ⊆ G the corresponding subscheme of
G. Consider the closed subscheme

(1.1) X = XGT,U,r = {x ∈ G : x−1F (x) ∈ FU}

of G. The group GF×TF acts on it by (g, t) : x 7→ gxt. Let ` 6= p be a prime.

For any smooth character χ : TF → Q×` we have the virtual GF -module

H∗c (X)[χ] =
∑
i∈Z

(−1)iH i(XT,U ,Q
×
` )[χ],

1
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where for any TF -module M , M [χ] denotes the χ-isotypic subspace. The
following is our main result.

Theorem 1.1. Suppose that q satisfies condition (2.1) (this is always true
when q > 5). Then there exists a Coxeter pair (T,U) such that

dimQ`
HomGF (H∗c (X)[χ], H∗c (X)[χ′]) = ]

{
w ∈WF

e ;w(χ) = χ′
}

for any two smooth characters χ, χ′ of TF , where We denotes the Weyl group
of the special fiber of T in the reductive quotient of the special fiber of G.

Remark 1.2. Recently, under a mild condition on p, Chan [Cha24] shows
that the inner product formula in Theorem 1.1 holds if (T, θ) is split-generic,
using a different approach.

In particular, if {w ∈WF
e : w(χ) = χ} = {1}, then H∗c (X)[χ] is up to sign

an irreducible GF -representation. Note that Theorem 1.1 generalizes [DI24,
Theorem 3.2.3] and [CI23, Theorem 4.1].

Now we comment on Theorem 1.1. First, we explain why “it suffices” to
establish the theorem for a single Coxeter pair (T,U). Ultimately, we are
interested in smooth representations of the p-adic group G(k). One has the

p-adic Deligne–Lusztig space XT,U
∼= Ẋċ(b) from [Iva23a, §7.2 and §11.2]

equipped with an action of G(k)× T (k). By [Nie24, Iva23b], one has

XT,U =
∐

γ∈G(k)/G(Ok)

γXGT,U,∞.

Thus for any smooth character θ : T (k) → Q×` , the θ-isotypic part of the
cohomology of XT,U equals

RT,U (θ) = c-Ind
G(k)
G(Ok)Z(k)H

∗
c (X)[θ|T (Ok)],

where Z ⊆ G is the center and H∗c (X)[θ|T (Ok)] is extended to a represen-
tation of G(Ok)Z(k) in the unique way such that its central character is
θ|Z(k). Now, the point is that by [Iva23a, Corollary 7.25, Lemma 11.3],
XT,U are all mutually G(k) × T (k)-equivariantly isomorphic, when (T,U)
varies through all Coxeter pairs (T,U) with a fixed T . Thus, the G(k)-
representation RT,U (θ) is independent of the choice of U , as long as (T,U)
remains Coxeter. So, it suffices to know the statement of the theorem for
at least one Coxeter pair. In fact, our proof shows that for many groups G
Theorem 1.1 holds for all pairs (T,U), see Remark 2.4.

Next, we explain why the condition on q in the theorem is very mild, so
that Theorem 1.1 even allows to construct new irreducible representations.
Recall that by the work of Yu and Kaletha [Yu01, Kal19], one can attach
a supercuspidal irreducible G(k)-representation π(S,θ) to any regular elliptic
pair (S, θ) consisting of a maximal elliptic torus S ⊆ G and a sufficiently

nice smooth character θ : S(k)→ Q×` . A crucial point for this to work is the
existence of a Howe factorization of θ, cf. [Kal19, §3.6]. However, not all
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characters admit a Howe factorization, when the residue characteristic p is
small and G is not an inner form of GLn.

For instance, if p ∈ {2, 3, 5}, there exist many examples of pairs (T, θ) with
T unramified Coxeter (hence covered by our main result when q satisfied con-
dition (2.1) – in particular, whenever q > 5) such that StabWF

e
(θ) = {1}, but

θ does not admit a Howe factorization. For examples of (T, θ) not admitting
a Howe factorization we refer to the forthcoming work of Fintzen–Schwein
[FS], where an algebraic approach to the extension of Yu’s construction is
pursued. As StabWF

e
(θ) = {1}, one should expect an irreducible super-

cuspidal G(k)-representation attached to (T, θ), but Yu’s construction does
not apply as there is no Howe factorization. The point is now that our
cohomological construction does not require any condition on p, but only
a mild one on q. In particular, there are many examples of k,G, T, θ such
that ±H∗c (X)[θ|T (Ok)] is an irreducible G(Ok)-representation, which does
not appear in Yu’s construction.

However, let us also note that our method is not yet complete, in the
sense that it does not prove that the resulting G(k)-representation RT,U (θ) is
irreducible supercuspidal. So far there is no purely Deligne–Lusztig theoretic
proof of this fact; the closest purely Deligne–Lusztig theoretic result states
(in the case of inner forms of GLn) that RT,U (θ) is admissible and hence
a direct sum of finitely many irreducible supercuspidal representations, see
[CI23, Theorem 6.1].

Acknowledgements. The first author is grateful to Jessica Fintzen and
David Schwein for explaining their results on characters without Howe de-
composition. The first author gratefully acknowledges the support of the
German Research Foundation (DFG) via the Heisenberg program (grant nr.
462505253).

2. Preparations

2.1. More notation. We use the notation from the introduction. More-
over, we denote by Z the center of G, NG(T ) the normalizer of Tk̆ in Gk̆,
by W = NG(T )/T the Weyl group of T , by X∗(T ) (resp. X∗(T )) the group
of characters (resp. cocharacters) of Tk̆ and by 〈·, ·〉 : X∗(T ) ×X∗(T ) → Z
the natural pairing. We write Φ for the root system of Tk̆ in Gk̆, Φ+ for

the subset of positive roots determined by B, and ∆ ⊆ Φ+ for the subset of
positive simple roots. We write S ⊆ W for the corresponding set of simple
reflections.

Let c ∈ W be the unique element such that FB = cB. Then for any lift
ċ of c, Ad(ċ)−1 ◦ F : G(k̆) → G(k̆) fixes the pinning (T,B), hence defines
automorphisms, denoted by σ, of the based root system ∆ ⊆ Φ and of
the Coxeter system (W,S). Note that σ does not depend on the choice
of the lift ċ. We call (T,B) (or (T,U)) a Coxeter pair if c is a σ-Coxeter
element in the Coxeter triple (W,S, σ), that is, if a(ny) reduced expression
of c contains precisely one element from each σ-orbit on S. Moreover, we
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assume throughout the article that c is σ-Coxeter, and hence (T,U) is a
Coxeter pair.

Except for G, G and their subgroups (which are defined over k, k̆ resp.
Ok,Ok̆), all schemes appearing below are perfect schemes perfectly of finite

presentation and perfectly smooth over Fq. For a review of perfect geome-
try we refer to [Zhu17, Appendix A]. We freely make use of the 6-functor
formalism of étale cohomology for such schemes with Q`-coefficients. More-
over, for a perfect Fq-scheme we denote by H∗(Y ) = H∗c (Y,Q`) its `-adic
étale cohomology with compact support.

2.2. Pinning. We may express the action of the Frobenius F on X∗(T )Q as
F = µcσ : x 7→ µ + cσ(x) for some µ ∈ X∗(T ). There is a unique point e ∈
QΦ∨ such that F (e) ∈ e+X∗(Z)Q, or equivalently, µ+ cσ(e)− e ∈ X∗(Z)Q.
Let

Φe = {α ∈ Φ; 〈α, e〉 ∈ Z}.
We denote by ∆e the set of simple roots of Φ+

e = Φe ∩Φ+. Let We ⊆W be
the Weyl group of Φe. Note that G from the introduction is the parahoric
model attached to the image of e in the reduced building of G, and that Φe

(resp. We) is the root system (resp. Weyl group) of the reductive quotient
of the special fiber of G.

Also, note that the action of F on W agrees with Ad(c) ◦ σ; we denote
it by F = cσ : W → W . This action stabilizes We ⊆ W . Finally, for an
element w ∈We we denote by ẇ ∈ G(Fq) an arbitrary (fixed) lift of w.

2.3. A condition on q. Let ωα denotes the fundamental coweight of α ∈ ∆.
For a σ-orbit O ⊆ ∆ of simple roots, we set ω∨O =

∑
α∈O ω

∨
α , where ω∨α

denotes the fundamental coweight of α ∈ ∆. We prove our main result
under the following condition on q:

(2.1) q > M = max{〈γ, ω∨O〉; γ ∈ Φ+,O ∈ ∆/〈σ〉}.

Note that M only depends on the (relative) Dynkin diagram ∆ of the quasi-
split inner form of G over k. If ∆ is connected then M takes the following
values: M = 1 for type An; M = 2 for types Bn, Cn, Dn,

2An,
2Dn; M = 3

for types G2, E6,
3D4; M = 4 for types F4, E7,

2E6; M = 6 for type E8. If
the quasi-split inner form of G is split, then M is the same as in [DI24, §2.7],
and it differs otherwise. Just as in [DI24, §2.7], for arbitrary G the constant
M equals the maximum of the values of M over all connected components
of the Dynkin diagram of Gk̆ (equipped with the smallest power of σ fixing
the connected component). In particular, (2.1) holds whenever q > 5.

2.4. A Coxeter element in We. It turns out that c determines a (twisted)
Coxeter element of We. Write c = sα1 · · · sαr , where {α1, . . . , αr} ⊆ ∆ is a
set of representatives of σ-orbits of ∆.

Let I = (i1 < i2 < · · · < im) be a subsequence of [r] := (1 < 2 < · · · < r),
and let I ′ = (j1 < jr < · · · < jr−m) be the complement sequence of I in [r].
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We define

σI,c = sαi1sαi2 · · · sαimσ;

cI = sβj1sβj2 · · · sβjr−m ;

∆I,c = {βjl ; 1 6 l 6 r −m}

where βjl = sαi1sαi2 · · · sαit (αjl) with 1 6 t 6 m−1 such that it < jl < it+1.
By definition, cσ = cIσI,c.

Theorem 2.1. Let c, µ and e = eµ,c be as in §2.2. Then there exist a
sequence I = Iµ,c of 1 < 2 < · · · < r such that

(1) σI,c(∆e) = ∆e;
(2) ∆I,c ⊆ ∆e is a representative set of σI,c-orbits of ∆e;
(3) σiI,c = 1 if and only if σiI,c fixes each root of ∆e.
In particular, cI is a σI,c-Coxeter element of We.

This theorem is proven in §4.

2.5. Support. For α ∈ Φ we denote by supp(α) ⊆ ∆ the minimal subset
whose linear span contains α. For a subset C ⊆ Φ we set supp(C) =
∪α∈C supp(α). For w ∈W we denote by supp(w) the set of simple reflections
which appear in some/any reduced expression of w.

Lemma 2.2. Let C ⊆ Φ be a cσ-orbit. Then supp(C) is σ-stable.

Proof. Let c = sα1 · · · sαr be as in §2.4. Let α ∈ supp(γ) for some γ ∈ C. It
suffices to show that the σ-orbit O of α is contained in supp(C). Set δ = ]O.
Let 1 6 j 6 r be the unique integer such that αj ∈ O. Let 0 6 i0 6 δ − 1
such that

α, σ−1(α), . . . , σ1−i0(α) 6= αj and σ−i0(α) = αj .

Then one checks that (cσ)−i0 = σ−i0w for some w ∈W such that supp(w) ∈
S − {sα}. Hence α ∈ supp(w(γ)) and αj = σ−i0(α) ∈ supp(σ−i0w(γ)) =
supp((cσ)−i0(γ)). So we can assume that α = αj . Let 0 6 i 6 δ − 1. Note
that (cσ)i = uiσ

i for some ui ∈W with supp(ui) ∈ S − {σi(αj)}. It follows
that σi(α) ∈ supp((cσ)i(γ)). So the statement follows. �

Proposition 2.3. Let C be a cσ-orbit of Φ. Then supp(C) = ∪i∈Zσi(H),
where H is a connected component of ∆.

Proof. Without loss of generality we may assume that ∆ = ∪i∈Zσi(H). We
argue by induction on ]∆. Assume the statement is false. Let c = sα1 · · · sαr
be as in §2.4. By Lemma 2.2 there exists 1 6 j 6 r such that C ⊆ ΦK ,
where K = ∆−O and O is the σ-orbit of αj . By replacing c with its WK-σ-
conjugate sαj · · · sαrσ(sα1 · · · sαj−1), we can assume that j = 1 and α1 ∈ O.
Let c′ = sα1c, which is a σ-Coxeter element of WK . As C ⊆ ΦK , C is also
a c′σ-orbit of ΦK . By induction hypothesis we have supp(C) = ∪i∈Zσi(D),
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where D is a connected component of H − {α1}. As H is connected, there
exists γ ∈ C and β ∈ supp(γ) such that

0 > 〈α1, β
∨〉 > 〈α1, γ

∨〉.
Then we have σ−1(α1) ∈ supp((cσ)−1(γ)), contradicting that C ⊆ ΦK . The
proof is finished. �

2.6. A condition on the σ-Coxeter element. Let c, µ, e = eµ,c, I = Iµ,c,
cI , σI = σI,c and ∆I = ∆I,c ⊆ ∆e be as in Theorem 2.1. Denote by
` : W → Z≥0 (resp. `e : We → Z>0) the length function associated to the
set ∆ (resp. ∆e) of simple roots. Let w0 and we be the longest elements
of W and We respectively. We consider the following condition on c, or,
equivalently, on the pair (T,U):

(∗) There exists N ∈ Z>1 such that (cσ)N = w0σ
N , N`(c) = `(w0).

Remark 2.4. If ∆ is connected, then there always exists a σ-Coxeter ele-
ment c ∈ W satisfying (∗), see [Bou68, Chap. V, Prop. 6.2]. Moreover, if
the Coxeter number of G is even, then any c satisfies this condition.

Lemma 2.5. Suppose c satisfies condition (∗). Then (cIσI)
N = weσ

N
I and

N`e(cI) = `e(we).

Proof. By Theorem 2.1, cIσI = cσ and σI(∆e) = ∆e. As (cIσI)
N = w0σ

N ,
it follows that (cIσI)

N sends Φ+
e to −Φ+

e , that is, (cIσI)
N = weσ

N
I .

It remains to show `e((cIσI)
i+1) = `e((cIσI)

i)+`e(cIσI) for 1 6 i 6 N−1.
Indeed, this is equivalent to that for any α ∈ Φ+

e with (cIσI)
−1(α) < 0 we

have (cIσI)
i(α) > 0. This statement follows from that cIσI = cσ and

`((cσ)i+1) = `((cσ)i) + `(cσ) for 1 6 i 6 N − 1. �

For w ∈ W we denote by supp(w) the set of simple reflections in ∆ that
appears in some/any reduced expression of w. For u ∈ We, we can define
supp∆e

(u) ⊆ ∆e in a similar way.

Corollary 2.6. Suppose c satisfies condition (∗). Let K ( ∆e be a proper
σI-stable subset. Then there exists a proper σ-stable subset J ( ∆ such that
σI ∈WJσ and weWK ⊆ w0WJ .

Proof. Let notation be as in §2.4. As ∆I = {βj ; j ∈ I ′} with I ′ = [r] − I
is a representative set of ∆e, there exists i ∈ I ′ such that βi /∈ K. Let
J = ∆ − Oi, where Oi is the σ-orbit of αi. By construction, supp(s) ⊆ J
for s ∈ K and supp(σIσ

−1) ⊆ J . By Lemma 2.5 we have

we = (cIσI)
Nσ−NI = (cσ)Nσ−NI = w0σ

Nσ−NI ⊆ w0WJ .

Thus weWK ⊆ w0WJ as desired. �

Lemma 2.7. Let K1,K2 ⊆ ∆e be two σI-stable subsets. Let c1 and c2 be
two σI-Coxeter elements of WK1 and WK2 respectively. Let w ∈ We such
that c1σI(w) = wc2. Then there exists x ∈ K1We

K2 such that xK2 = K1

and w ∈ xWK2.
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Proof. By symmetry we may assume ]K1 6 ]K2. Let x ∈ K1We such
that w ∈ WK1x. Then there exists c′2 ≤ c2 such that xc2 ∈ WK1xc

′
2 and

xc′2 ∈ K1We. Hence we have σI(x) = xc′2. Note that c′2 is a partial σI -
Coxeter element, which is of minimal length (in the sense of `e) in its σI -
conjugacy class. Thus c′2 = 1, x = σI(x) and x(supp∆e

(c2)) ⊆ K1, which
implies that x(K2) ⊆ K1. Hence x(K2) = K1 since ]K1 ≤ ]K2. Thus
x ∈ K1We

K2 as desired. �

3. Cohomology of X

Recall the scheme X from (1.1) equipped with GF × TF -action.

3.1. The schemes Σi. Let i ∈ Z. We define

Σi = {(x, x′, y) ∈ U× F i+1U×G;xF (y) = yx′}.
Let pr3 : Σi → G be the natural projection. There is a locally closed
decomposition

Σi =
⊔

w∈We

Σi
w,

where Σi
w = pr−1

3 (UwTG1F iU).
The group TF × TF acts on Σi and on each of the pieces Σi

w by

(t, t′) : (x, x′, y) 7−→ (txt−1, t′x′t′
−1
, tyt′

−1
).

As in [DL76, p.137] there is a TF×TF -equivariant isomorphismX×X/GF ∼→
Σ0, and for characters χ, χ′ of TF we have

dimQ`
HomGF (H∗(X)[χ′], H∗(X)[χ]) = dimH∗(Σ

0)χ′,χ−1 ,

where H∗(Σ
0)χ′,χ is the corresponding isotropic subspace of H∗c (Σ0).

Let Z ⊆ G denote the centre of G and consider the embedding z 7→
(z, z−1) : Z → T ×T . Then the above TF ×TF -action on Σi factors through

an action of the quotient TF×ZF TF . This latter action extends to the action

of TF ×ZF TF ⊆ (T ×Z T)F on Σi (and Σi
w for w ∈ We) given by the same

formula. By the discussion in [DI24, §4.2] which applies in our more general
setting, Theorem 1.1 follows from the next result.

Theorem 3.1. Suppose that q satisfies condition (2.1). Then there exists a
Coxeter pair (T,U) such that

dimQ`
H∗(Σ

0
w) =

{
H∗((ẇT)cσ) if w ∈W cσ

e ,

0 otherwise.

as virtual (T×Z T)F -modules.

As a first step towards the proof of Theorem 3.1 we observe that the whole
discussion of [DI24, §4.3] applies mutatis mutandis in our setting. Thus it
suffices to prove Theorem 3.1 in the case that ∆ is connected. In particular,
there exists some c satisfying condition (∗), cf. Remark 2.4. Now Theorem
3.1 follows from Corollary 3.7 and Proposition 3.12 below.
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3.2. An extension of action. Let w ∈We. We set Kw,i = w−1
U−∩F iU−.

Define

Σ̂i
w = {(x̃, x̃′, y1, τ, z, y2) ∈ FU×F i+1U×U×ẇT×K1

w,i×F iU; x̃F (τz) = y1τzy2x̃
′}.

We define an action of TF × TF on Σi
w by

(t, t′) : (x̃, x̃′, y1, τ, z, y2) 7−→ (tx̃t−1, t′x̃′t′
−1
, ty1t

−1, tτ t′
−1
, t′zt′

−1
, t′y2t

′−1
).

Then there is an TF × TF -equivariant affine space bundle

πiw : Σ̂i
w −→ Σi

w, (x̃, x̃′, y1, τ, z, y2) 7−→ (x̃F (y1)−1, x̃′F (y2), y1τzy2).

Let χ ∈ X∗(T ) which centralizes Kw,i. Define

Hw,χ = {(t, t′) ∈ Th × Th;w−1t−1F (t)w = t′
−1
F (t′) ∈ Im(χ)}.

Then Hw,χ acts on Σ̂i
w by

(t, t′) : (x̃, x̃′, y1, τ, z, y2) 7−→ (F (t)x̃, F (t′)x̃′, F (t)y1, tτ t
′−1
, t
′
z, F (t′)y2).

Lemma 3.2. Let w ∈ We \W cσ
e such that Σi

w 6= ∅. Then there exists a
proper subset K = σI(K) ( ∆e such that w(cIσI)

iσ−iI ∈ weWK .

Proof. Let wi = w(cIσI)
iσ−iI ∈We. By assumption we have

cσBw(cσ)iBG1(cσ)−i−1 ∩ Bw(cσ)iBG1cσB(cσ)−i−1 6= ∅.
As cIσI = cσ, this implies that

cIσIB1w(cIσI)
iB1 ∩ B1w(cIσI)

iB1cIσI 6= ∅,
that is,

cIB1σI(wi)B1 ∩ B1wiB1(σI)
i(cI) 6= ∅.

In particular there are σI -Coxeter elements v′ ≤e cI and v ≤e (σI)
i(cI) of

some σI -stable subsets K ′ and K of ∆e respectively (one of which is a proper
subset of ∆e since w ∈We \W cσ

e ) such that v′σI(wi) = wiv and

(a) B1wiB1(σI)
i(cI) ∩ B1wivB1 6= ∅.

Applying Lemma 2.7, there exist x = σ(x) ∈ K′We
K such that K ′ = xK

and wi ∈ xWK . Moreover, it follows from (a) that for any simple reflection
s ∈ supp∆e

(σiI(cI)) \ K we have xs ∈ WK′x or xs ≤e x. The former is

impossible since s /∈ WK = xWK′x
−1. So we have xs ≤e x. Moreover, as

xsx−1 /∈ WK′ we have wK′xs ≤e wK′x = xwK , where wK and wK′ are the
maximal elements of WK and wK′ respectively. As xwK is σI -stable, we have
xwKs ≤e xwK for all s ∈ ∆e, that is, xwK = we. Hence wi ∈ weWK . �

Let N0 ∈ Z>0 be the order of cσ ∈W o 〈σ〉. Define

NFN0

F : Th −→ Th, t 7−→ tF (t) · · ·FN0−1(t).

Lemma 3.3. Let χ ∈ X∗(T ) and let C be a cσ-orbit of Φ. Assume χ is non-

central on C and |〈χ, β〉| < q for β ∈ C. Then
∑N0−1

i=0 qi〈γ, (cσ)i(χ)〉 6= 0 for
γ ∈ C. In particular, the action of Gm on Uγ for γ ∈ C, via the morphism

NFN0

F ◦ χ, is nontrivial.
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Proof. By assumption, |〈γ, (cσ)i(χ)〉| = |〈(cσ)−i(γ), χ〉| < q for 0 6 i 6
N0 − 1, and there exists 0 6 i0 6 N0 − 1 such that 〈(cσ)−i0(γ), χ〉 6= 0.
Hence the statement follows. �

Let Gm ⊆ O×
k̆

be the Teichmüller lift of the quotient map O×
k̆
→ F×q .

Assume that r ∈ Z>1.

Lemma 3.4. Consider the homomorphism

fw,χ : Gm −→ T× T, x 7−→ (NFN0

F (wχ(x)), NFN0

F (χ(x))).

Then Im(fw,χ) ⊆ H◦w,χ.

Proof. By definition. FN0(λ(x)) = λ(xq
N0 ) for x ∈ k̆. Hence

NF (χ(x))−1F (NF (χ(x))) = χ(x)−1FN0(χ(x)) = χ(x−1σN0(x)).

So the statement follows. �

3.3. Handling Σ0
w for w ∈ We \W cσ

e . Let i ∈ Z. Following [DI24, §5] we
define an isomorphism of varieties

αi : Σi −→ Σi+1, (x, x′, y) 7−→ (x, F (x′), yx′).

For w, u ∈We we define

Y i
w,u = Σi

w ∩ (αi)
−1(Σi+1

u );

Zi+1
w,u = αi(Σ

i
w) ∩ Σi+1

u = αi(Y
i
w,u).

Let Ŷ i
w,u = (πiw)−1(Y i

w,u) and Ŷ i
w,u = (πi+1

u )−1(Zi+1
w,u ).

Lemma 3.5. Let w, u ∈ We. Let χ, µ ∈ X∗(T ) which centralizes Kw,i and

Ku,i+1 respectively. Then Hw,χ and Hu,µ preserve Ŷ i
w,u and Ẑi+1

w,u respectively.

Proof. This is proved in [DI24, §5]. �

Proposition 3.6. Suppose that condition (∗) holds and that q satisfies con-
dition (2.1). Let i ∈ Z. Then

H∗(Ŷ
i
w,u) = H∗(Y

i
w,u) = H∗(Z

i+1
w,u ) = H∗(Ẑ

i+1
w,u ) = 0

if w or u belongs to We \W cσ
e .

Proof. Without loss of generality we can assume that w ∈ We \W cσ
e and

Ŷ i
w,u 6= ∅. In particular, Σi

w 6= ∅. By Lemma 3.2 and Corollary 2.6, there
are subsets K = σI(K) ( ∆e and J = σ(J) ( ∆ such that

w(cσ)i ∈ weWK(σI)
i ⊆ weWJσ

i = w0WJσ
i.

Thus
Kw,i ⊆ w−1

(U− ∩ w(cσ)iU−) ⊆ w−1w0MJ ,

where MJ is the Levi subgroup generated by T and Uγ for γ ∈ ΦJ . Let

O ∈ ∆\J be a σ-orbit. Then WJ fixes ω∨O, and Kw ⊆ w−1w0MJ is centralized
by

χ := w−1w0(ω∨O) = w−1w(cσ)iσ−i(ω∨O) = (cσ)i(ω∨O).
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Moreover, w(χ) = w0σ
N (ω∨O) = (cσ)N (ω∨O).

Let fw,χ : Gm → Hw,χ be the as in Lemma 3.4. In view of Lemma 3.5,

via fw,χ the action of Hw,χ on Ŷ i
w,u induces an action of Gm on Ŷ i

w,u, which

commutes with action of TF × TF . Hence

H∗c (Yw,u) = H∗c (Ŷ i
w,u) = H∗c ((Ŷ i

w,u)Gm),

it suffices to show (Ŷ i
w,u)Gm = ∅. To this end, we can assume that ∆ =

∪i∈Zσi(H) for some/any connected component H of ∆. Then by Proposition
2.3, χ,w(χ) ∈ {(cσ)i(ω∨O); i ∈ Z} are non-central on each cσ-orbit of Φ. As
q > M , it follows from Lemma 3.3 that

(Σ̂i
w,u)Gm ⊆ {1} × {1} × {1} × T× {1} × {1}.

As w ∈We \W cσ
e , we deduce that (Ŷ i

w,u)Gm = ∅ as desired. �

Corollary 3.7. Let i ∈ Z and w ∈We. If w ∈We \W cσ
e then H∗(Σ

i
w) = 0.

Otherwise,

H∗(Σ
i
w) =

∑
u∈W cσ

e

H∗(Y
i
w,u) =

∑
u∈W cσ

e

H∗(Z
i
u,w) =

∑
u∈W cσ

e

H∗(Y
i−1
u,w ).

Proof. Note that Σi
w = tu∈WeY

i
w,u = tu∈WeZ

i
u,w and Ziu,w

∼= Y i−1
u,w . Then

the statement follows from Proposition 3.6. �

3.4. Handling Σ0
w for w ∈W cσ

e .

Lemma 3.8. Suppose that Condition (∗) holds. Let i ∈ Z and w, u ∈ W cσ
e

such that Y i
w,u 6= ∅. Then w = u if either σI 6= 1 or σI = 1 and wciI 6= we.

Proof. By assumption, we have

B1w(cIσI)
iB1cIσIB1(cIσI)

−i−1 ∩ B1u(cIσI)
i+1B1(cIσI)

−i−1 6= ∅,
that is, B1w(cIσI)

iB1cIσIB1∩B1u(cIσI)
i+1B1 6= ∅. Thus there exists v ≤e cI

such that w(cIσI)
ivσI = u(cIσI)

i+1. Note that w, u ∈ W cσ
e ⊆ 〈cIσI〉. We

have
vσI = (cIσI)

−iw−1u(cIσI)
i+1 = w−1u(cIσI) ∈ 〈cIσI〉.

In particular, it follows from Lemma 2.5 that `e(v) is divided by `e(cI).
Assume that either σI 6= 1 or σI = 1 and wciI 6= we. If v 6= 1, then

`e(v) = `e(cI) since 1 6= v ≤ cI . Hence we have v = cI and w = u as desired.
Suppose v = 1. Then cI = u−1w ∈ W cσ

e , which means that σI(cI) = cI .
Hence σI = 1 by Theorem 2.1 (3). By assumption we have σI = 1 and
wσiI 6= we. As v = 1, we have wciIs < wciI for all s ∈ supp∆e

(cI) = ∆e, that

is, wciI = we, a contradiction. �

Theorem 3.9 ([IN24], Theorem 3.1). The map (u1, u2) 7→ u−1
1 u2F (u1)

gives an isomorphism

φ : (FU ∩ U)× (FU ∩ U−) ∼= FU.
In particular, φ restricts to an isomorphism

(FU1 ∩ U)× (FU ∩ U−) ∼= U1(FU ∩ U−).



INNER PRODUCTS OF DEEP LEVEL DELIGNE–LUSZTIG REPRESENTATIONS 11

For i ∈ Z and w ∈We we define
[Σi

w = {(x, x′, y) ∈ (FU ∩ U−)× F i(FU ∩ U−)×G;xF (y) = yx′}.

Lemma 3.10. The map (x, x′, y) 7→ (x2, x
′
2, x1yF

i(x′1)−1, x1, x
′
1) gives an

TF × TF -equivariant isomorphism

Σi
w
∼= [Σi

w × (FU ∩ U)× (FU ∩ U),

where (x1, x2) = φ−1(x) and (x′1, x
′
2) = φ−1(x′). In particular, H∗c (Σi

w) ∼=
H∗c ([Σi

w).

Proof. It follows by definition and Theorem 3.9. �

Lemma 3.11. Suppose that c satisfies condition (∗). Let w = (cσ)m ∈W cσ
e

for some m ∈ Z. Then we have H∗(Σ
N−m
w ) = H∗(ẇTF ) = H∗(

[Σ2N−m
w ) =

H∗(Σ
2N−m
w ).

Proof. The first statement is proved in [DI24]. We show the second one. Let

(x, x′, y) ∈ [Σ−mw . By definition,

y ∈ G1Bẇ(cσ)2N−mB(cσ)−m+2N = UTU−,1ẇ.
So we may write y = y1τy2w uniquely with y1 ∈ U, τ ∈ T and y2 ∈ U−,1.

Then the equality xF (y) = yx′ is equivalent to

τ−1y−1
1 xF (y1)F (τ) = y2ẇx

′ẇ−1F (y−1
2 ) = y2x

′′F (y−1
2 ),

where x′′ = ẇx′ ∈ FU ∩ U− since w = (cσ)m.
By Theorem 3.9, the map (g1, g2) 7→ g−1

1 g2F (g1) gives isomorphisms

U× (FU ∩ U−) ∼= U(FU ∩ U);

U−,1 × (FU ∩ U−) ∼= (FU ∩ U−)FU−,1.

So we can make changes of variables (x, x′′, y1, y2) 7→ (z1, z2, z3, z4), where

(z1, z2, z3, z4) ∈ U× FU ∩ U− × U−,1(FU ∩ U−)× FU−,1 ∩ U

such that y−1
1 xF (y1) = z1z2 and y2x

′′F (y2)−1 = z3z4. Then we have

τ−1z1z2F (τ) = τ−1
z1L(τ)F (τ)−1

z2 = z3z4,

where L(τ) = τ−1F (τ). As z4 ∈ U1 we can have

F (τ)−1
z2z
−1
4 = h+h0h− ∈ UTU−,

where h+ ∈ U1, h0 ∈ T1 and h− ∈ (FU∩U−)U−,1 = F (UU−,1)∩U−. Hence

τ−1
z1
L(τ)h+L(τ)h0h− = z3.

It follows that z1 = F (τ)h+, L(τ) = h−1
0 and z3 = h−. Therefor,

Σi
w = {(τ, z2, z4) ∈ T× (FU ∩ U−)× (FU−,1 ∩ U);L(τ) = pr0(F (τ)−1

z2z4)},
where pr0 : U1TU− → T is the natural projection.

Note that (t, t′) ∈ TF×TF acts on [Σi
w by (τ, z2, z4) 7→ (tτw(t′)−1, tz2,

w(t′)z4).

Now we define and action of s ∈ T on [Σi
w by (τ, z2, z4) 7→ (τ, sz2,

sz4). Then
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the actions of T and TF ×TF commutes with each other. Thus, by Lemma
3.10 we have

H∗(Σ
2N−m
w ) = H∗(

[Σ2N−m
w ) ∼= H∗((Σ

i
w)T) = H∗(ẇTF )

as desired. �

Proposition 3.12. Suppose that Condition (∗) holds and that ∆ is con-
nected. Then H∗c (Σ0

w) = H∗c (ẇTF ) for w ∈W cσ
e .

Proof. Let w ∈W cσ
e . As ∆ is connected, we may write w = (cσ)m for some

m ∈ Z. By Corollary 3.7 we have

(a) H∗(Σ
i
w) =

∑
u∈W cσ

e

H∗(Y
i
w,u), H∗(Σ

i+1
w ) =

∑
u∈W cσ

e

H∗(Y
i
u,w).

First we assume σI 6= 1. By Lemma 3.8 for any w′, u′ ∈ W cσ
e we have

Y i
w′,u′ 6= ∅ if and only if w′ = u′. It follows by (a) that

H∗(Σ
i
w) = H∗(Y

i
w,w) = H∗(Σ

i+1
w ).

By Lemma 3.11 we have H∗(Σ
0
w) = H∗(Σ

N−m
w ) = H∗(wTF ) as desired.

Now we assume σI = 1. Let notation be as in Lemma 2.5. We can assume
that w = cmI with 0 6 m 6 2N − 1. If 0 6 m 6 N , it follows from (a),
Lemma 3.8 and Lemma 3.11 that

H∗(Σ
0
w) = H∗(Σ

1
w) = · · · = H∗(Σ

N−m
w ) = H∗(ẇTF ).

If N + 1 6 m 6 2N − 1, similarly we have

H∗(Σ
0
w) = H∗(Σ

1
w) = · · · = H∗(Σ

2N−m
w ) = H∗(ẇTF ).

So the statement follows. �

4. Proof of Theorem 2.1

In this section, we fill in the proof for Theorem 2.1. First we show that
it suffices to consider one particular Coxeter element.

Lemma 4.1. Let α ∈ {α1, σ
−1(αr)} such that c′ = sαcσ(sα). Suppose

Theorem 2.1 holds for (µ, c). Then it also holds for (sα(µ), c′).

Proof. Let µ, e, I be as in Theorem 2.1. Let e′ = esα(µ),c′ = sα(e) and
Φe′ = sα(Φe). Assume that I = (i1 < · · · < im). Without loss of generality
we can assume α = σ−1(αr) and c′ = sα′1sα′2 · · · sα′r with α′1 = αr and

α′i = αi−1 for 2 6 i 6 r.
First we assume that r ∈ I. Then r = im and σI,c(α) < 0, which means

that α /∈ ∆e = σI,c(∆e). Thus Φ+
e′ = sα(Φ+

e ) since α ∈ ∆ is a simple root.
In particular, ∆e′ = sα(∆e). We take

I ′ = (1 < i1 + 1 < i2 + 1 < · · · < im−1 + 1).

Then σI′,c′ = sασI,csα, c′I′ = sαcIsα and the statement follows.



INNER PRODUCTS OF DEEP LEVEL DELIGNE–LUSZTIG REPRESENTATIONS 13

Now we assume that r /∈ I. Then σI,c(α) ∈ ∆I,c ⊆ ∆e = σI,c(∆e). Thus
α ∈ ∆e and ∆e′ = ∆e. We take

I ′ = (i1 + 1 < i2 + 1 < · · · < im + 1).

Then σI′,c′ = σI,c, c
′
I′ = sαcIσI,c(sα) and the statement also follows. �

To finish the proof, we will take a particular σ-Coxeter element c such that
and verify the statement directly. Moreover, we can assume ∆ is connected.

Let P be the coweight be the coweight lattice of Φ. If µ = 0 ∈ P/(1 −
cσ)P , then ∆e = ∆ and the statement is trivial. So we may assume that
X∗(T )/(1− c)X∗(T ) 6= {0}, which excludes the types 2An−1 (n even), 3D4,
E8, 2E6, F4, G2. Then we will take a case-by-case analysis for the remaining
types.

We adopt the labeling of Dynkin diagrams by positive integers as in
[Hum72]. For i ∈ Z>1. let si and ω∨i denote the corresponding simple
reflection and fundamental coweight, respectively.

Case (1): ∆ is of type An−1. Take c = s1s2 · · · sn−1. Then we have
P/(1 − cσ)P = {0, ω∨1 , ω∨2 , . . . ω∨n−1}. Assume µ = ω∨k with k ∈ Z. Let
m = gcd(k, n) ∈ Z>1. Then we take I to be the complement of the sequence
Ic = (n/m, 2n/m, · · · , (m− 1)n/m).

Case (2): ∆ is of type 2An−1 with n > 4 even. Take c = s1s2 · · · sn/2.
Then P/(1− cσ)P = {0, ω∨1 }. Assume µ = ω∨1 . Then we take I = (n/2).

Case (3): ∆ is of type Bn with n > 2. Take c = s1s2 · · · sn. Then
P/(1− cσ)P = {0, ω∨1 }. Assume µ = ω∨1 . Then we take I = (n).

Case (4): ∆ is of type Cn with n > 3. Take c = s1s2 · · · sn. Then P/(1−
cσ)P = {0, ω∨n}. Assume µ = ω∨n . Then we take I = (1, 3, . . . , n− (−1)n+1

2 ).

Case (5): ∆ is of type Dn with n > 4. Take c = s1s2 · · · sn. Then
P/(1 − cσ)P = {0, ω∨1 , ω∨n−1, ω

∨
n}. If µ = ω∨1 , take I = (n − 1, n). It

remains to handle the case µ = ω∨n−1 by symmetry. If n is even, take
I = (1, 3, . . . , n− 3, 4) if 4 | n and I = (1, 3, . . . , n− 3, n− 1) if 4 - n. If n is
odd, take I = (1, 3, . . . , n− 3, n− 4, . . . , n− 2, n).

Case (6): ∆ is of type E6. Take c = s1s3s4s2s5s6. Then P/(1 − cσ)P =
{0, ω∨1 , ω∨6 }. By symmetry we can assume µ = ω∨1 . Then take I = (1, 3, 5, 6).

Case (7): ∆ is of type E6. Take c = s7s6s5s4s2s3s1. Then P/(1− cσ)P =
{0, ω∨7 }. If µ = ω∨7 , take I = (7, 5, 2).
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