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Abstract. We essentially complete a program initiated by Boyarchenko–
Weinstein to give a full description of the cohomology of deep level
Deligne–Lusztig varieties for elliptic tori. We give several applications
of our results: we show that the ϕ-weight part of the cohomology is very
often concentrated in a single degree, and is induced from a Yu-type
subgroup. Also, we give applications to the work [Nie24] of the second
author on decomposition of deep level Deligne–Lusztig representations,
and to Feng’s explicit construction of Fargues–Scholze parameters. Fur-
thermore, a conjecture of Chan–Oi about the Drinfeld stratification fol-
lows as a special case from our results.

1. Introduction

In [BW16] Boyarchenko–Weinstein started a program toward a complete
description of the cohomology of certain higher-dimensional varieties over
Fq equipped with interesting group actions. The varieties they considered
came in two disguises: the first were related to special affinoids in Lubin–
Tate spaces, and the second were very close to deep level Deligne–Lusztig
varieties introduced in [Lus04, CI19]. In this article we introduce the notion
of convex elements in a Weyl group, and essentially complete the program of
Boyarchenko–Weinstein for deep level Deligne–Lusztig varieties associated
to convex elements. We then give some applications. We note that various
related/partial results in this direction were obtained in [Cha20, CI21, IN24]
on deep level Deligne–Lusztig varieties of Coxeter type.

Let k be a non-archimedean local field with residue field Fq of charac-

teristic p. Let k̆ be the completion of the maximal unramified extension
of k. Let F denote the Frobenius automorphism of k̆ over k. Let G be a
reductive group over k, which splits over k̆. Let T be a k-rational k̆-split
elliptic maximal torus of G. Let U be the unipotent radical of a k̆-rational
Borel subgroup of G containing T .

Let x be a point in the Bruhat–Tits building of G over k. Bruhat–Tits
theory attaches to it a parahoric group Gx over the integers Ok of k. By the
work of Lusztig [Lus04] and Chan and the first author [CI19], one associates
with T,U,x and any r ≥ 0 a deep level Deligne–Lusztig variety

Xr = XT,U,x,r
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over Fq, equipped with an action of Gx(Ok)×Tx(Ok), where Tx is the closure
of T in Gx (see §4 for definition).

For the rest of the introduction, we fix a prime number ℓ ̸= p and

a smooth character ϕ : Tx(Ok) → Q×
ℓ . The ϕ-weight part RG

T,U,r(ϕ) =∑
i∈ZH

i
c(Xr,Qℓ)[ϕ] of the (equivariant) ℓ-adic Euler characteristic of Xr

is a virtual Gx(Ok)-representation.
Assume that ϕ admits a Howe factorization (Gi, ri, ϕi)−1≤i≤d in the sense

of [Kal16, §3.6]. In [Nie24] the second author gave a very explicit decompo-
sition of RG

T,U,r(ϕ):

(1.1) RG
T,U,r(ϕ) = ind

Gx(Ok)
Kϕ(Ok)

(
κϕ ⊗RG0

T,U,0(ϕ−1)
)

where Kϕ = Kϕ,x is a second Ok-model of G determined by the Howe da-
tum (Gi, ri)−1⩽i⩽d, such that Kϕ(Ok) ⊆ Gx(Ok) is a “Yu-type subgroup”,

and RG0

T,U,0(ϕ−1) is a classical Deligne–Lusztig representation, regarded as

a Kϕ(Ok)-representation by inflation. Here, κϕ is a Kϕ(Ok)-representation,
defined in cohomological terms, which is irreducible by [Nie24, Proposition
1.4]. As a comparison, there is the so-called Weil–Heisenberg representation
κ(ϕ) appearing in J.-K. Yu’s construction. One can expect that κϕ and
κ(ϕ) differ precisely by the quadratic character of Fintzen–Kaletha–Spice
[FKS23, Theorem 4.1.13], see [Nie24, Remark 1.10].

There is also a second variety with a much simpler geometric structure,

Zϕ,U,r,

also equipped with the action of Gx(Ok) × Tx(Ok) (see §6 for definition).
It was first considered in special cases by Chen–Stasinski [CS17, CS] and
plays also an important role in [Nie24]. Due to its simpler geometry, the
cohomology of Zϕ,U,r is much easier to describe than that of Xr.

Our main technical result is the following (degreewise) comparison theo-
rem. To state it we need the notion of convex elements of the Weyl groupW
of T in G, introduced in §3. Convex elements generalize Coxeter elements
and share many properties with them. They have the advantage that any
σ-conjugacy class of W contains a convex element of minimal length. This
and further properties of convex elements are shown in [NTY24].

Theorem 1.1. Suppose the relative position of U and F (U) in the Weyl
group of T is a convex element of the Weyl group (cf. §3). Then there is a
Gx(Ok)-equivariant isomorphism

RΓc(Xr,Qℓ)[ϕ] ∼= RΓc(Zϕ,U,r,Qℓ)[ϕ][2m]

for some (explicit) shift m ∈ Z≥0.
If, moreover, G0 is a standard Levi subgroup with respect to U (such U

always exist by Proposition 3.5), then

H i
c(Xr,Qℓ)[ϕ] ∼= ±ind

Gx(Ok)
Kϕ(Ok)

(
κϕ ⊗H i−2n

c (XG0

T,U∩G0,x,0,Qℓ)[ϕ−1]
)
,
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where XG0

T,U,x,0 is the classical Deligne-Lusztig variety for reductive quo-

tient of (G0)x and n ∈ Z is some (explicit) shift. In particular, if ϕ−1 is
non-singular in the sense of [DL76, Definition 5.15], the cohomology groups
H i

c(Xr,Qℓ)[ϕ] concentrate at a single degree.

The first part of Theorem 1.1 follows directly from Theorem 4.1 and
Proposition 6.1. The second part is Theorem 6.6. The proof is of geometric
flavor and relies on an analysis of the geometry of Xr and Zϕ,U,r. The
methods used in the proof resemble those from [IN24]. Now we discuss
some applications of Theorem 1.1. Most importantly, Theorem 1.1, along
with further results from [Nie24], implies that ϕ-weight part of cohomology
of Xr is often concentrated in a single cohomological degree.

Corollary 1.2 (see Corollary 6.7 for a precise statement). Let T,U be as
in Theorem 1.1 and assume that G0 is a standard Levi subgroup with respect
to U . Suppose that ϕ−1 is non-singular for the special fiber of (G0)x in the
sense of [DL76, Definition 5.15], then there exists a unique integer Nϕ such

that H i
c(Xr,Qℓ)[ϕ] ̸= 0 if and only if i = Nϕ.

We also have the following direct consequence.

Corollary 1.3. Let T,U be as in Theorem 1.1. Then the (derived) Gx(Ok)-
representation RΓc(Xr,Qℓ)[ϕ] is induced from Kϕ(Ok).

Proof. This follows directly from Theorem 1.1 by (6.1). □

Moreover, Theorem 1.1 can be regarded as a stronger form of [CO23,
Conjecture 6.5], which follows as a special case. For any (twisted) rational

Levi subgroup T ⊆ L ⊆ G, there is a closed subvariety X
(L)
r ⊆ Xr, called a

Drinfeld stratum, see [CI21, §3], [CO23, §6.2].

Corollary 1.4. Let T ⊆ L ⊆ G be a twisted rational Levi subgroup. If ϕ

is such that G0 ⊆ L, then RΓc(Xr,Qℓ)[ϕ] = RΓc(X
(L)
r ,Qℓ)[ϕ]. With other

words, [CO23, Conjecture 6.5] holds true.

Proof. This follows from Proposition 5.1 by proper base change. □

A fourth application concerns [Nie24]. Let RG
T,U,r(ϕ) denote the ϕ-weight

part of the equivariant ℓ-adic Euler characteristic of Zϕ,U,r. A major step in
[Nie24] towards the proof of (1.1) was to show that

(1.2) RG
T,U,r(ϕ) = RG

T,U,r(ϕ)

as virtual Gx(Ok)-representations, see [Nie24, Theorem 5.7]. This relied in
an essential way on inner product formulas for RG

T,U,r(ϕ), proven by Chan

[Cha24]. Now notice that (1.2) also follows directly from Theorem 1.1, giving
a more geometric proof of [Nie24].

At the end of the introduction we give more applications of Theorem 1.1.
Now we discuss the assumption on U in Theorem 1.1, showing that it is
not restrictive in the following sense. For any T , there is a choice of U ,
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such that the relative position of U with F (U) satisfies this assumption
and is, moreover, of minimal length in the (twisted) conjugacy class of the
Weyl group containing it; this is shown by Tan, Yu and the second author
in [NTY24], see §3. Note also that all the p-adic Deligne–Lusztig spaces
Xw(b) from [Iva23] (equipped with G(k)-action and closely related with Xr)
attached to minimal length elements of a fixed twisted conjugacy class are
equivariantly isomorphic by [Iva23, Corollary 7.25]; in particular, the specific
choice of U becomes irrelevant.

Pro-unipotent Deligne–Lusztig varieties. In the second part of the
article we prove [IN24, Conjecture 1.2], thereby generalizing the [IN24, The-
orem 1.1]. Let G+x denote the pro-unipotent radical of Gx and let T +

x be the
closure of T in G+x . Very similar to Xr, one can define a scheme X+ over Fq

and its truncations X+
r (such that X+ = lim←−r

X+
r ), equipped with natural

G+x (Ok)× T +
x (Ok)-actions. See §7 for precise definition.

In loc. cit. we gave an essentially complete description of the homology
of X+ as a (G+)F × (T+)F -module under some mild restrictions on p and
the condition that T ⊆ G is of Coxeter type. Here, we generalize this in
two ways: (1) we prove the result for all elliptic tori T and (2) we relax the
assumptions on p (we only require p not be a torsion prime for G). As in
loc. cit., we phrase our result in terms of the homology f♮Qℓ of the structure
map f : X+ → SpecFq (whose ϕ-weight part agrees up to a shift with the
ϕ-weight part of the compact support cohomology of X+

r for sufficiently big
r). We refer to [IN24, §2.7] for a brief discussion of the homology functor.
Let N denote the order of F as an automorphism of Φ. The following
generalizes [IN24, Theorem 1.1] and proves [IN24, Conjecture 1.2], except
that in part (3) we have to assume convexity and in part (2) a different sign
might appear.

Theorem 1.5. Assume that T is elliptic. Let χ : T +
x (Ok)→ Q×

ℓ be a smooth
character. Then the following hold.

(1) Assume that p is not a torsion prime for G. The homology f♮Qℓ[χ] is
non-vanishing in precisely one degree sχ ≥ 0.

(2) Assume that p is not a torsion prime for G. The Frobenius FN acts in
the space Hsχ(X

+,Qℓ)[χ] := H−sχf♮Qℓ[χ] as multiplication by the scalar

(−1)s′χqsχN/2 with some s′χ ∈ Z. In particular, all Moy–Prasad quotients

of X+ are FqN -maximal varieties.

(3) Assume the element wσ ∈Wσ attached to F in §2.4 is convex. For vary-
ing χ, Hsχ(X

+,Qℓ)[χ] runs through pairwise non-isomorphic irreducible
smooth G+(Ok)-representations.

First, we remark that for part (3) the same proof as in [IN24, §7.1] ap-
plies, as for convex elements the (twisted) Steinberg cross-section map is an
isomorphism by Theorem 3.3(2). It remains to prove parts (1) and (2) of
Theorem 1.5. We do this in §7 by following the strategy of [IN24, §5].
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Further applications. Exploiting concentration in one degree, our results
apply to (1) T. Feng’s explicit calculation of Fargues–Scholze parameters
[Fen24] (we refer to [Fen24, §10] for the relevant setup) and (2) trace formulae
in terms of Xr for elements in GF

r acting on RΓc(Xr,Qℓ)[ϕ].

Corollary 1.6. Let T,U be as in Theorem 1.1. Assume that G0 = T and
that p is not a torsion prime for G. Then the RΓc(Xr,Qℓ)[ϕ] is irreducible,
concentrated in a single degree sϕ,r ∈ Z and FN acts in H

sϕ,r
c (Xr,Qℓ) by the

scalar (−1)s
′
ϕ,rqNsϕ,r/2 for some s′ϕ,r ∈ Z. In particular, we get:

(1) If ϕ̃ : T (k) → Q×
ℓ with ϕ̃|Tx(Ok) = ϕ, then [Fen24, Corollary 10.4.2] ap-

plies and provides an explicit description of the L-parameter of the smooth

G(k)-representation πT,U,ϕ̃ := c-ind
G(k)
T (k)Gx(Ok)

RΓc(Xr,Qℓ)[ϕ] (where we

extend RΓc(Xr,Qℓ)[ϕ] to a T (k)Gx(Ok)-representation via ϕ̃).

(2) Let g ∈ G(Ok). Then

tr(g,H
sϕ,r
c (Xr,Qℓ)[ϕ]) =

(−1)sϕ,r−s′ϕ,r

#TF
r · qNsϕ,r/2

∑
t∈TF

r

ϕ(t) ·#Sg,t,

where Sg,t = {x ∈ Xr(Fq) : gF
N (x) = xt}.

Proof. Indeed, by Corollary 1.4, RΓc(Xr,Qℓ)[ϕ] = RΓc(X
(T )
r ,Qℓ)[ϕ]. But

X
(T )
r is a disjoint union (indexed over GF

0 ) of copies of the scheme X+
r from

§7 and by Theorem 1.5, RΓc(X
+
r ,Qℓ)[ϕ] is concentrated in one degree. This

implies concentration in one degree. The assumption G0 = T and [Kal19,
Lemma 3.6.5] imply StabWF (ϕ) = 1. Then RΓc(Xr,Qℓ)[ϕ] is irreducible
by (for example) [Nie24, Theorem 1.6]. Now, for claim (1) note that our
techniques apply without change when the coefficient field Qℓ is replaced by
any algebraically closed field of characteristic ℓ ̸= p and claim (2) follows
from [Boy12, Lemma 2.12]. □

Acknowledgements. The first author gratefully acknowledges the sup-
port of the German Research Foundation (DFG) via the Heisenberg pro-
gram (grant nr. 462505253). He would like thank Jessica Fintzen and
David Schwein for several clarifying explanations (in particular, for explain-
ing Lemma 7.8 to him).

2. Notation and setup

2.1. General notation. We let k ⊆ k̆ with integers Ok ⊆ O, residue field
extension Fq ⊆ Fq, and Frobenius F be as in the introduction. We denote
by ϖ a uniformizer of k.

For a perfect Fq-algebra R, put W(R) = R[[ϖ]] if char(k) > 0, resp.
W(R) = W (R) ⊗Zp Ok if char(k) = 0, where W (R) denotes the ring of

Witt vectors of R. In particular, we have W(Fq) = Ok and W(Fq) = O.
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Let [·] : R → W(R) be the Teichmüller lift if char(k) = 0, resp. [x] = x if
char(k) > 0.

Let X be an O-scheme, which is affine and of finite type over O. Applying
the (perfect) positive loop functor L+ to X yields a perfect affine Fq-scheme

X = L+X satisfying X(R) = X (W(R))

for any perfect Fq-algebra R. If X is defined over Ok, then X is naturally
defined over Fq, and we denote by F the (geometric) Frobenius acting on

X(Fq), so that XF = X(Fq) = X (Ok).

2.2. Groups. We fix a reductive group G defined over k and split over k̆.
We write Z(G) for the center of G, Gder for the derived group of G, and Gsc

for the simply connected cover of Gder; we write Tder, Tsc for the preimage
of T in Gder, Gsc, respectively.

Let x be a point of the (reduced) Bruhat–Tits building of G over k. By
Bruhat–Tits theory there is an associated connected parahoric Ok-model Gx
of G, equipped with filtration by the Moy–Prasad subgroups Grx for r ∈ R≥0

(Grx(O) contains exactly the affine roots f with f(x) ≥ r. We let

J = Jumps(x, G) = {r ∈ R≥0 : Grx ̸= Gr
′

x for all r′ > r},

This is a discrete subset and for r ∈ J we denote by r+ ∈ J (resp. r−) its
descendant (resp. ascendant). Moreover, for r ∈ R≥0 such that r1 ≤ r < r1+
with r1 ∈ J , we put r+ := r1+.

For any s ≤ r ∈ J we obtain the Fq-rational perfectly smooth affine
(Moy–Prasad) group scheme

Gs
r := Gs

x/Gr+
x ,

where Gs
x = L+Gsx. If s = 0, we also write Gr for G0

r ; if r is fixed and clear
from the context, we write G, Gs for Gr, Gs

r. Note also that (Gs
r)

F is a finite
Moy–Prasad subquotient of the p-adic reductive group G(k).

If H ⊆ G is a closed subgroup defined over k̆, we may consider its closure
H in G, apply L+ and pass to (sub)quotients to obtain a closed subgroup
Hs

r ⊆ Gs
r (see [CI19, §2.6]). If H was k-rational, then Hs

r is F -stable.

2.3. Pinning. We fix a k-rational, k̆-split maximal torus T of G, we denote
by NG(T ) its normalizer. We identify its Weyl group W = NG(T )/T with

the set of its k̆-points; it is endowed with a natural action of F . We denote by
X∗(T ), X

∗(T ) the groups of (co)characters of Tk̆, equipped with natural F -
actions, and by ⟨, ⟩ : X∗(T )×X∗(T )→ Z the natural W - and F -equivariant
pairing.

We fix a Borel subgroup T ⊆ B ⊆ G defined over k̆, we denote by U
the unipotent radical of B, and by U the unipotent radical of the opposite
Borel subgroup. We write Φ ⊆ X∗(T ) for the set of roots of T in G, and by
Φ+ resp. Φ− the subset of positive roots corresponding to U resp. U . For
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each α ∈ Φ, let Uα : Ga,k̆ → G denote a fixed parametrization of the root

subgroup of α. For V ⊆ G, we write ΦV = {α ∈ Φ: Uα(k̆) ⊆ ΦV }.

2.4. Factorization of Frobenius. There is a unique element w ∈W , such
that FB = wB. Moreover, for any lift ẇ ∈ NG(T )(k̆), Ad(ẇ)

−1◦F : G(k̆)→
G(k̆) fixes the pinning (T,B) of G, and hence defines autormorphism σ of the
Coxeter system (W,S), where S is the set of simple reflections determined
by B. Moreover, there is a unique automorphism of X∗(T ), again denoted
by σ, such that the F -action on X∗(T ) is given by qwσ. This defines an
action of W ⋊ ⟨σ⟩ on X∗(T ) satisfying σ(Φ+) = Φ+.

2.5. Affine roots. Denote by T the connected Néron model of T . Then
T (O) is the maximal bounded subgroup of T (k̆). Moreover, for r ∈ Z≥0,

T (O)r = {t ∈ T (O) : ordϖ(χ(t)− 1) ≥ r ∀χ ∈ X∗(T )}

defines a descending separated filtration on T (k̆), satisfying T (O)0 = T (O).
For r ≥ 1 one has an isomorphism

V := X∗(T )⊗ Fq
∼−→ T (O)r/T (O)r+1, λ⊗ x 7−→ λ(1 + [x]ϖr).

We denote by Φaff
∼= Φ × Z the set of affine roots of T in G (with respect

to a fixed point in the apartment of T in the Bruhat–Tits building of G).
For f ∈ Φaff , we write αf ∈ Φ for its vector part and nf ∈ Z for the integer

such that f = (αf , nf ). We write Φ̃ = Φaff ⊔ Z≥0 for the enlarged set of
affine roots, with the affine root subgroup corresponding to r ∈ Z≥0 being
the r-th slice of T (O). There is a natural F -action on Φaff , and we extend

it to an F -action on Φ̃ by letting F act trivially on Z≥0.

3. Convex elements

We introduce convex elements in the Weyl group W . They behave like
Coxeter elements in many respects, but they have the advantage that any
σ-elliptic conjugacy class contains a minimal length element which is convex,
as is proven by the Tan, Yu and the second author in [NTY24]. In later sec-
tions we will make use of the fact that higher level Deligne–Lusztig varieties
attached to convex elements of W can be studied by similar techniques as
in the Coxeter case.

3.1. Convex elements in the Weyl group. Let x ∈W ⋊ ⟨σ⟩. Set
∆x = Φ+ ∩ x(Φ−).

For α ∈ Φ± we define

nx(α) = min{i ∈ Z⩾1;x
i(α) ∈ Φ∓}.

Definition 3.1. We say an elliptic element x ∈Wσ is quasi-convex if

nx(α+ β) ⩽ max{nx(α), nx(β)}
for all α, β ∈ Φ± such that α+ β ∈ Φ. Moreover, we say x is convex if both
x and x−1 are quasi-convex.
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Lemma 3.2. Let x be a elliptic quasi-convex element. Let α, β ∈ Φ+ and
i, j ∈ Z⩾1 such that iα+ jβ ∈ Φ+. Then nx(iα+ jβ) ⩽ max{nx(α), nx(β)}.

Proof. We always can find a sequence of roots γ0, γ1, . . . , γt = iα+ jβ with
γ0 and γm−γm−1 (∀1 ≤ m ≤ t) equal either α or β. Then the lemma follows
by induction from the definition. □

Convex elements were studied in [NTY24], where the following was proven.

Theorem 3.3 ([NTY24], Theorem 0.1). The following statements hold true.
(1) In each elliptic W -conjugacy class of Wσ, there exists a minimal

length element x which is convex.
(2) (Steinberg cross-sections) The map g, y 7→ g−1yẋσ(g)ẋ−1 : (U∩xσU)×

(U ∩ xσU)→ xσU is an isomorphism.

We will need further properties of convex elements.

Lemma 3.4. Let x ∈Wσ be convex. Let α, β ∈ Φ such that β−α ∈ Z⩾0∆x.
Then

(1) if α ∈ Φ+ then nx−1(β) ⩽ nx−1(α);
(2) If α, x−1(α) ∈ Φ− then either β ∈ Φ+ or nx(β) ⩽ nx(α).

Proof. (1) By assumption, there exists a sequence of roots

α = γ0, γ1, . . . , γm = β

such that γi−γi−1 ∈ ∆x. Since x
−1 is quasi-convex and nx−1(∆x) = {1} we

deduce that

nx−1(α) = nx−1(γ0) ⩾ nx−1(γ1) ⩾ · · · ⩾ nx−1(γm) = nx−1(β)

as desired.
(2) We can assume that α, x−1(α), β ∈ Φ−. Since x−1(∆x) ∈ Φ−, we have

x−1(β) ∈ Φ− and nx(x
−1(∆x)) = {1}. Note that

x−1(β)− x−1(α) ∈ Z⩾0x
−1(∆x) = −Z⩾0∆x−1 .

Thus, by (1) we have

nx(β) + 1 = nx(x
−1(β)) ⩽ nx(x

−1(α)) = nx(α) + 1,

which implies that nx(β) ⩽ nx(α) as desired. □

3.2. M-standard convex elements. Let M ⊆ G be an F -stable Levi
subgroup containing fixed maximal torus T . We denote by WM ⊆ W the
Weyl of M .

Proposition 3.5. There exists a Borel subgroup T ⊆ B such that
(1) M is a standard Levi subgroup with respect to B;
(2) the relative position x ∈ Wσ of B and FB is a convex element with

respect to the Coxeter system (W,S) attached to B;
(3) x is of minimal length in its WM -conjugacy class.
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Proof. Let V = RΦ be the Euclidean space together with an inner prod-
uct preserved by W ⋊ ⟨σ⟩. Since T is elliptic, there exists an orthogonal
decomposition

V = ⊕n
i=1Vi,

where each Vi is an F -stable subspace of dimension ⩽ 2. Moreover, for each
i there exist 0 < θi ⩽ π such that F (v) + F−1(v) = 2 cos θi · v for all v ∈ Vi.

Let VM ⊆ V be the subspace spanned by the roots of M . Denote by V ⊥
M

be the orthogonal complement of VM . As M is F -stable, V ⊥
M is preserved

by wσ. By reordering the subspaces Vi, we may assume that V ⊥
M = ⊕m

i=1Vi
for some 0 ⩽ m ⩽ n and θm+1 ⩽ θm+2 ⩽ · · · ⩽ θn. By [HN12, Lemma 5.1],
there exists a Weyl chamber C ⊆ V for Φ such that for each 1 ⩽ i ⩽ n
the Hausdorff closure C contains a Φ-regular point of ⊕i

j=1Vi. Here for any

linear subspace V ′ ⊆ V a point v′ ∈ V ′ is called a regular points of V ′ if for
each α ∈ Φ, (α, v′) = 0 implies that (α, V ′) = {0}.

Let T ⊆ B be the Borel subgroup associated to the Weyl chamber C. As
C contains a regular point V ⊥

M = ⊕m
i=1Vi, M is a standard Levi subgroup

with respect to B. Moreover, by [NTY24, Theorem 3.4], the relative position
of B and FB is a convex element with respect to the Coxeter system (W,S)
attached to B. Moreover, as VM = ⊕n

j=m+1Vj and θm+1 ⩽ θm+2 ⩽ · · · ⩽ θn,

it follows from [HN12, Proposition 5.4] that x is of minimal length in its
WM -conjugacy class. The proof is finished. □

3.3. Action of convex elements on a Lie algebra. Let x ∈ W ⋊ ⟨σ⟩.
For A ⊆ Φ we consider the following Fq-vector spaces

HA =
⊕
α∈A

Fqeα ⊆ HΦ =
⊕
α∈Φ

Fqeα.

Assume that A = x(A). Then we denote by F = FA the Frobenius map on
HA given by F (ceα) = cqex(α) for c ∈ Fq.

Let B ⊆ −∆x = Φ− ∩x(Φ+) such that for any α ∈ A, β ∈ B and i ∈ Z⩾1

we have α+ iβ ∈ A if α+ iβ ∈ Φ. For β ∈ B and c ∈ Fq we define a linear
map

Adβ(c) : HA −→ HA, eα 7−→ eα +
∑
i⩾1:

α+iβ∈Φ

cα,β,ic
ieα+iβ,

where cα,β,i ∈ Fq are arbitrary but fixed constants.
Assume B = {β1, . . . , βn}. Let ϕ = Adβ1(c1) ◦ · · · ◦ Adβn(cn), where

cj ∈ Fq for 1 ⩽ j ⩽ n are arbitrary but fixed. For a fixed z ∈ HA, let

V (ϕ, x, z) := {w ∈ HA;ϕ(w)− F (w)− z ∈ HA∩−∆x}.

This is a closed subvariety of HA. In §5 we will use it to describe the fibers
of a deep level Deligne–Lusztig variety over one of a shallower depth. Now
we prove the following general structure result for V (ϕ, x, z).
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Proposition 3.6. Let notation be as above. Assume that x is convex. Then
the natural projection HA → HA∩∆x induces a homeomorphism

V (ϕ, x, z) ∼= HA∩∆x .

Proof. Write w =
∑

α∈Awαeα, z =
∑

α∈A zαeα and ϕ(w) =
∑

α∈A yαeα
with wα, zα, yα ∈ Fq. Then the variety V (ϕ, x, z) is defined by the equations

yα − wq
x−1(α)

− zα = 0,(Eα)

where α ranges over the roots in A∖ (−∆x).
For α ∈ A, we set Γα = (α + Z⩾0B) ∩ A. As B ⊆ −∆x, it follows from

the definition of ϕ that

yα ∈
∑
γ∈Γα

cγαwγ ,

where cγα ∈ Fq are some constants such that cαα = 1. Hence the equation
(Eα) is equivalent to

wα − wq
x−1(α)

= zα −
∑

γ∈Γα ∖ {α}

cγαwγ .(E′
α)

Now we show that given z and (wα)α∈A∩∆x there exists a unique tuple
(wα)α∈A∖∆x such that the equations (E′

α) hold for all α ∈ A∖ (−∆x). To
this end, for α ̸= β ∈ Φ+ we define β ≺ α if either nx−1(β) < nx−1(α) or
nx−1(β) = nx−1(α) and β − α is a sum of roots in ∆x.

First we claim that wα is determined by the equation (E′
α) for α ∈ (A ∩

Φ+)∖∆x (by which we mean that we may eliminate equation (E′
α) along

with the variable wα). We use induction on the partial order ⪯ on A ∩Φ+.
As α ∈ (A ∩ Φ+)∖∆x, we have x−1(α) ∈ Φ+ and hence x−1(α) ≺ α.
Moreover, by Lemma 3.4 (1) we have γ ≺ α for γ ∈ Γα∖ {α}. By induction
hypothesis, wx−1(α) and wγ for γ ∈ Γα∖ {α} are already determined. Hence

wα is determined by the equation E′
α, and the claim is proved.

It remains to show that wα is determined by the equation (E′
x(α)) for

α ∈ A ∩ Φ−. We argue by induction on nx(α). In view of (E′
x(α)), wα

is determined by zx(α) and wγ for γ ∈ Γx(α). So it suffices to show wγ is

already determined for γ ∈ Γx(α). Indeed, if γ ∈ Φ+, this follows from the

previous claim. Now we assume γ ∈ Φ− and hence x(α) ∈ Φ−. By Lemma
3.4 (2), we have nx(γ) ⩽ nx(x(α)) < nx(α). Thus wγ is determined by the
induction hypothesis. Thus wα is determined by the equation (E′

x(α)), and

the proof is finished. □

Proposition 3.7. Let notation be as above. Assume that x is convex. Then
the map (x, y) 7→ −ϕ(x) + y − F (x) gives an isomorphism

HA∩x(Φ+)∩Φ+ ×HA∩−∆x

∼−→ Hx(A∩Φ+).

Proof. By Proposition 3.6, this map is injective. It suffices to show it is
surjective, that is, for any z ∈ Hx(A∩Φ+), there exists w ∈ HA∩x(Φ+)∩Φ+
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such that ϕ(w)−F (w)− z ∈ Hx(A∩−∆x). This is equivalent to the following
statement:

(a) For any z ∈ HA∩Φ+ , there exists w ∈ HA∩x(Φ+)∩Φ+ such that −φ(w)+
F−1(w) − z ∈ HA∩∆x−1 . Here φ = F−1 ◦ ϕ ◦ F =

∏
γ∈x−1(B)∩∆x−1

Adγ(dγ)

for some dγ ∈ Fq.

Now we prove (a). Let z =
∑

α cαeα ∈ HA∩Φ+ for some cα ∈ Fq. Define

nx(z) = max{nx(α); cα ̸= 0}.
We argue by induction on nx(z). If nx(z) = 1, that is, z ∈ HA∩∆x−1 and we

may take w = 0. Assume nx(z) ⩾ 2. Let z′ =
∑

γ,nx(γ)=nx(z)
cγeγ ∈ HA∩Φ+ .

Then nx(z − z′) ⩽ nx(z) − 1 and F (z′) ∈ HA∩x(Φ+)∩Φ+ . Moreover, as x is
convex and nx(γ) = 1 for γ ∈ ∆x−1 , we have

n(φ(F (z′))) ⩽ nx(F (z
′)) = nx(z

′)− 1 = nx(z)− 1.

Thus

nx(φ(F (z
′))− F−1(F (z′))− z) = nx(φ(F (z

′))− (z − z′)) ⩽ nx(z)− 1.

Then the statement follows by induction hypothesis. The proof is finished.
□

4. Deligne–Lusztig varieties

4.1. Deligne–Lusztig varieties. Recall the notation from §2.2. Fix r ∈
J . We have the Fq-group G = Gr equipped with Fq-Frobenius F and its

subgroups T,U,U. Consider the Fq-varieties

Xr = {g ∈ G : g−1F (g) ∈ U ∩ FU}
Yr = {g ∈ G : g−1F (g) ∈ T(U ∩ FU)}/T.

There is an obvious map h : Xr → Yr, which is an étale TF -torsor with TF

acting by right multiplication. Hence

h!Qℓ =
⊕
θ

θ ⊗ Eθ,

where θ ranges over characters of TF
r and Eθ is the associated local system

on Yr. For any i ∈ Z we have

H i
c(Xr,Qℓ)[θ] ∼= H i

c(Yr, Eθ).

4.2. Howe strata. Fix a character ϕ : TF → Q×
ℓ of depth(ϕ) ⩽ r. Then ϕ

induces a character TF → Q×
ℓ , which we again denote by ϕ. Assume that ϕ

admits a Howe factorization in the sense of [Kal16, §3.6] and denote it by
(Gi, ϕi, ri)−1⩽i⩽d. That is,

T = G−1 ⊆ L := G0 ⊊ G1 ⊊ . . . Gd−1 ⊊ Gd

is a sequence of twisted Levi subgroups, ϕi (0 ≤ i ≤ d) is a character of

(Gi)F , which is (Gi : Gi+1)-generic for i < d, such that ϕ =
∏d

i=−1 ϕi.
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Moreover, there is a sequence 0 = r−1 < r0 < · · · < rd−1 ≤ rd of integers
such that ϕi has depth ri for 0 ≤ i ≤ d − 1; ϕd = 1 if rd−1 = rd and ϕd
has depth rd otherwise; ϕ−1 = 1 if G0 = T and ϕ−1 has depth 0 otherwise.
For α ∈ Φ we denote by i(α) the unique integer 0 ⩽ i ⩽ d such that
α ∈ Φ(Gi, T ) \ Φ(Gi−1, T ). Define r(α) = ri(α)−1.

We define subgroups of G as follows.

Kϕ = (G0)
0(G1)

r0/2 · · · (Gd)
rd−1/2;

K+
ϕ = (G0)

0+(G1)
r0/2+ · · · (Gd)

rd−1/2+;

Hϕ = (G0)
0+(G1)

r0/2 · · · (Gd)
rd−1/2;

Eϕ = (G0)
0+(Gder

1 )r0/2+,r0+ · · · (Gder
d )rd−1/2+,rd−1+.

Here (Gder
i )ri−1/2+,ri−1+ is generated by (Gder

i )ri−1+ and Uf for f ∈ Φ̃
ri−1/2+
aff

such that αf ∈ Ri \Ri−1.
Furthermore, we let K̄ϕ = Kϕ/Eϕ and let H̄ϕ, L̄ϕ, T̄, ... be the natural

images of Hϕ, L, T, ... in K̄ϕ respectively.
The “discrete part” (Gi, ri)−1⩽i⩽d of the Howe datum of ϕ cuts out the

following subvarieties of Xr, Yr, which might therefore be called (closed)
Howe strata of X,Y :

X♭
r = {g ∈ G : g−1F (g) ∈ Kϕ ∩ U ∩ FU},

Y ♭
r = {g ∈ G : g−1F (g) ∈ T(Kϕ ∩ Ur ∩ FUr)}/T

The following is our first main result. It says the ϕ-isotypic part of the
cohomology of Xr concentrates on the corresponding Howe stratum.

Theorem 4.1. Suppose the element wσ ∈ Wσ attached to F in §2.4 is
convex. We have RΓc(Xr ∖X♭

r,Qℓ)[ϕ] = RΓc(Yr ∖Y ♭
r , Eϕ) = 0.

By proper base change, Theorem 4.1 follows from the vanishing of the
cohomology of Eϕ on the fibers of Yr ∖Y ♭

r → Y0, which is Proposition 5.1
below.

5. Fibers over the classical Deligne–Lusztig variety

Here we complete the proof of Theorem 4.1. Let the notation be as in

§4. In particular, we have a fixed character ϕ : TF → Q×
ℓ of depth(ϕ) ≤ r,

admitting a Howe factorization, and the corresponding groups Kϕ,K+
ϕ , . . . ,

as well the varietiesXr ⊇ X♭
r, Yr ⊇ Y ♭

r . We will denote the character induced
by ϕ on the subquotient TF

r of TF again by ϕ. Recall the local system Eϕ
on Yr attached to ϕ. Let

δr : Yr ∖Y ♭
r ↪→ Yr −→ Y0

be the natural projection. Note that Y0 is (essentially) a classical Deligne–
Lusztig variety for G0.
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Proposition 5.1. Suppose the element wσ ∈ Wσ attached to F in §2.4 is
convex. Let ḡ0 ∈ Y0. Then we have RΓc(δ

−1
r (ḡ0), Eϕ) = 0.

After necessary preparations, we prove Proposition 5.1 at the end of §5.
Until the end of §5, we assume that the element wσ ∈Wσ attached to F is
convex, so that results of §3 apply; we fix ḡ0 ∈ Y0 ⊆ G0/T0 and a lift g0 ∈ Gr

of ḡ0 such that
y0 := g−1

0 F (g0) ∈ Ur ∩ FUr.

5.1. Parametrization of Moy–Prasad quotients. We set

Φ̃0
r = {f ∈ Φ̃; 0 ⩽ f(x) ⩽ r};

Φ̃+
r = {f ∈ Φ̃; 0 < f(x) ⩽ r};

∆̃r = {f ∈ Φ̃0
r ;αf ∈ ΦU ∩ FΦU}.

Moreover, we set Φ0
aff,r = {f ∈ Φ̃0

r ;αf ∈ Φ} and Φ+
aff,r = {f ∈ Φ̃+

r ;αf ∈ Φ}.
For f, f ′ ∈ Φ̃0

r we write f ′ < f if either f ′(x) < f(x) or f ′(x) = f(x)

and f ′ − f is a sum of affine roots in ∆̃r. We extend this partial order

to a total order on Φ̃0
r , and still denote it by ⩽. For f ∈ Φ̃0

r , we write

Φ̃f
r = {f ′ ∈ Φ̃0

r : f
′ ≥ f}.

Note that Tr → T0 admits a unique splitting, which we denote by t 7→ [t].

Let f ∈ Φ̃+
r ∪ {0}. Define

uf : Af := A1 −→ TrG0+
r , x 7−→ Uαf

([x]ϖnf ) if f ∈ Φ̃aff ,

uf : Af := T0 −→ TrG0+
r , x 7−→ [x] if f = 0,

uf : Af := X∗(T )⊗ Fq −→ TrG0+
r , λ⊗ x 7−→ λ(1 + [x]ϖnf ) if f ∈ Z≥1,

where in the last line λ ∈ X∗(T ), x ∈ Fq

Define an abelian group A[r] =
∏

f∈Φ̃+
r ∪{0}Af . Then we have an isomor-

phism of varieties

(5.1) u : A[r] −→ TrG0+
r , (xf )f 7−→

∏
f

uf (xf ),

where we the product is taken with respect to the order ≤ restricted to

Φ̃+
r ∪ {0}. Let E ⊆ Φ̃+

r ∪ {0}. We define AE =
∏

f∈E Af which is viewed

as a subgroup of A[r] in the natural way. We denote by pE : A[r]→ AE the
natural projection. Define

GE
r = u(AE) ⊆ TrG0+

r .

Moreover, we denote by

prE : TrG0+
r
∼= A[r] −→ AE

∼= GE
r

the natural projection. If E+E,Z⩾0+E ⊆ E∪ Φ̃r+, then GE
r is a subgroup

of G0+
r .

Let g ∈ TrG0+
r , x ∈ A[r] and E ⊆ Φ̃+

r ∪{0}. We set gE = prE(g) ∈ u(AE),

xE = pE(x) ∈ AE and x̂ = u(x) ∈ G+
r . For f ∈ Φ̃+

r we will set xf = x{f}
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and x⩾f = x
Φ̃f

r
. We can define gf and g⩾f ∈ G+

r in a similar way. By abuse

of notation, we will identify gf ∈ u(Af ) with u
−1(gf ) ∈ Af according to the

context.

5.2. Description of the fiber. Define

π : Gr −→ Gr, π(g) = g−1y0F (g).

Let Yr(ḡ0), Xr(ḡ0) be the preimages in Yr, Xr of ḡ0 ∈ Y0 under the natural
projections. Then we have isomorphisms: g 7→ gg−1

0 induces an isomorphism

Yr(ḡ0)
∼−→ {g ∈ G0+

r Tr : π(g) ∈ Tr(Ur ∩ FUr)}/Tr

∼←− {g ∈ G
Φ+

aff,r
r : π(g) ∈ Tr(Ur ∩ FUr)}(5.2)

where the first map is induced by h 7→ g−1
0 h, and the second map is induced

by g 7→ gTr. Under these isomorphisms, δ−1
r (ḡ0) identifies with the subvari-

ety of those g for which π(g) ∈ Tr((Ur ∩FUr)∖Kϕ). Until the end of §5 we
will identify Yr(ḡ0), δ

−1
r (ḡ0) with the models given by the last line of (5.2).

This enables us to define a map

πTr : Yr(ḡ0) −→ Tr, πTr(g) = π(g)Tr ,

and we denote its restriction to δ−1
r (ḡ0) again by πTr .

Lemma 5.2. There is a cartesian diagram

Xr(ḡ0) //

��

Tr

L−1
Tr
��

Yr(ḡ0)
πTr // Tr

where the left map is the natural projection, LTr is the Lang map of Tr, and
the upper map sends h ∈ Xr(ḡ0) ∼= {h ∈ G0+

r Tr : π(h) ∈ Ur ∩ FUr} to hTr .

Note that in the diagram of the lemma both horizontal maps depend on
the parametrization of G0+

r Tr fixed in §5.1.

Proof. As both vertical maps in the diagram are étale TF
r -torsors, it suffices

to show that the diagram commutes. For this, let h ∈ Xr(ḡ0). Its image in
Yr(ḡ0) identifies (under the isomorphism from the previous paragraph) with
hΦ+

aff,r
= hh−1

Tr
. Its image under the lower map is then equal to

(hh−1
Tr

)−1y0F (hh
−1
Tr

) = (hTr · (h−1y0F (h)) · F (hTr)
−1)Tr

= hTrF (hTr)
−1

= LTr(hTr)
−1

where the second equality follows as h ∈ Xr(ḡ0). □



CONVEX ELEMENTS AND DEEP LEVEL DELIGNE-LUSZTIG VARIETIES 15

By proper base change theorem, Lemma 5.2 implies that

Eϕ|Yr(ḡ0)
∼= π∗Tr

Lϕ,
where Lϕ denotes the multiplicative local system on Tr corresponding to ϕ.
Clearly, the same isomorphism holds after restricting to δ−1

r (ḡ0).
Now we prove that the cohomology of the fiber δ−1

r (ḡ0) with coefficients
in Eϕ is independent of r as long as r ≥ rd−1.

Proposition 5.3. Let r ∈ J satisfying r ⩾ rd−1 > 0. Then we have

RΓc(δ
−1
r (ḡ0), π

∗
Tr
Lϕ) ∼= RΓc(δ

−1
r+(ḡ0), π

∗
Tr+
Lϕ)[2m],

where m = ♯(∆̃r+∖ ∆̃r).

Proof. In the setup of §3.3, letA = {αf ∈ Φ: f(x) = r} and let ϕ : HA → HA

be the endomorphism determined by conjugation with y0 =
∏

α∈−∆ y0,α.
Note moreover, that (5.2) gives a section s : Yr(ḡ0) → Yr+(ḡ0) to the nat-
ural projection. The fiber of Yr+(ḡ0) → Yr(ḡ0) over g is then given by
V (ϕ, x, z(s(g))), where z : Yr(ḡ0) → Gr+

r+/T
r+
r+
∼= HA is some morphism.

Then Proposition 3.6 gives an isomorphism Yr+(ḡ0) ∼= Yr(ḡ0) × A
∆̃r+ ∖ ∆̃r

.

By assumption on r, δ−1
r+(ḡ0) is the preimage in Yr+(ḡ0) of δ

−1
r (ḡ0) ⊆ Yr(ḡ0),

so that we get an isomorphism

δ−1
r+(ḡ0)

∼= δ−1
r (ḡ0)× A

∆̃r+ ∖ ∆̃r
.

Moreover, for (x, y) ∈ δ−1
r (ḡ0)× A

∆̃r+ ∖ ∆̃r
we have

πTr+(x, y)− πTr(x) ∈ Tr+
der,r+.

Since the restriction of ϕ to (Tr+
der,r+)

F is trivial, π∗Tr+
Lϕ is isomorphic to

the pullback of π∗Tr
Lϕ under the natural projection Tr+ → Tr. Therefore,

we have

π∗Tr+
Lϕ ∼= π∗Tr

Lϕ ⊠Qℓ

and the statement follows by the Künneth formula. □

5.3. Handling jumps. Let (Gi, ϕi, ri)−1⩽i⩽d be the Howe factorization of
ϕ from §4.2. Set

r = rd−1, M = Gd−1, V = U ∩ FU.

We label the real numbers of {f(x); f ∈ Φ̃0
r ∖ Φ̃M} ⊆ J in the ascending

order:

0 = s0 < s1 < · · · < sm = r.

Note that si + sm−i = r for 0 ⩽ i ⩽ m. Set

C0 = {f ∈ Φaff ; f(x) = 0}

Ci = {f ∈ Φ̃∖ Φ̃M ; f(x) = si} for 0 < i < m

Cm = {f ∈ Φ̃; f(x) = r}.
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Put C<i =
⋃

j<iC
j and define C>i similarly. Note that for for j ≥ m

2 − 1,

GC>j

r ⊆ G0+
r is a subgroup normalized by T0+

r . For 0 ⩽ i, j ⩽ m with
j ≥ m

2 − 1 we define

Y i,j
y0,r := {g ∈ G

Φ+
aff,r∩C

≤j

r : π(g) ∈ T0+
r GC>j

r VC⩾i

r }
∼= {g ∈ G0+

r : π(g) ∈ T0+
r GC>j

r VC⩾i

r }/T0+
r GC>j

r ,

where

VC⩾i

r := {v ∈ Vr ∖Kϕ,r; vC<i ∖ Φ̃M
= 0}.

Note that C>m = C<0 = ∅ and hence Y 0,m
y0,r = δ−1

r (ḡ0). Moreover, if 0 < i

then Y i,j
y0,r ̸= ∅ if and only if y0 ∈Mr.

Lemma 5.4. Let E ⊆ C>m/2 and E′ ⊆ Φ̃+
r such that E + (E′∖ Φ̃M ) ⊆ Φ̃r.

Let x ∈ AE and y ∈ AE′. Then

(x̂ŷ)Tr = −
∑
f

α∨
f (1 +ϖrxfyr−f ) + yTr + xTr ∈ Tr,

where f ranges over E such that f > r − f , and where we denote the group
law in Tr by +.

Proof. The proof is similar to [IN24, Lemma 5.13]. Write x̂ŷ = ẑg1 . . . ẑgn ∈
G0+

r with E′′ := {g1 < · · · < gn} ⊆ (Z≥0E + Z≥0E
′) ∩ Φ̃+

r . Then each zgi ∈
Agi is a sum of xgi (appears if gi ∈ E), ygi (appears if gi ∈ E′) and possibly
some iterated commutator terms arising from xf ,yf ′ with f ∈ E, f ′ ∈ E′.

As E ⊆ C>m/2, we even have E′′∖ (E ∪E′) ⊆ E +Z≥1E
′. Let 1 ≤ i ≤ n

be such that gi ∈ Z≥1. Suppose that gi = f+
∑s

j=1 ajf
′
j with some aj ∈ Z≥1,

f ′j ∈ E′. As M ⊆ G is a Levi subgroup, and gi ∈ Φ̃M , there must be some

j0 with f ′j0 ∈ E′∖ Φ̃M . Then, by assumption, f + f ′j ∈ Φ̃r, which forces

j0 = s = 1, a1 = 1 and gi = f + f ′1 = r.
Thus, if gi ∈ Z≥1 and gi < r, then zgi = xgi + ygi = ygi (note that

E ∩ Z≥1 = ∅, and thus xgi = 0). When gi = r, then (x̂ŷ)r = −
∑

f α
∨
f (1 +

ϖrxfyr−f ) + yr + xr ∈ Tr
r, where the sum ranges of the same index set as

in the lemma. As zTr = zgi1 . . . zgir , where gij = j ∈ Z≥1, this finishes the
proof. □

Lemma 5.5. Let 0 ⩽ i ⩽ m/2 and w ∈ ACm−i. For each f ∈ Ci we have

(y−1
0 ŵy0)r−f =

∑
f⩽f ′∈Ci

cf,f ′wr−f ′ ,

where cf,f ′ ∈ Fq are some constants such that cf,f = 1.

As a consequence, (y−1
0 ŵy0)Tr = 0 if 0 < i < m/2 and (y−1

0 ŵy0)Tr =∑
f⩽f ′∈Ci α∨

f (1 + ϖrdf,f ′(y0)fwr−f ′) if i = 0. Here df,f ′ ∈ Fq are some
constants such that df,f ′ = 1.
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Proof. Write ŵ = ŵf1 . . . ŵfs with Cm−i = {f1 < · · · < fs}. It is clear that

y−1
0 ŵy0 only depends on the image of y0 in G0. By induction on the number

of roots in ∆̃ ∩ C0 needed to write y0, we may assume that y0 = y0,g with

some g ∈ ∆̃ ∩ C0. We compute

(5.3) y−1
0 ŵy0 = ŵf1 [ŵ

−1
f1
, y−1

0 ]ŵf2 . . . ŵfs [ŵ
−1
fs
, y−1

0 ].

Moreover, [ŵ−1
fj
, y−1

0 ] =
∏

a(caŵfj )fj+ag, where the product is taken over all

a ∈ Z≥1 such that fj+ag ∈ Φ̃ (and hence in Cm−i), and ca ∈ Fq is a constant

depending on a, y0. If m − i > m/2, then all terms ŵfj , [ŵ
−1
fj′
, y−1

0 ] in (5.3)

commute with each other (in Gr) and the result follows. If m − i = m/2,
then the terms in (5.3) commute up to Gr

r, which may be ignored, as r − f
(from the statement of the lemma) lies in Cm/2. □

Proposition 5.6. Let 0 ⩽ i ⩽ m/2. The map g 7→ (gC<m−i , gCm−i∩∆̃r
)

induces an isomorphism

Y i,m−i
y0,r

∼= Y i,m−i−1
y0,r × A

Cm−i∩∆̃r
.

Moreover, for g = (g′, z) ∈ Y i,m−i−1
y0,r × A

Cm−i∩∆̃r
we have

• if 0 ⩽ i < m/2, then

π(g)Tr =
∑

f⩽f ′∈Ci∩−∆̃r

α∨
f (1 +ϖrcf,f ′π(g′)fzr−f ′) + π(g′)Tr ,

where cf,f ′ ∈ Ok̆ are some constants with cf,f = 1;

• if i = m/2 and g′ ∈Mr ∩ Y i,m−i−1
y0,r , then

π(g)Tr = µ(z) + π(g′)Tr ,

where µ : A
Cm/2∩∆̃r

→ Tr is a certain morphism.

Proof. By Proposition 3.6 we have an isomorphism

ψ : Y i,m−i
y0,r

∼−→ Y i,m−i−1
y0,r × A

Cm−i∩∆̃r
,

and moreover, for g = ψ−1(g′, z) with (g′, z) ∈ Y i,m−i−1
y0,r × A

Cm−i∩∆̃r
we

have g = g′ŵ for some w ∈ ACm−i such that

(*) wf = zf for f ∈ Cm−i ∩ ∆̃r.

We set h = π(g′) ∈ T0+
r GC>m−1−i

r VC≥i

r . By definition we have y0 = hC0 ,
h
C<i ∖ Φ̃M

= 0. Write h = hC0h+ = y0h+ with h+ = h
Φ̃0+

r
. Then hTr =

(h+)Tr . We have

πTr(g) = (ŵ−1hF (ŵ))Tr = (y0y
−1
0 ŵy0h+F (ŵ))Tr = (y−1

0 ŵy0h+F (ŵ))Tr .

Assume i = 0. By Lemma 5.4 we have

πTr(g) = ((y−1
0 ŵy0)h+)Tr = (y−1

0 ŵy0)Tr + (h+)Tr .

Hence the statement follows from Lemma 5.5 and (*).
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Assume 0 < i < m/2. Then y−1
0 ŵy0 ∈ GC⩾m−i

r . Moreover, as 0 < i <

m−i, we have h+F (ŵ) ∈M+
r GC⩾i

r and (h+F (ŵ))f = hf = (h+)f for f ∈ Ci.
Applying Lemma 5.4, Lemma 5.5 and (*) we deduce that

πTr(g) = ((y−1
0 ŵy0)(h+F (ŵ))Tr

=
∑
f∈Ci

α∨
f (1 +ϖr(y−1

0 ŵy0)r−f (h+F (ŵ))f ) + (y−1
0 ŵy0)Tr + (h+F (ŵ))Tr

=
∑

f⩽f ′∈Ci∩−∆̃r

α∨
f (1 +ϖrcf,f ′hfwr−f ′) + (h+)Tr

=
∑

f⩽f ′∈Ci∩−∆̃r

α∨
f (1 +ϖrcf,f ′π(g′)fzr−f ′) + πT,r(g

′),

where the third equality follows from that hf = 0 for f ∈ Ci∖ − ∆̃r.
Finally, assume that i = m/2 ∈ Z and we may choose g′ ∈ Mr. Then

h ∈ Mr and h
C⩽m/2 ∖ Φ̃M

= 0. By Proposition 3.6, w ∈ ACm/2 only de-

pends on z ∈ A
Cm/2∩∆̃r

(and the fixed element y0). We define µ(z) =

(y−1
0 ŵy0F (ŵ))Tr . Noticing that y−1

0 ŵy0F (ŵ) ∈ GC⩾m/2

r , h+ ∈ M+
r and

[h−1
+ , F (ŵ)−1] ∈ GC>m/2 ∖ Φ̃M

r , we deduce by Lemma 5.4 that

πTr(g) = (y−1
0 ŵy0F (ŵ)h+[h

−1
+ , F (ŵ)−1]))Tr

= (y−1
0 ŵy0F (ŵ))Tr + (h+[h

−1
+ , F (ŵ)−1])Tr

= µ(z) + (h+)Tr + ([h−1
+ , F (ŵ)−1])Tr

= µ(z) + (h+)Tr

= µ(z) + πTr(g
′).

The proof is finished. □

We have a decomposition

Vr ∖Kϕ,r = V′
r ⊔ V′′

r ,

where V′′
r = {g ∈ Vr ∖Kϕ,r; gC<m/2 ∖ Φ̃M

= 0} and V′
r = (Vr ∖Kϕ,r)∖V′′

r .

This induces a natural decomposition δ−1
r (ḡ0) = δ−1

r (ḡ0)
′ ⊔ δ−1

r (ḡ0)
′′.

Proposition 5.7. Let π : X × Ga → Tr be a morphism. Suppose that for
each x ∈ X the pull-back of Lϕ via the map z 7→ π(x, z) is isomorphic to a
nontrivial multiplicative local system on Ga. Then RΓc(X ×Ga, π

∗Lϕ) = 0.

Proof. Let x : SpecFq → X be a point, and let x′ : Ga → X × Ga be the
base changed map. Denote by f : X × Ga → X the natural projection and
by fx its pullback along x. Proper base change implies that x∗f!π

∗Lϕ ∼=
fx!x

′∗π∗Lϕ, which is zero by [Boy10, Lemma 9.4]. As this holds for any
geometric point x ∈ X, we deduce f!π

∗Lϕ = 0. Thus RΓc(X ×Ga, π
∗Lϕ) ∼=

RΓc(X, f!π
∗Lϕ) = 0. □

Proposition 5.8. We have RΓc(δ
−1
r (ḡ0)

′, π∗Tr
Lϕ) = 0.
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Proof. Let m/2 ⩽ j ⩽ m, 0 ⩽ i < m/2 and f ∈ (C⩽i ∩ −∆̃r)∖ Φ̃M . We
define

Y f,j
y0,r = {g ∈ Y

0,j
y0,r;π(g)f ̸= 0, π(g)

C<f ∖ Φ̃M
= 0}.

Then δ−1
r (ḡ0)

′ is a disjoint union of locally closed subsets Y f,m
y0,r . It suffices

to show RΓc(Y
f,m
y0,r , π

∗
Tr
Lϕ) = 0.

By Proposition 5.6, we have

Y f,m
y0,r
∼= Y f,m−1

y0,r × A
Cm∩∆̃r

∼= · · · ∼= Y f,m−i−1
y0,r × A

C⩾m−i∩∆̃r
.

Moreover, for g = (g′, z) ∈ Y f,m−i−1
y0,r ×A

C⩾m−i∩∆̃r
we have π(g′)

C<f ∖ Φ̃M
= 0

and hence

π(g)Tr ≡ α∨
f (1 +ϖrπ(g′)fzr−f ) + π(g′)Tr mod (T ∩Mder)

r
r.

Since the restriction of the character ϕ to ((T ∩Mder)
r
r)

F is trivial, it fol-
lows that the pull-back of Lϕ over A

C⩾m−i∩∆̃r
under the morphism z 7→

πTr(g
′, z) is isomorphic to the pull-back of Lϕ under the morphism z 7→

α∨
f (1+ϖ

rπ(g′)fzr−f ), which is a nontrivial multiplicative local system. Thus
the statement follows from Proposition 5.7. □

5.4. Proof of Proposition 5.1. We argue by induction on d and the
semisimple rank of G. If d = 0 or G is a torus, then Vr = ∅ and the
statement is trivial.

Suppose that d ⩾ 1 and hence M = Gd−1 is a proper Levi subgroup. In
view of Proposition 5.8, it suffices to show RΓc(δ

−1
r (ḡ0)

′′, π∗Tr
Lϕ) = 0. For

m/2− 1 ⩽ j ⩽ m we define

Y ′′,j
y0,r = {g ∈ Y

0,j
y0,r : π(g)C<m/2 ∖ Φ̃M

= 0}

Then δ−1
r (ḡ0)

′′ = Y ′′,m
y0,r . By Proposition 5.6, we have

Y ′′,m
y0,r
∼= Y ′′,m/2−1

y0,r × A
C⩾m/2∩∆̃.

Moreover, for (g′, z) ∈ Y
′′,m/2−1
y0,r × A

C⩾m/2∩∆̃ we have πTr(g) = µ(z) +
πTr(g

′). As Lϕ is multiplicative, by Künneth formula it suffices to show

RΓc(Y
′′,m/2−1
y0,r , π∗Tr

Lϕ) = 0.

Indeed, using the natural embedding M0+
r−/T

0+
r− ↪→ G0+

r /T0+
r GC⩾m/2

r we
have

Y ′′,m/2−1
y0,r = ⊔

g∈(G0+
r )ad(y0)◦F /(M0+

r GC⩾m/2
r )ad(y0)◦F

gYM
y0,r−,

where YM
y0,r− = {g ∈M0+

r−/T
0+
r−;π(g) ∈ T0+

r−(Mr−∩Vr−)}. Now the statement

follows by induction hypothesis that RΓc(Y
M
y0,r−, π

∗
Tr−
Lϕ) = 0. This proves

Proposition 5.1 and hence Theorem 4.1.
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6. Relation with the variety of Chen–Stasinski

We continue to work with notation from §4. We thus have a character

ϕ : TF → Q×
ℓ of depth(ϕ) ≤ r, which we assume to admit a Howe factoriza-

tion with corresponding subgroups Kϕ,K+
ϕ , etc. As long as r remains fixed,

we sometimes omit it from notation and write G instead of Gr, etc. We also
write ϕ for the character of TF induced by ϕ.

Theorem 4.1 shows that RΓc(Xr,Qℓ)[ϕ] = RΓc(X
♭
r,Qℓ)[ϕ]. Next, we

relate the cohomology of X♭
r with the cohomology of a different variety.

Define the subgroup

Iϕ,U = (Kϕ ∩ U)(Eϕ ∩ T)(K+
ϕ ∩ U−).

of Kϕ and the subvariety

Zϕ,U,r = {g ∈ G : g−1F (g) ∈ F Iϕ,U}

acted on by GF ×TF by left and right multiplication. The variety Zϕ,U,r was
first considered in a special case by Chen and Stasinski in [CS17], and later
(in general) by the second author in [Nie24]. The following result gives a

degreewise comparison of the cohomologies of X♭
r and Zϕ,U,r. This improves

over [Nie24, Theorem 4.1], which only compares the (GF -equivariant) Euler
characteristics.

Proposition 6.1. We have a GF -equivariant isomorphism

RΓc(X
♭
r,Qℓ)[ϕ] ∼= RΓc(Zϕ,U,r,Qℓ)[ϕ][2m],

where m = dim(U ∩K+
ϕ )(FU ∩ U ∩Kϕ) + dim(T ∩ Eϕ).

This follows directly from Lemma 6.2 and Proposition 6.3 below.

6.1. Proof of Proposition 6.1. Consider

X♭,K
r = X♭

r ∩Kϕ

ZK
ϕ,U,r = Zϕ,U,r ∩Kϕ,

both admitting KF
ϕ ×TF -actions by left/right multiplication. It is immediate

that Zϕ,U,r =
∐

γ∈GF /KF
ϕ
γZK

ϕ,U,r, so that

(6.1) RΓc(Zϕ,U,r,Qℓ)[ϕ] = indG
F

KF
ϕ
RΓc(Z

K
ϕ,U,r)[ϕ],

and the same formulas hold for X♭
r. To prove Proposition 6.1 it thus suffices

to show RΓc(X
♭,K
r ,Qℓ)[ϕ] ∼= RΓc(Z

K
ϕ,U,r,Qℓ)[ϕ][2m].

Let Tϕ = Eϕ ∩ T. Define

X♮,K
r = {g ∈ Kϕ; g

−1F (g) ∈ Tϕ(FU ∩ U ∩Kϕ)}.

Lemma 6.2. We have a natural KF
ϕ -equivariant isomorphism RΓc(X

♭,K
r ,Qℓ)[ϕ] ∼=

RΓc(X
♮,K
r ,Qℓ)[ϕ][2 dimTϕ].
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Proof. Since Tϕ is an affine space, the quotient map X♮,K
r → X♮,K

r /Tϕ in-

duces an isomorphism of KF
ϕ -modules

RΓc(X
♮,K
r ,Qℓ)[ϕ] ∼= RΓc(X

♮,K
r /Tϕ,Qℓ)[ϕ][2 dimTϕ].

On the other hand, there is a natural isomorphism X♭,K
r /TF

ϕ → X♮,K
r /Tϕ.

Thus we have natural isomorphisms KF
ϕ -modules

RΓc(X
♮,K
r ,Qℓ)[ϕ] ∼= RΓc(X

♮,K
r /Tϕ,Qℓ)[ϕ][2 dimTϕ]

∼= RΓc(X
♭,K
r ,Qℓ)

TF
ϕ,r [ϕ][2 dimTϕ]

∼= RΓc(X
♭,K
r ,Qℓ)[ϕ][2 dimTϕ],

where the last isomorphism follows from that ϕ is trivial over TF
ϕ . □

Proposition 6.3. The map (z, a) 7→ za gives an isomorphism

φr : X
♮,K
r × (U ∩K+

ϕ )(FU ∩ U ∩Kϕ)
∼−→ ZK

ϕ,U .

As a consequence, we have an isomorphism RΓc(Z
K
ϕ,U ,Qℓ)[ϕ][2m

′] ∼= RΓc(X
♮,K
r ,Qℓ)[ϕ]

as KF
ϕ -modules, where m′ = dim(U ∩K+

ϕ )(FU ∩ U ∩Kϕ).

Proof. First note that φr is well-defined. Let z ∈ ZK
ϕ,U,r. It suffices to

show there exists a unique a ∈ Ar := (FUr ∩ Ur ∩ Kϕ,r)(Ur ∩ K+
ϕ,r) such

that za ∈ X♮,K
r . We argue by induction on r ∈ R⩾0. If r = 0, then

Ar = FUr ∩ Ur ∩ (G0)r, FIϕ,U,r = FUr ∩ (G0)r and the statement follows
from Proposition 3.7.

Suppose that the statement holds for r−. We show it also holds for r > 0.

Indeed, by induction hypothesis, there exists b ∈ Ar− such that zb ∈ X♮
r−.

Choose a lift of b in Ar and still denote it by b. Then

(zb)−1F (zb) ∈ Tϕ,r(Kϕ,r ∩ FUr ∩ Ur)Hr

where Hr = (FUr ∩Kϕ,r ∩Gr
r)(FUr ∩K+

ϕ,r ∩Gr
r).

We assume that r = ri−1/2 for some 1 ⩽ i ⩽ d. The remaining case
follows in a simpler way. Let Φj ⊆ Φ be the root system of Gj for 0 ⩽ j ⩽ d.
Then Hr = H′

r ⊕ H′′
r , where H′

r (resp. H′′
r) is spanned by the (images) of

affine root subgroups of F (f) such that f(x) = r and αf ∈ Φ+
i ∖Φi−1 (resp.

αf ∈ Φi−1). Let Cr = Ar ∩ Gr
r. Then Cr = C′r ⊕ C′′r , where C′r (resp. C′′r ) is

spanned by the (images) of affine root subgroups of f such that f(x) = r
and f ∈ (F (Φ+

i ) ∩ Φ+
i )∖Φi−1 (resp. αf ∈ Φi−1∖ (F (Φ+

i−1) ∩ Φ−
i−1)).

Applying Proposition 3.7 and Proposition 3.6, there exists c ∈ Cr such
that

c−1((zb)−1F (zb))F (c) ∈ Tϕ,r(Kϕ,r ∩ FUr ∩ Ur),

that is, za ∈ X♮
r with a = bc ∈ Ar as desired.

Let a′ ∈ Ar be another element such that za′ ∈ X♮,K
r . By induction

hypothesis, the images of a and a′ in Ar− are the same. Hence we may
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assume a′ = ad for some d ∈ Cr. Then it follows from the uniqueness in
Proposition 3.6 that d is trivial and hence a = a′ as desired.

The second statement follows from that φr is KF
ϕ,r × TF

r -equivariant and

that (Ur ∩K+
ϕ,r)(FUr ∩ Ur ∩Kϕ,r) is an affine space. □

6.2. Cohomology of ZK
ϕ,U,r. We generalize the results of [Nie24, §5.2]. Let

(V, V ) and (U,U) be two pairs of opposite maximal unipotent subgroups of
G normalized by T . For a subset R ⊆ Kϕ, write R̄ for the image of R under
the natural projection Kϕ → Kϕ/Eϕ. As ϕ remains fixed, we omit it from
notation and write K,H,E instead of Kϕ,Hϕ,Eϕ. Write L = G0. First note
that

L̄ = ⊔w∈WL̄(T̄)L̄V ẇT̄L̄U ,

where L̄V = L̄ ∩ V and L̄U = L̄ ∩ Ū.
For α ∈ Φ, define i(α) to be the integer 0 ≤ i ≤ d, such that α ∈

Φ(Gi, T )∖Φ(Gi−1, T ), and define r(α) = ri(α)−1. Put

H̄α = (Gα)r(α)/2r /(Gα)r(α)+r .

Then we have
H̄ = H̄V T̄0+H̄V = T̄0+ ⊕α H̄α,

where H̄V = H̄ ∩ V̄ , H̄V = H̄ ∩ V̄ . For α, β ∈ Φ we have [H̄α, H̄β] = {0}
if α ̸= −β and [H̄α, H̄β] = (T̄α)r(α) ∼= (Tα)

r(α)
r /(Tα)

r(α)+
r if α = −β and

H̄α ̸= {0}.
Thus we have

K̄ = H̄L̄ =
⊔

w∈WLr (Tr)

H̄L̄V ẇT̄L̄U =
⊔

w∈WLr (Tr)

K̄V H̄V ,wẇT̄H̄U ,

where K̄V = L̄V H̄V = K̄ ∩ Ū and H̄V ,w = H̄V ∩ ẇŪ.
Write H∗

c (Z
K
ϕ,V,r,Qℓ) =

∑
i∈ZH

i
c(Z

K
ϕ,V,r,Qℓ)[ϕ].

Proposition 6.4. We have

⟨H∗
c (Z

K
ϕ,V,r,Qℓ)[ϕ], H

∗
c (Z

K
ϕ,U,r,Qℓ)[ϕ]⟩KF

ϕ,r
= ♯stabWLr (Tr)F (ϕ|TF

r
).

Proof. For w ∈WLr(Tr) we set

Σw = {(x, x′, v, v̄, τ, u) ∈ F K̄V×F K̄U×K̄V,w×H̄V ,w×T̄×KU ;xF (v̄ẇτ) = vv̄ẇτux′}.

Write Σw = Σ′
w ⊔ Σ′′

w, where Σ′′
w is defined by condition that v̄ = 0.

Let D = {(t, s) ∈ Tr × Tr; t
−1F (t) = s−1F (s)}. Then D acts on Σ′′

w by

(t, s) : (x, x′, v, v̄, τ, u) 7−→ (txt−1, sx′s−1, svs, sv̄s−1, ẇ−1(t)τs−1, sus−1).

It follows that
(Σ′′

w)
D◦

red ∼= (ẇT̄)F .
Hence H∗

c (Σ
′′
w,Qℓ)ϕ−1,ϕ = Qℓ if w = F (w) and is trivial otherwise.

It remains to show H∗
c (Σ

′
w,Qℓ)ϕ,ϕ−1 = 0. Note that

H̄V ,w = ⊕α∈ΦV ∩wΦU
H̄α,
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where H̄α = H̄ ∩ Ḡα. For v̄ ∈ H̄V,w and α ∈ ΦV ∩ wΦU let v̄α ∈ H̄α such
that v̄ =

∑
α v̄α. We fix a total order ⩽ on ΦV ∩ wΦU . Let H̄α

V ,w
be subset

of elements v̄ such that v̄α ̸= 0 and v̄β = 0 for all β < α. Then we have

H̄V ,w − {0} =
∐
α

H̄α
V ,w

.

The above decomposition induces a decomposition

Σ′
w =

∐
α

Σ′,⩾α
w .

It remains to show H∗
c (Σ

′,α
w ,Qℓ)ϕ,ϕ−1 = 0 for all α.

Let α ∈ ΦV ∩ wΦU such that Σ′,α
w ̸= ∅. Consider the restricted action of

(Tr)
F ∼= (Tr)

F × {1} ⊆ (Tr)
F × (Tr)

F on Σ′,α
w given by

t : (x, x′, v, v̄, τ, u) 7−→ (txt−1, x′, tvt−1, tv̄t−1, w−1(t)τ, u).

It suffices to show the ϕ-isotropic subspace H∗
c (Σ

′,α
w ,Qℓ)ϕ is trivial.

For v̄ ∈ H̄⩾a

V ,w
we fix an isomorphism

λv̄ : H̄−α ∼−→ (T̄α)r(α), ζ −→ [v̄, ζ].

Let

H = {t ∈ T̄r(α); t−1F−1(t) ∈ (T̄α)r(α)}.
For t ∈ H we define an isomorphism ft : Σ

′,α
w → Σ′,α

w by

ft : (x, x
′, v, v̄, τ, u) 7−→ (xt, x

′F ((ẇτ)−1
ζ), tvt−1, tv̄t−1, w−1(t)τ, u)

with ζ = λ−1
v̄ (tF−1(t)−1) such that

xtF (v̄ẇτ) = tvv̄ẇτux′F ((ẇτ)−1
ζ).

The induced map of ft on each subspace H i
c(Σ

′,α
w ,Qℓ) is trivial for t ∈

NFn

F ((T̄α)F
n
) ⊆ H◦ ∩ ((T̄α)r(α))F . Here n ∈ Z⩾1 such that Fn(Tα) = Tα,

and NFn

F : T̄ → T̄ is the map given by t 7→ tF (t) · · ·Fn−1(t). On the other
hand, we have

ϕ|NFn
F ((T̄α)Fn = ϕi(α)−1|NFn

F ((T̄α)Fn ,

which is nontrivial since ϕi(α)−1 is (Gi(α)−1,Gi(α))-generic. ThusH∗
c (Σ

′,α
w ,Qℓ)ϕ

is trivial as desired. □

6.3. Concentration in one degree. Let notation be as in §6.2. Let
ZH
ϕ,U = Zϕ,U∩Hϕ and ZL

ϕ,U = Zϕ,U∩L with L = G0. We set Z̄H
ϕ,U = ZH

ϕ,U/Eϕ

and ZL
ϕ,U = ZL

ϕ,U/(Eϕ ∩ L).
By [Nie24, §7.1], each cohomology groupH i

c(Z
H
ϕ,U ,Qℓ)[ϕ|(T0+)F ] is equipped

a natural KF
ϕ -module structure, and we define

κϕ =
∑
i∈Z

(−1)iH i
c(Z

H
ϕ,U ,Qℓ)[ϕ|(T0+)F ]
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as a virtual KF
ϕ -module. The following result is proved in [Nie24, Theorem

6.2].

Theorem 6.5. There exists a unique integer nϕ ⩾ 0 such that

H i
c(Z̄

H
ϕ,U ,Qℓ)[ϕ|(T0+)F ] ̸= 0

if and only if i = nϕ.

Theorem 6.6. Let T ⊆ B be as in Proposition 3.5 with M = L = G0.
Then for i ∈ Z we have an isomorphism of HF

ϕ -modules

H i
c(Z̄

K
ϕ,U ,Qℓ)[ϕ] ∼= (−1)nϕκϕ ⊗H

i−nϕ
c (Z̄L

ϕ,U ,Qℓ)[ϕ−1],

where nϕ is as in Theorem 6.5.

Proof. By the assumption on B we have that H̄ϕ∩F Iϕ,U is normalized by L̄.
By [Nie24, Proposition 7.4] the map (h, l) 7→ hl induces a (T0+)F /(Eϕ∩T)F -
torsor

f : Z̄H
ϕ,U × Z̄L

ϕ,U −→ Z̄K
ϕ,U .

Let ϕ♭ be the pull-back of the natural multiplication map (T0+)F×TF → TF .
Combining Theorem 6.5 and the arguments in the proof of loc. cit. we
deduce that

H i
c(Z̄

K
ϕ,U ,Qℓ)[ϕ]

∼= H i
c(Z̄

H
ϕ,U ×H i

c(Z̄
L
ϕ̄,U ,Qℓ)[ϕ

♭]

∼=
⊕

i′+i′′=i

H i′
c (Z̄

H
ϕ,U ,Qℓ)[ϕ|(T0+)F ]⊗H i′′

c (Z̄L
ϕ,U ,Qℓ)[ϕ]

∼= (−1)nϕκϕ ⊗H
i−nϕ
c (Z̄L

ϕ,U ,Qℓ)[ϕ−1].

The proof is finished. □

Corollary 6.7. Let T ⊆ B be as in Proposition 3.5 with M = L = G0.
Suppose that ϕ−1 (viewed as a character of T̄F ) is non-singular for L̄ in the
sense of [DL76, Definition 5.15], then there exists a unique integer Nϕ such

that H i
c(Xr,Qℓ)[ϕ] ̸= 0 if and only if i = Nϕ.

Proof. By Proposition 6.1 and that the quotient map ZK
ϕ,U → Z̄K

ϕ,U is a KF×
TF -equivariant affine space bundle, it suffices to consider the cohomology
groups H i

c(Z̄
K
ϕ,U ,Qℓ)[ϕ].

Let WL be the Weyl group of L. By assumption, the relative position in
Wσ of B and FB is of minimal length in its WL-conjugacy class. It follows
by [He08] and [OR08] that the classical Deligne-Lusztig variety for Z̄L

ϕ,U/T̄F

is an affine variety. By [DL76, Corollary 9.9], H i
c(Z̄

L
ϕ,U ,Qℓ)[ϕ−1] ̸= 0 if and

only if i = dim Z̄L
ϕ,U . Thus the statement follows form Theorem 6.6. □
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7. Pro-unipotent DL-variety for an elliptic torus

Let G+ = L+G0+x be the pro-unipotent radical of G = L+Gx (this corre-
sponds to r =∞ in the notation of §2.2). Consider the perfect scheme

X+ = {g ∈ G+ : g−1F (g) ∈ U+ ∩ FU+}

which is the the inverse limit of its truncations X+
r ⊆ G+

r := G0+
r . Then

X+ is acted on by (G+)F × (T+)F by left and right multiplication. In this
section we are going to prove Theorem 1.5.

7.1. Preparations. Fix a total order on Φ̃+/⟨F ⟩ such that O < O′, if either
O(x) < O′(x) or (O(x) = O′(x) and O ∈ Z≥1, O

′ ̸∈ Z≥1). As T is elliptic,

any orbit O ∈ Φ̃+/⟨F ⟩ intersects ∆̃+, where ∆ = Φ+ ∩FΦ−. For each orbit

O, pick some f ∈ O ∩ ∆̃+ and extend the order to a total order on Φ̃+ in

the unique way such that f < F (f) < · · · < F#O−1(f). For f ∈ Φ̃+, denote
by Of its F -orbit, and denote by f+ (resp. f−) any member of the orbit,
which is the ascendant (resp. descendant) of Of with respect to the order

on Φ̃+/⟨F ⟩.
We use the setup from [IN24, §5.1-2], which slightly differs from that of

§5.1. In this section for f ∈ Φ̃+ we put

Φ̃f = {f ′ ∈ Φ̃+ : Of ′ ≥ Of}.

Note that if f = r ∈ Z≥1, then Φ̃f = {f ′ ∈ Φ̃+ : 0 < f ′(x) < r}, so our

notation is not ambiguous. We let Φ̃+
f = Φ̃+∖ Φ̃f . We let Gf ⊆ G+ be the

subgroup generated by the affine roots subgroups in Φ̃f . It is easy to see
that Gf ⊆ G+ is normal and we put

G+
f = G+/Gf .

Note that Φ̃f , Φ̃+
f are F -stable, so that Gf ,G+

f are defined over Fq.

Fix some r ≥ 1. Let A[r] =
∏

f∈Φ̃+
r
Af (with Af as in §5.1). As in (5.1)

we have the isomorphism of varieties

u : A[r] ∼−→ G+
r , (xf )f 7−→

∏
f

uf (xf ),

where the product is taken with respect to the fixed order on Φ̃+. For a

subset E ⊆ Φ̃+
r , set AE =

∏
f∈E Af , let pE : A[r] → AE denote the natural

projection, and let prE : G+
r → u(AE) denote the map obtained from pE by

transport of structure via u. For f ∈ Φ̃+
r , write pf = p{f} and prf = pr{f}.

When the context is clear, we sometimes will abuse the notation and identify
prf : G+

r → u(Af ) with u
−1 ◦ prf : G+

r → Af .

Let f ∈ −∆̃+. Then there exists a unique sequence

(7.1) 0 = a0 < a1 < · · · < a2b(f) = #Of
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of integers, such that F a2i(f) ∈ Π̃+, F a2i−1(f) ∈ ∆̃+ for all 0 ≤ i ≤ b(f),

and F k(f) ̸∈ ∆̃+ ∪ −∆̃+ if k ̸≡ aj mod #Of for any j.

7.2. A cartesian diagram. Fix some r ∈ Z≥1. Let Φ̃
r ⊆ B ⊆ A ⊆ Φ̃+ be

two closed subsets with A + B ⊆ B, Z≥0 + A ⊆ A, Z≥0 + B ⊆ B, so that
GB

r ⊆ GA
r are subgroups, and the smaller one is normal in the bigger one.

Put
XA

B = {g ∈ GA
r : g−1F (g) ∈ (U+

r ∩ FU+
r ) ·GB

r }/GB
r .

If A = Φ̃+, B = Φ̃f for some f ∈ Φ̃+, then we write X+
f = XA

f . For any

character χ : (T+
r ∩GA

r )
F → Q×

ℓ , we have the χ-weight space H
i
c(X

A
B ,Qℓ)[χ].

Just as in [IN24, §5.2] we have the map

πA:B
f = u−1 ◦ prf ◦ L ◦ sA:B : GA

r /GB
r −→ AOf

.

Our first observation is that [IN24, Proposition 5.3] admits the following
generalization.

Proposition 7.1. Let Φ̃r ⊆ C ⊆ B ⊆ A ⊆ Φ̃+ be closed subsets with
A + B ⊆ B, A + C ⊆ C. Let f ∈ B and suppose that C = B∖Of and

A + Of ⊆ C. Let qf : X
A
C → XA

B denote the natural projection. Then the
following hold.

(1) Suppose that f ∈ ∆+
aff . Then the map

ψ = (qf ,prf , prFa2 (f), . . . ,prFa2b(f)−2 (f)) : X
A
C
∼= XA

B ×
b(f)−1∏
i=0

Af

is an isomorphism.
(2) If f ∈ Z⩾1 (in which case AOf

= Af = V ), then there is a Cartesian
diagram

XA
C

qf
��

prf
// Af

−L

��

XA
B

πA:B
f
// Af .

Proof. The proof is the same as in [IN24, Proposition 5.3], with the only
difference that in (1) the map inverse to ψ is given by

ϕ(g, yf ,yFa2 (f)(yf ), . . . , yFa2b(f)−2(f)(f)
)

= sA:B(g)

a2−1∏
j=0

F j(u(yf )) ·
a4−1∏
j=a2

F j(u(yFa2 (f))) · · · · ·
a2b(f)−1∏

j=a2b(f)−2

F j(u(yFa2b(f)−2 (f))),

and instead of [IN24, Lemma 5.4] we use Lemma 7.2. □

Lemma 7.2. Let f ∈ −∆+
aff and let x = (xi)0≤i<#Of

∈ AOf
with xi ∈

AF i(f). Suppose that L(x) ∈
∏b(f)−1

i=0 AFa2i (f). Then for each 0 ≤ j < #Of ,

xF j(f) = F j−a2i(xFa2i (f)) for a2i ≤ j < a2i+2. In particular,
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(1) L(x)f = xq
a2b(f)−a2b(f)−2

a2b(f)−2
− x0, L(x)a2i = xq

a2i−a2i−2

a2i−2 − x2i for 0 < i <

b(f), and L(x)j = 0 if j ̸= a2i for any i;
(2) x = 0 if and only if xa2i = 0 for all 0 ≤ i < b(f)− 1.

Proof. The proof is a direct computation. □

For a character χ of (T+
f+)

F we denote by χf
f+ the restriction of χ to

(Tf
f+)

F . As in [IN24, Corollary 5.9], the previous proposition implies the

following.

Corollary 7.3. Let f ∈ Φ̃+ and let χ be a character of (T+
f+)

F .

(1) If f ∈ Φ+
aff , then H

i
c(X

+
f+,Qℓ)[χ] ∼= H i−2

c (X+
f ,Qℓ)[χ].

(2) If f ∈ Z⩾1, then H
i
c(X

+
f+,Qℓ)[χ

f
f+]
∼= H i

c(X
+
f , π

∗(L
χf
f+
)), and hence

H i
c(X

+
f+,Qℓ)[χ] ∼= H i

c(X
+
f , π

∗(L
χf
f+
))[χ].

Here π = πΦ̃
+:Φ̃f

f and H i
c(X

+
f+,Qℓ)[χ

f
f+] is the χf

f+-weight space of (Tf
f+)

F .

Write Hi(X
+,Qℓ) = H−if♮Qℓ, where f : X+ → SpecFq is the struc-

ture map. As in [IN24, Corollary 5.10, §2.7], Corollary 7.3 implies that
Hi(X

+,Qℓ)[χ] = H2dr−i
c (X+

r ,Qℓ)[χ] for all r ≥ the depth of χ, where dr
is the dimension of X+

r . In this way, Theorem 1.5(1),(2) reduce to the
following.

Theorem 7.4. Assume p is not a torsion prime for G. Let f ∈ Φ̃+ and

let χ : (T+
f )

F → Q×
ℓ be a character. Then there exists some s = sf,χ ∈ Z≥0

such that
H i

c(X
+
f ,Qℓ)[χ] ̸= 0 ⇔ i = s.

Moreover, FN acts on Hs
c (X

+
f ,Qℓ)[χ] by the scalar (−1)sqsN/2.

7.3. Reduction to semisimple simply connected case. Let G̃→ G be

the simply connected cover of G. Identify the reduced buildings of G and G̃

and write G̃, T̃ , Ũ , T̃r, Ũr, X̃
+
f , . . . for the objects corresponding to G̃.

Following [DL76, 1.24], if α : A→ B is a homomorphism of finite groups
and Y is a space (scheme or fpqc-sheaf) on which A acts, we let the in-
duced space IndBAY be the (unique up to a unique isomorphism) B-space
I equipped with an A-equivariant map Y → I such that HomB(I, V ) =
HomA(Y, V ) for any B-space V . (Minor variation of) the following state-
ment already appears in [DI24, proof of Lemma 4.3.3] without proof. We
give the proof here.

Lemma 7.5. We have X+
f = Ind

(T+
f )F

(T̃+
f )F

X̃+
f .

Proof. The kernel of G̃→ G is contained in the center of G̃. Thus the maps

T̃+
f → T+

f and G̃+
f → G+

f are injective, and we identify T̃+
f , G̃

+
f with their

images. Also, G+
f /G̃

+
f
∼= T+

f /T̃
+
f ; we denote this group by C.
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Note that any g ∈ X+
f can be written as g = τ1g1 with g1 ∈ G̃+

f and

τ1 ∈ T+
f . Then g−1

1 τ−1
1 F (τ1)F (g1) = g−1F (g) ∈ U+

f ∩ FU+
f ⊆ G̃+. As

G̃+
f is normal in G+

f , it follows that τ1 = F (τ1) ∈ C, i.e., τ1 ∈ CF . But

as T̃+
f is connected, we have (T+)F /(T̃+)F = CF . Thus, changing g1 and

τ1 if necessary, we may achieve that τ1 ∈ (T+
f )

F . But then it is clear that

g−1
1 F (g1) = g−1F (g) ∈ U+

f ∩ FU+
f , which implies that g1 ∈ X̃+

f . Thus

X+
f
∼=

∐
τ∈(T+

f )F /(T̃+
f )F

τX̃+
f , which is precisely the induced space. □

Remark 7.6. The analogous statement holds forG,T, X = {g ∈ G : g−1F (g) ∈
U ∩ FU} instead of G+,T+, X+. There, G̃ → G can be non-injective, and

its kernel equals the perfection of ker(G̃→ G). The situation with cokernels
is similar as in the above proof.

Example 7.7. If k = F2((ϖ)), G = PGL2, x hyperspecial, then G̃ =

SL2, the maps G̃ → G, T̃ → T are injective with cokernels isomorphic

to C = H1((SpecF2[[ϖ]])fppf , µ2) = coker(F2[[ϖ]]×
(·)2→ F2[[ϖ]]×), and CF is

an infinite-dimensional F2-vector space.

It follows that if χ : (T+
f )

F → Q×
ℓ is a character and χ̃ is it’s pullback to a

character of (T̃+
f )

F , then H i
c(X

+
f ,Qℓ)[χ] =

⊕
(T+

f )F /(T̃+
f )F

H i
c(X̃

+
f ,Qℓ)[χ̃] as

vector spaces with Frobenius action. In particular, if Theorem 7.4 holds for

X̃+
f , then it holds for X+

f .

7.4. Handling jumps. As in [IN24, §5.6], fix a positive integer h ⩽ r and
a character χ of (T+

h+)
F . Recall that Th

h+
∼= Ah = V = X∗(T )⊗ Fq, so that

for any M ≥ 1 we have the map

NmM : V −→ V, v 7−→ v + F (v) + · · ·+ FM−1(v).

Note that for α ∈ Φ, the subgroup NmM (α∨ ⊗ FqM ) is independent of the

choice of the integer M ∈ Z≥1 satisfying FM (α) = α. Using the character
χ we define the F -stable subset

Φχ = {α ∈ Φ;χ ◦NmN (α∨ ⊗ FqN ) = {1}}.
of Φ. Clearly, −Φχ = Φχ. However, Φχ does not need to be closed under
addition. This fact as well as (essentially) the proof of the following lemma
was explained to us by David Schwein.

Lemma 7.8. If p > 3 or if p is not a torsion prime for G, then Φχ is closed
under addition.

Proof. For m ∈ Z and α ∈ Φ, put

χmα = χ◦NmN ◦(α∨⊗FqN )◦(m·) : FqN
m−→ FqN −→ V FN −→ V F −→ Q×

ℓ ,

where the first map is multiplication by m. For α ∈ Φ, we have α∨ = 2
(α,α) ,

where (α, α) = |α|2 is the square of the length of α. For α, β ∈ Φ, write
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nα,β = (α,α)
(β,β) . By [Bou68, Chap.VI, §4, Proposition 12(i)], the numbers

nα,β can only take the values 1, 2±1, 3±1 and by inspection one checks that
the values 2±1 resp. 3±1 can only appear if p is a torsion prime for G.
Suppose now that α, β ∈ Φχ, that is χα, χα are trivial. Suppose that γ =
α + β ∈ Φ. Thus γ∨ = 2

(γ,γ)γ = nα,γα
∨ + nβ,γβ

∨. Let m ∈ Z≥1 be the

smallest positive integer such that mnα,γ and mnβ,γ lie in Z. Then we have
mγ∨ = mnα,γα

∨ +mnβ,γβ
∨. Note that we have χmγ = χmnα,γα · χmnβ,γβ

as characters of FqN . As χα, χβ are trivial, also χmnα,γα and χmnβ,γβ are
trivial. Thus also χmγ is trivial and as m invertible in Fq by assumption, it
follows that χγ = 1, that is γ ∈ Φχ. □

Let M = Mχ be the subgroup generated by T and Uα for α ∈ Φχ. By

Lemma 7.8, M is reductive with root system ΦM = Φχ. Let Φ̃M ⊆ Φ̃ be
the set of affine roots of M . Consider

D = (Φ+
aff ∩ Φ+

h ) \ Φ̃M = {f ∈ Φ+
aff \ Φ̃M ; f < h}.

As Φ̃M is F -stable, D is a union of F -orbits in Φ̃. Similar as in [IN24, §5.6],
we can number the F -orbits of D as

O1, . . . ,Om−1,Om = O♭
m, . . . ,On = O♭

n,O♭
m−1, . . . ,O♭

1

where O♭ = {h− f : f ∈ O}, and such that

O1(x) ⩽ · · · ⩽ Om−1(x) ⩽
h

2
= Om(x) = · · · = On(x) =

h

2
⩽ O♭

m−1(x) ⩽ · · · ⩽ O♭
1(x),

Oi < O♭
i for 1 ⩽ i ⩽ m− 1 and O♭

m−1 < · · · < O♭
1. Define Ni = #Oi.

Set D♭
i =

⋃i
j=1O♭

j for 1 ⩽ i ⩽ m− 1, and D♭
m =

⋃n
j=1O♭

j . Define

Ai = Φ̃+ \
i−1⋃
j=1

Oj , Bi = Φ̃h ∪D♭
i , Ci−1 = Bi−1 \ {h}.

Moreover, we set A0 = A1 = Φ̃+, B0 = Φ̃h and C0 = B0 \ {h}. Note that

Am = Bm ∪ Φ̃+
M , where Φ̃+

M = Φ̃M ∩ Φ̃+.

Let g ∈ G+
r , x ∈ A[r] and E ⊆ Φ̃+

r . As in [IN24, §5.6] we set gE =

prE(g) ∈ u(AE), xE = pE(x) ∈ AE and x̂ = u(x) ∈ G+
r . For f ∈ Φ̃+

r we will
set xf = x{f} and x⩾f = x

Φ̃f . We can define gf and g⩾f ∈ G+
r in a similar

way. We identify gf ∈ u(Af ) with u
−1(gf ) ∈ Af according to the context.

Note that [IN24, Lemmas 5.12, 5.13 and 5.14] hold in our more general
setup without any change and with literally the same proofs. (Note that
the proof of [IN24, Lemmas 5.12] uses the following property of ΦM ⊆ Φ: if
α ∈ ΦM , β ∈ Φ∖ΦM , then α+β ̸∈ ΦM . This holds when ΦM ⊆ ΦG is a Levi
subsystem, which follows from p not being a torsion prime for G by [Kal19,
Lemma 3.6.1]. This is guaranteed by the assumptions in Theorem 7.4.)

We now generalize [IN24, Proposition 5.15]. Set π = πΦ̃
+:Φ̃h

h : G+
h =

G+
r /Gh

r → Ah
∼= V .
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Proposition 7.9. Let 1 ⩽ i ⩽ m. Then there is an isomorphism

ψi : X
Ai
h
∼= XAi

Bi
× A

D♭
i∩−∆̃+ .

Moreover, for (x̂, y) ∈ XAi
Bi
× A

D♭
i∩−∆̃+ with x ∈ AAi\Bi

we have

(1) Assume that 1 ⩽ i ⩽ m − 1, fix some f ∈ Oi ∩ −∆̃+ and let f ♭ =

h− f ∈ O♭
i . With notation of (7.1), we have

π(ψ−1
i (x̂, y)) =

b(f)−1∑
j=0

α∨
Fa2j (f)⊗(x

qa2j+1−a2j−1

Fa2j+1 (f)
−xFa2j−1 (f))y

qa2j−a2j−1

F 2j(f♭)
+π(ψ−1

i (x̂, 0)) ∈ V.

(2) Assume that i = m. For each m ≤ k ≤ n fix some fk ∈ Ok ∩ −∆̃+.
Then π(ψ−1

m (x̂, y)) equals π(ψ−1
m (x̂, 0)) plus the sum over m ≤ k ≤ n of the

following term corresponding to f = fk (where aj = aj(fk) and b = b(fk)
are as in (7.1)):

−α∨
f ⊗ yf · y

qab−ab−1

Fab−1 (f)
+

(b−1)/2∑
j=1

α∨
Fa2j (f) ⊗ (yFa2j (f) − y

qa2j−a2j−2

Fa2j−2 (f)
)yq

a2j+b−a2j−1+b

F
a2j−1+b (f)

.

Note that the formulas in Proposition 7.9 are similar to those in [Nie24,
proof of Lemma 6.10]. We deduce the generalization of [IN24, Proposition
5.17] from this.

Proposition 7.10. Write XM
h = Xh ∩M+

h , and let πM be the restriction

of π to M+
h . The following statements hold:

(1) Hj
c (X

Ai
h , π∗Lχh

h+
) ∼= Hj

c (X
Ai+1

h , π∗Lχh
h+

)⊕qMi for 1 ⩽ i ⩽ m − 1 and

some Mi ∈ Z≥1;

(2) Hj
c (X

Am
h , π∗Lχh

h+
) ∼= Hj−n−m+1

c (XM
h , π∗MLχh

h+
)⊕qC1 ((−1)C2qC3), where

C1 =
∑n

i=m q
#Oi/2 and C2 =

∑n
i=mN/#Oi and C3 = qN(n+m−1)/2.

Note that in general C2 ̸= C3, in contrast to the special case of loc. cit.

Proof. We can proceed exactly as in [IN24, proof of Proposition 5.17], by
noting that by Proposition 7.9 the local system π∗Lχh

h+
is trivial on a fiber

over x̂ ∈ XAi
Bi

if and only if xq
a2j+1−a2j−1

Fa2j+1 (f)
− xFa2j−1 (f) = 0 for each j, which

shows that for 0 ≤ i ≤ m− 1,

Ha
c (X

Ai
h , π∗L) ∼= Ha

c (Y
Ai+1

h , π∗L)⊕qMi

for some Mi ∈ Z≥1, and similarly for part (2). In course of proving (2),
when repeating the computation from loc. cit., we obtain
(7.2)

Hj
c (X

Am
h , π∗L) ∼= ⊗n

i=mH
1
c (Afi , τ

∗
i L)⊗⊗m−1

i=1 H
2
c (Af♭

i
,Qℓ)⊗Hj−n−m+1

c (XM
h , π∗L).

Whereas for i ≤ m − 1, FN acts on each H2
c (Af♭

i
,Qℓ) by q

N as in loc. cit.,

we have that F#Oi acts on H1
c (Afi , τ

∗
i L) by −q#Oi/2 (by [IN24, Proposition
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5.16(2)]). Thus FN acts on this space by (−q#Oi/2)N/#Oi = (−1)N/#OiqN/2.
Altogether, we see that (7.2) equals

Hj−n−m+1
c (XM

h , π∗L)⊕
∑n

i=m q#Oi/2((−1)
∑n

i=m N/#OiqN(n+m−1)/2),

where the number of summands again follows from [IN24, Proposition 5.16(2)].
□

Now, to prove Theorem 7.4 we may assume by §7.3 that G is semisimple
and simply connected. Then [IN24, Lemma 2.2] guarantees that Mχ ̸= G.
Then exactly the same induction procedure as in [IN24, §5.7] finishes the
proof.
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