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Zusammenfassung

Der Leitgedanke, an dem sich die vorliegende Habilitationsschrift orientiert, ist es, ein Ana-

logon der klassischen Deligne–Lusztig Theorie über p-adischen Körpern zu entwickeln. Somit

gilt das Hauptinteresse einerseits (glatten `-adischen) Darstellungen von p-adischen reduktiven

Gruppen und andererseits geometrischen Objekten, deren Kohomologie diese Darstellungen real-

isiert. Ein Ziel dieser Entwicklung ist es, die dabei entstehenden p-adischen Analoga der Deligne–

Lusztig Varietäten zu beschreiben. Ein weiteres Ziel besteht darin, die Darstellungstheorie von

p-adischen reduktiven Gruppen besser und von einem neuen – geometrischen, rein lokalen und

expliziten – Standpunkt aus zu verstehen. Außerdem erhofft man einen Erkenntnissgewinn über

lokale automorphe Induktion, sowie Langlands und Jacquet–Langlands Korrespondenzen.

Die vorliegende Habilitationsschrift ist kumulativ. Sie umfasst acht Arbeiten beziehungsweise

Vordrucke. In fünf dieser Arbeiten wird eine direkte Verallgemeinerung von klassischen Deligne–

Lusztig Varietäten untersucht: eine Konstruktion, deren erste Inkarnation auf Lusztig zurückgeht.

In [Iva20]1 wird eine neue Definition für p-adische Deligne–Lusztig Garben Xw(b) gegeben. Es

werden einige ihrer Grundeigenschaften studiert und es wird gezeigt, dass sie oft durch Ind-

Schemata darstellbar sind. Das gibt eine partielle Antwort auf die entsprechende Frage von

Boyarchenko. In [CI19a] wird eine ganzzahlige Version der Konstruktion vor allem vom darstel-

lungstheoretischen Standpunkt studiert. Insbesondere wird Lusztig’s Mackey-Formel vom re-

duktiven auf den parahorischen Fall verallgemeinert.

Die drei Arbeiten [CI18, CI19b, CI20] nehmen einen Spezialfall dieser Konstruktion genau

unter die Lupe: p-adische Deligne–Lusztig Varietäten vom Coxeter-Typ, die zu inneren Formen

G von GLn und elliptischen unverzweigten Tori T ⊆ G assoziiert sind. In ihrer Kohomologie

wird p-adische Deligne–Lusztig Induktion θ 7→ ±RG
T (θ) nachgewiesen, die glatten Charakteren

θ von T(k) (hier bezeichnet k den p-adischen Körper) glatte irreduzible superkuspidale Darstel-

lungen von G(k) zuordnet. Dieses Prozedere bietet (im gegebenen Spezialfall) eine exakte Ver-

allgemeinerung der klassischen Theorie und realisiert darüberhinaus einige Instanzen der lokalen

Langlands bzw. Jacquet–Langlands Korrespondenzen (bis auf den rektifizierenden Charakter,

der in diesem Fall aber sehr einfach ist).

Die drei übrigen Arbeiten [Iva16, Iva18, Iva19] untersuchen eine verwandte, aber dennoch

unterschiedliche Konstruktion, die durch eine Verallgemeinerung von affinen Deligne–Lusztig

Varietäten entsteht. Mittels dieser wird erstmals auch p-adische Deligne–Lusztig Induktion für

verzweigte elliptische Tori realisiert. Genauer gesagt wird dies im Spezialfall G = GL2 für

verzweigte (auch sehr wild verzweigte) Tori und Charaktere von beliebig tiefem Level gezeigt.

Zumindest im beschriebenen Spezialfall steht diese Induktion im engen Verhältnis mit der The-

orie von kuspidalen Typen von Bushnell–Kutzko (beziehungsweise allgemeiner, von Yu). Man

kann vermuten, dass dieses Verhältnis für beliebige reduktive Gruppen bestehen bleibt.

1Hier und im Folgenden beziehen sich die Referenzen auf die Bibliographie der weiter unten folgenden englisch-
sprachigen Einleitung.
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Introduction

The main themes of this work are p-adic2 analoga of classical Deligne–Lusztig theory [DL76].

Thus the main objects of our investigations are (smooth `-adic) representations of p-adic re-

ductive groups and the geometry of objects whose cohomology realizes these representations.

The objects we consider live over the residue field of the p-adic field, and carry actions of the

(locally compact) p-adic reductive group and its tori. They generalize classical Deligne–Lusztig

varieties, which are designed to realize representations of finite reductive groups.

This habilitation thesis is cumulative and consists of eight articles resp. preprints3. Three

of them [Iva16, Iva18, Iva19] deal with constructions based on affine Deligne–Lusztig varieties.

The remaining five deal with a different generalization of classical Deligne–Lusztig varieties,

first incarnations of which appeared in Lusztig’s work [Lus79, Lus04]. Roughly, [Iva20] deals

with geometric aspects of the general construction, [CI19a] investigates some representation-

theoretic aspects, whereas [CI18,CI19b,CI20] contain a detailed study of the important special

case related to elliptic tori in GLn and its inner forms.

The structure of the rest of this introduction is as follows:

• In Section 1 we recall some basic constructions and some of the main results of the

classical Deligne–Lusztig theory [DL76].

• After Section 1 the notation used in the rest of the introduction is explained.

• In Section 2 we give a small survey on p-adic Deligne–Lusztig theory.

• In Section 3 we explain the most recent work [Iva20], where the so far most natural

definition for a p-adic Deligne–Lusztig object is given, and some representability results

are shown.

• In Section 4 we review results of Lusztig [Lus04] on representations of reductive groups

over the integers of a p-adic field and their generalization [CI19a] to parahoric group

schemes.

• In Section 5 we discuss parts of [CI19b] (and [CI18]) where the construction from [Iva20]

in the special case of Coxeter-type p-adic Deligne–Lusztig schemes attached to inner

forms of GLn is carried out.

• Section 6 is also devoted to the Coxeter-type schemes for inner forms of GLn, but here we

investigate the representations realized in the cohomology of these schemes and compare

them with special cases of local Langlands and Jacquet–Langlands correspondences.

This is related to the content of [CI19b,CI20].

• In Section 7 we explain the “other” construction, via extended affine Deligne–Lusztig

varieties, where in particular p-adic Deligne–Lusztig induction for ramified tori is realized

in some cases (in contrast to the above, where only unramified tori appear). This is based

on [Iva16, Iva18, Iva19].

• In Section 8 some open questions resp. directions of further development are listed.

2The theory works well over all local non-archimedean fields. For simplicity we only speak about p-adic fields
here.
3Four of the eight articles were written in joint work with Charlotte Chan: [CI18,CI19a,CI19b,CI20]. According
to the regulations of the Habilitationsordnung, the author hereby confirms that a significant part of the content
of each article is due to him.
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1. Review of classical Deligne–Lusztig theory

The following review is brief and by no means complete. Let G be a connected reductive

group over the finite field Fq with q elements and characteristic p, and put G = G(Fq). Fix

an algebraic closure Fq of Fq and let σ denote the Frobenius automorphism of Fq/Fq. In 1968

MacDonald conjectured that there should be a natural map

{(T, θ)} / ∼ → {complex irreducible representations of G} / ∼=
(T, θ) 7→ π(T,θ),

where on the left side T goes through Fq-rational maximal tori of G, θ through sufficiently

generic characters θ : T(Fq) → C×, and the equivalence relation is induced by G-conjugacy.

Moreover, if T is elliptic (i.e., not contained in any Fq-rational proper parabolic subgroup of G),

then π(T,θ) should be cuspidal. This conjecture was based on the character tables of GLn(Fq),
Sp4(Fq) known at that time. Deligne–Lusztig theory [DL76] developed in 1976 not only resolved

this conjecture completely, but gave on top a natural cohomological realization of all irreducible

representations of G. Even today it remains the only tool allowing a uniform construction of all

such representations. The starting point for [DL76] was a computation by Drinfeld, who found

cuspidal representations of SL2(Fq) in the `-adic cohomology of a very particular curve over Fq.
Fix an Fq-rational maximal torus of G, contained in an Fq-rational Borel subgroup: T0 ⊆

B0 ⊆ G. Let W be the Weyl group of T0. The Frobenius σ acts on W . Up to G-conjugacy the

Fq-rational maximal tori of G are parametrized by the σ-conjugacy classes of W . For w ∈ W ,

let Tw ⊆ G be a representative of the corresponding conjugacy class (for example, for w = 1 we

recover T0, and Coxeter elements of W give elliptic tori).

The projective Fq-scheme G/B0 is isomorphic to the variety of all Borel subgroups of G. By

the Bruhat decomposition the orbits for the action of G on (G/B0)2 by left multiplication in

each factor are parametrized by W , i. e., we have the locally closed decomposition (G/B0)2 =∐
w∈W O(w), where O(w) is the orbit corresponding to w ∈W .

Definition 1.1. The Deligne–Lusztig variety Xw attached to w ∈W is the locally closed subset

of G/B0 of all elements g ∈ G/B0 such that (g, σ(g)) ∈ O(w). With other words, Xw is defined

by the Cartesian diagram,

Xw
//

��

O(w)

��
G/B0

(id,σ)
// G/B0 ×G/B0,

where the lower map is the graph of the Frobenius morphism.

Then Xw is a smooth quasi-projective Fq-scheme. Moreover, for any lift ẇ ∈ G(Fq) of w ∈W ,

Xw has a natural finite Galois covering Ẋẇ → Xw with Galois group Tw := Tw(Fq) (changing

the lift ẇ gives an isomorphic covering). The group G acts on Xw, Ẋẇ, and the actions of G

and Tw on Ẋẇ commute. Let ` 6= p be a prime and let Q` be an algebraic closure of the `-adic

numbers. Fix an isomorphism C ∼= Q`. For a character θ : Tw → Q×` put

Rw(θ) :=
∑

i∈Z
(−1)iH i

c(Ẋẇ,Q`)θ,
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where the subscript θ denotes the θ-isotypic component, and the alternating sum is necessarily

finite and makes sense as an element of the Grothendieck group of Q`-representations of G.

Some of the main results of [DL76] can be summarized in the following theorem.

Theorem 1.2 (Corollary 4.3, Theorem 6.8, Theorem 8.3 and Corollary 7.7 of [DL76]).

(i) The virtual G-representation Rw(θ) depends only on the G-conjugacy class of (Tw, θ),

but not on the choice of w.

(ii) If θ is generic, then ±Rw(θ) is an irreducible G-representation.

(iii) If θ is generic and Tw elliptic, then ±Rw(θ) is cuspidal.

(iv) Every irreducible G-representation occurs in the support (in the Grothendieck group) of

Rw(θ) for some (Tw, θ).

Let us mention two important technical tools from [DL76].

Theorem 1.3 (Mackey formula; Theorem 6.8 of [DL76]). Let (Tw, θ), (Tw′ , θ
′) be two pairs as

above. Then

〈Rw(θ), Rw′(θ
′)〉G = #{w ∈W (Tw,Tw′)

σ : Ad(w)(θ) = θ′},
where W (Tw,Tw′) = {x ∈ G : xTwx

−1 = Tw′}/Tw.

This is a vast generalization of the original Mackey formula for representations induced from a

Borel subgroup (which corresponds to the special case w = 1). Theorem 1.2(ii) is an immediate

consequence of Theorem 1.3. An other important tool is the character formula [DL76, Theorem

4.2], which expresses the traces of elements g ∈ G in Rw(θ) inductively in terms of Deligne–

Lusztig representations attached to subgroups of G of smaller rank. The main ingredient in its

proof is the following result.

Theorem 1.4 (Deligne–Lusztig fixed point formula; Theorem 3.2 of [DL76]). Let X be a sep-

arated scheme of finite type over Fq and let g : X → X be an automorphism of finite order.

Decompose g = s · u, where s,u are the powers of g respectively of order prime to p and a power

of p. If Xs is the subscheme of fixed points of s on X, then

Tr

(
g;
∑

i∈Z
(−1)iH i

c(X,Q`)

)
= Tr

(
u;
∑

i∈Z
(−1)iH i

c(X
s,Q`)

)
.

Notation for the rest of this introduction. We fix a non-archimedean local field k, and let

k̆ be the completion of a maximal unramified extension of k, Fq/Fq the corresponding extension

of residue fields, σ the Frobenius automorphism of k̆/k (and of Fq/Fq). We write Ok, pk resp.

Ok̆, pk̆ for the integers and maximal ideal of k resp. k̆, $ for a fixed uniformizer of k, ord for

the valuation of k̆, normalized such that ord($) = 1. Denote by kalg an algebraic closure of k

containing k̆.

Further, G always denotes a reductive group over k and G = G(k). We denote the base

change of G to k̆ again by G. In general, by bold letters we denote algebro-geometric objects

over k (or k̆), by usual letters their k-points, and by calligraphic letters their Ok-models, e.g. G
will often be a smooth affine Ok-model of G.

Most of the time we work with perfect (ind-)schemes. To simplify notation, we will write

“(ind-)scheme” to mean a “perfect (ind-)scheme”. Also, AnFq will denote the perfection of the

usual affine n-space over Fq.
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We fix Q` as in Section 1. All cohomology groups are `-adic étale cohomology groups with

compact support. We sometimes write H∗c (X,Q`) for
∑

i∈Z(−1)iH i
c(X,Q`). Purely inseparable

morphisms induce isomorphisms on `-adic cohomology, so if X is of perfectly finite type over Fq
– say, X is the perfection of some X0, which is of finite type over Fq – then H i

c(X,Q`) makes

sense and is naturally isomorphic to H i
c(X0,Q`).

2. Deligne–Lusztig theory over local fields: a survey

This section contains a brief and not strictly chronological survey. The main focus lies on

topics related to the present work.

(2.1) The story of Deligne–Lusztig theory for p-adic reductive groups began 1979 with Lusztig’s

brilliant article [Lus79]. To an unramified k-rational maximal torus T ⊆ G and a (only k̆-

rational) Borel subgroup B = TU containing T and with unipotent radical U, he attached a

set,

XLus = {g ∈ G(k̆) : g−1σ(g) ∈ U(k̆)}/U(k̆) ∩ (σ−1U)(k̆)

carrying the commuting actions of G = G(k) and T = T(k) by left and right multiplication,

of which he conjectured that it has a natural structure of an (infinite-dimensional) scheme over

the residue field Fq of k̆. Using an ad hoc method he verified this conjecture in the case that G

is an anisotropic form of SLn, and proved that the alternating sum of `-adic homology groups

of the resulting scheme (makes sense and) realizes many supercuspidal representations of G.

(2.2) For a reductive group G over the integers Ok, one can write down the analog Xh of XLus

attached to the base change G ⊗Ok Ok/ph (h ≥ 1) and make sense of it as a (perfect) scheme.

Moreover, it is of (perfectly) finite type over Fq. In [Lus04], Lusztig extended his techniques

from [Lus79] to compute the alternating sum of the `-adic cohomology groups of Xh, however

with some unpleasant restriction, which will be explained later (Section 4.2). Lusztig formulated

his results only in the case char k > 0; the quite similar case char k = 0 was treated later by

Stasinski [Sta09]. More recently, Chan and the author generalized these results to the case that

G is just a parahoric group scheme over Ok, and computed the traces of certain very regular

elliptic elements in G(Ok) in the cohomology of the resulting varieties [CI19a].

(2.3) Using Lusztig’s ad hoc scheme structure, the scheme XLus was extensively studied in the

“division algebra case” (i.e., G is an inner form of GLn, such that G is the group of units

of a division algebra with Hasse invariant s/n, gcd(s, n) = 1) by Boyarchenko [Boy12] and

Chan [Cha16,Cha18,Cha19]. In particular, Boyarchenko developed technical tools to study the

cohomology groups of XLus in single degrees, which then were further improved by Chan. An

important observation is that certain subschemes Zh ⊆ Xh strongly related to lim←−hXh ⊆ XLus

turn out to be (perfections of) maximal varieties over Fqn , i.e., the number #Zh(Fqn) attains

the Weil–Deligne bound with respect to the `-adic Betti numbers of Zh. For example, this allows

to completely determine the action induced by the Frobenius σn in their cohomology.

(2.4) In [Iva16] the author suggested a different approach, noticing that certain covers of

Rapoport’s affine Deligne–Lusztig varieties [Rap05] could serve as a good alternative to Lusztig’s

set XLus. If J is a (nice) Ok-model of G, then the quotient fpqc-sheaf LG/L+J (here LG is

the loop group of G, and L+J is the group of positive loops of J ) is representable by an

ind-scheme, and one can define subsets XJẇ (1) ⊆ (LG/L+J )(Fq) (with ẇ ∈ NG(T0)(k̆) for a

split maximal torus T0 ⊆ G) of them, generalizing the construction from [Rap05] (where J is a

14



parahoric model)4. Shrinking J one gets a tower {XJẇ (1)}J of subsets of (LG/L+J )(Fq), each

with the actions of G and the k-points of an unramified maximal torus of G, depending on ẇ.

An advantage is that there is a natural candidate for the (ind-)scheme-structure: one only has

to show that XJẇ (1) is locally closed in LG/L+J . Already for G = GL2 and an elliptic unram-

ified torus, the scheme-structure on XLus was not known, whereas {XJẇ (1)}J gave reasonable

schemes, and in [Iva16] it was shown that in this case the expected representations appear in the

cohomology of the tower. A disadvantage is the higher complexity (e. g., the choices of J , ẇ).

(2.5) The two apparently different approaches [Lus79] and [Iva16] were brought together in the

case that G is an inner form of GLn and T an elliptic unramified torus. More precisely, Chan

and the author showed in [CI18] that in this case there is an equivariant isomorphism between the

set XLus and the set of Fq-points of the Fq-scheme lim←−J X
J
ẇ (b) (at least for appropriate choices

of J , ẇ). This a posteriori endows XLus with a scheme structure. Combining and improving

now techniques from [Lus79, Lus04] and [Iva16], it was then shown that the cohomology of

XLus parametrizes certain supercuspidal representations π of G (those π which satisfy (i) the

L-parameter of π factors through LT→ LG and (ii) π is “très cuspidal” in the sense of Carayol

[Car84])5.

(2.6) In two follow-up articles [CI19b,CI20], which still deal with elliptic unramified tori in inner

forms of GLn, Chan and the author extended the results of [CI18], by considerably simplifying

the proof of representability of XLus, which does not require anymore the bypass through affine

Deligne–Lusztig varieties. Moreover, we extended the results on cohomology by (almost) remov-

ing the assumption “très cuspidale” on π mentioned above. This cohomological study requires

a serious improvement of most of the above-mentioned techniques.

(2.7) Until now only analoga over k of classical Deligne–Lusztig varieties of Coxeter type were

considered (except for Section (2.2) above, but there it was over Ok only). If one wants achieve

a natural generalization of classical Deligne–Lusztig theory, then one should also cover those

which are not of Coxeter type. The expectation that such make sense as ind-schemes was first

formulated by Boyarchenko [Boy12, Problem 1]. In the recent work [Iva20], the author gave –

following a suggestion by Scholze – a more natural definition of Deligne–Lusztig spaces Xw(b)

as arc-sheaves on perfect schemes over Fq, and proved their ind-representability in many cases.

(2.8) All Deligne–Lusztig spaces discussed above are attached to unramified maximal tori

T ⊆ G. A very natural question [Boy12, Problem 3] to ask is, whether there are similar

constructions corresponding to ramified tori of G. The first try in this direction was undertaken

by Stasinski [Sta11], who suggested a construction of so called extended Deligne–Lusztig varieties

(only for a group G/Ok as in (2.2) above), and computed an example attached to SL2(Ok/p2).

Unfortunately, this does not yet lead to a realization of supercuspidal representations. In [Iva18]

the author then defined extended affine Deligne–Lusztig varieties, which combine certain fea-

tures of both, Stasinski’s construction, as well as the affine Deligne–Lusztig varieties of higher

4It was shown by He [He14] that the cohomology of Iwahori-level affine Deligne–Lusztig varieties does not contain
supercuspidal representations of positive level; this fits well into the general picture: only shrinking the level
subgroup J , one gets representations of higher level.
5If G 6= GLn, we encountered here the problem that methods from [Lus04] had to be generalized to non-reductive
– but still parahoric – group schemes G/Ok. This was the motivation for our work [CI19a] (see Section (2.2) above).
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level from [Iva16]. For ramified tori in GL2 these schemes (which in that case are simply dis-

joint unions of points, endowed with quite complicated group actions) allow a cohomological

realization of Bushnell–Kutzko types, even in very wild situations.

(2.9) Finally, we discuss two further related developments. The work of Boyarchenko–Weinstein

[BW16] deals with certain formal models of special affinoids in the Lubin–Tate space, centered

around points with CM by an unramified extension of the base field k. The cohomology of

the reductions of these affinoids realizes the local Langlands and Jacquet–Langlands correspon-

dences for supercuspidal representations satisfying conditions (i) and (ii) in (2.5) above. These

reductions seem to be (not exactly equal but) related to Lusztig’s schemes Xh.

A generalization of [Lus04] going roughly in a similar direction as some of the abovemen-

tioned articles is the work of Stasinski–Chen [CS17] and Chen [Che18], who related Lusztig’s

representations to those constructed by Gérardin in purely algebraic terms [Gé75].

3. Deligne–Lusztig arc-sheaves and ind-representability

This section explains the most recent article [Iva20](cf. Section (2.7) above), which partially

resolves the following problem.

Problem [Boy12, Problem 1] Formalize Lusztig’s construction from Section (2.1) for an arbi-

trary reductive group G, that is, define XLus as an ind-scheme over Fq and define its homology

groups Hi(XLus,Q`), in such a way that the action of G× T on XLus yields smooth representa-

tions of G× T in Hi(XLus,Q`) for all i ≥ 1.

In [Iva20] a formal definition of Deligne–Lusztig spaces Xw(b) is given in terms of sheaves on

perfect Fq-algebras, and it is shown that these sheaves are ind-representable in many cases (but

nothing is said about homology). We now explain this definition. First, Definition 1.1 can not

be carried over literally. Indeed, in the classical case the geometric Frobenius G(Fq)→ G(Fq),
x 7→ σ(x) (induced by the Fq-rational structure of G) is a honest morphism of Fq-schemes.

Over k, there is still a natural Frobenius map G(k̆) → G(k̆), but it does not make sense as

a morphism of k̆-schemes. The problem is resolved by artificially making Frobenius a scheme

morphism, which requires the loop functor construction.

3.1. Loop functor. Let PerfFq denote the category of perfect Fq-algebras. For R ∈ PerfFq , let

W(R) =

{
WOk̆(R) if char k = 0,

R[[$]] if char k > 0,

where WOk̆(R) are the ramified (p-typical) Witt-vectors relative to Ok̆ (as in [FF18, 1.2]). In

particular, W(Fq)[1/$] = k̆. For a scheme X/k̆, we can define the functor LX on PerfFq by

setting

LX(R) = X(W(R)[1/$]).

If X is an affine scheme of finite type over k̆, then LX is an ind-scheme6 over Fq. Let us illustrate

this for X = A1
k̆
. For R ∈ PerfFq , any element of W(R)[1/$] has a unique expression as a conver-

gent sum
∑

i�−∞[ai]$
i, where [·] : R → W(R) denotes either the Teichmüller lift (char k = 0)

or the natural inclusion (char k > 0). Hence LA1
k̆
(R) = W(R)[1/$] ∼= lim−→N→−∞

∏+∞
i=N R (as

6recall our convention that “ind-scheme” in fact means “perfect ind-scheme”.
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sets), and hence LA1
k̆
∼= lim−→N→−∞

∏+∞
i=N A1

Fq
, which is an ind-scheme over Fq. If X is only

quasi-projective over k̆, then LX seems to be not ind-representable in general. At least it was

known to be an fpqc-sheaf. The following improvement was suggested by Scholze.

Theorem 3.1 (Theorem A of [Iva20]). Let X be a quasi-projective k̆-scheme. Then LX is an

arc-sheaf.

Here by an arc-sheaf we mean a sheaf for the arc-topology on PerfFq in the sense of Bhatt–

Mathew [BM18]. Roughly a map R→ R′ in PerfFq is an arc-cover if any immediate specialization

in SpecR lifts to SpecR′. The proof of Theorem 3.1 is based on two inputs:

(i) A precise analysis of what SpecW(·)[1/$] does to arc-covers. In particular, it is shown

that if R → R′ is an arc-cover, then the map SpecW(R′)[1/$] → SpecW(R)[1/$] is

dominant and its image contains all closed points of the target. This is achieved by

studying the adic spectrum Spa(W(R)[1/$],W(R)) and its relation to Spa(R,R).

(ii) Descent (along arc-covers in PerfFq) for vector bundles on SpaW(R)[1/$]. This uses

perfectoid techniques of Scholze [Sch18,SW20].

With regard to our original problem of defining Deligne–Lusztig spaces, the most important

property of the loop functor is that if X/k̆ is the base change of a k-scheme, then the sheaf LX

is endowed with a geometric Frobenius automorphism σ = σLX : LX → LX. For example, in

the case X = A1
k̆

discussed above (with the obvious k-rational structure), if we have coordinates
∏+∞
i=N A1

Fq
∼= SpecFq[x

1/p∞

N , x
1/p∞

N+1 , . . . ], then σ is the Fq-morphism given by xi 7→ xqi .

3.2. Loop Deligne–Lusztig spaces. After the above discussion, it is clear what the right

definition must be: take the Cartesian square in Definition 1.1 and replace all entries (except

the upper left one) by corresponding loop functors. To fix ideas, assume that G is an unramified

reductive group over k, and fix a k-rational maximal torus contained in a k-rational Borel

subgroup: T0 ⊆ B0 ⊆ G. Let W be the Weyl group of T0 in G. In contrast to the classical case,

now only stable conjugacy classes7 of unramified k-rational maximal tori in G are parametrized

by σ-conjugacy classes of W [DeB06, Lemma 4.3.1], whereas the parametrization of G-conjugacy

classes of those tori is more complicated (see [DeB06]). The following (probably most elegant)

definition was suggested by P. Scholze.

Definition 3.2 (Definition 7.2 of [Iva20]). Let b ∈ G(k̆), w ∈W . Define Xw(b) by the following

Cartesian diagram of functors on PerfFq :

Xw(b) //

��

LO(w)

��
L(G/B0)

(id,bσ)
// L(G/B0)× L(G/B0)

Few remarks are in order after this definition:

• By Theorem 3.1 all Xw(b) are arc-sheaves.

• Following [RZ96, 1.12], for b ∈ G(k̆), let Gb be the functor on k-algebras defined by

Gb(A) = {g ∈ G(A⊗k k̆) : g(bσ) = (bσ)g}. (3.1)

7maximal k-tori T1,T2 of G are stably conjugate, if there exists some g ∈ G(kalg) such that T1(k) = gT2(k)g−1.
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It is representable by a smooth affine k-group scheme, which is an inner form of a Levi

subgroup of G. In particular, Gb(k) is a locally profinite group. Denote by Gb(k) the

corresponding constant group scheme8. Then Gb(k) acts on Xw(b).

• Essentially, Xw(b) only depends on the σ-conjugacy class [b]G = {g−1bσ(g) : g ∈ G(k̆)}
of b. This also holds in the classical Deligne–Lusztig theory, and due to Lang’s theorem,

the parameter b is obsolete there, as it always can be replaced by b = 1 (which we did in

Definition 1.1). However, here the set of σ-conjugacy classes – i.e., Kottwitz’s set B(G),

see [Kot85] – is in general more complicated.

• Any reductive k-group G′, which splits over k̆ is (up to a z-extension) an inner form of

an unramified group G, i.e., there is a (basic) b ∈ G(k̆) and an isomorphism G′ ∼= Gb, so

that the Deligne–Lusztig varieties “belonging to G′” are covered by the above definition

for G. Hence the assumption “G unramified” is not a severe restriction.

• Replacing G/B0 by G/U0 (with U0 = unipotent radical of B0) and w ∈ W by ẇ ∈
NG(T0)(k̆), one can define sheaves Ẋẇ(b) over Xw(b), endowed with an action of the

constant group scheme Tw(k), where Tw is a representative of the stable conjugacy class

of tori corresponding to w. In contrast to the classical theory, Ẋẇ(b) really depends on

the lift ẇ9, e. g., it might happen that Ẋẇ1(b) 6= ∅, whereas Ẋẇ2(b) = ∅ for ẇ1, ẇ2 with

the same image in W [CI19b, Lemma 2.5(iii)].

• Although Ẋẇ(b) and Lusztig’s sets XLus from Section (2.1) look differently, the sheaf

version of XLus can be expressed as some Ẋẇ(b), and when b is basic plus some condition

holds, then also the converse is possible. (This is something which already appears in

the classical theory: there are two slightly different ways to write down the same torsor

Ẋẇ over a Deligne–Lusztig variety Xw.)

Next, we investigate the basic properties of the sheaves Xw(b). Let b ∈ G(k̆) with σ-conjugacy

class [b]G ⊆ G(k̆). If B0 ⊆ P ⊆ G is a k-rational parabolic subgroup of G, then [b]G ∩ P(k̆)

decomposes as a finite disjoint union [b]G =
⋃̇r

i=1[bi]P of σ-conjugacy classes of P(k̆). If w ∈W ,

there is a smallest k-rational parabolic subgroup P (containing B) such that w is represented

by an element of P(k̆). Let M be the unique Levi factor of P, which contains T. We have the

images of bi ∈ P(k̆) in M(k̆), again denoted bi. Then

XG
w (b) ∼=

r∐

i=1

Gbi(k)/Pbi(k)×XM
w (bi), (3.2)

where H denotes the constant sheaf on PerfFq attached to a profinite set H, and the upper indices

G,M denote the group to which Xw(b) is attached. This is proven in [Iva20, Theorem B]. The

proof is more complicated than the proof of the analogous fact in the classical case [Lus76b, 3].

Corollary 3.3 (Corollary 7.11 of [Iva20]). Let b, w,P be as above. If [b]G ∩ P(k̆) = ∅, then

Xw(b) = ∅.

This generalizes an observation by Viehmann, that X1(b) = ∅ for b superbasic. Further, one

has the technique of the Frobenius cyclic shift [Iva20, §7.4], which establishes an isomorphism

8If H ⊆ Gb(k) is an open compact subgroup, then H = Spec Cont(H,Fq), where Fq is equipped with the discrete
topology, and Gb(k) is (as a scheme) disjoint union of copies of H.
9We suspect that this might also be related to the difference between rational and stable conjugacy classes of tori.
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Xw(b) ∼= Xw′(b) if w = w1w2, w′ = w2σ(w1) such that `(w) = `(w1) + `(w2) = `(w′). This

generalizes the classical situation [DL76, Proof of Theorem 1.4] with essentially the same proof.

3.3. Ind-representabilty. Finally, in [Iva20] the ind-representability of Xw(b) is proven for

many w and all b. One can quite closely follow the strategy of Bonnafé–Rouquier [BR08], who

give a new proof of a theorem of Orlik–Rapoport [OR08, §5] and He [He08, Theorem 1.3] claiming

affineness of certain classical Deligne–Lusztig varieties. The Braid monoid is the monoid with

presentation

B+ =
〈
(x)x∈W : ∀x, x′ ∈W, `(xx′) = `(x) + `(x)⇒ xx′ = xx′

〉
.

For any set I of simple reflections of W , let wI denote the longest element in the parabolic

subgroup WI ⊆W corresponding to I.

Theorem 3.4 (Theorem 8.1 of [Iva20]). If I is a σ-stable set of simple reflections and w ∈WI

is such that there exists an integer d > 0 and a ∈ B+ with wσ(w) . . . σd−1(w) = wIa, then for

all b ∈ G(k̆) and all ẇ lifting w, the arc-sheaves Xw(b), Ẋẇ(b) are representable by ind-schemes.

The main idea of the proof – following [BR08] – is that certain generalization O(w1, . . . , wr) ⊆
(G/B0)r+1 of the G-orbits O(w) ⊆ (G/B0)2 becomes an affine k̆-scheme under some condition

on the wi’s naturally expressed in B+ (whereas O(w) itself is affine if and only if w is the longest

element of W ). Then one can write Xw(b) as a pull-back of LO(w1, . . . , wr) ↪→ L(G/B0)r+1

along a morphism L(G/B0) ↪→ L(G/B0)r+1 which is represented by closed immersions. As

the loop functor transforms affine schemes of finite type into ind-schemes, Xw(b) is becomes

expressed as a closed sub-ind-scheme of an ind-scheme, hence itself is an ind-scheme. Using now

some known results about the combinatorics of the Weyl group, one deduces – again, similar as

in [BR08] – the following corollary.

Corollary 3.5 (Theorem C of [Iva20]). Let w ∈W be of minimal length in its σ-conjugacy class.

Then for all b ∈ G(k̆), and all lifts ẇ of w, the arc-sheaves Xw(b), Ẋẇ(b) are representable by

ind-schemes.

The proofs of Theorem 3.4 and Corollary 3.5 require also (3.2) and the Frobenius-cyclic shift.

Lusztig’s original conjecture goes beyond ind-representability.

Conjecture 3.6 (Lusztig [Lus79]). If w is a Coxeter element, then Xw(b) is representable by a

scheme.

There is some examples-based evidence for this conjecture. Mainly it is given by the well-

understood case of inner forms of GLn, discussed below. Scholze conjectured moreover that in

fact all Xw(b) are representable by schemes. At least, there is no example known, where Xw(b)

is an ind-scheme, but not a scheme.

3.4. Ramified tori: some remarks. All said above only concerns unramified tori in G, in

the sense that the torus Tw, such that Tw(k) acts on Ẋẇ(b) (over Xw(b)), splits over k̆. An

important question, already formulated by Boyarchenko [Boy12, Problem 3], is to extend the

above construction to cover also ramified tori. It is not clear yet how this can be achieved in a

satisfactory manner. Few observations in this directions are:

• A naive generalization does not work. Cf. Remark 7.15.
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• There is a construction via extended affine Deligne–Lusztig varieties, which indeed pro-

duces irreducible supercuspidals attached to ramified tori. See Section 7.4.

• Although properly realizing irreducible supercuspidals, these extended affine Deligne–

Lusztig varieties show however quite degenerated behavior. For example, for ramified

tori in GL2 the corresponding varieties are zero-dimensional and reduced, so just infinite

disjoint unions of geometric points with quite complicated group actions. See Theorem

7.14 and Conclusion 7.16.

What one would rather hope for, are varieties similar to those appearing in the work of

Weinstein [Wei16] (and further articles by Imai, Takamatsu and others) on the reduction of

special affinoids around points with CM by a ramified extension in the perfectoid Lubin–Tate

curve. Indeed, for unramified CM points, there is certainly some (still not quite clear) connec-

tion between Deligne–Lusztig constructions and the reduction of special affinoids, see [BW16].

Heuristically, this means the following: say G = GL2. The curve with equation yq+1 = xq + x

(resp. higher-dimensional analoga) appears in the reduction of special affinoids around unrami-

fied CM-points, as well as in some Ẋẇ(b) considered above. Now, the curve y2 = xq + x (resp.

its analoga) appears in the reduction of special affinoids around ramified CM-points, and the

hope is that there exists a natural generalization of Ẋẇ(b) such that this curve appears.

4. Lusztig’s “deeper level” Mackey formula and its generalization

In this section Lusztig’s work [Lus04] and its generalization [CI19a] due to Chan and the

author will be explained. Before the results of [Iva20] explained above, there was no general way

to endow XLus with a scheme structure, but it was possible to do so with “truncated integral

versions” Xh of XLus (as in Section (2.2)) attached to an affine smooth group G over Ok.
4.1. Positive loops and its truncations. We need an integral version of the loop functor LX

from Section 3.1. For an Ok̆-scheme X , we have the functors L+X and L+
hX (h ≥ 1) on PerfFq ,

R 7→ L+X (R) = X (W(R)) and R 7→ L+
hX (R) = X (Wh(R)),

where Wh(R) = W(R)/($h). The first is called the functor of positive loops of X and the second

is its h-truncated version. If X is an affine scheme of finite type over Ok̆, then L+X , L+
hX are

representable by Fq-schemes, and the latter is of perfectly finite type over SpecFq [PR08,Zhu17].

Similar as in Section 3.1 we have the Frobenius morphisms σ : L+X → L+X , σ : L+
hX → L+

hX ,

whenever X is defined over Ok. In this case let us write Xh := L+
hX (Fq) and if X is a group and

1 ≤ r ≤ h, Xr
h := ker(Xh → Xr). In particular, we will apply this to X = G and its subgroups.

4.2. Lusztig’s deep level Deligne–Lusztig schemes. Let G be a reductive group over Ok.
Let T be an Ok-rational Ok̆-split maximal torus in G. Let B = T U be a Ok̆-rational Borel

subgroup containing it, with unipotent radical U .

Definition 4.1 (§2 of [Lus04]). Define the Fq-scheme XT ,U ,h by the Cartesian diagram,

XT ,U ,h //

��

L+
h U

��
L+
h G

LangG // L+
h G

where LangG : L+
h G → L+

h G is the Lang map, given by g 7→ g−1σ(g).
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Left and right multiplication induce an action of G(Ok) × T (Ok) = L+G(Fq) × L+T (Fq) on

XT ,U ,h, which factors through an action of the h-truncation Gh × Th.

Remark 4.2. Lusztig’s original definition in [Lus04] was not formulated in terms of the loop

functors, instead the Fq-variety XT ,U ,h was rather defined by describing its Fq-points. Moreover,

Lusztig handled only the case char k > 0. The mixed characteristic case was worked out later

by Stasinski [Sta09]. It requires technically a little more care (e.g., it really becomes important

to work with perfect schemes).

Remark 4.3. Let us briefly sketch the relation of the “Borel-level version”

XT ,B,h := L+
h B ×L+

h G,LangG
L+
h G

of XT ,U ,h with the spaces Xw(b) from Section 3. Let T0 ⊆ G be an Ok-rational maximal torus,

which is contained in an Ok-rational Borel subgroup B0. Let W0 denote the Weyl group of

T0 ⊗Ok Fq in G ⊗Ok Fq. Then there is an element w1 ∈ W ,10 such that the space Xw1(1)

produced out of G, T0, w1 via the obvious version of Definition 3.2 (with L(·) replaced by L+
h (·))

is Gh-equivariantly isomorphic to XT ,B,h.

Just as in the classical Deligne–Lusztig theory, to a character θ : Th → Q×` we can attach the

Gh-representation

RGhTh,Uh(θ) =
∑

i∈Z
(−1)iH i

c(Xh,Q`)θ.

We also regard it as a G(Ok)-representation by inflation via G(Ok)→ Gh. In general, it depends

on h [CI19a, §4.2]11 The main result of [Lus04] is a version of the Mackey formula (Theorem 1.3)

for RGhTh,Uh(θ), which we now explain. There is one strong restriction on the involved characters

θ.

Definition 4.4 (Rough version of §1.5 of [Lus04]). Let h ≥ 2. A character θ : Th → Q×` is called

primitive12 if it is very far from being trivial on T h−1
h .

The precise definition is slightly technical. We only remark that it also depends on the roots

of T ⊗Ok Fq in G ⊗Ok Fq.

Theorem 4.5 (Proposition 2.3 of [Lus04]). Let (T ,U , θ), (T ′,U ′, θ′) be two triples as above. If

h ≥ 2, assume that θ or θ′ is primitive. Then
〈
RGhTh,Uh(θ), RGh

T ′h,U
′
h
(θ′)
〉
Gh

= #
{
v ∈W (T , T ′)σ : θ′ = θ ◦Ad(v)

}
,

where W (T , T ′) is the transporter from T ⊗Ok Fq to T ′ ⊗Ok Fq in G ⊗Ok Fq modulo T ⊗Ok Fq.

Corollary 4.6 (Corollary 2.4 of [Lus04]). Let (T ,U , θ) be as in Theorem 4.5, with θ primitive

if h ≥ 2. Then RGhTh,Uh(θ) is independent of the choice of U , and if additionally there are no

1 6= v ∈W (T , T )σ with θ = θ ◦Ad(v), then ±RGhTh,Uh(θ) is an irreducible Gh-representation.

10w1 is determined by the element w in the Weyl group of T ⊗Ok Fq in G ⊗Ok Fq, such that σ(B ⊗Ok Fq) =

w(B ⊗Ok Fq)w−1.
11This dependence is expected to disappear for elliptic tori.
12In [Lus04] the term regular was used. We prefer primitive, which was also used in [BW16]. May be very regular
would be a better name (cf. Section 4.5).
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4.3. Lusztig’s proof of Theorem 4.5. In fact, all geometric proofs of Mackey formulas in

various “Deligne–Lusztig” contexts are all based on similar ideas. For deeper level Deligne–

Lusztig varieties, this first appeared in Lusztig [Lus04]. As the tools used in the proof, as well

as the method of proof itself play an important role in what follows, we give more details on

both. The two important general principles, which are used in the proof are the following.

Theorem 4.7 (10.15 of [DM91], Corollary 6.5 of [DL76]).

(i) Let H be a torus acting on a scheme X, separated and of finite type over Fq, and (for

simplicity) affine. Then dimH∗c (X,Q`) = dimH∗c (XH ,Q`).

(ii) Let H be a connected algebraic group acting on a scheme X, separated and of finite type

over Fq. Then for any h ∈ H, the action of h in H∗c (X,Q`) is trivial.

Part (i) is a consequence of the Deligne–Lusztig fixed point formula (Theorem 1.4). Lusztig’s

strategy of proof of Theorem 4.5 can be divided into the following steps:

(1) First, express
〈
RGhTh,Uh(θ), RGh

T ′h,U
′
h
(θ′)
〉
Gh

as the θ ⊗ θ′-isotypic part of the `-adic Euler

characteristic of the Fq-scheme Σ = Gh\(XT ,U ,h ×XT ′,U ′,h) on which Th × T ′h acts.

(2) There is a locally closed partition Σ =
∐
v∈W (T ,T ′) Σv, and for each v a fibration Σ̂v → Σv

with all fibers being isomorphic to a fixed affine space, such that Th × T ′h compatibly

acts on Σ̂v.

(3) There is some (highly non-trivial) locally closed decomposition Σ̂v = (
∐
λ∈J Σ̂′v,λ) ∪̇ Σ̂′′v

into finitely many pieces, such that Th × T ′h still acts on Σ̂′v,λ, Σ̂
′′
v .

(4) The action of Th × T ′h on the closed part Σ′′v extends to an action of a big subgroup

scheme H ⊆ L+
h T × L+

h T ′, with reductive part Hred, whose connected component H◦red

is a (still sufficiently big) torus. Then one gets

dimH∗c (Σ̂′′v ,Q`)θ⊗θ′ = dimH∗c ((Σ̂′′v)
H◦red ,Q`)θ⊗θ′ =

{
1 if v ∈W (T , T ′)σ and θ′ = θ ◦Ad(v),

0 otherwise.

(4.1)

where the first equality is by Theorem 4.7(i), and the second is easy, as (Σ̂′′v)
H◦red is a

(very simple) finite set of points.

(5) Wlog we can assume that θ is primitive. The action of T h−1
h × {1}(⊆ Th × Th) on each

Σ̂′v,λ extends in a highly non-trivial way to an action of a positive-dimensional group

T ⊆ ker(L+
h T → L+

h−1T ) (depending on λ). By Theorem 4.7(ii), T ◦ ∩ (Th × {1})
acts trivially in H∗c (Σ̂′v,λ,Q`). On the other side, as θ is primitive, θ is non-trivial on

T ◦ ∩ (T h−1
h × {1}). Thus we deduce H∗c (Σ̂′v,λ,Q`)θ⊗θ′ ⊆ H∗c (Σ̂′v,λ,Q`)θ = 0.

4.4. A generalization to parahoric models. In [CI19a] Chan and the author extended

Lusztig’s definition to groups G/Ok, which are not necessarily reductive, but are parahoric

models of reductive k-groups. This was motivated by the special case of inner forms of GLn
(see Sections 5 and 6 below), where the proofs of [Lus04] do not apply without modification.

An investigation of that case (inner forms of GLn) was already performed in [CI18, §8]. The

application of results [CI19a] is however not limited to non-quasi-split forms of unramified k-

groups. Even for split groups (like for example Sp4) over k there exist non-reductive parahoric

Ok-models, and the corresponding generalization of Lusztig’s schemes naturally arises.
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To be more precise, let the notation be as in Section 4.2, with the assumption on G relaxed,

i.e., we assume only that G is the parahoric model of a reductive k-group G. We also let T (resp.

B, resp. U) be the closure in G of a k-rational k̆-split maximal torus of G (resp. a k̆-rational

Borel containing it, resp. the unipotent radical of the latter13). Then Definition 4.1 carries over

literally, giving Fq-schemes XT ,U ,h. We also have corresponding Gh-representations RGhTh,Uh(θ).

Theorem 4.8 (Theorem 1.1 and Corollary 4.7 of [CI19a]). Statements analogous to Theorem

4.5 and Corollary 4.6 hold for representations RGhTh,Uh(θ) arising from parahoric Ok-models of

reductive k-groups.

The strategy of the proof of Theorem 4.8 is the same as that of Theorem 4.5, sketched above.

The only, but quite subtle difference concerns the most complicated step (5). Elaboration of the

corresponding details occupies a big part (Sections 2 and 3) of [CI19a]. It also becomes clear

that the proof does not work for all affine smooth models (which is also not surprising).

4.5. Traces of very regular elements. Let the setup be as in Section 4.4. In [CI18] and

[CI19a] the traces of certain elements inside Th ⊆ Gh in the representation RGhTh,Uh(θ) are com-

puted. Roughly, an element g ∈ L+
h T (Fq) is very regular if its image in T1 does not lie in any sin-

gular subtorus (a precise definition is given in [CI19a, Definition 5.1], generalizing [Hen92, §2.3]).

Theorem 4.9 (rough form of Theorem 1.2 of [CI19a], Theorem 11.2 of [CI18]). Let g ∈ Th ⊆ Gh
be a very regular element. For any character θ : Th → Q×` ,

Tr(g;RGhTh,Uh(θ)) =
∑

w∈WG(T )σ

(θ ◦Ad(w))(g).

where WG(T ) denotes the Weyl group of the special fiber of T in the reductive quotient of the

special fiber of G.

This is a generalization to deep level Deligne–Lusztig varieties of a special case of the classical

trace formula in [DL76, Theorem 4.2]. Currently this seems to be the only case where such a

formula can be proven. The reason for the severe restriction to very regular elements is that

a proof requires at some point the use of Deligne–Lusztig fixed point formula (Theorem 1.4),

which is useless for elements in the p-subgroup G1
h of Gh. Note that on the other side, there is

no restriction on θ.

Remark 4.10. Although Theorem 4.9 gives the traces for a relatively small class of elements

of G(Ok) in RGhTh,Uh(θ) (only very regular elements of T (Ok)), at least in the case of G = inner

form of GLn this (+ some further properties of RGhTh,Uh(θ)) is still sufficient to uniquely pin down

this representation. This uses a result of Henniart [Hen92], see Section 6.1 below.

5. Coxeter varieties for inner forms of GLn

Similar as in the classical theory, if w ∈ W is a Coxeter element, the ind-scheme Xw(b)

considered in Section 3 is called of Coxeter type and has some particular properties, making it

sometimes more accessible. In this section I discuss a geometric description of the (covers of)

Coxeter varieties Ẋẇ(b) for GLn and inner forms obtained in joint work with Ch. Chan [CI18,

CI19b], and I explain the ad hoc construction (going back to [Lus79]) of smooth representations

in their cohomology.

13Caution: the special fiber B ⊗O
k̆
Fq of B needs not to be a Borel subgroup of G ⊗O

k̆
Fq
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5.1. The setup. Let G be an inner form of GLn over k (n ≥ 2). Then there exists a unique

integer 0 ≤ κ ≤ n − 1 such that putting n′ = gcd(n, κ), n = n′n0, κ = n′κ0, we have G ∼=
GLn′(Dκ0/n0

), where Dκ0/n0
is the central division algebra over k with Hasse-invariant κ0/n0.

The group G possesses a k-rational unramified elliptic maximal torus T ⊆ G, which is unique

up to conjugation; we write T = T(k).

We can express G in terms of (3.1): let b ∈ GLn(k̆) be any basic element with ord ◦ det(b) =

κ14. Then G ∼= GLn,b. Fix a maximal split torus T0 ⊆ GLn and let W be the Weyl group of T0

in GLn. We are thus interested in the corresponding ind-schemes Xw(b) with w ∈ W Coxeter

and b basic element as above, and even more in their covers Ẋẇ(b) with ẇ ∈ GLn(k̆) lifting w.

On Ẋẇ(b) we have the action of G × T . The situation is essentially unique (i. e., independent

of the choices of b, w, ẇ), indeed:

(i) all basic b with ord ◦det(b) = κ are mutually σ-conjugate,

(ii) all Coxeter elements w ∈W are connected by a finite sequence of Frobenius-cyclic shifts.

Thus all Xw(b) with w, b are above are mutually isomorphic, and for fixed b, w we have

(iii) if ẇ varies through the lifts of w, then Ẋẇ(b) = ∅, unless ord ◦det(ẇ) = κ, and if this

holds, then Ẋẇ(b) is essentially independent of the lift ẇ of w.

5.2. An explicit description. We now describe Ẋẇ(b) more in the style of Section 4, i. e.,

intrinsically in terms of G,T and without involving GLn, b, ẇ. There is a (unique up to con-

jugation) maximal parahoric Ok-model G of G, and GO := G(Ok) = GLn′(ODκ0/n0
), where

ODκ0/n0
⊆ Dκ0/n0

are the integers of Dκ0/n0
. Let B = TU ⊆ G be a k̆-rational Borel subgroup

containing T with unipotent radical U, and let U− be the unipotent radical of the opposite

Borel subgroup. We have the closure T resp. U± of T resp. U± in G, and we put TO = T (Ok).
The Frobenius σ of k̆/k acts on the roots of T in G, hence the subgroups σU± (generated by σ-

translates of the root subgroups generating U±) make sense. The following theorem generalizes

the classical example [DL76, §2.2].

Theorem 5.1 (Proposition 2.6 of [CI19b], Theorem 6.4 and §7.2 of [CI18]). Let b, ẇ be as in Sec-

tion 5.1 with ord ◦ det(b) = ord ◦det(ẇ). We have G×T -equivariantly, Ẋẇ(b) ∼=
∐
g∈G/GO g.XO,

where XO is the Fq-scheme, defined by the Cartesian diagram

XO //
_�

��

L+(σU ∩ U−)
_�

��
L+G g 7→g−1σ(g)

// L+G

(5.1)

The Fq-points of XO can be described explicitly: For simplicity, assume we that are in the split

case G = GLn (that is, κ = 0). Then

XO(Fq) =
{
v ∈ O⊕n

k̆
: det g(v) ∈ O×k

}
,

where g(v) = (v;σ(v);σ2(v); . . . ;σn−1(v)) ∈Mn(Ok̆) is the matrix whose i-th column is σi−1(v).

The scheme Xw(b) admits a similar description.

Following remarks concern Theorem 5.1 and its proof:

14“b basic” means that its Newton point νb factors through the center of GLn, cf. [Kot85]. For example, we can

take b =
(

0 $κ

1n−1 0

)
.
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• It is crucial to work with perfect (hence reduced!) ind-schemes in the theorem. Otherwise

the proof does not apply, and the statement is most probably wrong, even if char k > 0.

• The main ingredient in the proof of Theorem 5.1 (along with Corollary 3.5 or any ad hoc

argument proving ind-representability) is a statement for isocrystals, which is a precise

analog of the well-known fact, that the valuations of the coefficients of a (monic) poly-

nomial f ∈ k̆[T ] lie over the Newton-polygon of f (cf. the proof of [CI19b, Proposition

2.6]15).

5.3. The `-adic representations in the cohomology of Ẋẇ(b). We have the Fq-scheme

Ẋẇ(b) =
∐
G/GO gXO from Theorem 5.1. We can write XO as an inverse limit XO = lim←−hXh

of schemes Xh (as in Section 4.416) perfectly of finite presentation over Fq, such that each Xh

admits a compatible action of the subquotient Gh × Th of GO × TO.

Example 5.2. Let G = GLn. Then

Xh(Fq) = {v ∈
(
Ok̆/phk̆

)⊕n
: det(v;σ(v); . . . ;σn−1(v)) ∈ (Ok/phk)×}.

Let θ : T → Q×` be a smooth character. Then for h ≥ 1 big enough, θ is trivial on

ker(TO → Th), so induces a character of Th, again denoted θ. As in Section 4, we have the vir-

tual Gh-representation RGhTh,Uh(θ). By Section 5.1 our “Coxeter choices” are essentially unique,

so RGhTh,Uh(θ) is independent of Uh. Thus we simply write RGhTh (θ) instead of RGhTh,Uh(θ). Using

that the fibers of Xh/ker(Th → Th−1)→ Xh−1 are isomorphic to An−1
Fq

[CI18, Proposition 7.6]17,

one shows that RGhTh (θ) regarded by inflation as a virtual GO-representation is independent of h.

Let Z ⊆ G be the center. Compactly inducing and taking care of the center, we can –

in accordance with the disjoint decomposition in Theorem 5.1– make sense of the “θ-isotypic

component of the `-adic Euler characteristic with compact support of Ẋẇ(b)”:

RGT (θ) := cIndGZGO R
Gh
Th

(θ),

where RGhTh (θ) is extended to ZGO by letting z ∈ Z ⊆ T act by θ(z).

6. Deligne–Lusztig induction for elliptic unramified tori in inner forms of GLn

This section is based on joint work with Chan [CI19b, CI20, CI18] (special cases were in-

dependently obtained in [Iva16, Cha19]). The results on representations obtained by p-adic

Deligne–Lusztig induction for inner forms of GLn in Section 5.3, and their relation with local

Langlands (LL) and Jacquet–Langlands (JL) correspondences will be explained. We use nota-

tion from Section 5. In particular, we have the locally compact groups G = GLn′(Dκ0/n0
), T ,

and for a smooth character θ : T → Q×` , we have the virtual smooth G-representation RGT (θ),

which is attached to the essentially unique (non-empty) Coxeter-type Deligne–Lusztig variety

corresponding to T ⊆ G. We use notation from Section 4.1.

15The original proof in [CI18] of representability in Theorem 5.1 was more complicated and used the comparison
with affine Deligne–Lusztig varieties, as well as results of Viehmann on the moduli of p-divisible groups [Vie08].
16In Definition 4.1 we used U , whereas in (5.1) we use σU ∩ U−. This discrepancy is unessential and can be
ignored.
17In the division algebra case, this crucial observation goes back to Lusztig [Lus79]
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6.1. Main result. The brief upshot is:

(i) One can explicitly attach to θ a representation σθ of the Weil group Wk of k, such

that σθ ←[ θ 7→ ±RGT (θ) coincides with LL. The rectifier of Bushnell–Henniart [BH10,

Definition 1] is encoded in θ 7→ σθ and is not “seen” by RGT (·).18

(ii) Fixing T and varying G, θ 7→ ±RGT (θ) induces JL.

To state the results we need more notation. Let L/k be the unramified degree n extension, such

that T ∼= L× (determined up to an element in Gal(L/k)). We have TO ∼= UL and Th ∼= UL/U
h
L,

where UL resp. UhL are the units resp. h-units of L. Denote by ε a character of k× with

ker(ε) = NL/k(L
×), the image of the norm map of L/k. Also let

• X be the set of smooth characters of L× in general position, i.e., with trivial stabilizer

in Gal(L/k),

• G ε
k (n) be the set of isomorphism classes of smooth n-dimensional representations σ of

Wk of k satisfying σ ∼= σ ⊗ (ε ◦ reck),

• A ε
k (n, κ) be the set of smooth irreducible supercuspidal representations π of G (where

κ = κ0n
′ determines G) such that π ∼= π ⊗ (ε ◦NrdG).

Then there are natural bijections of sets

X /Gal(L/k) G ε
k (n) A ε

k (n, 0) A ε
k (n, κ)

θ σθ LL(σθ) JL(LL(σθ)) =: πθ.

LL JL

Here σθ := IndWk
WL

(θ · µ) is the induction to Wk of the character WL → Wab
L

recL→ L×
θ·µ→ Q×` ,

where µ is the rectifier, that is the character of L× defined by µ($) = (−1)n−1 and µ(UL) = 1.

Theorem 6.1 (Theorem A of [CI19b]). Assume that p > n. Let θ : T ∼= L× → Q×` be a

smooth character such that θ|U1
L

has trivial stabilizer in Gal(L/k). Then ±RGT (θ) is a genuine

G-representation and

±RGT (θ) ∼= πθ.

In particular, ±RGT (θ) is irreducible supercuspidal and σθ ↔ ±RGT (θ) is a realization of the local

Langlands and Jacquet–Langlands correspondences.

In the division algebra case Theorem A gets easier and essentially follows (for all p, n and all

θ with trivial Gal(L/k)-stabilizer) from Lusztig’s original work [Lus79] along with a result of

Henniart [Hen92, 3.1 Théorème], see [Cha19]. Special cases of Theorem 6.1 were proven in [CI18,

Theorem 12.3, Theorem 12.6], [Iva16, Theorem 4.3], [Cha19, Corollary to Main Theorem 1]. We

expect that the assumption p > n in Theorem 6.1 is redundant. For a conjectural generalization

of Theorem 6.1 to all θ in general position see Conjecture 6.12.

The proof of Theorem 6.1 proceeds in five steps:

(1) Prove a “geometric” Mackey formula for the Gh-representations ±RGhTh (θ). It follows

that when θ is sufficiently generic, ±RGhTh (θ) is irreducible.

18The sign ± such that ±RGT (θ) is a genuine G-representation – an important invariant – can be determined
explicitly from θ by Theorems 6.11, 6.6. This gives an analog of the classical result [DL76, Theorem 8.3]. In
particular, ±RGT (·) “sees” the sign appearing in the characterization of JL by matching traces in (ii), and θ 7→ σθ
in (i) is does not depend on which inner form G of GLn we start with.
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(2) There is a special closedGh×Th-stable subschemeXh,n′ ⊆ Xh, which is a maximal variety

over Fqn (see Example 6.5 and Section 6.4 below). Prove a version of the Mackey formula

for ±H∗c (Xh,n′ ,Q`)θ and show ±H∗c (Xh,n′ ,Q`)θ ∼= ±RGhTh (θ) for sufficiently generic θ.

(3) Using (1) and further geometric input show that ±RGT (θ) = cIndGZGO(±RGhTh (θ)) is ad-

missible (equivalently, a finite direct sum of irreducible supercuspidals).

(4) Using that Xh,n′ is a maximal variety, compute the eigenvalues of qn-Frobenius in the sin-

gle cohomology groupsH∗c (Xh,n′ ,Q`). Use this to compute the integer dimQ`
H∗c (Xh,n′ ,Q`)θ,

which by (2) is also equal to dimQ`
RGhTh (θ).

(5) Conclude as follows: Use (3) together with the traces of RGT (θ) (Theorem 4.9) and of πθ
on very regular elements in T ⊆ G to show (using a linear independence of characters

argument due to Henniart [Hen92]) to show that πθ is one of the irreducible constituents

of RGT (θ). Matching dimQ`
RGhTh (θ) from (4) with the explicitly known formal degree of

πθ [CMS90] finishes the proof.

Below we discuss results related to steps (1) and (2) in Section 6.2, those related to step (3)

in Section 6.3, and those related to step (4) in Section 6.4. Step (5) is explained in [CI19b, §7.2].

6.2. The “integral” representation RGhTh (θ). In our special case (inner forms of GLn, elliptic

tori) we significantly improve the Mackey formula (Theorem 4.8), getting rid of the primitivity

assumption on θ. Let WO be the Weyl group of T ⊗Ok Fq in G ⊗Ok Fq.19

Theorem 6.2 (Theorem 3.1 of [CI19b]). Let θ, θ′ : Th ∼= UL/U
h
L → Q×` be two characters. Then

〈
RGhTh (θ), RGhTh (θ′)

〉
Gh

= #
{
v ∈W σ

O : θ′ = θ ◦Ad(v)
}
.

We have W σ
O
∼= Gal(L/k)[n′] (the n′-torsion), such that T ∼= L× is equivariant with respect

to the action of W σ
O on T and of Gal(L/k)[n′] on L×. The following corollary is immediate.

Corollary 6.3 (Corollary 3.3 of [CI19b]). Let θ : Th → Q×` be a character, whose stabilizer in

Gal(L/k)[n′] is trivial. Then ±RGhTh (θ) is irreducible Gh-representation. In particular, the map

{
characters θ : Th → Q×` in general position

}
/W σ
O →

{
irreducible Gh-representations

}

θ 7→ ±RGhTh (θ)

is injective.

In the present context, θ is primitive (Definition 4.4) if and only if θ|Uh−1
L /UhL

has trivial

stabilizer in Gal(L/k)[n′].

6.2.1. Strategy of the proof of Theorem 6.2. Without the primitivity assumption on θ or θ′,
Lusztig’s proof of Theorem 4.5 (Section 4.3) collapses: the crucial step (5) simply does not

work. But precisely in our special case20, the following quite miraculous workaround works (we

use notation as in Section 4.3):

• There is a interesting trichotomy: either v = 1, or Σv = ∅, or U−∩v−1U−v is contained

in a proper (k-rational) Levi subgroup L of G (containing T).

19The reductive quotient of the special fiber G ⊗O Fq of G is isomorphic to ResFqn0 /Fq GLn′,Fqn0
, and WO is

isomorphic to n0 copies of the symmetric group Sn′ and carries an action of σ permuting these.
20In fact, only for a very special choice of a Coxeter element; observe that making such a choice, we do not loose
generality by Section 5.1.
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• If Σv = ∅, nothing must be done. If for v ∈ WO a Levi L as above exists, an improved

version of step (4) of Section 4.3 works for the whole Σ̂v instead of Σ̂′′v : using the center

of L one can produce an extension of action of Th × Th to a subgroup which contains a

(much smaller than in Section 4.3, but still regular enough) one-dimensional subtorus of

L+
1 TO × L+

1 TO. From this one deduces (4.1) for Σ̂v.

• The remaining case v = 1 can either be done by an ad hoc extension of action argument,

or may be deduced from a twisted version of Lusztig’s strategy [CI19b, §3.4], where Σv’s

are generalized to allow more flexibility (but the core idea – to extend the action to a

torus, and then conclude as in step (4) of Section 4.3 – remains the same).

Remark 6.4. Computations using GAP, recently performed by O. Dudas, show that it is not

clear whether and how this workaround extends outside this special case. Indeed, neither for

other (than those mentioned in the footnote 20 above) Coxeter elements in type An−1, nor for

a single Coxeter element in type B2
21, we could make this strategy work.

6.2.2. The special subvariety Xh,n′. The variety Xh has a very interesting closed subvariety

Xh,n′ : the induced action of σn in the cohomology of Xh,n′ is just multiplication with a scalar

(see Theorem 6.11). At the end, it is Xh,n′ whose cohomology contributes the supercuspidal

representations appearing in Theorem 6.1 (see also Conjecture 6.12).

Example 6.5. (i) Let G = GLn, that is n′ = n. If v̄ denotes the reduction of v modulo

pk̆, then Xh,n is the closed subvariety of Xh (see Example 5.2) defined by the condition

v̄ = (−1)n−1v̄.

(ii) In the division algebra case (i.e., n′ = 1), we have simply Xh,1 = Xh.

Theorem 6.6. Let θ : Th → Q×` be a character. Assume that p > n, and that θ|T 1
h

has trivial

stabilizer in W σ
O. Then

〈
RGhTh (θ), H∗c (Xh,n′ ,Q`)θ

〉
Gh

=
〈
H∗c (Xh,n′ ,Q`)θ, H

∗
c (Xh,n′ ,Q`)θ

〉
Gh

= 1.

In particular, H∗c (Xh,n′ ,Q`)θ ∼= RGhTh (θ) is up to sign an irreducible representation of Gh.

This is a slightly weaker version of the Mackey formula (Theorem 6.2) for Xh,n′ . The strategy

of the proof remains roughly the same as in Section 6.2.1. The significant difference, is that

we only can extend the action of T 1
h × T 1

h to an action of a positive-dimensional subgroup of

H ⊆ ker(L+
hTO → L+

1 TO)× ker(L+
hTO → L+

1 TO), so that

• as H is unipotent, one only can apply Theorem 4.7(ii) (and not Theorem 4.7(i)), which

does not give such good quantitative results, and forces the assumption on θ.

• one has to determine the connected component H◦ ⊆ H, which is quite subtle and forces

us to impose the assumption p > n.

6.3. Admissibility of RGT (θ). Thanks to Section 6.2 RGhTh (θ) is now understood sufficiently

well. Building on this we have the following result for RGT (θ).

21We observe here that specifically for the group Sp4 of type C2 = B2 all non-trivial characters θ of the elliptic
torus Tw (w Coxeter) are primitive, so that in this particular case, Theorem 6.2 would follow from Theorem 4.5
along with some (relatively easy) claim about the fibers of Xh → Xh−1. The next non-trivial case is type B3, but
here it also seems that the method of proof of Theorem 6.2 does not generalize straightforwardly.
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Theorem 6.7 (Theorem 5.1 of [CI19b]). Let θ : T → Q×` be a smooth character in general

position. Then RGT (θ) is a finite sum of irreducible supercuspidal representations.

Theorem 6.7 follows by standard arguments from Corollary 6.3 and the next proposition.

Proposition 6.8 (Proposition 5.2 of [CI19b]). Let N be the group of k-points of the unipotent

radical of a proper k-rational parabolic subgroup of G. Then

RGhTh (θ)N∩GO = 0.

This proposition (as well as the theorem above) should be regarded as a generalization of

the cuspidality result in the classical setup, i.e., Theorem 1.2(iii). It can be deduced by an

“extension of action to a torus”-argument (i.e., Theorem 4.7(i)) from the following result, which

is the technically deep one of this section. For simplicity we only explain the case G = GLn.

For r ≥ 1 and x ∈ (L+
hGa)

⊕r, let gr(x) be the r × r-matrix with i-th column σi−1(x), and put

Yr,h =
{
x ∈ (L+

hGa)
⊕r : det gr(x) ∈ L+

hGm

}

(regarded as a scheme of perfectly finite type over Fq).

Proposition 6.9 (Lemma 5.6 of [CI19b]). If N =
{(

1 B
0 1

)
: B ∈Mi0×(n−i0)(k)

}
for some 1 ≤

i0 ≤ n− 1,22 then

Nh\Xh
∼=
{

(m,x′) ∈ Yi0,h × Yn−i0,h :
|gi0(m)|

|gn−i0(x′)|
∑i0−1
j=1 σj

∈ (L+
hGm)(Fq)

}
,

induced by x = (xi)
n
i=1 7→ ((mi(x))i0i=1, (xi)

n
i=i0+1), where mi(x) is the (n− i0 + 1)× (n− i0 + 1)-

minor of gn(x) given by

mi(x) := det




xi σ(xi) . . . σn−i0(xi)

xi0+1 σ(xi0+1) . . . σn−i0(xi0+1)

xi0+2 σ(xi0+2) . . . σn−i0(xi0+2)

. . . . . . . . . . . .

xn σ(xn) . . . σn−i0(xn)




The proof is based (among other things) on technical calculations with classical determinantal

identities, going back to the work of Turnbull [Tur09] from 1909 (see also [Lec93] for a more

modern presentation of Turnbull’s results). What makes Proposition 6.9 difficult, is that it is a

statement about the “covering” Ẋẇ(b). A corresponding statement for Xw(b) would be easier

to prove, and should follow along the lines of [Lus76a, (2.10)]. In particular, for Xw(b) one

would have a purely group-theoretical proof, which immediately should generalize to all groups

G, whereas it is not clear a priori how to generalize Proposition 6.9 to other groups.

6.4. Maximal varieties and single cohomology groups of Xh,n′. In the classical Deligne–

Lusztig theory, one important question is to study single cohomology groups of Ẋẇ and Xw. In

general, it is a very hard question, but for w Coxeter quite complete results on Xw have been

achieved by Lusztig [Lus76a].

One might ask for similar results on single cohomology groups in the case of Ẋẇ(b). General

techniques allowing such results were first studied by Boyarchenko [Boy12]. They were applied to

22i.e., N is the set of k-points of the unipotent radical of a maximal proper k-rational parabolic subgroup of G.
Some caution is in order: in Sections 6.2 and 6.3 different presentations of XO are used, cf. [CI19b, Remark 2.1].
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obtain particular results in the division algebra case, and to study special affinoids in the Lubin–

Tate tower [BW16]. Then there was an improvement by Chan [Cha19] (see also [Cha16,Cha18]),

finalizing the division algebra case.

6.4.1. Maximal varieties. We recall the following definition from [BW16]. Let FQ be a finite

field with Q elements of characteristic p. Let X be a separated scheme of finite type over FQ,

and let XFQ = X ⊗FQ FQ. By [Del80, Theorem 3.3.1], for each i and each eigenvalue α of FrQ

(the geometric Frobenius relative to FQ) in H i
c(XFQ ,Q`), there exists an integer m ≤ i, such that

all complex conjugates of α have the absolute value Qm/2. Thus the Grothendieck–Lefschetz

trace formula implies the upper bound

#X(FQ) ≤
∑

i∈Z
Qi/2 dimH i

c(XFQ ,Q`).

on the number of FQ-points of X.

Definition 6.10. The FQ-scheme X is called maximal if this upper bound is achieved. Equiv-

alently, X is maximal if and only if for each i, FrQ acts in H i
c(XFq ,Q`) by (−1)iQi/2.

6.4.2. Howe decomposition. Let θ be a character of T ∼= L×. There is a unique tower of fields

L = Lt ) Lt−1 ) · · · ) L1 ) L0 = k and (not necessarily uniquely determined) characters

φ0, φ1, . . . , φt of k×, L×1 , . . . , L
×
t respectively, such that θ = (φ0 ◦ NL/K)(φ1 ◦ NL/L1

) . . . (φt),

where NL/Li are the respective norm maps. This is a Howe decomposition of θ, introduced by

Howe [How77]. Similarly, one can define a Howe decomposition of characters of Th and T 1
h .

6.4.3. Single cohomology groups of Xh,n′. Recall the closed subvariety Xh,n′ of Xh from Section

6.2.2. Generalizing the results of [Cha19] in the division algebra case, we have the following

theorem, describing the single cohomology groups of Xh,n′ for all inner forms of GLn. There is

a disjoint decomposition Xh,n′ =
∐
g∈G1

g.X1
h,n′ into connected components, and G1

h × T 1
h acts

on X1
h,n′ .

Theorem 6.11 (Theorem 6.1.1 of [CI20]). Let χ : T 1
h → Q×` be any character. There is an

integer rχ explicitly determined by the Howe decomposition χ, such that

H i
c(X

1
h,n′ ,Q`)χ =

{
irreducible G1

h-representation if i = rχ,

0 otherwise.

Moreover, there exists an Fqn-rational structure on Xh,n′ making it into a maximal variety over

Fqn, i.e., for each i ≥ 0 the action induced by σn in H i
c(Xh,n′ ,Q`) is given by multiplication with

the scalar (−1)iqni/2.

The method of proof of this result is based on several technical lemmas from [Boy12,Cha19],

and is roughly a complicated induction procedure on partial products of factors in the Howe

decomposition of χ.

For θ as in Theorem 6.1 (trivial on UhL) and χ := θ|T 1
h
, the explicitly determined integer rχ

plays an important role in step (5) of the proof Theorem 6.1. We also note that in the special

case G = GL2, Theorem 6.11 was essentially shown in [Iva16, Theorem 3.5, Corollary 3.13] by

other methods (there the Fq2-rational structure was slightly different, hence the Frobenius acted

by slightly different scalars).
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6.4.4. Drinfeld stratification. The closed subscheme Xh,n′ of Xh can be put into a more general

context: in fact, in [CI20, §4.4] Chan and the author defined a stratification of Xh into locally

closed parts, which in analogy with a stratification on the Drinfeld half-space were called the

Drinfeld stratification. This stratification generalizes to other groups [CI20, §3] and seems to be

an important refinement of the “integral part” of Ẋẇ(b).

For example, for inner forms of GLn the strata are parametrized by divisors of n′: Xh =⋃
r|n′ Xh,r with Xh,n′ being the closed stratum. Extending Theorems 6.1, 6.11 and the well-

understood situation for the closed stratum, we make a precise conjecture predicting the stratum

in which specific supercuspidal representations should be expected.

Conjecture 6.12 (cf. Conjecture 7.2.1 of [CI20]). Let r | n′ and let θ : L× → Q×` be a character

with trivial Gal(L/k)-stabilizer. Suppose that the stabilizer of θ|U1
L

in Gal(L/k) is equal to the

unique subgroup of index n0r. Then

RGhTh (θ) ∼= H∗c (Xh,r,Q`)θ ∼= πθ.

where πθ is as in Section 6.1. Moreover, H i
c(Xh,r,Q`)θ = 0, unless i = rθ, an integer explicitly

determined by the Howe decomposition of θ.

Only the last part of this conjecture requires a proof (by extending the methods from [Cha19,

CI20]); the first part then follows from this and results explained in Sections 6.2, 6.3.

7. Extended affine Deligne–Lusztig varieties

In this section we discuss results from [Iva16, Iva18, Iva19] (and [CI18]). We begin with affine

Deligne–Lusztig varieties, which were introduced by Rapoport in [Rap05] to study the reduction

mod p of some Shimura varieties. The name is justified by the fact that they arise by exactly

the same procedure as their classical analoga, but inside the affine flag manifold.

Before [Iva20] (see Section 3) or Theorem 5.1, there was the hope to use covers of affine

Deligne–Lusztig varieties introduced in [Iva16] instead of XLus – which was lacking a scheme-

structure – to realize p-adic Deligne–Lusztig induction, or alternatively to use them to provide

XLus with a scheme structure [CI18]. Both ideas work in several cases, but they seem to be less

efficient than the more recently developed techniques of [Iva20,CI19b].

Nevertheless, there is a third important point where the construction [Iva16] has an indepen-

dent value: it concerns the generalization in [Iva18] to the case of ramified tori in k-groups.

Indeed, all constructions and results in previous sections only concern tori which split over k̆,

and it is not clear yet how one could uniformly cover all tori. At least, no ad hoc generalization

of XLus seems to produce ramified supercuspidals23 via θ 7→ RGT (θ). Instead, the construction

of higher level affine Deligne–Lusztig varieties has a quite natural generalization which indeed

realizes many ramified supercuspidals at least for G = GL2.

Conventions. For simplicity we make two additional assumptions: (i) char k > 0, that is

k = Fq(($)), k̆ = Fq(($)) (in fact, in [Iva16, Iva18] only this case was handled; the other case

works similarly). (ii) We assume that G is split (everything below works for arbitrary reductive

G).

23Here and below, by ramified supercuspidals we will mean those supercuspidal G-representations whose L-
parameter does not factor through LT→ LG for an unramified maximal torus T ⊆ G.

31



7.1. Affine Deligne–Lusztig varieties. Let T0 be a split maximal torus of G. We have the

Bruhat–Tits buildings Bk and Bk̆ of the adjoint group Gad over k resp. k̆. The Frobenius σ of

k̆/k acts on Bk̆ and B
〈σ〉
k̆

= Bk (as simplicial complexes). Let I ⊆ G(k̆) be an Iwahori subgroup

corresponding to a σ-stable alcove of Bk̆ contained in the apartment of T0. By Bruhat–Tits

theory, there is an Ok-model G of G such that G(Ok̆) = I. Attached to it we have the affine flag

manifold, which is the fpqc-quotient LG/L+G. It is represented by an ind-scheme, which is ind-

proper of (perfectly) ind-finite type over Fq [PR08, Theorem 1.4], and (LG/L+G)(Fq) = G(k̆)/I.

The extended affine Weyl group W̃ of T0 in G sits in the short exact sequence

0→ X∗(T0)→ W̃ →W → 1,

where W = NG(T0)(k̆)/T0(k̆) is the finite Weyl group of T0. The Iwahori–Bruhat decompo-

sition states now G(L) =
∐
x∈W̃ IxI, and an affine Deligne–Lusztig variety (of Iwahori level)

attached to x ∈ W̃ , b ∈ G(k̆) is the locally closed subset

Xaff
x (b) = {gI ∈ G(k̆)/I : g−1bσ(g) ∈ IxI}24

of LG/L+G, endowed with the structure of a reduced sub-ind-scheme. In fact, it is even a

scheme, locally of perfectly finite type over Fq. The group Gb(k) from (3.1) acts on Xaff
x (b) by

left multiplication.

Affine Deligne–Lusztig varieties are more complicated combinatorically, as well as scheme-

theoretically, than classical Deligne–Lusztig varieties. The difference is highlighted by the fol-

lowing facts: whereas the classical variety Xw is non-empty and smooth of dimension `(w), affine

Deligne–Lusztig varieties Xaff
x (b) can be empty and non-equidimensional; moreover, the question

when Xaff
x (b) is empty and which dimension it has (depending on x, b) is a very complicated

one, and was finally essentially answered only by the work of many people (see, in particular,

Görtz–Kottwitz–Haines–Reuman [GHKR10], Görtz–He [GH10]).

7.2. Affine Deligne–Lusztig varieties of higher level. Using the setup of Section 7.1, we

sketch the construction from [Iva16]. The idea is very simple: replace the Iwahori-level model

G with G(Ok̆) = I by models of higher level. Let Φ = Φ(T0,G) be the root system of T0

in G. For a ∈ Φ, let Ua denote the corresponding root subgroup. Put U0 = T0. Fix a

point x in Bk contained in the closure of the alcove corresponding to I. Then x determines

by Bruhat–Tits theory [BT84, §6.2] a filtration Ua(k̆)r (r ∈ R) on Ua(k̆) (a ∈ Φ). Moreover,

we also have the Moy–Prasad filtration U0(k̆)r = T(k̆)r (r ∈ R) on T0(k̆). For a concave

function f : Φ ∪ {0} → R≥0, Bruhat–Tits theory gives a well-behaved Ok̆-model Gf of G, such

that If := Gf (Ok̆) is the subgroup of G(k̆) generated by all Ua(k̆)f(a) (a ∈ Φ ∪ {0}). We

have (LG/L+Gf )(Fq) = G(k̆)/If . If fI is a concave function such that IfI = I and f ≥ fI ,

then If ⊆ I and there is a morphism L+Gf → L+G obtained by a series of dilatations along

the unit section. This defines a map of fpqc-sheaves LG/L+Gf → LG/L+G. Consider the set

Df = If\G(k̆)/If of double cosets. There is a surjection Df → W̃ .

Definition 7.1. An affine Deligne–Lusztig set of level f attached to b ∈ G(k̆) and ẇ ∈ Df is

Xaff,f
ẇ (b) = {gIf ∈ G(k̆)/If : g−1bσ(g) ∈ ẇ}.

The following proposition justifies that we can call these sets varieties in many cases.

24We use the upper index “aff” to distinguish this construction from the Xw(b) inside L(G/B) in Section 3.

32



Proposition 7.2 (Proposition 2.4 of [Iva18]; Theorem 4.9 [CI18]). Under a condition on f, ẇ

(which can be expressed in purely combinatorial terms), Xaff,f
ẇ (b) is a locally closed subset of the

ind-scheme LG/L+Gf . Equipped with the reduced induced sub-ind-scheme structure, it is locally

of perfectly finite type over Fq.

The proof works by reduction to the well-known case of Iwahori or maximal compact level

affine Deligne–Lusztig varieties [HV11, Corollary 6.5].

7.2.1. Group actions. The group Gb(k) acts on Xaff,f
ẇ (b) by left multiplication. Suppose If is

normal in I. Then I acts by left and right multiplication on Df . Similarly as Tw(Fq) acts on

Ẋẇ in Section 1, the σ-stabilizer of ẇ in I,

Iẇ,f = {i ∈ I : i−1ẇσ(i) = ẇ}
acts by right multiplication on Xaff,f

ẇ (b). This action extends to the action of ZIẇ,f , where Z

is the center of G, and factors through an action of ZIẇ,f/If . Let w denote the image of ẇ

under Df → W̃ → W . We have the maximal torus Tw ⊆ G (determined only up to stable

conjugacy). Varying f (and choosing ẇ compatibly inside Df ), the group ZIẇ,f/If will contains

various quotients of Tw(k), along with some unipotent part, whose action should not appear in

the cohomology.

Example 7.3 (§3 of [Iva16]). Let G = GL2, 1 6= w ∈W , T0 the diagonal torus, I =

(
O×
k̆
Ok̆

pk̆ O
×
k̆

)
,

İh =

(
1+ph+1

k̆
ph
k̆

ph+1

k̆
1+ph+1

k̆

)
(corresponding to an appropriate choice of x ∈ Bk and functions ḟh,

h ≥ 1). Fix some r ≥ 1 and let ẇ =
(

0 $−r
−$r 0

)
∈ Dḟh

, a compatible choice for all h. If L/k

denotes unramified extension of degree 2 and Uh+1
L the (h + 1)-units, then there is an exact

sequence

0→ L+
h+1Ga → ZIẇ,h/İh → L×/Uh+1

L → 1.

The action of ZIẇ,h/İh on the `-adic cohomology of Xaff,ḟh
ẇ (1) factors through an action of

L×/Uh+1
L [Iva16, Lemma 3.12].

7.3. Examples in some Coxeter cases in type Ãn−1. This is based on either [Iva16, §3]

(GL2-case) or, more generally, [CI18, §6]. Consider the group GLn (n ≥ 2) and let

• Im (with m ≥ 0) be the preimage under GLn(Ok̆) � GLn(Ok̆/$m+1Ok̆), of upper

triangular matrices whose entries over the main diagonal lie in $mOk̆/$m+1Ok̆.
• the basic element b ∈ GLn(k̆) and κ = κ0n

′, n = n0n
′ be as in Section 5.1,

• for r ≥ 0, ẇr =
(

0 $
1n0−1 0

)
$(−r,...,−r,κ+(n−1)r) ∈ GLn(k̆) (resp. the corresponding

double Im-coset),

• V be a fixed n′-dimensional Fq-vector space with a fixed Fqn0 -rational structure.

We have the (n′ − 1)-dimensional Drinfeld upper half-space over Fqn0 , the perfection of

Ωn′−1
Fqn0

:= P(V )r
⋃

H⊆V
Fqn0−rational hyperplane

H.
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Theorem 7.4 (Theorem 6.14 of [CI18]). Let m, b, ẇr be as above. Assume r > m ≥ 0. Then

we have an isomorphism of Fq-schemes

Xaff,m
ẇr

(b) ∼=
⊔

G/GO

Ωn′−1
Fqn0
× A,

where G,GO are as in Section 5, and A is the perfection of a finite dimensional affine space

over Fq (with dimension depending on r,m). In particular, all these schemes are perfections of

smooth Fq-schemes.

The author learned from E. Viehmann about a method of proof of the disjoint decomposition

in the theorem. Viehmann also proved related results at the maximal compact level [Vie08].

Another part of the proof of Theorem 7.4 is done by explicitly parametrizing some affine Schubert

cells IvI/I (resp. their coverings IvI/Im) and using an affine analog of the (very useful, when

it comes down to computations) property of a classical Deligne–Lusztig variety attached to a

Coxeter element, that it is entirely contained in the generic Schubert cell.

Remark 7.5. (i) Taking m = 0, we obtain a description of some affine Deligne–Lusztig

varieties at Iwahori level (to our knowledge not appearing in the literature before).

(ii) Passing to the inverse limit over r and m (in some non-canonical way) gives an Fq-scheme,

whose Fq-points are precisely Xw(b)(Fq) for w =
(

0 1
1n0−1 0

)
. To obtain the Fq-points of

the covering Ẋẇ(b) from Theorem 5.1, one can apply the same procedure, after replacing

Im by the subgroup İm of matrices whose entries on the main diagonal are congruent 1

modulo pm+1

k̆
.

(iii) The passage to the inverse limit in (ii), was exactly the modus operandi in [CI18] to endow

Lusztig’s sets Xw(b)(Fq), and Ẋẇ(b)(Fq) with scheme structure. This was simplified

by [CI19b, Proposition 2.6].

7.4. Extended affine Deligne–Lusztig varieties. The variety Xaff,f
ẇ (b) is in a sense attached

to the – necessarily unramified – torus Tw, where w is the image of ẇ in W . Following [Iva18]

we will now extend this definition to cover other tori. Let E/k be a finite separable extension,

such that Ĕ = Ek̆ is the completion of a Galois extension of k. Let Gal(Ĕ/k) denote the set of

continuous automorphisms of Ĕ fixing k.

We have the Bruhat–Tits building BĔ of G over Ĕ, and Gal(Ĕ/k) acts on BĔ . In general

B
Gal(Ĕ/k)

Ĕ
6= Bk even as sets, which is due to the so called “barbs”, which form a kind of a

tubular neighborhood of Bk in BĔ and are pointwise fixed by the Gal(Ĕ/k)-action. Their size

depends on how wild the ramification of Ĕ/k is, and if E/k is tamely ramified, then they vanish,

i.e., B
Gal(Ĕ/k)

Ĕ
= Bk at least as sets (however, still not as simplicial complexes, unless E/k is

unramified), see [Rou77,Pra01]. Fix an alcove in the apartment of T0 in BĔ (it is automatically

Gal(Ĕ/k)-stable, as T0 is split). Let I ⊆ G(Ĕ) denote the corresponding Iwahori subgroup.

Fix also a point of Bk, in the closure of this alcove. As in Section 7.2 for a concave function

f : Φ ∪ {0} → R≥0 we have the corresponding integral model Gf of G. Put If = Gf (Ĕ) (it is

stable under Gal(Ĕ/k)-action, as T0 is split) and let DĔ,f = If\G(Ĕ)/If .

Definition 7.6 (Definition 2.1 of [Iva18]). Additionally to the above, fix the following data:

• A (finite) subset Σ ⊆ Gal(Ĕ/k) such that ĔΣ = k

• An element b ∈ G(k̆)
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• A map w : Σ→ DĔ,f .

The extended affine Deligne–Lusztig set attached to these data is

Xaff,Σ,f
w (b) = {gIf ∈ G(Ĕ)/If : g−1bσ(g) ∈ w(γ) ∀γ ∈ Σ}.

As in Section 7.2 we have the following result.

Proposition 7.7 (Proposition 2.4 of [Iva18]). Under some conditions on f and w, Xaff,Σ,f
w (b)

is a locally closed subset of the ind-scheme LGĔ/L
+Gf . Equipped with the reduced induced

sub-ind-scheme structure, it is locally of perfectly finite type over Fq.

7.4.1. Group actions. The group Gb(k) acts on Xaff,Σ,f
w (b) by left multiplication. Further, as-

sume If is normal in I, and let Z be the center of G. The group Z(Ĕ)I/If acts (on the right)

on the set of maps Σ → DĔ,f by w.i = i−1w(γ)γ(i) for all i ∈ Z(Ĕ)I/If and γ ∈ Σ. Then the

group

Ĩf,w/I
f = {i ∈ Z(Ĕ)I/If : w.i = w}

acts on Xaff,Σ,f
w (b) by right multiplication. Similar as in Example 7.3, this group is related to a

(stable) conjugacy class of maximal tori T ⊂ G obtained as a twist of T0 by a Galois 1-cocycle,

which is determined by the map w (if it determines one). See Proposition 7.10 for an example.

7.5. The GL2-case. In this case the varieties Xaff,Σ,f
w (b) relevant for the construction of ramified

supercuspidals are studied in detail in [Iva18] (tamely ramified case, i.e., p 6= 2) and in [Iva19]

(wildly ramified case, i.e., p = 2). To simplify the presentation, we only consider the wildly

ramified case here, as it is anyway the more interesting one. The tamely ramified case is easier

and can be obtained by a few simple modifications (in particular, taking d = 0 everywhere

below).

Remark 7.8. Note that in the wild case, there are infinitely many ramified elliptic maximal

tori in GL2, which are non-isomorphic over k (just as by Artin–Schreier theory, for any p, there

are infinitely many degree p Galois extensions of a local field of characteristic p).

Take G = GL2, let T0 the (split) diagonal torus, and let

• E/k be a degree two ramified extension with discriminant of valuation d (positive odd

integer),

• τ be the unique non-trivial element of Gal(Ĕ/E), and σ the Frobenius element of Ĕ/E,

• Σ = {σ, τ},
• b = 1, so that we obtain smooth G = GL2(k)-representations as output of our cohomo-

logical induction procedure,

• İm
Ĕ

=

(
1+pm+1

Ĕ
pm
Ĕ

pm+1

Ĕ
1+pm+1

Ĕ

)
be a level subgroup contained in the Iwahori subgroup

(
O×
Ĕ
OĔ

pĔ O
×
Ĕ

)
,

• π be a uniformizer of E, such that π2 + ∆π+$ = 0 with some ∆ ∈ Ok (ord(∆) = d+1
2 ).

Put ε := τ(π)π−1 ∈ UdE rUd+1
E ,

• for r ≥ 1, wr =
(

0 πrεb
r
2 c

π−rεb−
r+1

2 c 0

)
. Let wr : Σ → Dm be the function given by

wr(σ) = 1, wr(τ) = wr.

We denote the varieties from Definition 7.6 corresponding to these choices by Xaff,m
wr (1).

Proposition 7.9 (Proposition 2.5 and Section 3.2 of [Iva19]; Theorem 3.8 and Section 5.1

of [Iva18]). With above choices, Xaff,m
wr (1) is a discrete reduced scheme (a disjoint union of
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countably many points), in some sense naturally parametrized as

Xaff,m
wr

(1) ∼=
∐

g∈G/Ik
g.
{(

pE/p
r+d+m+1
E r p2

E/p
r+d+m+1
E

)
×
(
UE/U

m+1
E

)}
,

where Ik is an Iwahori subgroup of G. The group actions of G × Ĩm,wr/Im can be described by

(complicated) explicit formulas.

Write Γ̃ := Ĩm,wr/I
m. In contrast to the unramified case in Section 7.2, this group gets more

complicated in the present situation. Nevertheless it is still related to the (conjugacy class) of

tori in GL2, which are isomorphic to ResE/k Gm.

Proposition 7.10 (Proposition 2.10 of [Iva19]; Lemma 3.5 of [Iva18]). Suppose r ≥ m−d+1
2 and

2r > d. Let Γ′ be the commutator of Γ̃. Then there is a (non-split) short exact sequence of finite

abelian groups

0→ E×/Um+1
E → Γ̃/Γ′ → OE/pdE → 0

The condition 2r > d in the proposition is only there to simplify the (still hard) computations

in [Iva19], and should in principle be removable. The condition r ≥ m−d+1
2 is much more

interesting, as the following section will show.

7.6. Ramified supercuspidals. In Theorem 7.4 we made the assumption r ≥ m, due to fact

that the varieties Xaff,m
wr (b) only behave well if this holds (or at least, our proof only applies

in this case). The representations realized in the cohomology of Xaff,m
wr (b) (more precisely, its

covers of level İm), at the end do not depend on the specific choice of r (as long as r > m), as

Ẋaff,m
wr (b) for fixed m but different r’s only differ by an affine space.

Not so in the ramified situation of Section 7.5: fixing the parameter m and varying r will

change the representations realized by H0
c (Xaff,m

wr (1),Q`). We have the following observation.

Observation 7.11 (Section 2.6 of [Iva19]). Estimating dimQ`
H0
c (Xaff,m

wr (1),Q`)θ̃ against known

formal degrees of some ramified irreducible representations produced via Bushnell–Kutzko types,

predicts that for varying r,m, the smooth G-representation H0
c (Xaff,m

wr (1),Q`)θ̃ should be irre-

ducible precisely when r = m−d+1
2 .

In particular, for r > m−d+1
2 , we cannot hope for H0

c (Xaff,m
wr (1),Q`)θ̃ to be irreducible G-

representation for a smooth character θ̃ : Γ̃ → Q×` , and in general this also isn’t true. For

r = m−d+1
2 , we indeed obtain supercuspidal representations, as the theorem below shows. To

describe which supercuspidal representations we get, we observe the following slightly exotic

isomorphism. Let r > m−d+1
2 and 2r > d. Let

Π := E×/Um+1
E ×pr+dE /pm+1

E
prE/p

m+1
E , (7.1)

be the pushout along the natural embedding pr+d/pm+1
E ↪→ prE/p

m+1
E and the map pr+dE /pm+1

E ↪→
E×/Um+1

E , x 7→ 1 + x.

Proposition 7.12 (Proposition 2.12 of [Iva19]). Assume r ≥ m−d+1
2 and 2r > d. There is an

isomorphism β : Π
∼→ Γ̃/Γ′ (depending on the choice of the uniformizer π modulo UdE).
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Remark 7.13 (Remark 2.13 of [Iva19]). The isomorphism β is slightly exotic. At least if r ≥ d,

one has a natural isomorphism

Γ̃/Γ′ ∼= E×/Um+1
E ×Ur+dE /Um+1

E
U rE/U

m+1
E .

Now U r+dE /Um+1
E

∼= pr+dE /pm+1
E , via 1 + x 7→ x. But U rE/U

m+1
E is obviously non-isomorphic to

prE/p
m+1
E if 2r < m+ 1 (the second group is killed by 2, the first has non-trivial 4-torsion).

The dual β∨ : (Γ̃/Γ′)∨ ∼→ Π∨ of β transforms characters of Γ̃ into characters of Π. But to

give a character χ of Π is exactly equivalent (after an embedding ι : E× ↪→ G is fixed) to give a

cuspidal type in the sense of Bushnell–Henniart [BH06], that is, some amount of quite explicit

algebraic data, which determine a supercuspidal representation BHχ of G ( [Iva19, Definition

3.13]). For GLn, the construction of these supercuspidals out of the algebraic data is precisely

the content of the theory of Bushnell–Kutzko types [BK93] (for the GL2-case, see also [BH06]);

for all reductive groups, but with a restriction to only “tamely ramified supercuspidals”, the

corresponding theory was developed by Yu [Yu01]. The following result concerns the comparison

of these algebraic construction with the cohomology of our zero-dimensional extended affine

Deligne–Lusztig varieties.

Theorem 7.14 (Theorems 1.1 and 1.2 of [Iva19]). Let θ̃ : Γ̃→ Q×` be generic. If r = m−d+1
2 , the

G-representation H0
c (Xaff,m

wr (1),Q`)θ̃ is irreducible, supercuspidal and is isomorphic to BHβ∨(θ̃).

All smooth irreducible supercuspidal representations ρ of G, which are attached to ι(E×) ⊆ G

via Bushnell–Kutzko types, whose level cannot be lowered by a central twist, and which satisfy

2`(ρ) ≥ 3d are isomorphic to some H0
c (Xaff,m

wr (1),Q`)θ̃.

Among the representations in the theorem also exceptional ones [BH06, 44.1 Definition] ap-

pear, i.e., those whose L-parameter does not factor through a torus. The proof of this theorem

relies on a (quite technical) computation of traces of enough elements on both sides. The anal-

ogous result in the tamely ramified case is [Iva18, Theorem 1.2].

Remark 7.15. In Remark 7.5(ii),(iii) it was mentioned that forming an inverse limit over r ≥ m
of affine Deligne–Lusztig varieties (in some non-canonical way!) gives the space Xw(b). In the

present situation,

• one cannot form a compatible system of Xaff,m
wr (1) for r = m+d−1

2 →∞ in a similar way.

• one can form a compatible system of Xaff,m
wr (1) with r ≥ m+d−1. This gives in the limit

a version of Xw(b) (that is, something inside L(G/B⊗k̆ Ĕ)) which is in a sense “attached

to a ramified torus”, but its cohomology does not realize supercuspidal representations

(cf. Observation 7.11).

From Theorem 7.14 and Remark 7.15 we draw the following conclusion, summarizing the

content of the last sections.

Conclusion 7.16. Extended affine Deligne–Lusztig varieties are a useful tool to cohomologically

realize the construction of supercuspidals associated with ramified tori via Bushnell–Kutzko’s and

Yu’s cuspidal types. On the other side, their cohomology seems not to realize local Langlands

correspondences. A naive parallel construction “inside L(G/B)” (in the spirit of Section 3) does

not even properly realize supercuspidals.

Question 7.17. It would be interesting to clarify the following:
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• Compute the representations H0
c (Xaff,m

wr (1),Q`)ρ, where ρ is an irreducible representation

of Γ̃ of dimension > 1 (in particular, ρ will not factor through Γ̃/Γ′).
• What happens in the case r < m−d+1

2 ? Also, in the unramified situation (Section 7.2),

determine Xm
wr(b) for r < m.

8. Further directions of study

In this final section some open questions resp. further directions of development are collected:

1. Investigate further representability properties of the arc-sheaves Xw(b). In particular,

prove an optimal result towards Conjecture 3.6.

2. Solve the second half of [Boy12, Problem 1], i. e., make sense of the `-adic (co)homology

of Xw(b), generalizing the ad hoc construction from Section 5.3.

3. Study the torsors Ẋẇ(b) over Xw(b) in situations beyond elliptic tori and GLn. Is there

a relation to stable vs. rational conjugacy classes of tori?

4. For elliptic tori, generalize Theorem 6.2 (Mackey formula without restriction to primitive

characters) and Theorem 6.7 (cuspidality of the induced representation) to all reductive

groups G. A purely group-theoretic generalization is at least not obvious, cf. Remark

6.4 and Section 6.3.

5. Obtain a p-adic version of [Lus76a], which (roughly) means to describe the single coho-

mology groups of Xw(b) as well as the Frobenius action in them.

6. Find a natural generalization of Definition 3.2 to ramified tori.

7. Study the relation between extended affine Deligne–Lusztig varieties and (ramified) cus-

pidal types of Bushnell–Kutzko and Yu.

8. Develop the corresponding theory with F`-coefficients instead of Q`-coefficients.

This list is by no means complete, it just gives an impression of the authors opinion, which

kind of questions related to the topics explained above are interesting and could probably be

solved with today’s state of technology.
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