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ABSTRACT. We essentially complete a program initiated by Boyarchenko—
Weinstein to give a full description of the cohomology of deep level
Deligne-Lusztig varieties for elliptic tori. We give several applications
of our results: we show that the ¢-weight part of the cohomology is very
often concentrated in a single degree, and is induced from a Yu-type
subgroup. Also, we give applications to the work [Nie24] of the second
author on decomposition of deep level Deligne—Lusztig representations,
and to Feng’s explicit construction of Fargues—Scholze parameters. Fur-
thermore, a conjecture of Chan—O1i about the Drinfeld stratification fol-
lows as a special case from our results.

1. INTRODUCTION

In [BW16] Boyarchenko—Weinstein started a program toward a complete
description of the cohomology of certain higher-dimensional varieties over
ﬁq equipped with interesting group actions. The varieties they considered
came in two disguises: the first were related to special affinoids in Lubin—
Tate spaces, and the second were very close to deep level Deligne-Lusztig
varieties introduced in [Lus04, CI19]. In this article we introduce the notion
of convex elements in a Weyl group, and essentially complete the program of
Boyarchenko—Weinstein for deep level Deligne-Lusztig varieties associated
to convex elements. We then give some applications. We note that various
related /partial results in this direction were obtained in [Cha20, CI21, IN24]
on deep level Deligne-Lusztig varieties of Coxeter type.

Let k be a non-archimedean local field with residue field [F, of charac-
teristic p. Let k be the completion of the maximal unramified extension
of k. Let F' denote the Frobenius automorphism of k over k. Let G be a
reductive group over k, which splits over k. Let T be a k-rational lvc—split
elliptic maximal torus of G. Let U be the unipotent radical of a k-rational
Borel subgroup of G containing 7.

Let x be a point in the Bruhat—-Tits building of G over k. Bruhat—Tits
theory attaches to it a parahoric group Gx over the integers Oy, of k. By the
work of Lusztig [Lus04] and Chan and the first author [CI19], one associates
with T, U, x and any r > 0 a deep level Deligne-Lusztig variety

Xr = XT,U,x,r
1
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over IF,, equipped with an action of Gx(Of) x Tx(Oy), where Tx is the closure
of T in Gx (see §4 for definition).

For the rest of the introduction, we fix a prime number ¢ # p and
a smooth character ¢: Tx(O) — Q,. The ¢-weight part R%Uﬂn((b) =

Sien HA(X,,Qp)[4] of the (equivariant) f-adic Euler characteristic of X,
is a virtual Gx(Oy)-representation.

Assume that ¢ admits a Howe factorization (G, 7, ¢i)—1<i<d in the sense
of [Kall6, §3.6]. In [Nie24] the second author gave a very explicit decompo-
sition of Y, .(4):

- 1Gx(O 0
(1.1) RS, (6) = nd=(34) (9 © RE1r0(6-1) )

where Ky = Ky x is a second Op-model of G determined by the Howe da-
tum (G%, ;) _1<i<a, such that Ks(Or) C Gx(Of) is a “Yu-type subgroup”,
and R%(;Lo(qb,l) is a classical Deligne-Lusztig representation, regarded as
a ICy(Oy)-representation by inflation. Here, k4 is a Ky(Oy)-representation,
defined in cohomological terms, which is irreducible by [Nie24, Proposition
1.4]. As a comparison, there is the so-called Weil-Heisenberg representation
k(¢) appearing in J.-K. Yu’s construction. One can expect that x, and
k(¢) differ precisely by the quadratic character of Fintzen—Kaletha—Spice
[FKS23, Theorem 4.1.13], see [Nie24, Remark 1.10].
There is also a second variety with a much simpler geometric structure,

Z(b,U,T‘a

also equipped with the action of Gx(Of) x Tx(Of) (see §6 for definition).
It was first considered in special cases by Chen—Stasinski [CS17, CS] and
plays also an important role in [Nie24]. Due to its simpler geometry, the
cohomology of Zy 17, is much easier to describe than that of X,.

Our main technical result is the following (degreewise) comparison theo-
rem. To state it we need the notion of convex elements of the Weyl group W
of T in G, introduced in §3. Convex elements generalize Coxeter elements
and share many properties with them. They have the advantage that any
o-conjugacy class of W contains a convex element of minimal length. This
and further properties of convex elements are shown in [NTY24].

Theorem 1.1. Suppose the relative position of U and F(U) in the Weyl
group of T is a convex element of the Weyl group (cf. §3). Then there is a
Gx(Ok)-equivariant isomorphism

RFC(XT’7 @6) [¢] = RFC(Z¢,U,T7 @Z) [¢] [Qm]

for some (explicit) shift m € Z>g.
If, moreover, G° is a standard Levi subgroup with respect to U (such U
always exist by Proposition 3.5), then

i e ~ 11 3Gx (O i—2n 0 ey
H(X,, Q)l¢] = £ind (04 (rs © B2 (Xfynco 00 Qlo-1])
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where X%%7x70 is the classical Deligne-Lusztig variety for reductive quo-
tient of (GO)x and n € Z is some (explicit) shift. In particular, if ¢_1 is
non-singular in the sense of [DL76, Definition 5.15], the cohomology groups
Hi(X,,Qy)[#] concentrate at a single degree.

The first part of Theorem 1.1 follows directly from Theorem 4.1 and
Proposition 6.1. The second part is Theorem 6.6. The proof is of geometric
flavor and relies on an analysis of the geometry of X, and Zy,. The
methods used in the proof resemble those from [IN24]. Now we discuss
some applications of Theorem 1.1. Most importantly, Theorem 1.1, along
with further results from [Nie24], implies that ¢-weight part of cohomology
of X, is often concentrated in a single cohomological degree.

Corollary 1.2 (see Corollary 6.7 for a precise statement). Let T,U be as
in Theorem 1.1 and assume that GV is a standard Levi subgroup with respect
to U. Suppose that ¢_1 is non-singular for the special fiber of (G°)x in the
sense of [DL76, Definition 5.15], then there exists a unique integer Ny such
that H (X, Qy)[¢] # 0 if and only if i = Ng.

We also have the following direct consequence.

Corollary 1.3. Let T, U be as in Theorem 1.1. Then the (derived) Gx(O)-
representation RT'o(X,., Qy)[¢] is induced from Ky(Ok).

Proof. This follows directly from Theorem 1.1 by (6.1). O

Moreover, Theorem 1.1 can be regarded as a stronger form of [CO23,
Conjecture 6.5], which follows as a special case. For any (twisted) rational
Levi subgroup T' C L C G, there is a closed subvariety XﬁL) C X,, called a
Drinfeld stratum, see [CI21, §3], [CO23, §6.2].

Corollary 1.4. Let T C L C G be a twisted rational Levi subgroup. If ¢

is such that G° C L, then RU.(X,,Q,)[¢] = RFC(XT(L),@Z)[qZ)]. With other
words, [CO23, Conjecture 6.5] holds true.

Proof. This follows from Proposition 5.1 by proper base change. ([

A fourth application concerns [Nie24]. Let R%Uﬂn((b) denote the ¢-weight
part of the equivariant /-adic Euler characteristic of Zy . A major step in
[Nie24] towards the proof of (1.1) was to show that

(1.2) R0,(6) = RE0,(0)
as virtual Gx(Oy)-representations, see [Nie24, Theorem 5.7]. This relied in
an essential way on inner product formulas for R%Uyr(qb), proven by Chan
[Cha24]. Now notice that (1.2) also follows directly from Theorem 1.1, giving
a more geometric proof of [Nie24].

At the end of the introduction we give more applications of Theorem 1.1.
Now we discuss the assumption on U in Theorem 1.1, showing that it is
not restrictive in the following sense. For any T, there is a choice of U,
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such that the relative position of U with F(U) satisfies this assumption
and is, moreover, of minimal length in the (twisted) conjugacy class of the
Weyl group containing it; this is shown by Tan, Yu and the second author
in [NTY24], see §3. Note also that all the p-adic Deligne-Lusztig spaces
X (b) from [Iva23] (equipped with G(k)-action and closely related with X.)
attached to minimal length elements of a fixed twisted conjugacy class are
equivariantly isomorphic by [Iva23, Corollary 7.25]; in particular, the specific
choice of U becomes irrelevant.

Pro-unipotent Deligne—Lusztig varieties. In the second part of the
article we prove [IN24, Conjecture 1.2], thereby generalizing the [IN24, The-
orem 1.1]. Let G denote the pro-unipotent radical of Gx and let 7 be the
closure of 7" in g; . Very similar to X, one can define a scheme X over Fq
and its truncations X (such that X = lim XF), equipped with natural
G (Or) x T (O )-actions. See §7 for precise definition.

In loc. cit. we gave an essentially complete description of the homology
of X* as a (GT)F x (T*)F-module under some mild restrictions on p and
the condition that T" C G is of Coxeter type. Here, we generalize this in
two ways: (1) we prove the result for all elliptic tori 7" and (2) we relax the
assumptions on p (we only require p not be a torsion prime for G). As in
loc. cit., we phrase our result in terms of the homology f,Q, of the structure
map f: XT — SpecF, (whose ¢-weight part agrees up to a shift with the
¢-weight part of the compact support cohomology of X, for sufficiently big
r). We refer to [IN24, §2.7] for a brief discussion of the homology functor.
Let N denote the order of F' as an automorphism of ®. The following
generalizes [IN24, Theorem 1.1] and proves [IN24, Conjecture 1.2], except
that in part (3) we have to assume convexity and in part (2) a different sign
might appear.

Theorem 1.5. Assume that T is elliptic. Let x: TH(Or) — Q, be a smooth
character. Then the following hold.

(1) Assume that p is not a torsion prime for G. The homology f,Q,[x] is
non-vanishing in precisely one degree s, > 0.

(2) Assume that p is not a torsion prime for G. The Frobenius FN acts in
the space Hy (X, Qp)[x] := H > fyQ,[x] as multiplication by the scalar
(—1)5;<q“”><1\7/2 with some s;( € Z. In particular, all Moy—Prasad quotients
of XT are F,~-mazimal varieties.

(8) Assume the element wo € Wo attached to F in §2.4 is convex. For vary-
ing x, Hy, (X1,Qp)[x] runs through pairwise non-isomorphic irreducible
smooth G (Oy)-representations.

First, we remark that for part (3) the same proof as in [IN24, §7.1] ap-
plies, as for convex elements the (twisted) Steinberg cross-section map is an
isomorphism by Theorem 3.3(2). It remains to prove parts (1) and (2) of
Theorem 1.5. We do this in §7 by following the strategy of [IN24, §5].
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Further applications. Exploiting concentration in one degree, our results
apply to (1) T. Feng’s explicit calculation of Fargues—Scholze parameters
[Fen24] (we refer to [Fen24, §10] for the relevant setup) and (2) trace formulae
in terms of X, for elements in GI acting on RT.(X,, Q,)[¢].

Corollary 1.6. Let T,U be as in Theorem 1.1. Assume that G° = T and
that p is not a torsion prime for G. Then the RT.(X,.,Q,)[¢] is irreducible,

concentrated in a single degree sy, € Z and FN acts in Ho*" (X, Q) by the

scalar (—1)%.rqNso.r/2

(1) If ¢: T(k) — Q, with q5|7;(((9k) = ¢, then [Fen24, Corollary 10.4.2] ap-
plies and provides an explicit description of the L-parameter of the smooth

G(k)-representation mp ;5 = c- 1ndG((k)) G (O k)RFC(Xr,@g)[gé] (where we

extend RU(X,,Q,)[¢] to a T(k)Gx(Ox)-representation via ¢).
(2) Let g € G(Ok). Then

for some 5;5,r € Z. In particular, we get:

s 1 So,r s, r
br(g, H* (X0, Q) [6]) — ;TF P X 00 #S

teTt
where Sy = {x € X, (Fy): gFN (2) = xt}.

Proof. Indeed, by Corollary 1.4, RT.(X,,Q,)[¢] = RT(X'",Q,)[¢]. But

X7(«T) is a disjoint union (indexed over G{') of copies of the scheme X, from
§7 and by Theorem 1.5, RT'.(X.F, Q/)[¢] is concentrated in one degree. This
implies concentration in one degree. The assumption G = T and [Kall9,
Lemma 3.6.5] imply Stabyr(¢) = 1. Then RL.(X,,Q,)[¢#] is irreducible
by (for example) [Nie24, Theorem 1.6]. Now, for claim (1) note that our
techniques apply without change when the coefficient field Q is replaced by
any algebraically closed field of characteristic ¢ # p and claim (2) follows
from [Boy12, Lemma 2.12]. O

Acknowledgements. The first author gratefully acknowledges the sup-
port of the German Research Foundation (DFG) via the Heisenberg pro-
gram (grant nr. 462505253). He would like thank Jessica Fintzen and
David Schwein for several clarifying explanations (in particular, for explain-
ing Lemma 7.8 to him).

2. NOTATION AND SETUP

2.1. General notation. We let k C k with integers O C O, residue field
extension F, C F,, and Frobenius F be as in the introduction. We denote
by w a uniformizer of k.

For a perfect Fj-algebra R, put W(R) = R[w] if char(k) > 0, resp.
W(R) = W(R) ®z, Oy if char(k) = 0, where W (R) denotes the ring of
Witt vectors of R. In particular, we have W(F,) = O and W(F,) = O.
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Let []: R — W(R) be the Teichmiiller lift if char(k) = 0, resp. [z] = z if
char(k) > 0.

Let X be an O-scheme, which is affine and of finite type over O. Applying
the (perfect) positive loop functor LT to X yields a perfect affine F -scheme

X =LtX satisfying X(R) = X(W(R))

for any perfect F-algebra R. If X is defined over Oy, then X is naturally
defined over Fy, and we denote by F' the (geometric) Frobenius acting on
X(F,), so that XI' = X(F,) = X(O).

2.2. Groups. We fix a reductive group G defined over k£ and split over k.
We write Z(G) for the center of G, Gge, for the derived group of G, and Gy
for the simply connected cover of Gyer; we write Tyer, Tsc for the preimage
of T in Gger, Gsc, respectively.

Let x be a point of the (reduced) Bruhat-Tits building of G over k. By
Bruhat—Tits theory there is an associated connected parahoric Og-model Gy
of G, equipped with filtration by the Moy—Prasad subgroups G, for r € R>q
(Gx(O) contains exactly the affine roots f with f(x) > r. We let

J = Jumps(x, G) = {r € Rsq: GL # GV for all ¥ > r},

This is a discrete subset and for r € J we denote by r+ € J (resp. r—) its
descendant (resp. ascendant). Moreover, for r € R>q such that ry <r < r;+
with r; € J, we put 7+ = r1+.

For any s < r € J we obtain the Fy-rational perfectly smooth affine
(Moy—Prasad) group scheme

G; = G3/Gy,

where G5 = L*GS. If s = 0, we also write G, for G?; if r is fixed and clear
from the context, we write G, G* for G,, GS. Note also that (G#)¥ is a finite
Moy—Prasad subquotient of the p-adic reductive group G(k).

If H C G is a closed subgroup defined over l?:, we may consider its closure
H in G, apply LT and pass to (sub)quotients to obtain a closed subgroup

H? C G (see [CI19, §2.6]). If H was k-rational, then HY is F-stable.

2.3. Pinning. We fix a k-rational, k-split maximal torus T of G, we denote
by Ng(T) its normalizer. We identify its Weyl group W = Ng(T)/T with
the set of its lvc-points; it is endowed with a natural action of F'. We denote by
X.(T), X*(T') the groups of (co)characters of T}, equipped with natural F-
actions, and by (,): X*(T') x X,(T) — Z the natural W- and F-equivariant
pairing.

We fix a Borel subgroup T' C B C G defined over Ivf, we denote by U
the unipotent radical of B, and by U the unipotent radical of the opposite
Borel subgroup. We write ® C X*(T') for the set of roots of T'in G, and by
&t resp. ®~ the subset of positive roots corresponding to U resp. U. For
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each a € @, let Uy: G — G denote a fixed parametrization of the root
subgroup of a. For V C G, we write &y = {a € O: Ua(lvc) C Py}

2.4. Factorization of Frobenius. There is a unique element w € W, such
that F'B = * B. Moreover, for any lift @ € Ng(T)(k), Ad(w) Lo F: G(k) —
G (k) fixes the pinning (T, B) of G, and hence defines autormorphism o of the
Coxeter system (W, S), where S is the set of simple reflections determined
by B. Moreover, there is a unique automorphism of X*(7T'), again denoted
by o, such that the F-action on X*(T') is given by qwo. This defines an
action of W x (o) on X*(T') satisfying o(®1) = &7.

2.5. Affine roots. Denote by T the connected Néron model of T. Then

v

T (0) is the maximal bounded subgroup of T'(k). Moreover, for r € Z>q,
TO) ={teT(O): ords(x(t) —1) >rVx e X*(T)}
defines a descending separated filtration on T'(k), satisfying 7(0)° = T(0O).
For r > 1 one has an isomorphism
Vi=X.(T)@F, = T(O)/TO)", Aoz A1+ [z]o").

We denote by @4 = & x Z the set of affine roots of 7' in G (with respect
to a fixed point in the apartment of 7" in the Bruhat—Tits building of G).
For f € @, we write ay € @ for its vector part and ny € Z for the integer

such that f = (ayf,ns). We write D = Do L Z>q for the enlarged set of
affine roots, with the affine root subgroup corresponding to r € Z>( being
the r-th slice of T(O). There is a natural F-action on ®,g, and we extend

it to an F-action on ® by letting F' act trivially on Zx.

3. CONVEX ELEMENTS

We introduce convex elements in the Weyl group W. They behave like
Coxeter elements in many respects, but they have the advantage that any
o-elliptic conjugacy class contains a minimal length element which is convex,
as is proven by the Tan, Yu and the second author in [NTY24]. In later sec-
tions we will make use of the fact that higher level Deligne-Lusztig varieties
attached to convex elements of W can be studied by similar techniques as
in the Coxeter case.

3.1. Convex elements in the Weyl group. Let x € W x (o). Set
A, =0T Na(d).
For a € ®F we define
nz(a) = min{i € Zs1;2%(a) € T}
Definition 3.1. We say an elliptic element x € Wo is quasi-conver if

na(a+ B) < max{ng (@), na(5)}

for all a, B € ®* such that o 4+ 3 € ®. Moreover, we say x is convez if both
x and ! are quasi-convex.
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Lemma 3.2. Let x be a elliptic quasi-convex element. Let a, 3 € ®T and
i, € Z>1 such that ia+ jB € ®T. Then ni(ia+ j8) < max{n,(a),n;(B)}.

Proof. We always can find a sequence of roots yo,7v1,...,7 = ta + j8 with
o and Y, —Ym—1 (V1 < m < t) equal either « or 5. Then the lemma follows
by induction from the definition. ([l

Convex elements were studied in [NTY24], where the following was proven.

Theorem 3.3 ([NTY24], Theorem 0.1). The following statements hold true.
(1) In each elliptic W-conjugacy class of Wao, there exists a minimal
length element x which is convex.
(2) (Steinberg cross-sections) The map g,y — g ‘yzo(g)z~1: (UN*7U) x
(UN*U) — *°U is an isomorphism.

We will need further properties of convex elements.

Lemma 3.4. Let x € Wo be convex. Let o, 5 € ® such that f—a € Z>oA5.
Then

(1) if « € ®F then ny—1(8) < ng—1(a);

(2) If a, v () € @~ then either B € ®F or ny(B) < ng(a).

Proof. (1) By assumption, there exists a sequence of roots

a:707717"'77m:5
such that 4; —v;—1 € A;. Since 27! is quasi-convex and n,1(A,) = {1} we
deduce that
ng—1(a) = ng-1(30) = ny—1(n1) = -+ 2 ng=1(Ym) = nz-1(6)

as desired.
(2) We can assume that a, 271 (a), 3 € ®~. Since 27 1(A,) € &, we have
r71(B) € @~ and n,(z7'(A:)) = {1}. Note that

27 (B) — 27 (@) € Zzoz T (Ag) = —Zz0A 1.
Thus, by (1) we have
ne(8) +1=nz(z7"(8)) < na(z™ (@) = na(e) + 1,
which implies that n,(8) < n;(«) as desired. O
3.2. M-standard convex elements. Let M C G be an F-stable Levi

subgroup containing fixed maximal torus T. We denote by Wy C W the
Weyl of M.

Proposition 3.5. There exists a Borel subgroup T C B such that

(1) M is a standard Levi subgroup with respect to B;

(2) the relative position x € Wo of B and FB is a convezr element with
respect to the Cozeter system (W, S) attached to B;

(3) x is of minimal length in its Was-conjugacy class.
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Proof. Let V = R® be the Fuclidean space together with an inner prod-
uct preserved by W x (o). Since T is elliptic, there exists an orthogonal
decomposition

V - @?:1‘/7;7

where each V; is an F-stable subspace of dimension < 2. Moreover, for each
i there exist 0 < §; < 7 such that F(v) + F~1(v) = 2cosb; - v for all v € V.

Let V3 C V be the subspace spanned by the roots of M. Denote by Vﬁ
be the orthogonal complement of Vj;. As M is F-stable, Vﬁ is preserved
by wo. By reordering the subspaces V;, we may assume that V]\J/:, =, Vi
for some 0 < m < n and 0,41 < Oppy2 < -+ < 6,. By [HN12, Lemma 5.1],
there exists a Weyl chamber C C V for ® such that for each 1 < i < n
the Hausdorff closure C' contains a ®-regular point of EB§:1V1-. Here for any
linear subspace V' C V a point v' € V' is called a regular points of V' if for
each o € @, (a,v’) = 0 implies that («, V') = {0}.

Let T'C B be the Borel subgroup associated to the Weyl chamber C. As
C contains a regular point V]\J;I = @2, Vi, M is a standard Levi subgroup
with respect to B. Moreover, by [NTY24, Theorem 3.4], the relative position
of B and F'B is a convex element with respect to the Coxeter system (W, .S)
attached to B. Moreover, as Vy; = EB?:mHVj and 0,11 < Opyo <o - < O,
it follows from [HN12, Proposition 5.4] that x is of minimal length in its
Ws-conjugacy class. The proof is finished. O

3.3. Action of convex elements on a Lie algebra. Let z € W x (o).
For A C ® we consider the following [F,-vector spaces

Hy = @qua C Hyp = @?qea.
acA acd
Assume that A = 2(A). Then we denote by F' = F4 the Frobenius map on
H 4 given by F(ceq) = cley ) for ¢ € F,.

Let B C —A; = ®~ Nx(®") such that for any o € A, B € B and i € Z>;
we have a + i € Aif a+if € ®. For 8 € B and c € [, we define a linear
map

Adﬁ(c) cHy — Hy, eq+—eq+ Z Ca7ﬁ7iciea+iﬂ,
1>1:

a+iBed

where c, 8 € Fq are arbitrary but fixed constants.
Assume B = {f1,...,0n}. Let ¢ = Adg,(c1) o --- o Adg,(c,), where
cj € F, for 1 < j < n are arbitrary but fixed. For a fixed z € Ha, let

V(p,x,z) :={w € Hy;p(w) — F(w) — 2 € Han—A, }-

This is a closed subvariety of H4. In §5 we will use it to describe the fibers
of a deep level Deligne-Lusztig variety over one of a shallower depth. Now
we prove the following general structure result for V (¢, z, z).
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Proposition 3.6. Let notation be as above. Assume that x is convex. Then
the natural projection Haq — Hana, induces a homeomorphism

V(¢, Z, Z) = HAﬂAw-

Proof. Write w = 7 c 4 Wa€a;, 2 = D qeq%ala and (W) = 3 ey Yala
with wa, 2a, Yo € Fy. Then the variety V (¢, z, 2) is defined by the equations

(Ea) Yo — w?

r=1(a) 2o = 0,
where « ranges over the roots in A\ (—Ay).

For a € A, we set I'y = (o +Z>oB) N A. As B C —A,, it follows from
the definition of ¢ that
Yo € Z clws,

IS

where ¢ € F, are some constants such that ¢ = 1. Hence the equation
(E,) is equivalent to

(E(/)z) Wo — wgfl(a) = Za — Z ng,},,
vEla N {a}

Now we show that given z and (wq)acana, there exists a unique tuple
(Wa)aeca~ A, such that the equations (E.,) hold for all @ € AN (—A;). To
this end, for o # 8 € &1 we define 8 < a if either n,-1(8) < ny—1(a) or
ng-1(8) = ny—1(a) and f — « is a sum of roots in A,.

First we claim that w, is determined by the equation (E.) for o € (AN
®t) A, (by which we mean that we may eliminate equation (E’,) along
with the variable w,). We use induction on the partial order < on AN ®*.
As a € (AN ®T)\A,, we have 27 (a) € ®* and hence z7'(a) < a.
Moreover, by Lemma 3.4 (1) we have v < a for v € T, \ {a}. By induction
hypothesis, w,-1(,) and wy for v € I'y \ {a} are already determined. Hence
W, 1s determined by the equation E!, and the claim is proved.

It remains to show that w, is determined by the equation (Eg’c (a)) for
a € AN®~. We argue by induction on ny(a). In view of (Eg’c(a)), W
is determined by z,() and w, for v € I'y(,). So it suffices to show w, is
already determined for v € I'y(,). Indeed, if v € T, this follows from the
previous claim. Now we assume v € &~ and hence z(«) € &~. By Lemma
3.4 (2), we have ng(y) < nz(z(a)) < nz(a). Thus w, is determined by the
induction hypothesis. Thus w, is determined by the equation (E!, (a)), and
the proof is finished. O

Proposition 3.7. Let notation be as above. Assume that x is convex. Then
the map (x,y) — —¢(x) +y — F(x) gives an isomorphism

Hprp@+yno+ X Han-a, — Hyana+)-

Proof. By Proposition 3.6, this map is injective. It suffices to show it is
surjective, that is, for any 2z € Hyane+), there exists w € Hpngya+)na+
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such that ¢(w) — F(w) — 2 € Hy(an—na,)- This is equivalent to the following
statement:

(a) For any z € H gng+, there exists w € H jny(¢+)ne+ such that —p(w)+
FYw)—z¢€ Hanna, - Here p = FlogpoF = Hvex—l(B)ﬂAx_l Ady(dy)
for some d., € F,.

Now we prove (a). Let z =) ca€q € Hpne+ for some ¢, € F,. Define

ng(z) = max{ng(a);cq # 0}.
We argue by induction on ny(z). If ny(z) =1, that is, 2 € Hana _, and we
may take w = 0. Assume ng(z) > 2. Let 2" =3, . () '
Then n,(z — 2') < ng(z) — 1 and F(2') € Hyng@+)na+- Moreover, as x is

convex and ng(y) =1 for v € A -1, we have

n(e(F(2) < ne(F(2) = ne(2') = 1 =na(2) — L.

Cyey € HAO<I>+~

Thus
ne(p(F(2) = FTHF() = 2) = na((F(2) = (2 = 2)) <na(2) — L.
Then the statement follows by induction hypothesis. The proof is finished.
(]
4. DELIGNE-LUSZTIG VARIETIES

4.1. Deligne—Lusztig varieties. Recall the notation from §2.2. Fix r €
J. We have the Fs-group G = G, equipped with F,-Frobenius F' and its
subgroups T, U, U. Consider the F,-varieties

X, ={ge€G: g 'F(g9) € Un FU}
Y, ={g€G: g 'F(g) e T(UNFU)}/T.

There is an obvious map h: X, — Y,., which is an étale TF-torsor with T*
acting by right multiplication. Hence

mQ, = EBQ@N‘:@,
0

where 6 ranges over characters of 7 and & is the associated local system
on Y,. For any i € Z we have

HY(X,,Q)[b] = HA(Y;, ).

4.2. Howe strata. Fix a character ¢ : TF — @EX of depth(¢) < r. Then ¢
induces a character T — @fx , which we again denote by ¢. Assume that ¢
admits a Howe factorization in the sense of [Kall6, §3.6] and denote it by
(G, ¢i,7i)—1<i<q- That is,

T=G'CcL=G"cG'c...¢g¥tcqd
is a sequence of twisted Levi subgroups, ¢; (0 < i < d) is a character of
(GHY, which is (G : G™1)-generic for i < d, such that ¢ = ngq &;.
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Moreover, there is a sequence 0 = r_; < rg < -+ < rg4_1 < rgq of integers
such that ¢; has depth r; for 0 < ¢ < d—1; ¢g = 1if ry_1 = rqg and ¢4
has depth r4 otherwise; ¢_1 = 1 if G° = T and ¢_; has depth 0 otherwise.
For o € ® we denote by i(a) the unique integer 0 < i < d such that
a € ®(G",T)\ ®(G"1,T). Define r(a) = rj()—1-

We define subgroups of G as follows.

qu) = (GO)O(Gl)m/Z . (Gd)Td*1/2;
G0)0+( )r0/2+ . (Gd)rd’1/2+;

= (
H¢ = (G)*(G1)™/? -+ (Gg) /%,
E¢ _ (G )0+(Gder)r0/2+ ro+ . (Gger)rd,1/2+,m,1+_

Here (Gger)"i-1/2+mi-1+ is generated by (G8")"i-1% and Uy for f € ‘IDTZ 1/24+
such that ay € R; \ R;—1.

Furthermore, we let K¢, = Ky4/Ey and let H¢, Lp, T, ... be the natural
images of Hg, I, T, ... in ]K¢ respectively.

The “discrete part” (G ;) _1<i<q of the Howe datum of ¢ cuts out the
following subvarieties of X,,Y,, which might therefore be called (closed)
Howe strata of X,Y:

X)={g9€G: g7 F(g) e KynTN FU},
Y, ={9€G: g 'F(g) e T(K, N T, NFU,)}/T
The following is our first main result. It says the ¢-isotypic part of the

cohomology of X, concentrates on the corresponding Howe stratum.

Theorem 4.1. Suppose the element wo € Wo attached to F in §2.4 is
convez. We have RTUc(X, N X2, Qy)[¢] = RT.(Y, N Y}, E4) = 0.

By proper base change, Theorem 4.1 follows from the vanishing of the
cohomology of £ on the fibers of Y. \ YTb — Yy, which is Proposition 5.1
below.

5. FIBERS OVER THE CLASSICAL DELIGNE-LUSZTIG VARIETY

Here we complete the proof of Theorem 4.1. Let the notation be as in
§4. In particular, we have a fixed character ¢: TF — @ZX of depth(¢) < r,
admitting a Howe factorization, and the corresponding groups Ky, K;, ey

as well the varieties X, D X*T’, Y, D Yrb. We will denote the character induced
by ¢ on the subquotient TZ of T again by ¢. Recall the local system &y
on Y, attached to ¢. Let

6 Y N\Y Y, — Y,

be the natural projection. Note that Yj is (essentially) a classical Deligne—
Lusztig variety for Gg.
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Proposition 5.1. Suppose the element wo € Wo attached to F in §2.4 is
convex. Let gy € Yy. Then we have RT (5, (go),Ep) = 0.

After necessary preparations, we prove Proposition 5.1 at the end of §5.
Until the end of §5, we assume that the element wo € Wo attached to F is
convex, so that results of §3 apply; we fix go € Yo C Go/To and a lift go € G,
of go such that

Yo := gy ' F(g0) € U N FU,.

5.1. Parametrization of Moy—Prasad quotients. We set

BY = {f € B;0 < f(x) <r};

Of ={fed;0< f(x) <1}

A, ={f €d%a; € dy N Fdy}.
Moreover, we set @0 = {f € 3% ap € @} and (I):ff,r = {f e B}; 05 € D).
For f,f € ® we write f' < f if either f'(x) < f(x) or f'(x) = f(x)

and f/ — fis a sum of affine roots in A,. We extend this partial order
to a total order on ®Y, and still denote it by <. For f € ®Y, we write
®f = {f € % f' > f}.

Note that T, — Ty admits a unique splitting, which we denote by ¢ — [t].
Let f € & U{0}. Define

up: Ay = Al — T,G%

r o

up: Ay =Ty — T,G%*

up: Ay = X (T)@F, — T,GY, A@z+— A1+ [2]@™) if f € Zs>1,

where in the last line A € X,(T),z € F,
Define an abelian group Afr] =[] redruqoy Ar- Then we have an isomor-

T+ Uy, ([2]w"™) if fe D,

x — [x] if f=0,

phism of varieties

(5.1) w: Al — TG (ap) g [Tug(ep).
!
where we the product is taken with respect to the order < restricted to
oF U{0}. Let E C ®F U{0}. We define Ap = [][;cp Af which is viewed
as a subgroup of A[r] in the natural way. We denote by pg: Alr] — Ag the
natural projection. Define
GE = w(Ap) C T,GYT.
Moreover, we denote by
prg: T,Go" = A[r] — Ap = GFE

the natural projection. If E+E,Z>o+FE C EU Cf)’”r, then G,‘? is a subgroup
of GV,

Let g € T,GY*, z € A[r] and E C @}y U{0}. We set g = prg(g) € u(Ag),
rp = pp(r) € Ap and & = u(x) € Gf. For f € & we will set x5 = z(p
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and x>y = xzs. We can define gy and g>5 € G, in a similar way. By abuse

of notation, we will identify g5 € u(As) with u='(gs) € Ay according to the
context.

5.2. Description of the fiber. Define
m: Gy — Gy, w(9) =g Yo F(9).

Let Y;(go), X(go) be the preimages in Y,., X, of gy € Yy under the natural
projections. Then we have isomorphisms: g — gg, !induces an isomorphism

Y, (0) — {g € GY*T,.: n(g) € T.(U, N FU,)}/T,
+

(5.2) & {g € Grt n(g) € T, (T, N FU,)}

where the first map is induced by h — g, 'k, and the second map is induced
by g + gT,. Under these isomorphisms, d,” 1(go) identifies with the subvari-
ety of those g for which 7(g) € T,((U, N FU,) \Ky). Until the end of §5 we
will identify Y;(go), 0, 1(go) with the models given by the last line of (5.2).
This enables us to define a map

T, - 1/7'(.60) - TT? T, (g) = W(g)Tra
and we denote its restriction to 8 1(go) again by mr,.

Lemma 5.2. There is a cartesian diagram

Xr(g()) — T'I’

I

T,

Y;"(§0) — TT

where the left map is the natural projection, Lt, is the Lang map of T, and
the upper map sends h € X,(go) = {h € GV*T,: n(h) € U, N FU,} to hr,.

Note that in the diagram of the lemma both horizontal maps depend on
the parametrization of GO*T, fixed in §5.1.

Proof. As both vertical maps in the diagram are étale T -torsors, it suffices
to show that the diagram commutes. For this, let h € X, (go). Its image in
Y, (go) identifies (under the isomorphism from the previous paragraph) with
hq):fr = hhil. Its image under the lower map is then equal to

(hhg ) 'yoF(hhy ) = (hr, - (W 'y F(h)) - F(hr,) "),
= hr, F(hr,) ™"
= L, (hr,) "

where the second equality follows as h € X, (go). O
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By proper base change theorem, Lemma 5.2 implies that

Eslv,(g0) = 7T, Lo
where L4 denotes the multiplicative local system on T, corresponding to ¢.
Clearly, the same isomorphism holds after restricting to 6, 1(go)-
Now we prove that the cohomology of the fiber §,1(gy) with coefficients
in &4 is independent of r as long as r > r4_1.

Proposition 5.3. Let r € J satisfying r = rq_1 > 0. Then we have
RT(8,(90), 71, L) = RTe(8,1(90), 71, Lo)[2m],
where m = §(Ary N A,).

Proof. Inthe setup of §3.3, let A = {af € ®: f(x) =r}andlet ¢p: Hqy — Hy
be the endomorphism determined by conjugation with yo = [[,c_a Y0,a-
Note moreover, that (5.2) gives a section s: Y.(go) — Yr+(go) to the nat-
ural projection. The fiber of Y,4(go) — Y;(go) over g is then given by
V(¢,z,2(s(g))), where z: Y,(go) — G.1/T,T = H, is some morphism.
Then Proposition 3.6 gives an isomorphism Y, (go) = Y;(go) x Ax A,
By assumption on 7, §,} (go) is the preimage in ¥, (o) of 5, 1(g0) C Yy (go),
so that we get an isomorphism

0, (90) 26,1 (g0) X Ax &,

Moreover, for (z,y) € 6, (go) x Ax we have

_‘_\5
WTH_ (CC,y) - WT’I‘( ) € P]I‘S—ei_r ,r+

Since the restriction of ¢ to (TQ:; , +)F is trivial, 7, Lg is isomorphic to

the pullback of 77, L, under the natural projection T, — T,. Therefore,
we have

7Tv*]1~r+ Ly =7y LN Q
and the statement follows by the Kiinneth formula. U

5.3. Handling jumps. Let (G*, ¢;,7;)_1<i<q be the Howe factorization of
¢ from §4.2. Set

"= rq, M =G+, V =UnNFU.
We label the real numbers of {f(x); f € ®2~ &/} C J in the ascending

order:
0280<51<-~<8m:r.
Note that s; + s,,,—; = 7 for 0 < 7 < m. Set
CO = {f € Pugp; ()—0}
—{fECI)\‘I’M, f(x) =si} for0<i<m

—{f€®;f(x)=r}.
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Put C<* = Uj<i C7 and define C~* similarly. Note that for for j > % — 1,
G C GO is a subgroup normalized by T%t. For 0 < 4,5 < m with
J > 5 — 1 we define

<Jj

>i

. m(g) € TOFGE Ve
>7 >t >3
> {ge G 7m(g) € TYYGY VT HTINGL,

s ot N
Yl,] = {g c GT aff,r

Yo,r

where
c>i
V" ={vevV, \KQL)’T;UCQ\;I;M = 0}.

Note that C~™ = C<% = @ and hence Yo't = 6 (go). Moreover, if 0 < i
then Yy, # @ if and only if yo € M,.

Lemma 5.4. Let E C C>™/2 and E' C &):f such that E+ (E' &)M) C o
Let x € Ag and y € Apr. Then

A A

(Z9)r, = — Za]vc(l + "z ryr—f) +yr, + 1, € T)\
!

where f ranges over E such that f > r — f, and where we denote the group
law in T, by +.

Proof. The proof is similar to [IN24, Lemma 5.13]. Write £y = 24, ... 24, €
GO with E” := {g1 < --- < gn} C (Z>0E + ZsoE') N ®;". Then each z,, €
Ay, is a sum of x4, (appears if g; € E), yy, (appears if g; € E’) and possibly
some iterated commutator terms arising from x¢,yp with f € E, f' € E'.

As E C C>™/% we even have B\ (EUE') C E+ 7> E. Let 1 <i<n
be such that g; € Z>1. Suppose that g; = f+377_; a; f; with some a; € Z>1,
fi € E'. As M C G is a Levi subgroup, and g; € @y, there must be some
jo with f € E'~ ®,;. Then, by assumption, f + fi € ®", which forces
jo=s=1la=1landg,=f+ f{=7.

Thus, if g; € Z>1 and ¢; < r, then z5, = x4, + Yy, = Yy, (no0te that
ENZ> =@, and thus x5, = 0). When g; = r, then (27), = — > ay(l +
@ T yYr—f) + yr + x € T}, where the sum ranges of the same index set as
in the lemma. As 21, = zg, ...z, , where g;; = j € Z>1, this finishes the
proof. O

Lemma 5.5. Let 0 <i < m/2 and w € Agm—i. For each f € C* we have

(o "yo)r—r = D cpwe_p,
féf’ECi

where cyf pr € ﬁq are some constants such that cyy = 1.

As a consequence, (yo 'iyo)r, = 0 if 0 < i < m/2 and (yo “iyo)r, =
D f<prec a\f/(l + @"ds ¢/ (yo) pwr—ypr) if i = 0. Here ds g € Fy are some
constants such that dy ;= 1.
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Proof. Write @ = 1y, ...y, with C™" = {f; < --- < fs}. It is clear that
Yo Ly only depends on the image of yo in Go. By induction on the number
of roots in A N C° needed to write Yo, we may assume that yg = yo 4 with
some g € ANCY. We compute

(5.3) Yo hyo = W [y T, g [07 )y -
Moreover, [u?;jl, yo 'l = 1, (cad f:)f;+ag, Where the product is taken over all

a € Z>1 such that f;+ag € ® (and hence in C™ %), and ¢, € F, is a constant

depending on a,yo. If m —i > m/2, then all terms wy,, [wfj,lv Yo '] in (5.3)

commute with each other (in G,) and the result follows. If m —i = m/2,
then the terms in (5.3) commute up to G}, which may be ignored, as r — f
(from the statement of the lemma) lies in C™/2. O

Proposition 5.6. Let 0 < i < m/2. The map g = (go<m—i,Gom-inx.)
mduces an isomorphism

,Mm—i ~ \t,m—i—1 .
Yyoﬂ” - Yyoﬂ“ X Acm*inm'

Moreover, for g= (¢, z) € Y;ﬂ_i_l X Acm-ina, we have
o if 0 <i<m/2, then
g, = Y, af(+@eppmlg)pzp) + (g ),
f<feCin-A,
where cy pr € Oy are some constants with cg = 1;
e ifi=m/2 and ¢ € M, N Y"1 then
(), = u(z) + (g,

where p: A x. — T, is a certain morphism.

cm/2n

Proof. By Proposition 3.6 we have an isomorphism

. vim—t "~ i,m—i—1 _
G YyO,T Yyoﬂ’ X AC’m*iﬁAT.’

. ' i1
and moreover, for g = 7' (g',2) with (¢,2) € Yy~ ™ X A iz We
have g = ¢'w for some w € Apm—i such that

(*) wp =z for f € C™'N A,.

We set b = w(g') € TOFGE™™ " 'VC=". By definition we have yo = ho,
hC<i\<5M = 0. Write h = hcoh+ = y0h+ with h+ = h(’ig-t,- Then hTr =
(h4)1,. We have

m1,(9) = (@~ hF(®))r, = (yoyy ' dyoh+ F (@)1, = (4 @yohs F(d))r, .

Assume i = 0. By Lemma 5.4 we have

m1,(9) = (Yo "yo) ), = (Yo " @yo)r, + (At )r, .

Hence the statement follows from Lemma 5.5 and (*).
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Assume 0 < i < m/2. Then yalﬁ)yo € G?m’i. Moreover, as 0 < i <
m—i, we have hy F() € M GS”" and (hy F(@)); = hy = (hy); for f € C.
Applying Lemma 5.4, Lemma 5.5 and (*) we deduce that
w1, (9) = (o "yo) (hy F ()T,

=Y af(l+ @ (yy byo)r—g (hy F())5) + (yg ' dyo)r, + (hy F ()T,
fect

= > o+ epphpwp) + (),
f<frecin-A,

= Y aj(tweppmlg)pzop) +rald),
F<fecin=-A,

where the third equality follows from that hy = 0 for f € o' — ﬁr.
Finally, assume that ¢ = m/2 € Z and we may choose ¢’ € M,. Then

h € M, and hcgm/g\(iM = 0. By Proposition 3.6, w € Agm/2 only de-

pends on 2z € Ay, x  (and the fixed element yo). We define u(z) =

(yg “byoF (1))r,. Noticing that yg 'wyoF(w) € GE™"* hy € M} and
(W' F(w)~Y € G§>m/2 \‘T)M, we deduce by Lemma 5.4 that
mr,.(9) = (yp ‘@Yo F (@)hy [h" F (@) 1]))r,
= (yp "oyo F(@))r, + (hy[hy!, F(@) )T,
1, + ([A34, F(@) "),

The proof is finished. ([
We have a decomposition
Ve NKp,r =V, LUV,
where V! = {g € V. N\ Ky 15 Gpam)2 =0} and V], = (V, N Ky, )\ V.

This induces a natural decomposition 8, (go) = 6, *(go)’ U 6,1 (go)".

\<I>1M

Proposition 5.7. Let m : X x G, — T, be a morphism. Suppose that for
each x € X the pull-back of Ly via the map z — 7w (x, z) is isomorphic to a
nontrivial multiplicative local system on G,. Then RI'o(X x Gq,7*Ly) = 0.

Proof. Let x: SpecF, — X be a point, and let 2’: G, — X x G, be the
base changed map. Denote by f: X x G, — X the natural projection and
by f. its pullback along z. Proper base change implies that z* fim*Ly, =
fux*m* Ly, which is zero by [Boyl0O, Lemma 9.4]. As this holds for any
geometric point € X, we deduce fir*Lg = 0. Thus RI'.(X X Gq, 7" Ly) =
RTU.(X, fir*Ly) = 0. O

Proposition 5.8. We have RFc(ér_l(go)’,w%rﬁw =0.
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Proof. Let m/2 < j < m, 0 <i<m/2and f e (CSN—A,)~®y. We
define

Yy{)’,jr ={g€ Yy?)?,{“; W(g)f # 077T(g)0<f by 0}

Then §1(go)’ is a disjoint union of locally closed subsets Yy{)’f}l. It suffices
to show RV, wh L) = 0.
By Proposition 5.6, we have
fm ~ vy fim—1 . o~ ~yfm—i-1 _
Yyo;‘n - Yyo,T X AC"LHAT - - Yyo,T T Ac>m—imAr‘
Moreover, for g = (¢, 2) € Yy’;’?_i_l XAgzm-inz, Wehavew(g') o< 5, =0
and hence

m(9)r, = of 1+ @ 7(g ) f2r—s) + 7(g")r, mod (T N Maer);-

Since the restriction of the character ¢ to ((T N Mge )" is trivial, it fol-
lows that the pull-back of L4 over Ac>m—imﬁr under the morphism z —
71, (¢, z) is isomorphic to the pull-back of L4 under the morphism z —
a}/( 14+a@"m(g’) fzr—f), which is a nontrivial multiplicative local system. Thus
the statement follows from Proposition 5.7. O

5.4. Proof of Proposition 5.1. We argue by induction on d and the
semisimple rank of G. If d = 0 or G is a torus, then V, = @ and the
statement is trivial.

Suppose that d > 1 and hence M = G is a proper Levi subgroup. In
view of Proposition 5.8, it suffices to show RT(d,(go)", 75 L) = 0. For
m/2 —1< j < m we define

Jo— 0, . —
Y;J,(/)a]r - {g € Yyo,]T‘ W(g)c<m/2\&;1w - 0}
Then 6;(go)" = Yyo'. By Proposition 5.6, we have

nm ~ y/Im/2—1 .
Yyozl - Y?JO,T/ X AC>m/2ﬁA'
;m/2—1

Moreover, for (¢',z) € Y;gff/ X Apzmpqx Wwe have 7r,(9) = p(z) +
mr,(¢). As L, is multiplicative, by Kiinneth formula it suffices to show
R (V! ms, L) = 0.

Indeed, using the natural embedding M /T < GO /TO+GE™™"* we
have

nm/2—1 __ M
Yyoﬂ“ - I—lge(@9+)ad(yo)oF/(M9+(;§>m/2)ad(yo)oFngoyT—’

where Yy](\){,,, = {g € M%"/T": n(g) € TOT(M,_NV,_)}. Now the statement

follows by induction hypothesis that RFC(Yy](\)/{T,, 77 _Ly) = 0. This proves
Proposition 5.1 and hence Theorem 4.1.
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6. RELATION WITH THE VARIETY OF CHEN—STASINSKI

We continue to work with notation from §4. We thus have a character
¢: TF — Q, of depth(¢) < r, which we assume to admit a Howe factoriza-
tion with corresponding subgroups Ky, K;, etc. As long as r remains fixed,
we sometimes omit it from notation and write G instead of G,, etc. We also
write ¢ for the character of TF induced by ¢.

Theorem 4.1 shows that RT.(X,,Qy)[¢] = RT.(X2,Q)[¢]. Next, we

relate the cohomology of Xﬁ with the cohomology of a different variety.
Define the subgroup

Ipv = (K¢ N U)<E¢ N T)(K;; N [Uf).
of K4 and the subvariety
Zsur=1{9€G: g 'F(g) € Flyu}

acted on by G x TF by left and right multiplication. The variety Z.u,r Was
first considered in a special case by Chen and Stasinski in [CS17], and later
(in general) by the second author in [Nie24]. The following result gives a
degreewise comparison of the cohomologies of Xﬁ and Zg y,-. This improves
over [Nie24, Theorem 4.1], which only compares the (G'-equivariant) Euler
characteristics.

Proposition 6.1. We have a G -equivariant isomorphism
RTo(X),Q0)[¢] 2 RLe(Zg s, Qo) [@][2m],
where m = dim(U N K;)(FU NUNKg) + dim(T NEy).
This follows directly from Lemma 6.2 and Proposition 6.3 below.
6.1. Proof of Proposition 6.1. Consider
X% = XPnK,
Zur = Zovr NKg,
both admitting K(I; x TF-actions by left /right multiplication. It is immediate
that Zy 7, = H,YGGF/Kg ’yZ(];fU,T, so that

(6.1) RTo(Zy0r-Q)[6] = indgr RU(Zy,,)[6),

and the same formulas hold for Xﬁ. To prove Proposition 6.1 it thus suffices
bK = ~ Y
to show RIo(X;", Qp)[¢] = RT(Z%,;,..Qy)[¢][2m)].
Let Ty = E4; N'T. Define

X3 = {g €Ky 97 1F(9) € T4(FUNTNKy)}.

~Y

Lemma 6.2. We have a natural Kg-equivam'ant isomorphism RFC(Xﬁ’K, Q))[g] =
RT (X7, Qy)[¢][2dim T).
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Proof. Since Ty is an affine space, the quotient map XE’K — XE’K/']I‘d) in-
duces an isomorphism of Kg -modules

RT(X5%,Qy)[¢] = RT(X2% /Ty, Qp)[¢][2 dim Ty).

On the other hand, there is a natural isomorphism Xﬁ’K/T(I; — x2K /Te.
Thus we have natural isomorphisms Kg -modules

RTo(X},Qp)[¢] = RT (X /Ty, Qp)[¢][2 dim Ty
> RDo(X7, Q) - [¢][2 dim Ty
> RT(X)%,Qy)[¢][2dim Ty,
where the last isomorphism follows from that ¢ is trivial over ']I’g . O

Proposition 6.3. The map (z,a) — za gives an isomorphism
or s XPE X (UNK)(FUNUNK) — Z§y

As a consequence, we have an isomorphism RFC(Z(EU,@Z)M [2m/] = RT(XF®,Q))[¢]
as Ki-modules, where m' = dim(U N K;ﬁ)(F[U NUNKy).

Proof. First note that ¢, is well-defined. Let z € Z(HEUJ. It suffices to
show there exists a unique a € A, := (FU, N U, N K,,)(U, N Kgr) such

that za € XTU’K. We argue by induction on r € Ryo. If r = 0, then
A, = FU, NnU, N (GY),, FI,u,=FU,N (G), and the statement follows
from Proposition 3.7.

Suppose that the statement holds for r—. We show it also holds for r > 0.
Indeed, by induction hypothesis, there exists b € A,._ such that zb € Xﬁ_.
Choose a lift of b in A, and still denote it by b. Then

(2b) ' F(zb) € T4, (Ky, N FU, NT,)H,

where H, = (FU, N K, NG")(FU, N K;;T NGY).

We assume that r = r;_1/2 for some 1 < i@ < d. The remaining case
follows in a simpler way. Let ®; C ® be the root system of G’ for 0 < j < d.
Then H, = H/ @ H/, where H/. (resp. H!) is spanned by the (images) of
affine root subgroups of F(f) such that f(x) =7 and oy € ®] \ ®;_1 (resp.
af € ®;_1). Let C, = A, NGJ. Then C, =C,. & (!, where C, (resp. C)') is
spanned by the (images) of affine root subgroups of f such that f(x) = r
and f € (F(®) N @)\ ®;_1 (resp. ay € ®;_1 ~ (F(®F,)Nd ).

Applying Proposition 3.7 and Proposition 3.6, there exists ¢ € C, such
that

¢ H((2b) T F(2b))F(c) € Ty (Kgr N FU, NT,),

that is, za € Xﬁ with a = bc € A, as desired.
Let a’ € A, be another element such that za' € X2, By induction
hypothesis, the images of a and ' in A,_ are the same. Hence we may
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assume @' = ad for some d € C.. Then it follows from the uniqueness in
Proposition 3.6 that d is trivial and hence a = a’ as desired.
The second statement follows from that ¢, is Ki . x T equivariant and

that (U, N K(;T)(FUT NU, NKy,) is an affine space. O

6.2. Cohomology of Z};EU,T. We generalize the results of [Nie24, §5.2]. Let

(V,V) and (U,U) be two pairs of opposite maximal unipotent subgroups of
G normalized by T'. For a subset R C K, write R for the image of R under
the natural projection Ky — Ky /Eg4. As ¢ remains fixed, we omit it from
notation and write K, H, E instead of Ky, Hy, Es. Write L = GP. First note
that
L - quWE(T—F)vaTLU7

where Ly =LNVand Ly =L NU.

For a € @, define i(«) to be the integer 0 < i < d, such that a €
®(G", )\ ®(G""1,T), and define r(a) = r;4)—1. Put

HO = (G%)])/2/(G))F
Then we have
H = Hy T" Hyy = T @, H*,
where Hy = HNV, Hy = HNV. For a,B8 € ® we have [He, HA] = {0}
if o #£ —f and [H*,HP] = (To)"@ 2= (T)0 /(T*) " if ¢ = - and

He # {0}.
Thus we have
R=HL= || HLyoTLo= || RyHy,oTHy,

weWr,. (T) weWr,. (Tr)
where Ky = LyHy = KNTU and Hy; , = Hyy N wT,
Write HX (Zgy,., Qo) = Yiez H(Zgy,» Qo) 9).
Proposition 6.4. We have
(H(Zgv,r Q0] He (Zgy, Qd))kr | = tstabyy, (r,yr (d]rr)-
Proof. For w € Wp, (T,) we set
By = {(z,2',v,0,7,u) € FKy x FKy xKy,, xHy; , xTxKy; 2 F(07) = voirua'}.
Write ¥, = ¥, U X" where ¥/ is defined by condition that v = 0.

Let D = {(t,s) € T, x T,;t " 'F(t) = s 'F(s)}. Then D acts on X! by

1

(t,s): (z,2', 0,0, 7,u) — (tot ™1, s2's™ !, svs, 5051, w H(t)Ts™ L, sus™ ).

It follows that -
(34)Prea = (WT)".
Hence H} (3], Qy)p-1,4 = Qp if w = F(w) and is trivial otherwise.
It remains to show H}(3],, Q)4 4-1 = 0. Note that

(0%
Hv,w = @Ojeq)vﬁw@ﬁH ’
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where H* = HN G®. For v € HV,w and o € @7 NP let vy € H* such
that v = ) Uo. We fix a total order < on O NPy, Let H%w be subset
of elements v such that v, # 0 and vg = 0 for all 8 < o. Then we have

Hy,, — {0} = [T HS -
(03

The above decomposition induces a decomposition

o, =[] =

[e%
It remains to show Hj(ZQLa,@g)qu =0 for all a.
Let a € 3 N Y& such that yhe # . Consider the restricted action of
(T,)F 2= (T,)" x {1} C (T,)F x (T,)F on X3 given by
t:(x, 2,0, 0,7,u) — (tet™ 2ttt ot wT ()T, u).
It suffices to show the ¢-isotropic subspace H* (3", Q) is trivial.
For v € H%aw we fix an isomorphism

Ag t H™® =5 (T @) ¢ — [5,¢].

Let
H={teT @t 1F1t) e (T},
For ¢t € H we define an isomorphism f; : 33 — X0% by
fr:(z, 2 0,0, 7,u) — (mt,m’F((wT)flg),tvt_l,tt_)t_l,w_l(t)T, w)
with ¢ = A\ (¢F~1(t)~1) such that
i F(vuwr) = tv@wTux/F((wT)_1C).

The induced map of f; on each subspace Hé(EZJO‘,@@) is trivial for ¢t €
NE"((T*)F") € Ho 0 ((T*)"@)F. Here n € Z>) such that F"(T*) = T,

and NE" : T — T is the map given by ¢ — tF(t)--- F"1(¢). On the other
hand, we have

¢|N§"((TQ)FH = ¢i(o¢)—1 |N1§n(('l_I‘a)F" ,
which is nontrivial since ¢;(a) 1 is (G**) =, G*))-generic. Thus Hz (243", Q)

is trivial as desired. O

6.3. Concentration in one degree. Let notation be as in §6.2. Let
ZE]EI,U = Z¢,UQH¢ and Z(%,U = Z¢7UOL with L = G°. We set Z(H;EU = Z}EI,U/E¢
and Zg ;= Zy 1/ (Eg N L),

By [Nie24, §7.1], each cohomology group Hé(ZgU, @g)[dﬂ(mﬂﬂ is equipped
a natural Kg -module structure, and we define

ke = Z(—l)"Hé(ZEU, Q) [¢\(T0+)F]

1€EZL
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as a virtual Kg -module. The following result is proved in [Nie24, Theorem
6.2].

Theorem 6.5. There exists a unique integer ng > 0 such that

H{(Z317,Q0)[@|(go+yr] # 0
if and only if i = ng.

Theorem 6.6. Let T C B be as in Proposition 3.5 with M = L = GY.
Then for i € 7 we have an isomorphism of Hg—modules

HUZ§u, Q)] 2 (—1)"ky @ He "*(Zg 1y, Qp)[p-1],
where ng is as in Theorem 6.5.

Proof. By the assumption on B we have that H¢ NF1g  is normalized by L.
By [Nie24, Proposition 7.4] the map (h,1) — hl induces a (T°+)¥ /(E,NT)*-
torsor

Let ¢” be the pull-back of the natural multiplication map (T%)F xTF — TF.

Combining Theorem 6.5 and the arguments in the proof of loc. cit. we
deduce that

HA(Z5 17, Qo) [¢)
=H é(Z¢U><Hl( &Ua@e)[qﬁb]
D H (ZE, Tl aoryr] © HY (255, T4

i i =i
(=1)"ks ® He " (21, Q) [6-1).
The proof is finished. U

1%

Il

Corollary 6.7. Let T C B be as in Proposition 3.5 with M = L = GY.
Suppose that ¢_1 (viewed as a character of TF' ) is non-singular for L in the
sense of [DL76, Definition 5.15], then there exists a unique integer Ny such
that H{(X,, Qy)[¢] # 0 if and only if i = Ng.

Proof. By Proposition 6.1 and that the quotient map ngU — ngU is a K x

TF-equivariant affine space bundle, it suffices to consider the cohomology
groups Hi(ZE, Gp)[6].

Let W1, be the Weyl group of L. By assumption, the relative position in
Woao of B and F'B is of minimal length in its Wi -conjugacy class. It follows
by [He08] and [OR08] that the classical Deligne-Lusztig variety for Z(IL;U JTF

is an affine variety. By [DL76, Corollary 9.9], HX(Zg 7, Qg)[¢-1] # 0 if and
only if ¢ = dim ZPE,U' Thus the statement follows form Theorem 6.6. ([l
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7. PRO-UNIPOTENT DL-VARIETY FOR AN ELLIPTIC TORUS

Let GT = LTG* be the pro-unipotent radical of G = LTGy (this corre-
sponds to 7 = oo in the notation of §2.2). Consider the perfect scheme

Xt ={geG": g7 'F(g) €@+HFU+}

which is the the inverse limit of its truncations X,;t C G; := G%T. Then
X7 is acted on by (GT)!" x (TT)F by left and right multiplication. In this
section we are going to prove Theorem 1.5.

7.1. Preparations. Fix a total order on &+ /(F) such that O < O, if either
O(x) < O'(x) or (O(x) = 0'(x) and O € Z>1, O' & Z>1). As T is elliptic,
any orbit O € ®*/(F) intersects A+, where A = &+ N F®~. For each orbit
O, pick some f € ON A7 and extend the order to a total order on ®* in
the unique way such that f < F(f) < --- < F#O71(f). For f € &+, denote
by Oy its F-orbit, and denote by f+ (resp. f—) any member of the orbit,
which is the ascendant (resp. descendant) of Oy with respect to the order
on &t /(F).

We use the setup from [IN24, §5.1-2], which slightly differs from that of
§5.1. In this section for f € & we put

g)f = {f/ S EI;J'_Z Of/ > Of}
Note that if f = r € Zsy, then ® = {f' € ®+: 0 < f/(x) < r}, so our
notation is not ambiguous. We let @}F = ot ®f. Welet Gf C Gt be the
subgroup generated by the affine roots subgroups in of. Tt is easy to see
that G/ C G is normal and we put
Gf =G*/G.

Note that <ff, 5? are F-stable, so that G/, G]T are defined over IF,.
Fix some r > 1. Let A[r] = er%i Ay (with Ay as in §5.1). Asin (5.1)
we have the isomorphism of varieties

wi Al = G, ()= [Jus(=y),
;

where the product is taken with respect to the fixed order on ®*. For a
subset £ C @, set Ap = [[;cp Ay, let pp: Alr] — Ap denote the natural
projection, and let prg: G;” — u(Ag) denote the map obtained from pg by

transport of structure via u. For f € @, write p; = pisy and pry = prygy.
When the context is clear, we sometimes will abuse the notation and identify
pry: G — u(Ay) with u™'opry: GF — Ay,

Let f € —A™T. Then there exists a unique sequence

(7.1) O=ap<ay <---<a2b(f):#0f
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of integers, such that Fi(f) € IIT, F%i-1(f) € At for all 0 < i < b(f),
and F*(f) ¢ AT U—AT if k # a; mod #O; for any j.

7.2. A cartesian diagram. Fix some r € Z>1. Let d"C BC AC P be
two closed subsets with A+ B C B, Z>o+ A C A, Z>¢9+ B C B, so that
GE C G# are subgroups, and the smaller one is normal in the bigger one.
Put
- T+
Xp={g€Gl: g7'Flg) € (U; NFUY) - G}/GP.
If A= ®", B = &/ for some f € ®F, then we write X]J[ = Xf. For any

character x: (T, NGA)F — @, , we have the x-weight space H!(X 2.Q0)[x-
Just as in [IN24, §5.2] we have the map

W?:B =u! oprgoLosanp: GA/GE — Ao,.

Our first observation is that [IN24, Proposition 5.3] admits the following
generalization.

Proposition 7.1. Let & C C C B C A C & be closed subsets with
A+B C B, A+C CC. Let f € B and suppose that C = B~ Oy and
A+ 0Op CC. Letqy: Xé — Xﬁ denote the natural projection. Then the
following hold.

(1) Suppose that f € A;ﬁ" Then the map

b(f)-1
Y= (Qfaprf7er“2(f)7--~aera2b(f)—2(f)) : Xé = X§ x H Ay
i=0
s an isomorphism.
(2) If f € Zz1 (in which case Ao, = Ay =V ), then there is a Cartesian
diagram

XA A,
qfl i
W?:B
X84 —— Ay
Proof. The proof is the same as in [IN24, Proposition 5.3], with the only
difference that in (1) the map inverse to 1 is given by

¢(ga YfYpaz N (yf)a v 7yFa2b(f)—2(f)(f))

as—1 ) as—1 . a2b(f)71 .
=sas(9) [ F/(wyp) - [ F(wyparp)) -+ I Fuypenm-=2p))
Jj=0 Jj=az J=agp(f)—2
and instead of [IN24, Lemma 5.4] we use Lemma 7.2. O

Lemma 7.2. Let f € —A;H and let x = (xi)0§i<#of € Ao, with x; €
Api(p). Suppose that L(z) € Hf(zjg_l Apasi (). Then for each 0 < j < #0Oy,
Tpif) = Fi—aa2i (T pasi(py) for azi < j < agir2. In particular,



CONVEX ELEMENTS AND DEEP LEVEL DELIGNE-LUSZTIG VARIETIES 27
D2b(f) T2b(f)—2 ag;—ag;_2 .
(1) L(z)f = xgzbm;z. — o, L('x)QQi = Ty s — @i for 0 <i <
b(f), and L(x); = 0 if j # ag; for any i;
(2) =0 if and only if xa,, =0 for all 0 < i < b(f) — 1.
Proof. The proof is a direct computation. O

For a character x of (T}:)F we denote by X;ﬁ + the restriction of x to

(']I‘J’j +)F . As in [IN24, Corollary 5.9], the previous proposition implies the
following.
Corollary 7.3. Let f € o+ and let X be a character of (']I‘}r+)F.
(1) If f € By, then HI(X,, Q)] = HI-2(X}, T,
(2) If f € Z=1, then Hg(X;r_i_,@g)[X;_i_] = H@(Xj,w*(ﬁxh)), and hence

H(XF Q)0 = HIXF 7 (£, )N

Here m = W;{:ﬁ’&’f and Hé(X;+,@Z)[X§+] is the X;_i_—weight space of (T§+)F.

Write H;(XT,Q,) = H'f,Qp, where f: XT — SpecF, is the struc-
ture map. As in [IN24, Corollary 5.10, §2.7], Corollary 7.3 implies that
Hi(X*,Q)[x] = H* (X, Q,)[x] for all » > the depth of y, where d,
is the dimension of X;'. In this way, Theorem 1.5(1),(2) reduce to the
following.

Theorem 7.4. Assume p is not a torsion prime for G. Let f € dt and
let x: (T}")F — @; be a character. Then there exists some s = sy, € Z>
such that

H(X, Q) #0 & i=s
Moreover, FN acts on Hj(X]T,@Z)[X] by the scalar (—1)°¢*N/2.

7.3. Reduction to semisimple simply connected case. Let G—G be
the simply connected cover of G. Identify the reduced buildings of G and G
and write G,T,U,T,,U,, X;[, ... for the objects corresponding to G.

Following [DL76, 1.24], if «: A — B is a homomorphism of finite groups
and Y is a space (scheme or fpqc-sheaf) on which A acts, we let the in-
duced space IndEY be the (unique up to a unique isomorphism) B-space
I equipped with an A-equivariant map Y — I such that Homp(/,V) =
Homu (Y, V) for any B-space V. (Minor variation of) the following state-
ment already appears in [DI24, proof of Lemma 4.3.3] without proof. We
give the proof here.

+

Lemma 7.5. We have X = Ind( 7

T+)F ~
f
f (T-F FX

)
Proof. The kernel of G — G is contained in the center of ? Thus the maps
’]I‘;f — "]1‘}F and G]T — G}L are injective, and we identify T, G}L with their
images. Also, G}r / @;f = ’]I‘;E / T+: we denote this group by C.

~
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Note that any g € X;r can be written as ¢ = T g1 with g; € @? and
71 € T;. Then g T F(r)F(q1) = g7 'F(g) € @? NFUJ C GT. As
@;{ is normal in G}F, it follows that 7 = F(r1) € C, ie., 71 € CF. But
as TT? is connected, we have (TH)F/(TH)F = CF. Thus, changing ¢, and
71 if necessary, we may achieve that m € (T;{)F . But then it is clear that

gl_lF(gl) = g 'F(g) € ﬁ}r N F[U;?, which implies that g; € X’;{ Thus

XJJ{ = ]_[T e(Th)F (FHF 7')??_, which is precisely the induced space. U
Remark 7.6. The analogous statement holds for G, T, X = {g € G: g~ 'F(g) €
Un FU} instead of GT,TT, X*. There, G — G can be non-injective, and
its kernel equals the perfection of ker(G — G). The situation with cokernels

is similar as in the above proof.

Example 7.7. If k = Fy(w@)), G = PGLy, x hyperspecial, then G =
SLo, the maps G — G, T — T are injective with cokernels isomorphic

_ _ 32
to C = H'((Spec Fo[w])spps, ti2) = coker(Faw]* A Fo[ww]*), and CF is
an infinite-dimensional Fo-vector space.

It follows that if x: (']I‘}F)F — @, is a character and ¥ is it’s pullback to a
character of (T})" then HE(X}, Q] = @ es e sy HAXF, TIR] as

vector spaces with Frobenius action. In particular, if Theorem 7.4 holds for
X;{, then it holds for X]J{.

7.4. Handling jumps. As in [IN24, §5.6], fix a positive integer h < r and
a character y of (TZJF)F. Recall that T, = A, =V = X,(T) ® Fy, so that
for any M > 1 we have the map
Nmy:V —V, ve— v+ F)+ -+ F* 1 (v).
Note that for a € @, the subgroup Nmj;(aV ® FqM) is independent of the
choice of the integer M € Z>; satisfying F*(a) = a. Using the character
x we define the F-stable subset
P, ={a e ®;xoNmy(a' @F,~) = {1}}.

of ®. Clearly, —®, = ®,. However, ®, does not need to be closed under
addition. This fact as well as (essentially) the proof of the following lemma
was explained to us by David Schwein.

Lemma 7.8. Ifp > 3 or if p is not a torsion prime for G, then ®, is closed
under addition.

Proof. For m € Z and a € ®, put

Xma = XONHlNO(OZV(X)FqN)O(m'): IE“qN ﬂ> FQN — VFN — VF _>@2<7

where the first map is multiplication by m. For a € ®, we have o = ﬁ,

where (o, @) = |a|? is the square of the length of a. For «, € ®, write
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Nap = Egg; By [Bou68, Chap.VI, §4, Proposition 12(i)], the numbers

nq,s can only take the values 1, 2+1 3%l and by inspection one checks that
the values 2%! resp. 3*! can only appear if p is a torsion prime for G.
Suppose now that a, 8 € ®,, that is x, Xo are trivial. Suppose that v =
a+p € ®. Thus v¥ = ﬁy = naya’ +ng,BY. Let m € Z>1 be the
smallest positive integer such that mn,, and mng, lie in Z. Then we have
myY = mng o +mng, Y. Note that we have Xmy = Xmna o * Xmng, 8
as characters of Fyn. As xq,xp are trivial, also Xmn, o and Xmn, s are
trivial. Thus also X, is trivial and as m invertible in F, by assumption, it
follows that x, = 1, that is v € ®,. O

Let M = M, be the subgroup generated by 7" and U, for o € ®,. By

Lemma 7.8, M is reductive with root system ®,; = ®,. Let ®); C d be
the set of affine roots of M. Consider

D= (d},Nn®)\ Dy = {f € ®ly\ D f < h}.

As @) is F-stable, D is a union of F-orbits in ®. Similar as in [IN24, §5.6],
we can number the F-orbits of D as

Ol O 1,0 =0 ....0y =00 O | ... O
where O” = {h — f: f € O}, and such that
O1(x) <+ < Op(x) < g = Op(x) =+ = Op(x) = g <O (x)< -

O;<Ofor1<i<m—1land @, | <--- <O} Define N; = #0;.
Set D} = Jj_; O for 1 <i <m—1, and D), = J}_, O}. Define

i1
A =dF \ U O, B;= o UD], Ci_1=DBi1\{h}.
j=1

Moreover, we set Ag = A1 = &+, By = ®" and Cy = By \ {h}. Note that
A, = B, U <AIV>X4, where &)J\Jr/[ =&, Not.

Let g € G, # € Alr] and E C ®}. As in [IN24, §5.6] we sct gp =
prp(9) € u(Ag), g = pp(z) € Ag and & = u(z) € G;}. For f € ®; we will
set x5 = xpy and x5 = x5;. We can define gy and g>y € G in a similar
way. We identify gy € u(Ay) with u=!(gs) € Ay according to the context.

Note that [IN24, Lemmas 5.12, 5.13 and 5.14] hold in our more general
setup without any change and with literally the same proofs. (Note that
the proof of [IN24, Lemmas 5.12] uses the following property of ®5; C &: if
a € @y, B DN Dy, then a+8 € ®yy. This holds when @y C Pg is a Levi
subsystem, which follows from p not being a torsion prime for G by [Kall9,
Lemma 3.6.1]. This is guaranteed by the assumptions in Theorem 7.4.)

We now generalize [IN24, Proposition 5.15]. Set m = ﬂ;?+:q’h : G; =
G;’—/G:} — A, =2V,
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Proposition 7.9. Let 1 < ¢ < m. Then there is an isomorphism

CxAi o A .
wi-Xh _XBiXAD,E'ﬂ—A“"

Moreover, for (Z,y) € Xﬁ; X Apy x+ withx € Ay, p, we have
(1) Assume that 1 < i < m—l 1, fix some f € O; N — AT and let =
h— f € O2. With notation of (7.1), we have
Ltihe agjf1—ag; agj—a
T @ y) = D ey @@y ) TR () Wiy HTWTHE,0) €V,

(2) Assume that i = m. For each m < k <n fix some fi € O N —A*T.
Then 7(¢;;1(2,y)) equals 7(;,1(%,0)) plus the sum over m < k < n of the
following term corresponding to f = fi (where aj = a;(fi) and b = b(fy)
are as in (7.1)):

(b—1)/2

ab ap—1 a4 —a25 -2 a2j+b—925—1+b
*O‘f @Yy - yFab 1( Z aFa2] yFGQJ(f) 7?/[}17“2]'—2(]“) )ygﬂazjfwb(f) :

Note that the formulas in Proposition 7.9 are similar to those in [Nie24,
proof of Lemma 6.10]. We deduce the generalization of [IN24, Proposition
5.17] from this.

Proposition 7.10. Write X,JIVI XN M , and let wp; be the restriction
of ™ to M:{ The following statements hold
j Ay x ~ j A; * M; .
(1) HI(X;" £X2+) >~ H)(X, 7 Exﬁ+)@q for1 <i<m-—1 and
some M; € Z>1;
(2) BUX{m 7w L )2 HE" (XM i L )20 (-1)C2%), where
Cy =" q#%/2 and Cy =1 N/#0; and C3 = ¢N(tm=1)/2,

Note that in general Cy # Cj3, in contrast to the special case of loc. cit.

Proof. We can proceed exactly as in [IN24, proof of Proposition 5.17], by
noting that by Proposition 7.9 the local system W*['XZJF is trivial on a fiber

a2j41—a2 1
over T € XB if and only if z a;J+1(f)]

shows that for 0 <i<m —1,
HE (X ) = HE (Y, e £)%0

for some M; € Z>1, and similarly for part (2). In course of proving (2),
when repeating the computation from loc. cit., we obtain

(7.2)

HI(Xjm 7 L) = @, He (A, 77 L)@ HE (A p, Q)@ H "™ (X! 77 L).

— Zpaz;1(p) = 0 for each j, which

Whereas for i < m — 1, FN acts on each H? (Ap, Q) by ¢V as in loc. cit.,
we have that F#9i acts on H!(Ay,,77L) by —q#?/2 (by [IN24, Proposition
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5.16(2)]). Thus FN acts on this space by (—¢#9/2)N/#0i — (_1)N/#0i¢N/2,
Altogether, we see that (7.2) equals

Hg'—n—m—i—l(X}]lM’ W*E)@ =, q#Oi/Q((_l) [ N/#Oin(n+m—1)/2)7

where the number of summands again follows from [IN24, Proposition 5.16(2)].

O

Now, to prove Theorem 7.4 we may assume by §7.3 that G is semisimple
and simply connected. Then [IN24, Lemma 2.2] guarantees that M, # G.
Then exactly the same induction procedure as in [IN24, §5.7] finishes the
proof.
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