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Abstract. Inspired by the foundational work of Bezrukavnikov and
Chan [BC24] on character sheaves for parahoric subgroups and an alter-
native interpretation of deep level Deligne-Lusztig characters in [Nie24],
we present a parallel but closed (non-iterated) construction of charac-
ter sheaves within the framework of J.–K. Yu’s types. We show that
our construction yields perverse sheaves, which coincide with those pro-
duced in [BC24] in an iterated way. In the regular case we establish the
compatibility of their Frobenius traces with deep level Deligne-Lusztig
characters. As an application, we prove the positive-depth Springer’s hy-
pothesis for arbitrary characters, thereby generalizing the generic case
result of Chan and Oi [CO25]. The proofs of our results make critical
use of the strategies and results from [BC24] and [Nie24].

1. Introduction

Character sheaves form a very important tool in the representation theory
of finite reductive groups of Lie type. They were introduced and studied by
Lusztig in [Lus85] and a couple of subsequent works. Later, Lusztig con-
jectured in [Lus17] that a similar theory should exist for reductive groups
over finite local rings; he proved his conjecture for small values of r and p
large enough. Recently, in [BC24], Bezrukavnikov and Chan confirmed this
conjecture by introducing a theory of character sheaves on Moy–Prasad quo-
tients of parahoric group schemes (a class of groups including those consid-
ered by Lusztig). In the generic case, they showed that the Frobenius traces
of these character sheaves are compatible with deep level Deligne-Lusztig
characters (for which we refer to [Lus79, CI19, Cha20, CI23, CS17, CO23,
CS, Cha24, Nie24, IN25a, CO25] and references therein). This compatibility
is used by Chan and Oi in [CO25, Theorem 9.3] to establish the positive
depth analogue of Springer’s hypothesis in the same case. Other works on
character sheaves in a related setting include [Kim18, Che21]. We also refer
to [NY25] for a construction of character sheaves on loop Lie algebras.

In this work, we present a parallel but closed (non-inductive) construction
of character sheaves within the framework of J.–K. Yu’s types [Yu01]. Our
approach is inspired by two key sources: the foundational work of [BC24] and
an alternative interpretation of deep level Deligne–Lusztig characters pro-
posed in [Nie24]. In the generic case, the same construction was initially in-
troduced by Lusztig [Lus17]. We demonstrate that our construction can also
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be realized through iterated generic Iwahori-like inductions, which slightly
diverge from the generic parabolic inductions developed in [BC24]. Follow-
ing the strategies and techniques in [BC24], we establish the t-exactness of
the generic Iwahori-like induction and hence the perversity of our sheaves.
As a consequence we establish the equivalence between our sheaves with
those of [BC24]. Furthermore, we prove the compatibility of their Frobenius
traces with deep level Deligne–Lusztig characters in the regular case. As an
application, we extend the positive-depth Springer’s hypothesis to arbitrary
characters, thereby generalizing the generic case result of [CO25, Theorem
9.3]. Now we explain our results in more detail.

1.1. Notation. Let k be a non-archimedean local field with residue field
Fq of characteristic p. Let k̆ be the completion of a maximal unramified

extension of k and let Ok̆ denote the ring of integers in k̆. Let F be the

Frobenius automorphism of k̆ over k. Let G be a k-rational reductive group
which splits over k̆. Let T ⊆ B ⊆ G be a k-rational maximal torus of G
which splits over k̆. Let G = Gx,0 be a parahoric model of G attached to a
point x in the apartment of T over k in the Bruhat–Tits building of G. For

0 ⩽ r ∈ R̃ := R ⊔ {s+; s ∈ R}, let Gx,r be the rth Moy-Prasad subgroup of

Gx,0. For 0 ⩽ s ⩽ r ∈ R̃ we regard

Gs:r = Gx,s(Ok̆)/Gx,r+(Ok̆),

as an Fq-rational perfectly smooth affine group scheme. See §3 for more
details.

1.2. Character sheaves. Let ℓ ̸= p be a prime. Let ϕ : T (k) → Q×
ℓ be a

smooth character of depth r ≥ 0. Suppose that p is large enough, so that by
[Kal19, Proposition 3.6.7] ϕ admits a Howe factorization (Gi, ϕi, ri)−1≤i≤d,

where Gi form an ascending sequence of (k̆-rational) Levi subgroups of G
with G−1 = T and Gd = G, 0 = r−1 < r0 < · · · < rd−1 ≤ rd = r, and

ϕi : G
i(k) → Q×

ℓ is a (Gi, Gi+1)-generic character of depth ri, such that

ϕ =
∏d
i=−1 ϕi|T (k). Put si = ri/2 and

Kϕ,r = Gr0:rG
1
s0:r . . . G

d
sd−1:r

and K+
ϕ,r = Gr0+:rG

1
s0+:r . . . G

d
sd−1+:r.

We fix a k̆-rational Borel subgroup T ⊆ B such that each Gi ⊆ G is a
standard Levi with respect to B. let U ⊆ B be the unipotent radical and
let U be the opposite of U . Consider the Iwahori-like subgroup

Iϕ,U,r = (Kϕ,r ∩ Ur)Tr(K+
ϕ,r ∩ U r)

which also appears naturally in the Yu’s construction of irreducible super-
cuspidal representations [Yu01] and in the study of deep level Deligne–
Lusztig induction [Nie24]. The group Tr admits a natural quotient T̄r
(such that ϕ factors through T̄Fr ) and there are inclusion/projection maps
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Gr
h←↩ Iϕ,U,r

δ
↠ T̄r. In §4 we shall define a functor

(1.1) pIndGrIϕ,U,r : DT̄r(T̄r) −→ DGr(Gr),

which is (essentially) h!δ
∗ composed with an averaging functor. Let Lϕ

denote the local system on T̄r attached to ϕ. Then we obtain a perverse
sheaf on Gr, attached to ϕ:

Theorem 1.1. There exists some (explicit) Nϕ ∈ Z such that pIndGrIϕ,U,rLϕ[Nϕ]

is perverse. If ϕ is regular (i.e., Lϕ has trivial stabilizer in the Weyl group
of Gr), then it is simple perverse.

For a precise statement, see Theorem 4.6.

1.3. Iterated generic induction. To prove Theorem 1.1, we shall express
pIndGrIϕ,U,rLϕ through an iterated induction procedure, following an idea of

[BC24]. Let G ⊇ P = LN ⊇ T be a parabolic subgroup, with Levi factor
L ⊇ T and unipotent radical N . If N denotes the opposite of N , and
s = r/2, we have the closed subgroup

Ps,r = LrNs:rN s+:r,

of G. (In [BC24] instead of Ps,r the group Pr was used.) There are natural

maps Gr
i←↩ Ps,r

p
↠ Lr. In §3 we define a functor

pIndGrPs,r! : DLr(Lr) −→ DGr(Gr),

given by i!◦p∗ combined with an averaging functor, where D−(−) denote the
equivariant bounded derived category of ℓ-adic constructible sheaves. As in
[BC24, §4], for an (L,G)-generic element Xψ ∈ (Lr:r)

∗ ⊆ (Gr:r)
∗, we have

the generic subcategories Dψ
Lr
(Lr) ⊆ DLr(Lr) and Dψ

Gr
(Gr) ⊆ DGr(Gr).

We then prove the following analogue of [BC24, Theorem 5.16]. (See Theo-
rem 3.3 for a more precise statement).

Theorem 1.2. The functor pIndGrPs,r! restricts to a t-exact equivalence

pIndGrPs,r! : D
ψ
Lr
(Lr)

∼−→ Dψ
Gr

(Gr).

This construction can be iterated. For 0 ≤ i ≤ d we may put

Ψi : DGi−1
ri−1

(Gi−1
ri−1

) −→ GGiri
(Giri), F 7−→ Li ⊗ ε∗i pInd

Giri−1

P isi−1,ri−1

F ,

where ε : Giri → Giri−1
is the natural projection and Li is the local system

on Giri attached to ϕi.

Theorem 1.3 (see Theorem 4.6). Up to explicit shifts, pIndGrIϕ,U,rLϕ is iso-

morphic to
⊕

F mFΨd . . .Ψ1(F), where F ranges over irreducible summands
of Ψ0(L−1) with multiplicity mF .
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Note that Theorem 1.1 follows from this combined with Ψ0(L−1) being
perverse (up to a shift) by Lusztig’s original work [Lus85], and the fact that
a shift of Ψi preserves perversity, which is a consequence of Theorem 1.2.

1.4. Trace of Frobenius. In the case of finite groups of Lie type the Frobe-
nius trace of a character sheaf attached to character θ of a torus is related to
the Deligne–Lusztig character RGT (θ). Recall from [CI19] that in our setting
with Moy–Prasad quotients Gr with r ≥ 0, there are analoga of the classical
Deligne–Lusztig varieties, the so called deep level Deligne–Lusztig varieties
Xr = XT,U,r (which are essentially the preimage of Ur under the Lang map

Gr → Gr). Attached to ϕ there is thus the virtual GFr -module

RGrTr (ϕ) =
∑
i

(−1)iH i
c(Xr,Qℓ)[ϕ]

which we may also regard as a (virtual) character of GFr . On the other

hand, as Lϕ comes equipped with an isomorphism F ∗Lϕ
∼→ Lϕ, the char-

acter sheaf pIndGrIϕ,U,rLϕ[Nϕ] from Theorem 1.1 has an associated trace-of-

Frobenius function χ
pIndGrIϕ,U,r

(Lϕ)
: GFr → Qℓ. Our next main result shows

that this compares nicely to the Deligne–Lusztig character:

Theorem 1.4 (see Theorem 8.6). Assume that q is sufficiently large. As-
sume that T is elliptic and ϕ is regular. Then

χ
pIndGrIϕ,U,r

Lϕ[Nϕ]
= (−1)dimGrRGrTr (ϕ).

Note that this is similar, but more general than [BC24, Theorem 10.9], in
that we do not assume Lϕ to be (T,G)-generic (i.e., ϕ has only one step in its
Howe factorization). In the proof we again follow ideas from [Lus85, BC24].

1.5. Application: positive depth Springer hypothesis. In the situa-
tion of finite groups of Lie type, Springer’s hypothesis expresses the restric-
tion of a (classical) Deligne–Lusztig character RGT (θ) to unipotent elements
(i.e., the so called Green function) as the Fourier transform of the character-
istic function of the coadjoint orbit of a semisimple element of the dual Lie
algebra. This was shown by Kazhdan [Kaz77] and later a proof via charac-
ter sheaves was given by Kazhdan–Varshavsky [KV06]. A similar statement
was formulated, and proven in the case of (T,G)-generic characters ϕ, by
Chan–Oi in [CO25, Theorem 10.9]. The proof made use of the character
sheaves from [BC24]. We generalize this result, removing the genericity as-
sumption on ϕ. The proof uses our version of character sheaves. To state
the result we need some notation (see §9 for details). Let gr denote the
Lie algebra of Gr, and let g∗

−r denote its dual. Attached to a fixed charac-

ter ψ : k → Q×
ℓ there is a well-behaved Wittvector-valued Fourier transform

functor T
g∗
−r

ψ : Db
c(g

∗
−r)→ Db

c(gr), see [CO25, §9.1.3] and §9. Let C((g∗
−r)

F )

and C(gF−r) be the spaces of functions on (g∗
−r)

F and gFr respectively. Let
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T
g∗
−r
ψ : C((g∗

−r)
F ))→ C(gFr ) denotes the classical Fourier transformation of

functions given by

T
g∗
−r
ψ (f)(Y ) =

∑
X∈(g∗

−r)
F

f(X)ψ(X(Y )).

If F ∈ Db
c(g

∗
−r) is a Weil sheaf, then T

g∗
−r

ψ F inherits a natural Weil struc-

ture. We denote by χF ∈ C((g∗
−r)

F ) and χ
T

g∗−r
ψ F

∈ C(gFr ) the associated

functions respectively under the sheaf-function dictionary. Then we have

χ
T

g∗−r
ψ F

(Y ) = T
g∗
−r
ψ (χF )(Y ).

Let (gr)nilp denote the the set of nilpotent elements in gr.

Theorem 1.5 (see Corollary 9.6). Assume that p, q are sufficiently large
and T is elliptic. Then there exists a regular element X ∈ (t∗−r)

F ⊆ (g∗
−r)

F ,

depending on ϕ, such that for any u ∈ (gr)
F
nilp we have

q
1
2
Mϕ ·RGrTr (ϕ)(exp(u)) = T

g∗
−r
ψ (1GFr ·X)(u),

where 1GFr ·X is the characteristic function for the coadjoint GFr -orbit of X,

Mϕ =
∑d

i=0(dimGiri−1
− dimGi−1

ri−1
), exp: (gr)nilp

∼→ (Gr)unip is the expo-
nential map, and δGr·X is the extension-by-zero of the constant sheaf on the
coadjoint orbit of X.

Using this theorem we establish in Corollary 9.8 a relation, conjectured
in [IN25b, Conjecture 8.4], between deep level Deligne–Lusztig characters
and Kirillov’s orbit method (which is developed in [BS08] in the relevant
setting).

1.6. Outline. After some preliminaries in §2, we study the generic Iwahori-
like induction and state Theorem 1.2 in §3; its proof is given in §10. In §4 we
define the functor (1.1) and reformulate it by iterated generic Iwahori-like
inductions. In §5 we express (1.1) as an intermediate extension of perverse
sheaf on the very regular locus. Then in §6 and §7 we compute the Frobenius
trace of (1.1) and compare it with the deep level Deligne–Lusztig character.
Finally, in §9 we prove the positive level Springer hypothesis.

Acknowledgments. It is clear from the context that our proofs crucially
follow the strategies and methods from [BC24] and [CO25]. The third named
author would like to thank Charlotte Chan for helpful discussions. We are
indebted to George Lusztig for explaining the existence of regular charac-
ters/local systems when q is sufficiently large.

The first named author gratefully acknowledges the support of the Ger-
man Research Foundation (DFG) via the Heisenberg program (grant nr.
462505253).
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2. Preliminary

Let p ̸= ℓ be two different prime numbers and let Fq a finite field of
cardinality q and of characteristic p.

2.1. Let X be an Fq-variety with Frobenius automorphism σ. We denote
by D(X) the bounded derived category of constructible ℓ-adic sheaves. For
a subset Y ⊆ X we denote by δY ∈ D(X) the extension-by-zero sheaf of the
constant sheaf on Y . We put δy = δY if Y = {y} for some y ∈ X.

Let F ∈ D(X) be a complex endowed with an isomorphism φ : σ∗F ∼→ F .
Then we have the trace-of-Frobenius function

χF ,φ : X(Fq) −→ Qℓ, x 7−→
∑
i

(−1)i tr(φ,Hi(F)x),

where Hi(F)x denotes the stalk at x of the ith cohomology sheaf of F .

2.2. Let H be an Fq-rational algebraic group and let X be an Fq-rational
H-variety. We denote by DH(X) the H-equivariant derived category of
constructible ℓ-adic sheaves. Let µ : H × X → X denote the associated
action map. In view of the diagram

H ×X
pr1

{{

pr2

##

µ
// X

H X

we define the following convolution functors

D(H)×D(X) −→ D(X)

(F ,Y) 7−→ F ⋆! Y := µ!(pr
∗
1F ⊗ pr∗2Y);

(F ,Y) 7−→ F ⋆∗ Y := µ∗(pr
∗
1F ⊗ pr∗2Y).

Let M ⊆ H be a closed subgroup. Let ForHM : DH(X)→ DM (X) be the
forgetful functor. Consider the morphism

ιX : X −→ H/M ×X, x 7−→ (e, x).

We have the following natural equivalences of categories

ι!X ◦ ForHM , ι∗X ◦ ForHM : DH(H/M ×X)
∼−→ DM (X).

The averaging functors are defined as

AvHM ! : DM (X)
(ι!X◦ForHM )−1

−→ DH(H/M ×X)
pr2!−→ DG(X);

AvHM∗ : DM (X)
(ι∗X◦ForHM )−1

−→ DH(H/M ×X)
pr2∗−→ DH(X).

Note that AvHM ! and AvHM∗ are left and right adjoint to ForHM respectively.
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2.3. Let X → S be a vector bundle of constant rank n ⩾ 1 and let X ′ → S
be its dual bundle. Consider the following natural diagram

X ×S X ′

pr1

{{

pr2

$$

κ // Ga

X X ′,

where κ : X ×S X ′ → Ga is the canonical pairing. Let L be a non-trivial
multiplicative rank one local system on Ga. The associated Fourier-Deligne
transform is defined by

FTL : D(X) −→ D(X ′), F −→ pr2!(pr
∗
1F ⊗ κ∗L)[n].

3. Generic Iwahori-like induction

Let k be a non-archimedean local field with residue field Fq. Let k̆ be the
completion of a maximal unramified extension of k. Let F be the Frobenius
automorphism of k̆ over k. Denote by Ok and Ok̆ the integer rings of k and

k̆ respectively. Let ϖ be a fixed uniformizer of k.
Let G be a k-rational reductive group which splits over k̆. We assume

that p ̸= 2 is not a bad prime for G and p ∤ |Gder|. Let x be a point in
the Bruhat-Tits building of G over k. We denote by Gx,0 the associated

parahoric Ok-group model of G. For 0 ⩽ r ∈ R̃ := R ⊔ {s+; s ∈ R} let Gx,r
be the rth Moy-Prasad subgroup of Gx,0. For 0 ⩽ s ⩽ r ∈ R̃ we define

Gs:r = Gx,s/Gx,r+,
which is an Fq-rational perfectly smooth affine group scheme.

Let H ⊆ G be a closed subgroup. Following [CI19, §2.5] one can con-
struct an Fq-rational closed subgroup Hs:r ⊆ Gs:r in a similar way. We put
Hr = H0:r for simplicity. If, moreover, H is a k-rational subgroup, then
Hs:r is defined over Fq, and we still denote by F the induced Frobenius
automorphisms on H or Hs:r.

3.1. Let T ⊆ G be a fixed k-rational and k̆-split maximal torus. For any
subgroup H normalized by T , let ΦH = Φ(H,T ) denote the set of roots of
T appearing in H. Let α ∈ Φ = ΦG. We denote by α∨ : Gm → T its coroot
and denote by Gα : Ga → G a fixed parameterization of its root subgroup.
We put Tα = Imα∨.

Let Φ̃ = (Φ⊔{0})×Z be the set of affine roots of G. Let f ∈ Φ̃. We write
αf ∈ Φ ⊔ {0} and nf ∈ Z such that f = (αf , nf ). We view f as an affine
function on the apartment X∗(T )⊗ R of T such that f(x) = −αf (x) + nf .

From now on we assume that x lies in X∗(T ) ⊗ R. Let f ∈ Φ̃ such that
f(x) ⩾ 0. Define

uf : Af := A1 −→ Gr, x 7−→ Gαf ([x]ϖnf ) if f ∈ Φ̃∖Z,

uf : Af := X∗(T )⊗ Fq −→ Gr, λ⊗ x 7−→ λ(1 + [x]ϖnf ) if f ∈ Z≥1,
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where λ ∈ X∗(T ), x ∈ Fq and [x] ∈ Ok̆ denotes the Teichmüler lift of x.

Let B = UT be a Borel subgroup with unipotent radical U . Let Φ+ = ΦB,

which is a positive system of Φ. Associate to Φ+ a linear order ⩽ on Φ̃ such

that for any f, f ′ ∈ Φ̃ we have f < f ′ if either f(x) < f(x) or f(x) = f ′(x)
and αf ′ − αf is a nontrivial sum of roots in Φ+.

Let r ∈ Z⩾0. We set Φ̃+
r = {f ∈ Φ̃; f > 0, f(x) ⩽ r}. Consider the

abelian group A[r] :=
∏
f∈Φ̃+

r
Af . Then there is an isomorphism of varieties

(3.1) u : A[r] −→ UrG0+:r, (xf )f 7−→
∏
f

uf (xf ),

where the product is taken with respect to any fixed order on Φ̃+
r . Let

E ⊆ Φ̃+
r . We define AE =

∏
f∈E Af which is viewed as a subgroup of A[r]

in the natural way. Define

GEr = u(AE) ⊆ UrG0+:r.

Moreover, we denote by

prE : UrG0+:r
∼= A[r] −→ AE ∼= GEr

the natural projection. We write prE = prf if E = {f}. Note that if

E + E,Z⩾0 + E ⊆ E ∪ Φ̃r+ with Φ̃r+ = {f ∈ Φ̃; r < f(x)}, then GEr is a
subgroup of UrG0+:r.

3.2. Let P = LN ⊇ B be a parabolic subgroup of G, where L ⊇ T is the
Levi subgroup and N is the unipotent radical. Denote by N the opposite of
N . Let NT = NL(T ) be the normalizer of T in L. We set WL = NT /T and
WLr = (NT )r/Tr, which are called the Weyl groups of L and Lr respectively.

Let r ∈ Z⩾0 and put s = r/2. Consider the following subgroups

Ps,r := LrNs,r ⊆ Gr, where Ns,r := Ns:rN s+:r.

Notice that Ns,r is a normal subgroup of Ps,r. We have the natural inclu-
sion/quotient maps

i : Ps,r ↪→ Gr, p : Ps,r −→ Ps,r/Ns,r
∼= Lr.

Inspired by [Lus17] and [BC24] we introduce the following induction and
restriction functors

pIndGrPs,r!, pInd
Gr
Ps,r∗ : DLr(Lr) −→ GGr(Gr);

pResGrPs,r!, pRes
Gr
Ps,r∗ : DGr(Gr) −→ GLr(Lr),
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where

pIndGrPs,r! := AvGrPs,r! ◦ i! ◦ p
∗ ◦ InflPs,rLr

;

pIndGrPs,r∗ := AvGrPs,r∗ ◦ i∗ ◦ p
! ◦ InflPs,rLr

;

pResGrPs,r! := p! ◦ i∗ ◦ ForGrLr ;

pResGrPs,r∗ := p∗ ◦ i! ◦ ForGrLr .

Note that pIndGrPs,r! and pResGrPs,r! are left adjoint to pResGrPs,r∗ and pIndGrPs,r∗
respectively, see [BC24, Lemma 3.6].

Consider the varieties

Ĝr := {(g, h) ∈ Gr ×Gr;h−1gh ∈ Ps,r},

G̃r := {(g, hPs,r) ∈ Gr ×Gr/Ps,r;h−1gh ∈ Ps,r},
together with the morphisms

η : Ĝr −→ Lr, (g, h) 7−→ p(h−1gh);

α : Ĝr −→ G̃r, (g, h) 7−→ (g, hPs,r);

π : G̃r −→ Gr, (g, hPs,r) 7−→ g.

For F ∈ DLr(Lr) we denote by η̃∗F ∈ D(G̃r) the unique object such that

α∗η̃∗F ∼= η∗F . Then we have the following standard result (see [BC24,
Lemma 3.8]).

Lemma 3.1. For F ∈ DLr(Lr) we have

pIndGrPs,r!(F)
∼= π!η̃∗F [2 dimNs,r] ∈ D(Gr)

by forgetting the equivariant structure on both sides.

3.3. For any r ∈ Z⩾1 we define the following Fq-linear spaces

g := Gr:r, p := Pr:r, u := Ur:r, l := Lr:r, t := Tr:r,

whose dual spaces are denoted by g∗, l∗ and t∗ respectively. Moreover, we
set tα := Tαr:r ⊆ t for α ∈ Φ.

Definition 3.2. We say X ∈ l∗ is (L,G)-generic if the following two con-
ditions hold:

(ge1) X|tα ̸= 0 for α ∈ ΦG∖ΦL;
(ge2) The stabilizer of X|t in WG equals WL.

Now we fix an (L,G)-generic element Xψ ∈ l∗. Denote by Gr · Xψ the
coadjoint Gr-orbit of Xψ. Define

Lψ := FTL(δXψ), Fψ := FTL(δGr·Xψ).

Let il : l ↪→ Lr and ig : g ↪→ Gr be the natural inclusions. Define

Lψ,r := il∗Lψ[dim l] ∈ DLr(Lr), Fψ,r := ig∗Fψ[dim g] ∈ DGr(Gr).
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Following [BC24], the associated (L,G)-generic subcategories are defined by

Dψ
Lr
(Lr) := Lψ,r ⋆! DLr(Lr) = Lψ,r ⋆∗ DLr(Lr)

Dψ
Gr

(Lr) := Fψ,r ⋆! DGr(Gr) = Fψ,r ⋆∗ DGr(Gr).

Now we state the main result of this section, whose proof is given in
Section 10.

Theorem 3.3. Let r ∈ Z⩾0 and s = r/2. Then pIndGrPs,r! restricts to a

t-exact equivalence from Dψ
Lr
(Lr) to Dψ

Gr
(Gr), whose inverse is given by

Lψ,r ⋆! pResGrPs,r!.

4. Induction of Yu type

Let ϕ : TF = T (k) → Q×
ℓ be a character of depth r ∈ Z⩾0. Thanks to

[Kal19], there exists a Howe factorization (Gi, ϕi, ri)−1⩽i⩽d of ϕ satisfying
the following conditions:

• T = G−1 ⊆ G0 ⊊ G1 ⊊ · · · ⊊ Gd = G are k-rational Levi subgroups of G;

• 0 =: r−1 < r0 < · · · < rd−1 ⩽ rd if d ⩾ 1 and 0 ⩽ r0 if d = 0;

• ϕi : Gi(k) → Q×
ℓ is a character of depth ri, and trivial over Gider(k)

1 for
−1 ⩽ i ⩽ d.

• ϕi is of depth ri and is (Gi, Gi+1)-generic in the sense of [Yu01, §9] for
0 ⩽ i ⩽ d− 1;

• ϕ =
∏d
i=−1 ϕi|T (k).

Choose a Borel subgroup B = TU with unipotent radical U such that each
Gi is a standard levi subgroup with respect to B. Let

P i := Gi−1(U ∩Gi) = Gi−1N i

be the parabolic subgroup of Gi with Levi subgroup Gi−1 and unipotent
radical N i. Let si = ri/2 for 0 ⩽ i ⩽ d. We define

P isi−1,r = ε−1
i (P isi−1,ri−1

),

where εi : G
i
r → Giri−1

is the natural projection and P isi−1,ri−1
is defined as

in Section 3.2 by taking P = P i, r = ri and s = si−1.

1In [Kal19, Definition 3.6.2], ϕi is only required to be trivial over Gisc(k). However, the
proof of [Kal19, Lemma 3.6.9] shows that ϕi can be chosen to be trivial over Gider(k).



ALTERNATIVE CONSTRUCTION OF CHARACTER SHEAVES ON PARAHORICS 11

Let U be the opposite of U and set T ider = Gider ∩ T . We consider the
following subgroups.

Kϕ,r = G0
0:rG

1
s0:r · · ·G

d
sd−1:r

;

K+
ϕ,r = G0

0+:rG
1
s0+:r · · ·Gdsd−1+:r;

Tϕ,r = (T 0
der)0+:r(T

1
der)r0+:r · · · (T dder)rd−1+:r;

Eϕ,r = (K+
ϕ,r ∩ Ur)Tϕ,r(K

+
ϕ,r ∩ U r);

I†ϕ,U,r = (Kϕ,r ∩ Ur)Tϕ,r(K+
ϕ,r ∩ U r);

Iϕ,U,r = TrI†ϕ,U,r = (Kϕ,r ∩ Ur)Tr(K+
ϕ,r ∩ U r);

Qiϕ,r = (Gider)ri+:r(T
i+1
der )ri+:r · · · (T dder)rd−1+:r, −1 ⩽ i ⩽ d.

We define Ḡir = Gir/Qiϕ,r and let P̄ isi−1,r, T̄
i
r , Īir, Ĝi−1

r be the natural images

of P isi−1,r, T
i
r , Iϕ,U,r ∩Gir and Gi−1

r in Ḡir respectively. We put

T̄r = T̄−1
r = Tr/Q−1

ϕ,r = Tr/Tϕ,r.

Noticing that ϕ|Tr(Fq) factors through T̄r(Fq) = Tr(Fq)/Tϕ,r(Fq), we denote

by Lϕ the associated rank one multiplicative local system on T̄r.

4.1. Let pi : P̄
i
si−1,r → Ḡi−1

r and δi : Īir → T̄r be the natural projection

maps. Let ji : P̄
i
si−1,r ↪→ Ḡir and hi : Īir ↪→ Ḡir be the inclusion maps.

Now we introduce the following induction/restriction functors

pInd
Ḡir
P̄ isi−1,r

= Av
Ḡir
P̄ isi−1,r

!
◦ ji! ◦ p∗i ◦ Infl

P̄ isi−1,r

Ḡi−1
r

: DḠi−1
r

(Ḡi−1
r ) −→ DḠir

(Ḡir);

pRes
Ḡir
P̄ isi−1,r

= (InflĜ
i−1
r

Ḡi−1
r

)−1 ◦ pi∗ ◦ j!i ◦ For
Ḡir
Ĝi−1
r

: DḠir
(Ḡir) −→ DḠi−1

r
(Ḡi−1

r );

pInd
Ḡir
Īir

= Av
Ḡir
Īir!
◦ hi! ◦ δ∗i ◦ Infl

Īir
T̄r

: DT̄r(T̄r) −→ DḠir
(Ḡir);

pRes
Ḡir
Īir

= (Infl
T̄ ir
T̄r
)−1 ◦ δi∗ ◦ h!i ◦ For

Ḡir
T̄ ir

: DḠir
(Ḡir) −→ DT̄r(T̄r).

Note that the kernels of the natural projections P̄ isi−1,r → Ḡi−1
r , Ĝi−1

r →
Ḡi−1
r and T̄ ir → T̄r are connected unipotent subgroups. Hence the associated

inflation functors above are equivalences of categories, and hence invertible.

Lemma 4.1. The functors pInd
Ḡir
P̄ isi−1,r

and pInd
Ḡir
Īir

are left adjoint to pRes
Ḡir
P̄ isi−1,r

and pRes
Ḡir
Īir

respectively.
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Proof. Since For
P̄ isi−1,r

Ĝi−1
r

◦ Infl
P̄ isi−1,r

Ḡi−1
r

= InflĜ
i−1
r

Ḡi−1
r

, the right adjoint of pInd
Ḡir
P̄ isi−1,r

is given by

(Infl
P̄ isi−1,r

Ḡi−1
r

)−1 ◦ pi∗ ◦ j!i ◦ For
Ḡir
P̄ isi−1,r

= (InflĜ
i−1
r

Ḡi−1
r

)−1 ◦ For
P̄ isi−1,r

Ĝi−1
r

◦ pi∗ ◦ j!i ◦ For
Ḡir
P̄ isi−1,r

= (InflĜ
i−1
r

Ḡi−1
r

)−1 ◦ pi∗ ◦ j!i ◦ For
Ḡir
Ĝi−1
r

= pRes
Ḡir
P̄ isi−1,r

.

As For
T̄ ir
T̄r
◦ InflĪ

i
r

T̄r
= Infl

T̄ ir
T̄r
, it follows in the same way that pInd

Ḡir
Īir

is left

adjoint to pRes
Ḡir
Īir

. □

Proposition 4.2. We have

pResḠ
i+1
r

Īi+1
r

= pRes
Ḡir
Īir
◦ pResḠ

i+1
r

P̄ i+1
si,r

pIndḠ
i+1
r

Īi+1
r

= pIndḠ
i+1
r

P̄ i+1
si,r
◦ pIndḠ

i
r

Īir
.

Proof. By the adjointness in Lemma 4.1, it suffices to show the first equality.
First note that

For
Ĝir
T̄ i+1
r
◦ InflĜ

i
r

Ḡir
= InflT̄

i+1
r

T̄ ir
◦ ForḠ

i
r

T̄ ir
.

Consider the following diagram

T̄ Īirδi

oo

hi
��

Īi+1
rp′i+1

oo

h′i
��

Ḡir P̄ i+1
si,r ji+1

//
pi+1

oo Ḡi+1
r ,
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where the square is Cartesian. In particular, δi+1 = δi ◦ p′i+1 and hi+1 =
ji+1 ◦ h′i. Therefore,

pRes
Ḡir
Īir
◦ pResḠ

i+1
r

P̄ i+1
si,r

= (Infl
T̄ ir
T̄r
)−1 ◦ δi∗ ◦ h!i ◦ For

Ḡir
T̄ ir
◦ (InflĜ

i
r

Ḡir
)−1 ◦ pi+1∗ ◦ j!i+1 ◦ For

Ḡi+1
r

Ĝir

= (Infl
T̄ ir
T̄r
)−1 ◦ δi∗ ◦ h!i ◦ (Infl

T̄ i+1
r

T̄ ir
)−1 ◦ ForĜ

i
r

T̄ i+1
r
◦ pi+1∗ ◦ j!i+1 ◦ For

Ḡi+1
r

Ĝir

= (InflT̄
i+1
r

T̄r
)−1 ◦ δi∗ ◦ h!i ◦ pi+1∗ ◦ j!i+1 ◦ For

Ḡi+1
r

T̄ i+1
r

= (InflT̄
i+1
r

T̄r
)−1 ◦ δi∗ ◦ p′i+1,∗ ◦ (h′i)! ◦ j!i+1 ◦ For

Ḡi+1
r

T̄ i+1
r

= (InflT̄
i+1
r

T̄r
)−1 ◦ δi+1∗ ◦ h!i+1 ◦ For

Ḡi+1
r

T̄ i+1
r

= pResḠ
i+1
r

Īi+1
r

,

where the second equality follows from that For
Ĝir
T̄ i+1
r
◦InflĜ

i
r

Ḡir
= InflT̄

i+1
r

T̄ ir
◦ForḠ

i
r

T̄ ir
and fourth one follows by the proper base change theorem. The proof is
finished. □

4.2. Notice that each character ϕi is of depth ri and trivial over Gider(k).
It restricts to a character of Giri(Fq)/(G

i
der)ri(Fq) = (Gri/G

i
der)(Fq). Let Li

be the corresponding multiplicative rank one F -equivariant local system on
Li on Giri/(G

i
der)ri . Consider the following natural quotient maps

qi : Ḡ
i
r −→ Giri ;

εi : G
i
ri −→ Giri−1

;

ϵi : G
i
ri −→ Giri/(G

i
der)ri ;

qi,t : Ḡ
i
r −→ Gtrt/(G

t
der)rt , i ⩽ t.

We put Li =
⊗

t⩾i+1 q
∗
i,tLt ∈ DḠir

(Ḡir). Note that Lϕ =
⊗

−1⩽t⩽d q
∗
−1,tLt.

Let ιi : Ḡ
i
r → Ḡir/P̄

i
si−1,r

× Ḡir be given by x 7→ (e, x). Then the pull-back

functor ι∗i : DḠir
(Ḡir/P̄

i
si−1,r

× Ḡir)→ DP̄ isi−1,r
(Ḡir) gives an equivalence.

Lemma 4.3. Let P ∈ DḠir
(Ḡir). Then we have

pIndḠ
i+1
r

P̄ i+1
si,r

(Li ⊗ P) ∼= q∗i+1,i+1Li+1 ⊗ Li+1 ⊗ pIndḠ
i+1
r

P̄ i+1
si,r
P.

Proof. Set F = q∗i+1,i+1Li+1 ⊗ Li+1 ∈ DḠi+1
r

(Ḡi+1
r ). For t ⩾ i + 1 we have

the commutative diagram

P̄ i+1
r ji+1

//

pi+1

��

Ḡi+1
r

qi+1,t

��

Ḡir qi,t
// Gtrt/(G

t
der)rt ,
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which means that

p∗i+1Li ∼= j∗i+1F .

Consider the morphisms

Ḡir
pi+1← P̄ i+1

si,r
ji+1−→ Ḡi+1

r
ιi+1−→ Ḡi+1

r /P̄ i+1
si,r × Ḡ

i+1
r

pr2−→ Ḡi+1
r .

We have

pIndḠ
i+1
r

P̄ i+1
si,r

(Li ⊗ P)

∼= pr2!(ι
∗
i+1)

−1ji+1!p
∗
i+1(Li ⊗ P)

∼= pr2!(ι
∗
i+1)

−1ji+1!(j
∗
i+1F ⊗ p∗i+1P)

∼= pr2!(ι
∗
i+1)

−1(F ⊗ (ji+1!p
∗
i+1P)

∼= pr2!(pr
∗
2F ⊗ (ι∗i+1)

−1ji+1!p
∗
i+1P)

∼= F ⊗ pr2!(ι
∗
i+1)

−1ji+1!p
∗
i+1P

∼= F ⊗ pIndḠ
i+1
r

P̄ i+1
si,r
P.

The proof is finished. □

Lemma 4.4. We have

pIndḠ
i+1
r

P̄ i+1
si,r
◦ q∗i ∼= q∗i+1 ◦ ε∗i+1 ◦ pInd

Gi+1
ri

P i+1
si,ri

.

Proof. Consider the following natural commutative diagram

Ḡir

qi

��

P̄ i+1
si,r

oo //

��

Ḡi+1
r

//

��

Ḡi+1
r /P̄ i+1

si,r × Ḡ
i+1
r

//

��

Ḡi+1
r

εi+1◦qi+1

��

Giri P i+1
si,ri

//oo Gi+1
ri

// Gi+1
ri /P i+1

si,ri ×G
i+1
ri

// Gi+1
ri .

The statement follows by noticing that right three squares are Cartesian. □

For 0 ⩽ i ⩽ d we define

Ψi : DGi−1
ri−1

(Gi−1
ri−1

) −→ GGiri
(Giri), F 7−→ ϵ∗iLi ⊗ ε∗i pInd

Giri−1

P isi−1,ri−1

F .

Proposition 4.5. We have

pInd
Ḡir
Īir
Lϕ ∼= Li ⊗ q∗iΨi · · ·Ψ1Ψ0(L−1).

Proof. We argue by induction on −1 ⩽ i ⩽ d. If i = −1, the statement
follows by noticing that Lϕ = L−1 ⊗ q∗−1L−1. Assume the statement is true
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for i ⩾ −1. Let F = Ψi · · ·Ψ1Ψ0(L−1). By Proposition 4.2 we have

pIndḠ
i+1
r

Īi+1
r
Lϕ

∼= pIndḠ
i+1
r

P̄ i+1
si,r
◦ pIndḠ

i
r

Īir
Lϕ

∼= pIndḠ
i+1
r

P̄ i+1
si,r

(Li ⊗ q∗iFi)

∼= Li+1 ⊗ q∗i+1,i+1Li+1 ⊗ pIndḠ
i+1
r

P̄ i+1
si,r
q∗iF

∼= Li+1 ⊗ q∗i+1,i+1Li+1 ⊗ q∗i+1ε
∗
i+1pInd

Gi+1
ri

P i+1
si,ri

F

∼= Li+1 ⊗ q∗i+1(ϵ
∗
i+1Li+1 ⊗ ε∗i+1pInd

Gi+1
ri

P i+1
si,ri

F)

∼= Li+1 ⊗ q∗i+1Ψi+1F
∼= Li+1 ⊗ q∗i+1Ψi+1 · · ·Ψ1Ψ0(L−1),

where the third and fourth isomorphisms follow from Lemma 4.3 and Lemma 4.4
respectively. The induction is finished. □

We set Ψ†
0 = Ψ0[dimT0] and Ψ†

i = Ψi[dimGiri − dimGiri−1
] for 1 ⩽ i ⩽ d.

Put pIndGrIϕ,U,r = pInd
Ḡdr
Īdr

.

We say ϕ is regular (for G) if Lϕ has trivial stabilizer in WGr .

Theorem 4.6. Let Nϕ = dimT0 +
∑d

i=0(dimGiri − dimGiri−1
). Then

pIndGrIϕ,U,rLϕ[Nϕ] ∼= Ψ†
d · · ·Ψ

†
0(Lϕ) ∼=

⊕
F
mFΨ

†
d · · ·Ψ

†
1(F),

where F ranges over irreducible summands of Ψ†
0(L−1[dimT0]) with multi-

plicitymF . Moreover, the summands Ψ†
d · · ·Ψ

†
1(F) are pairwise non-isomorphic

simple perverse sheaves on Gr.
In particular, if ϕ is regular, then pIndGrIϕ,U,rLϕ[Nϕ] is simple perverse.

Proof. We follow the proof of [BC24, Corollary 6.7]. First note that pInd
G0

0

P 0
0,0

is a classical parabolic induction functor. By [Lus85, §4.3], Ψ†
0(L−1) =

pInd
G0

0

P 0
0,0
L−1[dim(T0)] is semisimple perverse. By Theorem 3.3, the functors

Ψ†
i for 1 ⩽ i ⩽ d are fully faithful. Hencer first statement follows from

Proposition 4.5.
Assume ϕ is regular, then L−1 has trivial stabilizer in WG0

0
. Hence

Ψ†
0(L−1) is simple perverse by [Lus85, §4.3]. So the second statement follows.

□
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5. A comparison result

In this section, we follow [BC24, §7] to compare two constructions of per-
verse sheaves on Gr. One is as in Theorem 4.6, the other is by intermediate
extension from the very regular locus of Gr. Let ϕ, r, (G

i, ϕi, ri)−1⩽i⩽d and
B = TU be as in Section 4.

First we recall the notion of very regular elements introduced in [CI19,
Definition 5.1].

Definition 5.1. An element γ ∈ Gx,0 := Gx,0(Ok̆) is called very regular if:

(1) the identity component Tγ of the centralizer of γ in G is a maximal
torus,

(2) the apartment of Tγ contains x,

(3) α(γ) ̸≡ 1 mod ϖOk̆ for all roots α of Tγ in G.

An element in Gr is called very regular if it is the image of a very regular
element of Gx,0.

For any two k̆-split maxima torus S, S′ of G whose apartments con-
taining x, we set NGr(S, S

′) = {x ∈ Gr;xSx
−1 = S′} and WGr(S, S

′) =
NGr(S, S

′)/Sr.

Proposition 5.2. Let γ ∈ Gr be a very regular element. Let h ∈ Gr such
that h−1γh ∈ Iϕ,U,r. Then there exists a unique x ∈ WGr(T, Tγ) such that
h ∈ wIϕ,U,r, where w ∈ NGr(T, Tγ) is some/any lift of x.

Proof. We first observe that since x lies in the intersection of the apartments
of T and Tγ , these two maximal tori are conjugate by an element of Gx,0.
Therefore, we may assume without loss of generality that Tγ = T and hence
γ ∈ Tr. Similarly as [CI19, Lemma 5.6], the statement then follows from the
uniqueness of Iwahori decomposition of Gx,0 and the very regularity of γ.

□

Let Gr,vreg be the set of very regular elements in Gr and let jvreg :
Gr,vreg ↪→ Gr be the inclusion map. Set Tr,vreg := Tr ∩Gr,vreg. Let

G̃r,vreg := {(g, hTr) ∈ Gr,vreg ×Gr/Tr : h−1gh ∈ Tr}

and consider the maps

G̃r,vreg
ηvreg

xx

πvreg

&&

Tr,vreg Gr,vreg

given by

ηvreg(g, hTr) = h−1gh, πvreg(g, hTr) = g.

Lemma 5.3. The map (g, hTr) 7→ (g, hIϕ,U,r) gives an isomorphism

G̃r,vreg ∼=
{
(g, hIϕ,U,r) ∈ Gr,vreg ×Gr/Iϕ,U,r : h−1gh ∈ Iϕ,U,r

}
.
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Moreover, under this isomorphism, ηvreg and πvreg correspond to the restric-
tions of the maps η and π in 3.2 respectively, and are both WGr -torsors.

Proof. This follows from Proposition 5.2 and that the map Lγ : Iϕ,U,r →
Iϕ,U,r/Tr given by x 7→ γ−1xγTr is surjective for γ ∈ Tr,vreg. □

Recall that Lϕ is the local system on Tr/Tϕ,r associate to ϕ. By abusing
of notation we also denote by Lϕ its pull-back under the natural projection
Tr → Tr/Tϕ,r.

Theorem 5.4. Let Lϕ,vreg denote the restriction of Lϕ to Tr,vreg. Then

pIndGrIϕ,U,r(Lϕ[Nϕ]) ∼= (jvreg)!∗((πvreg)!η
∗
vregLϕ,vreg[dimGr]).

In particular, it is F -equivariant, and independent of the choice of Borel
subgroup B = TU as in Section 4.

Proof. We follow the proof of [BC24, Theorem 7.6]. By Theorem 4.6,

pIndGrIϕ,U,r(Lϕ[Nϕ]) is semisimple perverse and its endomorphism algebra has

dimension equal to |StabWG0
(L−1)| = |StabW (Lϕ)|. The same holds for the

intermediate extension (jvreg)!∗
(
(πvreg)!η

∗
vregLvreg[dimGr]

)
.

Hence, to show that these two perverse sheaves are isomorphic, it suffices
to prove j∗vregpInd

Gr
Iϕ,U,r(Lϕ[Nϕ]) ∼= πvreg!η

∗
vregLϕ,vreg[dimGr], which follows

from Lemma 5.3. □

Corollary 5.5. The perverse sheaf pIndGrIϕ,U,r(Lϕ[Nϕ]) is isomorphic to the

perverse sheaf KLϕ constructed in [BC24, Corollary 6.7].

Proof. It follows from [BC24, Theorem 7.6] and Theorem 5.4. □

6. An alternative construction

Following [Lus90] and [BC24], we give an alternative construction of
perverse sheaf on Gr, using a sequence of Borel subgroups. Let T , ϕ, r,
(Gi, ϕi, ri)−1⩽i⩽d and be as in Section 4.

Let B = (B0, B1, . . . , Bn) with B0 = Bn be a sequence of Borel subgroups
containing T . Let U i be the unipotent radical of Bi, whose opposite is

denoted by U
i
. Set Iir = Iϕ,U i,r for i ∈ Z. Let

βi : Iir = (Kϕ,r ∩ U ir)Tr(K+
ϕ,r ∩ U

i
r) −→ Tr/Tϕ,r

be the natural projection.

Lemma 6.1. The map (u, v) 7→ βi(u)βi+1(v) for u ∈ Iir and v ∈ Ii+1
r

induces a morphism

βIirI
i+1
r

: IirIi+1
r −→ Tr/Tϕ,r.

In particular, βIirI
i+1
r

(xzy) = βi(x)βIirI
i+1
r

(z)βi+1(y) for x ∈ Iir, y ∈ Ii+1
r

and z ∈ IirIi+1
r .
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Proof. It suffices to show that βi(w) = βi+1(w) for w ∈ Iir ∩ Ii+1
r . This

follows from that each βj is a group homomorphism. □

Let XB = Gr ×Gr/I0r × · · · ×Gr/Inr and

YB = {(g, h0I0r , . . . , hnInr ) ∈ XB;h
−1
i hi+1 ∈ IirIi+1

r for 0 ⩽ i ⩽ n−1, h−1
n gh0 ∈ I0r }.

Moreover, there are two natural morphisms

πB : YB −→ Gr, (g, h0I0r , · · · , hnInr ) 7−→ g;

ηB : YB −→ Tr/Tϕ,r, (g, h0I0r , . . . , hnInr ) 7−→ β0(h
−1
0 h1) . . . βn−1(h

−1
n−1hn)β

0(h−1
n gh0).

We define

pIndB(Lϕ) = (πB)!(ηB)
∗Lϕ[2 dim(Gr/Iϕ,r) +NB],

where NB =
∑n

i=0 dim IirIi+1
r /Ii+1

r and Lϕ is the multiplicative local system
over Tr/Tϕ,r corresponding to ϕ.

The main result of this section is

Theorem 6.2. We have pIndGrI0
r
Lϕ ∼= pIndB(Lϕ).

6.1. Let W be the absolute Weyl group of T in G. Let wi ∈ W such
that Bi = wiBi−1. Note that each Borel subgroup Bi determines a length
function ℓBi :W → Z⩾0.

We fix 1 ⩽ i ⩽ n − 1 and suppose that wi is a simple reflection with
respect to ℓBi−1 . Let α ∈ Φ(G,T ) be the simple root in Bi−1 associated to
wi. Then {−α} = Φ(Bi, T )∖Φ(Bi−1, T ).

For f ∈ Φ̃ with f(x) ⩾ 0 we denote by Gfr = G
{f}
r ⊆ Gr be as in

Section 3.1.
For α ∈ Φ(G,T ) we set j(α) to be the integer 0 ⩽ j ⩽ d such that

α ∈ Φ(Gj , T )∖Φ(Gj−1, T ), and set r(α) = rj(α)−1.

Lemma 6.3. If Ii−1
r ̸= Iir, then there exists f ∈ Φ̃ such that αf = α and

f(x) = r(α)/2. In this case,

Ii−1
r Iir = GfrIir = Ii−1

r Gf
†
r ,

where f † = r(α)− f ∈ Φaff .

Let iB = (B0, . . . , B̂i, . . . , Bn) and define

ip : YB −→ XiB, (g, h0I0r , · · · , hnInr ) 7−→ (g, h0I0r , . . . , ĥiIir, . . . hnInr ).

Lemma 6.4. Let ξ = (g, h0I0r , . . . , ĥiIir, . . . , hnInr ) ∈ XiB. Then the pro-

jection map (g′, h′0I0r , . . . , h′nInr ) 7→ h′iIir induces an isomorphism

ip
−1(ξ) ∼= hi−1(Ii−1

r Iir ∩ h−1
i−1hi+1Ii+1

r Iir)/Iir.

Proposition 6.5. If −α ∈ Φ(Bi+1, T ), then we have

pIndB(Lϕ) ∼= pInd
iB(Lϕ).
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Proof. It suffices to show that pi induces an isomorphism YB ∼= YiB, ηB =
ηiB ◦ ip and NB = NiB.

By assumption, Gf
†
r ⊆ Iir ∩ Ii+1

r . By Lemma 6.3, we have Ii−1
r IirIi+1

r =
Ii−1
r Ii+1

r and Im ip ⊆ YiB. We claim the natural map

µ : Ii−1
r Iir ×Iir IirIi+1

r −→ Ii−1
r Ii+1

r , (x, y) 7−→ xy

is an isomorphism. It remains to show η is injective. We may assume Ii−1
r ̸=

Iir and let f, f † be as in Lemma 6.3. Let x, x′ ∈ Ii−1
r Iir and y, y′ ∈ IirIi+1

r

such that xy = x′y′. We can assume further that y, y ∈ Ii+1
r . By Lemma 6.3

we have
x−1x′ = yy′

−1 ∈ Uf†r Ii−1
r Uf

†
r ∩ Ii+1

r ⊆ Iir,

where the last inclusion follows from the inclusions Uf
†

r ⊆ Iir ∩ Ii+1
r and

Ii−1
r ∩ Ii+1

r ⊆ Iir. So the claim is proved.
As µ is an isomorphism, we have NB = NiB, and moreover, ip is an

isomorphism by Lemma 6.4. The proof is finished. □

Proposition 6.6. If Bi−1 = Bi+1, then pIndB(Lϕ) ∼= pInd
iB(Lϕ).

Proof. If Ii−1
r = Iir the statement is trivial. We assume otherwise and let

f, f † ∈ Φaff be as in Lemma 6.3. Note that NB = NiB + 2. Consider the
decomposition YB = Y ′

B ⊔ Y ′′
B , where

Y ′
B = {(g, h0I0r , · · · , hnInr );h−1

i−1hi+1 ∈ Ii−1
r };

Y ′′
B = {(g, h0I0r , · · · , hnInr );h−1

i−1hi+1 /∈ Ii−1
r }

Let ip
′, η′, π′ and ip

′′, η′′, π′′ be the restrictions of ip, ηB, πB to Y ′
B and Y ′′

B

respectively.
By definition, ip

′ induces a morphism from Y ′
B to YiB, which we still

denoted by ip
′. By Lemma 6.3 and Lemma 6.4, the fiber of any point

ξ = (g, h0I0r , · · · , ĥiIir, . . . hnInr ) ∈ YiB under ip
′ is

{hi−1uf (z)Iir/Iir; z ∈ Ga} ∼= Ga.

Moreover, the restriction of ηB/(ηiB ◦ ip′) on ip
′−1(ξ) is

βIi−1
r Iir

(h−1
i−1hi−1uf (z))βIirI

i+1
r

(uf (z)
−1h−1

i−1hi+1)

βIi−1
r Ii+1

r
(h−1
i−1hi+1)

=
βi−1(uf (z))β

i+1(uf (z)h
−1
i−1hi+1)

βi+1(h−1
i−1hi+1)

= βi−1(uf (z))β
i+1(uf (z)

−1)

= 1 ∈ Tr/Tϕ,r,

where the second equality follows from that h−1
i−1hi+1, uf (z) ∈ Ii−1

r = Ii+1
r .

Therefore, by the proper base change theorem we have

(π′)!(η
′)∗Lϕ)[2 dim(Gr/Iϕ,r) +NB] ∼= pInd

iB(Lϕ).
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It remains to show that (π′′)!(η
′′)∗Lϕ = 0. Let ξ = (g, h0I0r , · · · , ĥiIir, . . . hnInr ) ∈

Im ip
′′. It suffices to show (ip

′′)!(η
′′|
ip′′

−1(ξ))
∗Lϕ = 0. By Lemma 6.3 we may

assume that h−1
i−1hi+1 = uf†(z0) for some 0 ̸= z0 ∈ Fq.

First we assume that r(α) > 0. Let 1 ⩽ j = j(α) ⩽ d. Note that
r(α) = rj−1. By Lemma 6.4 we have

ip
′′−1

(ξ) = {hi−1uf†(z0)uf (z)Iir/Iir; z ∈ Ga} ∼= Ga.

Then the restriction of ηB/(ηiB ◦ ip′′) on ip
′′−1(ξ) is given by

βIi−1
r Iir

(h−1
i−1hi−1uf†(z0)uf (z))βIirI

i+1
r

(uf (z)
−1uf†(z0)

−1h−1
i−1hi+1)

βIi−1
r Ii+1

r
(h−1
i−1hi+1)

= βIi−1
r Iir

(uf†(z0)uf (z))

= α∨(1 +ϖr(α)[z0z]) ∈ Tr/Tϕ,r.

Since ϕj−1|Gj−1
r(α):r(α)

is (Gj−1, Gj)-generic, we have (p′′i )!(η
′′|
ip′′

−1(ξ))
∗Lϕ = 0

as desired.
Then we assume that r(α) = 0, that is, α ∈ Φ(G0, T ). By Lemma 6.4 we

have

ip
′′−1

(ξ) = {hi−1uf†(z0)uf (z
−1
0 (z − 1))Iir/Iir; z ∈ Gm} ∼= Gm.

Then the restriction of fηB/(ηiB ◦ ip′′) on ip
′′−1(ξ) is given by

βIi−1
r Iir

(uf†(z0)uf (z
−1
0 (z − 1))) = α∨(z).

As ϕ−1 is regular for G0, (ip
′′)!(η

′′|
ip′′

−1(ξ))
∗Lϕ = 0 as desired. The proof is

finished. □

6.2. Let B = (B0, . . . , Bn) be a sequence of Borel subgroups contains T .
Let wi ∈ W be such that Bi = wiBi−1. We say B is saturated if for each
1 ⩽ i ⩽ n we have ℓBi−1(wi) ⩽ 1. Moreover, we say B is reduced if B is
saturated and ℓB0(wiwi−1 · · ·w1) > ℓB0(wi−1 · · ·w1) for 1 ⩽ i ⩽ n.

We record the following standard results on root systems.

Lemma 6.7. A sequence (B0, . . . , Bn) is reduced if and only if

Φ(Bm, T )∖Φ(B0, T ) =
m⊔
i=1

Φ(Bi, T )∖Φ(Bi−1, T ),

and each set on the right hand side is of cardinality one.
In particular, if (B0, . . . , Bn) is reduced, then so is (Bj , . . . , Bj′) for any

0 ⩽ j < j′ ⩽ n.

Lemma 6.8. Let B,B′ be two Borel subgroups. Then there exists a reduced
sequence (B0, . . . , Bm) such that B0 = B and Bm = B′.
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Proposition 6.9. Let B = (B0, . . . , Bn) with B0 = Bn be a saturated
sequence. Then there exist saturated sequences

B = B(0), B(1), . . . , B(m) = (B0, B0)

with B(i) = (B0
i , . . . , B

ni
i ) such that for each 1 ⩽ i ⩽ m one of the following

cases occurs:

(1) B(i) is obtained from B(i− 1) by deleting Bj
i−1 for some 1 ⩽ j ⩽ ni−1− 1

with Bj−1
i−1 = Bj+1

i−1 ;

(2) B(i) is obtained from B(i− 1) by deleting Bj
i−1 for some 1 ⩽ j ⩽ ni−1− 1

with Bj
i−1 = Bj+1

i−1 ;

(3) B(i) is obtained from B(i−1) by replacing a reduced subsequence (Bj
i−1, . . . , B

j′

i−1)

for some 1 ⩽ j < j′ ⩽ ni−1 with another reduced subsequence (Bj
i , . . . , B

j′

i )

with Bj
i−1 = Bj

i and Bj′

i−1 = Bj′

i .

Proposition 6.10. Let B = (B0, . . . , Bn) with B0 = Bn. Let 0 ⩽ j ⩽ n−1
and let

(Bj = Bj,0, . . . , Bj,m = Bj+1)

be a reduced sequence. Let B′ be obtained from B by replacing (Bj , Bj+1)
with the above sequence. Then pIndBLϕ ∼= pIndB′Lϕ.

Proof. For 0 ⩽ i ⩽ m−1 let B(i) be obtained from B by replacing (Bj , Bj+1)
with (Bj,0, · · · , Bj,i, Bj,m). In view of Lemma 6.7, we can apply Proposi-
tion 6.5 (by taking (Bi−1, Bi, Bi+1) = (Bj,i−1, Bj,i, Bj,m) for 1 ⩽ i ⩽ m−1)
to deduce that

pIndBLϕ = pIndB(0)Lϕ ∼= pIndB(1)Lϕ ∼= · · · ∼= pIndB(m−1)Lϕ = pIndB′Lϕ.
The proof is finished. □

Proof of Theorem 6.2. By Lemma 6.8 and Proposition 6.10, we may assume
B = (B0, . . . , Bn) with B0 = Bn is saturated. If B = (B0, B0), then

YB ∼= G̃r and statement follows.
By Proposition 6.9, it suffices to show that pIndB(i−1)Lϕ ∼= pIndB(i)Lϕ for

1 ⩽ i ⩽ m. If Case (1) occurs, the statement follows from Proposition 6.6.
If Case (2) occurs, the statement follows from that jp : YB(i−1) → YB(i) is
an isomorphism. If Case (3) occurs, the statement follows from Proposi-
tion 6.10. The proof is finished. □

7. Trace of Frobenius

Let T , ϕ, r and B = TU be as in Section 4. Let n ∈ Z⩾1 such that

FnB = B. Set B = (B,FB, . . . , FnB). Let I†r = I†ϕ,B,r and Ir = Iϕ,B,r,
Y = YB, ηY = ηB, πY = πB and so on be as in Section 6. We define

FY : Y −→ Y,

(g, h0I0r , h1I1r . . . , hnInr ) 7−→ (F (g), F (g−1hn)I0r , F (h0)I1r . . . , F (hn−1)Inr ).
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Lemma 7.1. There is a commutative diagram

Tr/Tϕ,r

F
��

Y
πY //

ηYoo

FY
��

Gr

F

��

Tr/Tϕ,r Y
ηYoo

πY // Gr.

In particular, for any M ∈ D(Tr/Tϕ,r) such that F ∗M ∼=M we have

F ∗πY !η
∗
YM

∼= πY !η
∗
Y F

∗M ∼= πY !η
∗
YM.

For g ∈ Gr we define Yg = π−1
Y (g) and

Zg = {hTFr (I†r ∩ FI†r);h−1F (h) ∈ FI†r , F (h)−1gh ∈ TFr (I†r ∩ FI†r)}.

Lemma 7.2. For g ∈ GFr the restriction map FY : Yg → Yg is the Frobenius
map for some Fq-rational structure of Yg.

Proof. It follows in the same way as [BC24, Lemma 9.2]. □

Let prT : TFr (I†r ∩ FI†r)→ TFr /T
F
ϕ,r denote the natural projection.

Proposition 7.3. LetM ∈ D(Tr/Tϕ,r) be such that F ∗M ∼=M . For g ∈ GFr
we have

χπY !η
∗
YM

(g) =
∑

hTFr (I†
r∩FI†

r )∈Zg

χM (prT (F
n(h)−1gh)).

Proof. It follows in the same way as [BC24, Proposition 9.3] by replacing

the pair (Ur, Br) with (I†r , Ir). □

Recall that Lϕ denotes the rank one multiplicative local system on Tr/Tϕ,r
associated to ϕ.

Corollary 7.4. Assume ϕ is regular, then there exists a constant c such
that for any g ∈ GFr we have

χ
pIndGrIr (Lϕ)

(g) = c ·
∑

hTFr (I†
r∩FI†

r )∈Zg

ϕ(prT (F
n(h)−1gh)).

Proof. By Theorem 4.6, pIndGrIr (Lϕ) is a simple perverse sheaf up to shift. It
follows from Theorem 6.2 that χ

pIndGrIr (Lϕ)
differs from χπY !η

∗
Y Lϕ by a scalar,

and the statement follows from Proposition 7.3. □

8. Comparison with deep level Deligne-Lusztig characters

Let notation be as in Section 7. Consider the following varieties

Xr = {g ∈ Gr; g−1F (g) ∈ FUr}/(Ur ∩ FUr);

Yr = {g ∈ Gr; g−1F (g) ∈ FI†r}/(I†r ∩ FI†r).
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which admit natural actions of GFr × TFr by left/right multiplication. Con-
sider the following virtual GFr -modules

RGrTr (ϕ) =
∑
i

(−1)iH i
c(Xr,Qℓ)[ϕ],

RGrTr (ϕ) =
∑
i

(−1)iH i
c(Yr,Qℓ)[ϕ],

where H i
c(−,Qℓ)[ϕ] denotes the subspace of H i

c(−,Qℓ) on which TFr acts

via ϕ. The virtual GFr -module RGrTr (ϕ) is referred to as a Deligne-Lusztig
representation.

Theorem 8.1. [Nie24, Proposition 1.1] Assume that T is elliptic. Then

RGrTr (ϕ) = R
Gr
Tr

(ϕ).

Theorem 8.2. [CI19, Theorem 1.2] For any character ϕ and any very reg-
ular element γ ∈ GFr ,

RGrTr (ϕ)(g) =
∑

w∈WGr (Tγ ,T )
F

ϕw(g).

Here wϕ is character of TFγ,r such that ϕw(g) = ϕ(wgw−1).

Proposition 8.3. Let m ∈ Z⩾1 and g ∈ GFr . Then

tr(g ◦ Fmn;RGrTr (ϕ)) =
∑

hTFr (I†
r∩FI†

r )∈Zg

ϕ(prT (F
mn(h)−1gh)).

Here Zg and n are as in Section 7.

Theorem 8.4. [BC24, Theorem 10.6] Assume T is elliptic and ϕ is regular.

Then ±RGrTr (ϕ) is an irreducible representation of GFr ×⟨Fn⟩. Moreover, Fn

acts on RGrTr (ϕ) by a scalar.

Corollary 8.5. If T is elliptic and ϕ is regular, then there exists a constant
λ ̸= 0 such that for g ∈ GFr , we have

RGrTr (ϕ)(g) = λ ·
∑

hTFr (I†
r∩FI†

r )∈Zg

ϕ(prT (F
n(h)−1gh))

Theorem 8.6. Suppose q is sufficiently large. Assume T is elliptic and ϕ
is regular. Then

χ
pIndGrIr (Lϕ[Nϕ])

= (−1)dim(Gr)RGrTr (ϕ).

Proof. By Corollary 7.4, Corollary 8.5, Proposition 7.3 and Theorem 8.1,
there exists a constant µ ∈ Qℓ such that

χ
pIndGrIr (Lϕ[Nϕ])

= µ ·RGrTr (ϕ).
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As q is sufficiently large, it follows from [BC24, Theorem 10.9] and Theo-
rem 8.2 that there exists a very regular element γ ∈ GFr such that

RGrTr (ϕ)(γ) =
∑

w∈WGr (Tγ ,T )
F

ϕw(γ) ̸= 0.

On the other hand, by Theorem 5.4 we have

χ
pIndGrIr (Lϕ[Nϕ])

(γ) = χπvreg!η∗vregLϕ,vreg[dimGr](γ)

= (−1)dimGr ·
∑

w∈WGr (Tγ ,T )
F

ϕw(γ) = (−1)dimGrRGrTr (ϕ)(γ) ̸= 0.

Thus µ = (−1)dimGr as desired. □

9. Positive level Springer hypothesis

9.1. Wittvector-valued Fourier transform. LetW be a connected com-
mutative unipotent group scheme over Fq. Let E,E′ be two connected com-
mutative unipotent group schemes of dimension d over Fq, assume a pairing

E × E′

p1
{{

µ
//

p2
##

W

E E′

.

is given. Let ψ : W (Fq) → Q×
ℓ be a non-trivial character. Via the Lang–

Steinberg map x 7→ F (x) − x : W → W , ψ defines an étale sheaf Lψ on W
We can then define the Fourier transform

Tψ = TE,µψ : Db
c(E,Qℓ) −→ Db

c(E
′,Qℓ)

A 7−→ p2!(p
∗
1A⊗ µ∗Lψ).

Note that here we do not take the shift [d], as in the usual definition of
Fourier transform.

Proposition 9.1. LetW,E,E′, µ as above such that the character ψx : E
′(Fq)→

Q×
ℓ given by ψx(y) = ψ(µ(x, y)) is trivial if and only if x = 0. Then

Tψ−1 ◦ Tψ(A) ≃ A[−2d](−d), where (−d) denotes the Tate-twist.

Proof. We can closely follow the argument of [Lau87, Théorème (1.2.2.1)] (or
[KW01, I.5]). We have the commutative diagram (all functors are derived):

E × E

q1

��

E × E′ × E
pr13oo

pr12ww
pr23 ''

E × E′

p1

yy

p2

''

E′ × E
p2

ww

p1

##
E E′ E
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with a cartesian square in the middle; here pij denotes the projection to the
product of ith and jth components, q1 denotes the projection to the first
component and p1, p2 are as above. We compute

Tψ−1 ◦ Tψ(M) = p1!
(
p∗2 p2! (p

∗
1M ⊗ µ∗ Lψ)⊗ µ∗ Lψ−1

)
≃ p1!

(
pr12! pr

∗
23 (p

∗
1M ⊗ µ∗ Lψ)⊗ µ∗ Lψ−1

)
≃ p1! pr12!

(
pr∗23 (p

∗
1M ⊗ µ∗ Lψ)⊗ pr∗12 µ

∗ Lψ−1

)
≃ q1! pr13!

(
pr∗12 µ

∗Lψ−1 ⊗ pr∗23µ
∗Lψ ⊗ pr∗13 q

∗
2M

)
≃ q1!

(
pr13! (pr

∗
12 µ

∗Lψ−1 ⊗ pr∗23µ
∗Lψ)⊗ q∗2M

)
where the second equation follows by the proper base change theorem for
the cartesian square of the above diagram, the third and the fifth are by
projection formula, the fourth follows from p1pr12 = q1pr13 and q2pr13 =
p1pr23. Now, let X1 (resp. X2) denote the pullback of the Lang–Steinberg
covering of W along µ ◦ pr12 : E × E′ × E → W (resp. along µ ◦ pr23). Let
X = X1 ×E×E′×E X2. This is a connected Galois cover of E ×E′ ×E with
Galois group W (Fq)2. We have the cartesian diagram

E × E′ × E α //

pr13
��

E × E′

p1
��

E × E
β

// E

where α(x, y, z) = (x− z, y) and β(x, z) = x− z. By [KW01, Lemma I.5.10]
we have pr∗12 µ

∗Lψ−1 ⊗ pr∗23µ
∗Lψ ≃ α∗µ∗Lψ. Thus, continuing the above

computation, we have

Tψ−1 ◦ Tψ(M) ≃ q1! (pr13! α∗µ∗Lψ ⊗ q∗2M)

≃ q1! (β∗ p1! µ∗Lψ ⊗ q∗2M) ,

where the second equality holds by the proper base change theorem for the
above diagram. Now, again by the proper base change theorem, the fiber
of p1! µ

∗ Lψ at x ∈ E is isomorphic to px1!L(ψx), where px1 : {x} × E′ → {x}
is the restriction of p1. By assumption L(ψx) is non-trivial if x ̸= 0, and
hence by [Lau87, (1.1.3.4)], px1!L(ψx) = 0 if x ̸= 0. Thus, if i : {0} → E

denotes the neutral section, p1! µ
∗ Lψ = i∗Qℓ[−2d](−d), so that continuing

the above computation we get

Tψ−1 ◦ Tψ(M) ≃ q1!
(
β∗ i!Qℓ[−2d](−d)⊗ q∗2M

)
≃ q1!

(
∆!Qℓ[−2d](−d)⊗ q∗2M

)
≃ q1! (∆!M) [−2d](−d)
≃M [−2d](−d),

where ∆ denotes the diagonal of E, the first isomorphism is follows from the
proper base change theorem, the third follows from the projection formula,
and the last is due to the identity q1 ◦∆ = idE . □
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9.2. Now we specify to our case of interest. Let ψ : k̆ → Q×
ℓ be an addi-

tive character, which is trivial over ϖOk but nontrivial over Ok. Choose a
sufficiently large integer N ≫ 0, and view W := ϖ−NOk̆/ϖ as an additive
group scheme over Fq. Let Lψ be the rank one multiplicative local system
on W associated to ψ.

Let E be the set category of finitely generated Ok̆-modules such that

ϖNE = {0}. Let E ∈ E. Define

E′ = homOk̆(E,W ).

Then E′ ∈ E and there is a natural pairing

µ : E × E′ −→W, (x, f) 7−→ f(x).

Notice that E and E′ are commutative unipotent group schemes over Fq of
the same dimension. As in Section 9.1, we can define the Fourier transfor-
mation

TEψ : Db
c(E,Qℓ) −→ Db

c(E
′,Qℓ)

A 7−→ p2!(p
∗
1A⊗ µ∗Lψ).

By abuse of notation, we will write Tψ = TEψ if E is clear from the context.

Proposition 9.2. Let E1, E2 ∈ E and let f : E1 → E2 be a morphism of
Ok̆-modules. Let f ′ : E′

2 → E′
1 be the dual morphism. For F ∈ Db

c(V1) and

G ∈ Db
c(V2), there are natural isomorphisms

Tψ(f!F) ∼= f ′∗Tψ(F), Tψ(f
∗F) ∼= f ′!Tψ(F)[2d](d).

Here d = dimE2 − dimE1.

Proof. The first isomorphism is a standard result, see [Ach21, Proposition
6.9.13]. The second isomorphism can be deduced from Proposition 9.1. □

9.3. Let g be the Lie algebra of G over k̆, whose dual is denoted by g∗. Let

0 ⩽ s ∈ R̃. We denote by gx,s the associated Moy-Prasad Ok̆-submodule of
g, and set

g∗
x,s = {X ∈ g∗; ⟨X,g(−s)+⟩ ∈ ϖOk̆}

where ⟨−,−⟩ : g∗ × g → k̆ is the natural pairing. By abuse of notation we
put

gs := gx,0/gx,s+, g∗
−s := g∗

x,−s/g
∗
x,0+.

Notice that g∗
−s
∼= homOk̆(gs,W ), where W = ϖ−NOk̆/ϖ with N ≫ 0.

Then we have the Fourier transform functor

T
g∗
−s

ψ : Db
c(g

∗
−s) −→ Db

c(gs), M 7−→ pr1!(pr
∗
2M ⊗ ⟨−,−⟩∗Lψ).

Let notation be as in Section 3.2. Let p, l,n,n be the Lie algebras of
P,L,N,N respectively. Put

ps,r = lr + ns:r + ns+:r, p∗
−s,−r = l∗−r + n∗

(−s)+ + n∗
−s.
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Note that p∗
−s,−r

∼= (gr/ns,r)
′ with ns,r = ns:r +ns+:r. Consider the follow-

ing Cartesian diagram

(∗) ps,r
p

xx

i

&&
lr

j

%%

gr
q

yy

gr/ns,r,

where all the morphisms are defined in the natural way. Then can define
the induction functor for Lie algebras:

pIndgrps,r := AvGrPs,r! ◦ i! ◦ p
∗ ◦ InflPs,rLr

: DLr(lr) −→ DGr(gr).

Similarly, we can define

pInd
g∗
−r

p∗
−s,−r

:= AvGrPs,r! ◦ q
′
! ◦ j′

∗ ◦ InflPs,rLr
: DLr(l

∗
−r) −→ DGr(g

∗
−r)

by using the following diagram dual to (∗)

(∗∗) p∗
−s,−r

j′

yy

q′

%%

l∗−r
p′

%%

g∗
−r

i′

yy

(ps,r)
′,

As (∗) is Cartesian, so is (∗∗).

Lemma 9.3. We have Tψ◦pInd
g∗
−r

p∗
−s,−r

= pIndgrps,r◦Tψ[−2 dimNs,r](−dimNs,r).

Proof. By Proposition 9.2 and the proper base change theorem for (∗∗), we
have

pIndgrps,r ◦ Tψ

= AvGrPs,r! ◦ i! ◦ p
∗ ◦ InflPs,rLr

◦ Tψ

= AvGrPs,r! ◦ i! ◦ p
∗ ◦ Tψ ◦ Infl

Ps,r
Lr

= AvGrPs,r! ◦ i! ◦ Tψ ◦ p
′
! ◦ Infl

Ps,r
Lr

= AvGrPs,r! ◦ Tψ ◦ i
′∗ ◦ p′! ◦ Infl

Ps,r
Lr

[2 dimNs,r](dimNs,r)

= Tψ ◦AvGrPs,r! ◦ i
′∗ ◦ p′! ◦ Infl

Ps,r
Lr

[2 dimNs,r](dimNs,r)

= Tψ ◦AvGrPs,r! ◦ q
′
! ◦ j′

∗ ◦ InflPs,rLr
[2 dimNs,r](dimNs,r)

= Tψ ◦ pInd
g∗
−r

p∗
−s,−r

[2 dimNs,r](dimNs,r),
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where the fifth identity follows from Proposition 9.1 and that Tψ commutes

with the right adjoint ForGrPs,r to AvGrPs,r!. The proof is finished. □

Recall that l = Lr:r ∼= lx,r/lx,r+.

Lemma 9.4. Let X ∈ l∗−r such that X|l ∈ l∗ is (L,G)-generic. Then

pInd
g∗
−r

p∗
−s,−r

(δLr·X) = δGr·X [2 dimNs,r].

Proof. Let

g̃∗
−r = {(x, hPs,r) ∈ g∗

−r ×Gr/Ps,r;h−1 · x ∈ p∗
−s,−r}

ĝ∗
−r = {(x, h) ∈ g∗

−r ×Gr;h−1 · x ∈ p∗
−s,−r}.

Then we have natural maps

η : ĝ∗
−r −→ l∗−r, (x, h) 7−→ p(h−1 · x);

α : ĝ∗
−r −→ g̃∗

−r, (x, h) 7−→ (x, hPs,r);

π : g̃∗
−r −→ g∗

−r, (x, hPs,r) 7−→ x.

As in Lemma 3.1, by forgetting the equivariant structure we have

pInd
g∗
−r

p∗
−s,−r

(δLr·X)
∼= π! ˜η∗δLr·X [2 dimNs,r].

Thus it suffices to show that η−1(Z) ∼= Ps,r for each Z ∈ Lr ·X. This follows
from the assumption that Z|l is (L,G)-generic. □

9.4. Let (gr)nilp and (Gr)unip be the sets of nilpotent elements and unipo-
tent elements in gr and Gr respectively. Assume that p is sufficiently large.
By [DR09] and [BC24], there is an F -equivariant and Gr-equivariant bijec-
tion

log : (Gr)unip
1:1−→ (gr)nilp.

The inverse of log is denoted by exp : (gr)nilp → (Gr)unip.
Let T , ϕ, r, (Gi, ϕi, ri)−1⩽i⩽d, B = UT and Ir = Iϕ,U,r be as in Section 4.

Let t, gi and zi be the Lie algebras of T , Gi and Z(Gi) respectively. Their
dual spaces are denoted by t∗, (gi)∗ and (zi)∗ respectively.

Assume q is sufficiently large. Then there exists a regular element X ∈
(t∗−r)

F (that is, the centralizer of X in Gr is Tr) such that

ψ(⟨X,Y ⟩) = ϕ(exp(Y )), ∀ Y ∈ tF0+:r.

Choose Xi ∈ ((zi)∗−ri)
F such that

ψ(⟨Xi, Y ⟩) = ϕi(exp(Y )), ∀ Y ∈ tF0+:r, 0 ⩽ i ⩽ d.

Then X = X−1 +
∑d

i=0Xi for some X−1 ∈ (t∗0)
F which is regular for G0.

Let δXi be the constant sheaf over {Xi}. Let Li = T
(gi)∗−ri
ψ (δXi), which is a

rank one local system on giri . Put L =
⊗d

t=−1 q
∗
−1,tLt, where q−1,t : tr → giri

is the natural projection.
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For F ∈ D(Gir) we will write exp∗F = exp∗(F|(gir)unip) ∈ D((gir)nilp) for
simplicity. Then we have

(exp∗ Lϕ)|(tr)nilp ∼= L|(tr)nilp .
Here Lϕ is the rank one multiplicative local system on Tr associated to the
character ϕ.

Theorem 9.5. There is a natural isomorphism

exp∗ pIndGrIr (Lϕ) ∼= T
g∗
−r

ψ (δGr·X)|(gr)nilp [2Mϕ](
1

2
Mϕ),

where Mϕ =
∑d

i=0(dimGiri−1
− dimGi−1

ri−1
).

Proof. Let pIndgrir be the Lie algebra version of pIndGrIr as in Section 4,

where ir denotes the Lie algebra of Ir. As (exp∗ Lϕ)|(tr)nilp ∼= L|(tr)nilp , by
the proper base change theorem and Lie algebra version of Proposition 4.5
we have

exp∗ pIndGrIr (Lϕ) ∼= pIndgrir (L)|(gr)nilp
∼= Ψd · · ·Ψ1Ψ0(L−1)|(gr)nilp ,

where Ψi : D(gi−1
ri−1

) → D(giri) is given by F 7→ Li ⊗ ε∗i pInd
giri−1

pisi−1,ri−1

F with

εi : giri → giri−1
the natural projection. Set Fi = Ψi · · ·Ψ1Ψ0(L−1). It

suffices to show

Fi ∼= T
(gi)∗−ri
ψ (δGiri ·X⩽i

)[2ni](ni/2).

HereX⩽i =
∑i

l=−1Xl and ni =
∑i

l=0(dimGiri−1
−dimGi−1

ri−1
) = 2

∑i
l=0 dimN l

sl−1,rl−1
.

We argue by induction on i. If i = −1, the statement follows by definition

that L−1 = T
t∗−r
ψ (δX−1). We assume the statement holds for i ⩾ −1. Then

Fi+1
∼= Li+1 ⊗ ε∗i+1pInd

gi+1
ri

pi+1
si,ri

Fi

∼= Li+1 ⊗ ε∗i+1pInd
gi+1
ri

pi+1
si,ri

T
(gi)∗−ri
ψ δGiri ·X⩽i

)[2ni](ni/2)

∼= Li+1 ⊗ ε∗i+1T
(gi+1)∗−ri
ψ pInd

(gi+1)∗−ri
(pi+1)∗−si,−ri

(δGiri ·X⩽i
)[ni+1 + ni](ni+1/2)

∼= Li+1 ⊗ ε∗i+1T
(gi+1)∗−ri
ψ (δGi+1

ri
·X⩽i

)[2ni+1](ni+1/2)

∼= Li+1 ⊗ T
(gi+1)∗−ri+1

ψ (δGi+1
ri

·X⩽i
)[2ni+1](ni+1/2)

∼= T
(gi+1)∗−ri+1

ψ (δXi+1)⊗ T
(gi+1)∗−ri+1

ψ (δGi+1
ri

·X⩽i
)[2ni+1](ni+1/2)

∼= T
(gi+1)∗−ri+1

ψ (δGi+1
r ·X⩽i+1

)[2ni+1](ni+1/2),

where the second is by induction hypothesis, the third follows from Lemma 9.3,
the fourth follows from Lemma 9.4 and the fifth follows from Proposition 9.2.
The induction procedure is finished. □
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Let C((g∗
−r)

F ) and C(gF−r be the spaces of functions on (g∗
−r)

F and gFr

respectively. Let T
g∗
−r
ψ : C((g∗

−r)
F ) → C(gFr ) denotes the classical Fourier

transformation of functions given by

T
g∗
−r
ψ (f)(Y ) =

∑
Z∈(g∗

−r)
F

f(X)ψ(⟨Z, Y ⟩).

Note that for any Weil sheaf F in Db
c(g

∗
−r) we have χ

T
g∗−r
ψ F

= T
g∗
−r
ψ (χF ).

Corollary 9.6. Assume p and q are sufficiently large and T is elliptic, for
any u ∈ (gr)

F
nilp we have

q
1
2
Mϕ ·RGrTr (ϕ)(exp(u)) = T

g∗
−r

ψ (1GFr ·X)(u).

Here 1GFr ·X is the characteristic function for GFr ·X.

Proof. As q ≫ 0, we can replace ϕ−1 with another depth zreo character ϕ′−1

which is regular for G0. This yields a regular character

ϕreg := ϕ′−1 ·
∏

0⩽i⩽d

ϕi|TFr

which gives a local system Lreg on Tr such that Lreg|(Tr)unip ∼= Lϕ|(Tr)unip .
By the proper base change theorem and Theorem 9.5 we have

exp∗ pIndGrIr (Lreg) ∼= exp∗ pIndGrIr (Lϕ) ∼= T
g∗
−r

ψ (δGr·X)|(gr)nilp [2Mϕ](
1

2
Mϕ).

By taking Frobenius trace we have

RGrTr (ϕ)(exp(u)) = RGrTr (ϕreg)(exp(u))

= χ
pIndGrIr (Lreg)

(exp(u)) = q−
1
2
Mϕ · Tg∗

−r
ψ (1GFr ·X)(u),

where the first equality is due to [Nie24, Theorem 1.6] and [DL76, The-
orem 4.2] (see also [CO25, Theorem 6.5]), and the second one is due to
Theorem 8.6 and that Nϕ = 2dim Ir − dimGr. The proof is finished. □

9.5. Relation to Kirillov’s orbit method. As a further application we
observe that Springer’s hypothesis (Corollary 9.6) implies a relation between
(deep level) Deligne–Lusztig induction and Kirillov’s orbit method, as con-
jectured in [IN25b, Conjecture 8.4]. In the relevant setting, the orbit method

parametrizes the set Γ̂ of irreducible Γ-representations, for a sufficiently nice
pro-p-group Γ, in terms of coadjoint orbits in the dual Lie algebra:

Theorem 9.7 (Theorem 2.6 in [BS08]). Assume p > 2 and Γ is either a
uniform pro-p-group or a p-group of nilpotence class < p. Then there exists

a bijection Ω↔ ρΩ between Γ-orbits Ω ⊆ (Lie Γ)∗ and Γ̂, characterized by

tr(g, ρΩ) =
1

#Ω1/2
·
∑
f∈Ω

f(log(g)).
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Fix 0+ ≤ r ≤ ∞. Assume that T is elliptic. Let g0+:r (resp. t0+:r) denote
the Lie algebra of G0+:r (resp. T0+:∞). For a locally profinite group Γ, write

Γ∗ = Homcont(Γ,Q
×
ℓ ). Recall from [IN25b, §8], that (a minor variation of)

Deligne–Lusztig induction gives a map

Rlog : (t
F
0+:r)

∗ log∗t−→ (TF0+:r)
∗ −→ ĜF0+:r,

where the second map is given by χ 7→ (−1)sχHsχ
c (Y,Qℓ)[χ], where Yr is the

preimage of (U∩FU)0+:r under the Lang map g 7→ g−1F (g) : G0+:r → G0+:r.
(In [IN25b], this map is only defined for T Coxeter, but by [IN25a, Theorem
1.6] this extends to all elliptic tori T .) On the other hand, whenever the
assumptions of Theorem 9.7 apply to GF0+:r, the orbit method induces the
map

ρ ◦ δ∗ : (tF0+:r)
∗ δ∗
↪→ (gF0+:r)

∗ ρ
↠ ĜF0+:r,

where the first map is the dual of the natural projection δ : gF0+:r ↠ tF0+:r,
the second map is the natural projection, and the third map is given by
Theorem 9.7. Now we can prove [IN25b, Conjecture 8.4]:

Corollary 9.8. Suppose p > 2, q is sufficiently large and GF0+:r is either
uniform or has nilpotence class < p. Then Rlog = ρ ◦ δ∗.

Proof. Let X ∈ (tF0+:r)
∗ with image ϕ = log∗t(a) : T

F
0+:r → Q×

ℓ . As q ≫ 0,

there exists a lift ϕ̃ : TFr → Q×
ℓ of ϕ, such that ϕ−1 is regular. As GF0+:r-

representations we have for any i ≥ 0,

H i
c(Xr)[ϕ̃]|GF0+:r

≃ H i
c(Xr ∩ TrG0+:r)[ϕ̃]|GF0+:r

≃ H i
c(Yr)[ϕ],

where the first isomorphism follows from [IN25a, Corollary 1.5] and the
second from [IN25b, Lemma 4.3]. As by [IN25a, Theorem 1.6], the coho-
mology of Yr is concentrated in the single degree sϕ,r, we deduce that for

any Y ∈ gF0+:r with g = exp(Y ) ∈ GF0+:r,

tr(g,Rlog(X)) = tr(g,H∗
c (Yr,Qℓ)[ϕ])

= tr(g,H∗
c (Xr,Qℓ)[ϕ̃])

= RGrTr (ϕ̃)(g)

= q−
1
2
MϕT

g∗
−r
ψ (1GFr ·X)(Y )

= q−
1
2
Mϕ

∑
f∈GFr ·X

f(Y )

= q−
1
2
Mϕ#(GFr ·X)

1
2 · tr(g, ρGFr ·X),

where the fourth equation is by Corollary 9.6, the fifth equation follows from
the fact that taking Frobenius trace commute with the Fourier transform (cf.
[CO25, §9.1.3]), and the last equation follows from Theorem 9.7. Now the
result follows from Rlog(X) and ρGFr ·X both being irreducible GFr -modules.

□
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10. Proof of Theorem 3.3

In this section, we prove Theorem 3.3 by following the ideas of [BC24].
Let notation be as in Section 2 and Section 3.

Lemma 10.1 ([BC24, Lemma 4.7]). The following statements holds:
(1) Lψ is a multiplicative local system on l;

(2) Each F ∈ Dψ
Lr
(Lr) is (l,Lψ)-equivariant. In particular, i∗l F is com-

plex of direct sums of Lψ.

Proposition 10.2. The induction restrict to funtors:

pIndGrPs,r!, pIndGrPs,r∗ : D
ψ
Lr
(Lr) −→ Dψ

Gr
(Gr).

Proof. Let F ∈ Dψ
Lr
(Lr). By duality it suffices to show M := pIndGrPs,r!F ∈

Dψ
Gr

(Gr).
We view the natural quotient map q : Gr → Gr/g as a vector bundle over

Gr/g. Let U ⊆ Gr/g be any open subset such that q−1(U) ∼= U × g. It
suffices to show that FTLψ(M |q−1(U)) has support in U ×−Gr ·Xψ.

Consider the following diagram

Ẑ
α′
//

p̂r1
��

Z̃
π′
//

p̃r1
��

Gr ×U G′
r

pr1

��

pr2 // G′
r

Lr Ĝr
η
oo α // G̃r

π // Gr,

where G′
r denotes the dual vector bundle of q : Gr → Gr/g and the two

squares are Cartesian. We view U ⊆ Gr as the zero section of q and let

Ũ = π−1(U), Û = α−1(Ũ).

As r > 0, we have g ⊆ Ps,r and hence

Z̃ ∼= Ũ × g× g∗, Ẑ ∼= Û × g× g∗.

By the proper base change theorem and the projection formula we have

FTL(M)|q−1(U)
∼= (pr2)!pr

∗
1(pInd

Gr
Ps,r!
F)⊗ κ∗L)(i)

∼= (pr2)!(pr
∗
1π!η̃

∗M ⊗ κ∗L)
∼= (pr2)!((π

′)!p̃r
∗
1η̃

∗M ⊗ κ∗L)
∼= (pr2 ◦ π′)!(p̃r∗1η̃∗M ⊗ (κ ◦ π′)∗L).

Consider the Cartesian diagram

(ii) Ẑ
α //

p̂r13
��

Z̃

p̃r13
��

Û × g∗
α′×id

// Ũ × g∗,
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where p̂r13 and p̂r13denote the natural projections.

Note that pr2 ◦ π′ = γ ◦ p̃r1,3, where γ : Ũ × g∗ → G′
r be given by

(z, hPs,r, X) 7→ (z,X). In view of (i) and (ii), to show FTL(M |q−1(U))
vanishes outside U ×−Gr ·Xψ, it suffices to show

(γ × id)∗(p̃r13)!(p̃r
∗
1η̃

∗M ⊗ (κ ◦ π′)∗L)

vanishes outside Û ×−Gr ·Xψ. By the the proper base change theorem for
(ii) we have

(γ × id)∗(p̃r13)!(p̃r
∗
1η̃

∗M ⊗ (κ ◦ π′)∗L)
∼= (pr13)!

(
(p̃r1 ◦ α′)∗η̃∗F ⊗ (κ ◦ π′ ◦ α′)∗L

)
∼= (pr13)!

(
(α ◦ p̂r1)∗η̃∗F ⊗ (κ ◦ π′ ◦ α′)∗L

)
∼= (pr13)!

(
p̂r∗1α

∗η̃∗F ⊗ (κ ◦ π′ ◦ α′)∗L
)

∼= (pr13)!
(
p̂r∗1η

∗F ⊗ (κ ◦ π′ ◦ α′)∗L
)

∼= (pr12)!
(
(η ◦ p̂r1)∗F ⊗ (κ ◦ π′ ◦ α′)∗L

)
.

Now we fix a point ξ = (z, h,X) ∈ Û × g∗ with X /∈ −Gr(Xψ). Identify

the fiber pr−1
12 (ξ) with g. Put

a := (η ◦ p̂r1)|pr−1
12 (ξ) :g −→ Lr, Y 7−→ p(h−1 · Y );

b := (κ ◦ π′ ◦ α′)|pr−1
12 (ξ) :g −→ Ga, Y 7−→ κ(Y,Xψ).

It remains to show

RΓc(a
∗F ⊗ b∗L) = 0.

By Proposition 6.9 we may assume F|l = Lψ. Thus

a∗F ⊗ b∗L ∼= θ∗Lψ,

where θ : g → Ga is defined by Y 7→ κ(Y, h ·Xψ +X). As X /∈ −Gr ·Xψ,
the map θ is nontrivial. It follows that RΓc(a

∗F ⊗ b∗L) ∼= RΓc(θ ∗ Lψ) = 0
as desired. The proof is finished. □

10.1. By abuse of notation let i : p ↪→ g and p : p → l be the natural
inclusion and projection respectively. Define

pIndGrPs,r! := AvGrPs,r! ◦ i! ◦ p
∗ ◦ InflPs,rLr

: DLr(l) −→ DGr(g).

Similarly, we introduce the varieties

g̃ := {(g, hPs,r) ∈ g×Gr/Ps,r : h−1gh ∈ p},
ĝ := {(g, h) ∈ g×Gr : h−1gh ∈ p},
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together with the morphisms

η : ĝ −→ l, (g, h) 7−→ p(h−1gh);

α : ĝ −→ g̃, (g, h) 7−→ (g, hPs,r);

π : g̃ −→ g, (g, hPs,r) 7−→ g.

Similar to Lemma 3.1, for F ∈ DLr(l) we have

pIndGrPs,r!(F)
∼= π!(̃η∗F [2 dim(Gr/Ps,r)] for F ∈ DLr(l).

Proposition 10.3. We have pIndGrPs,r!(Lψ[dim l]) ∼= Fψ[dim g].

Proof. By [BC24, Remark 3.9] we have pIndGrPs,r!
∼= pIndG0

P0,0!
. Then state-

ment then follows by [BC24, Lemma 4.5]. □

10.2. We adopt the notation in Section 3.1. For f, f ′ ∈ Φ̃+ we write f ∼L f ′
if f ′(x) = f(x) and αf ′ −αf ∈ ZΦL. This defines an equivalence relation on

Φ̃+, and we denote by [f ] the equivalence class of f . Note that the linear
order ⩽ (attached to the fixed Borel subgroup TU = B ⊆ P ) induces a

linear order on Φ̃+/ ∼L, which we still denote by ⩽.

Let Ψ ⊆ Φ̃+ be the set of affine roots appearing in p−1(l) = Ns,rl. For

f ∈ Ψ with f ⩽ r we set p−1(l)⩾[f ] =
∏
f ′∈Ψ,[f ]⩽[f ′]G

f ′
r and define

Ĝ⩾[f ]
r = {(g, h) ∈ Gr ×Gr;h−1gh ∈ p−1(l)⩾[f ]};

G̃⩾[f ]
r = {(g, hPs,r) ∈ Gr × (Gr/Ps,r);h

−1gh ∈ p−1(l)⩾[f ]};

Ỹ ⩾[f ]
r = {(g, hLrG⩾[r−f ]

r ) ∈ Gr × (Gr/LrG
⩾[r−f ]
r );h−1gh ∈ p−1(l)⩾[f ]}.

Let Ĝ
⩾[f ],∗
r = Ĝ

⩾[f ]
r ∖ Ĝ

>[f ]
r , G̃

⩾[f ],∗
r = G̃⩾f

r ∖ G̃
>[f ]
r and Ỹ ⩾f,∗

r = Ỹ ⩾f
r ∖ Ỹ

>[f ]
r .

Note that α−1(G̃
⩾[f ]
r ) = Ĝ

⩾[f ]
r . Let βf : G̃

⩾[f ],∗
r → Ỹ f,∗

r be the natural pro-
jection. Put ηf = η|

Ĝ
⩾[f ],∗
r

and πf = π|
G̃

⩾[f ],∗
r

Lemma 10.4. Let f ∈ Ψ such that f < r. Then (πf )!η̃
∗
fF = 0 for F ∈

Dψ
Lr
(Lr).

Proof. By Lemma 10.1 we may assume F = Lψ,r, and it suffices to show

(βf )!η̃
∗
fLψ,r = 0. Let ξ = (g, hLrG

⩾[r−f ]
r ) ∈ Ỹ ⩾f,∗

r . Then

β−1
f (ξ) = {(g, hLrG⩾[r−f ]

r /Ps,r)} ∼= G
Df
r ,

where Df is the set of affine roots appearing in LrG
⩾[r−f ]
r /Ps,r. Denote by

j : β−1
f (ξ) ∼= {(g, hGDfr )} ↪→ Ĝ be the natural embedding. Consider the
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Cartesian diagram

β−1
f (ξ)

ĩξ
//

��

G̃
⩾[f ],∗
r

βf
��

{ξ}
iξ
// Ỹ

⩾[f ],∗
r ,

where iξ and ĩξ are natural embeddings. Note that α ◦ j = ĩξ. Thus

((βf )!η̃
∗
fLψ,r)|ξ ∼= RΓc(̃i

∗
ξ η̃

∗
fLψ,r) ∼= RΓc(j

∗α∗η̃∗fLψ,r) ∼= RΓc(j
∗η∗fLψ,r).

Assume that h−1gh = (xf ′)f ′∈Ψ. By definition xf ′ = 0 if [f ′] < [f ] and
xf ′ ̸= 0 for some f ′ ∈ [f ]. Then we have

ηf ◦ j : β−1
f (ξ) ∼= ADf −→ l, (yf ′)f ′∈Df 7−→

∑
f ′∈[f ]

α∨
f ′(1 +ϖrcf ′xf ′yf ′),

where cf ′ ∈ O×
k̆

with f ′ ∈ [f ] are constants. Hence ηf ◦ j is a non-trivial

linear map. Since αf ′ ∈ Φ∖ΦL and Xψ is (L,G)-generic, we have RΓc((ηf ◦
j)∗Lψ,r) = 0 as desired. The proof is finished. □

Proposition 10.5. We have pIndGrPs,r(Lψ,r[dim l]) ∼= Fψ,r[dim g].

Proof. Let Ĝl
r = G̃r ∩ η−1(l) and G̃l

r = α(Ĝl
r). Then α−1(G̃l

r) = Ĝl
r. Since

the support of Lψ,r is contained in l, we have

pIndGrPs,rLψ,r ∼= (π|
G̃l
r
)! ˜(η|

G̃l
r
)∗Lψ,r.

Note that
G̃l
r = G̃⩾[r]

r ⊔
⊔

[r]>[f ]∈Ψ/∼L

G̃⩾[f ],∗
r .

Notice that p−1(l)⩾[r] = p, and hence G̃
⩾[r]
r coincides with g̃ defined in

Section 10.1. Thanks to Lemma 10.4 we have (π|
G̃

⩾[f ],∗
r

)! ˜(η|
G̃

⩾[f ],∗
r

)∗Lψ,r = 0

for r > f ∈ Ψ. Hence

pIndGrPs,r(Lψ,r[dim l]) ∼= (π|
G̃

⩾[r]
r

)! ˜(η|
G̃

⩾[r]
r

)∗Lψ,r[dim l] ∼= pIndGrPs,rLψ,r[dim l] ∼= Fψ[dim g],

where the second isomorphism follows from G̃
⩾[r]
r = g̃, and the last one

follows from Proposition 10.3. The proof is finished. □

10.3. Let T ⊆ P ′ = L′N ′ be anathor parabolic subgroup, where T ⊆ L′

is a Levi subgroup and N ′ ⊆ P ′ is the unipotent radical. One can defined
subgroups P ′

s,r = L′
rN

′
s,r in a similar way.

Lemma 10.6. Let notation be as above. Then

• dimNs,r = dimNr;

• dimL′
r = dimL′

r ∩ Lr + dimL′
r ∩Ns,r + dimL′

r ∩N s,r;

• dimN ′
s,r = dimN ′

s,r ∩ Lr + dimN ′
s,r ∩Ns,r + ♯{f ; f(x) = s, αf ∈ ΦN ′∩N}.
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Here N denotes the opposite of N .

Corollary 10.7. We have

dimP ′
s,r ∩Ns,r + dimP ′

s,r/(P
′
s,r ∩ Ps,r) = dimL′

r ∩Ns,r + dimNs,r.

Proof. Applying Lemma 10.6 we have

dimP ′
s,r ∩Ns,r + dimP ′

s,r/(P
′
s,r ∩ Ps,r)− dimL′

r ∩Ns,r − dimNs,r

= dimL′
r + dimN ′

s,r − dimL′
r ∩ Lr − dimN ′

s,r ∩ Lr − dimL′
r ∩Ns,r − dimNs,r

= dimL′
r ∩N s,r + dimN ′

s,r − dimN ′
s,r ∩ Lr − dimNs,r

= (dimN ′
s,r − dimN ′

s,r ∩ Lr)− (dimNs,r − dimL′
r ∩Ns,r)

= ♯{f ; f(x) = s, αf ∈ ΦN ′∩N} − ♯{f ; f(x) = s, αf ∈ Φ
N∩N ′}

= 0,

where N
′
denotes the opposite of N ′. The proof is finished. □

Let Js,r = Ns,r[l, Lr] ⊆ Ps,r and denote by p̄ : Ps,r → Ps,r/Js,r = Lr/[l, Lr]
the natural quotient map.

Lemma 10.8. Let h ∈ Gr ∖P ′
s,rNGr(Tr)Ps,r. There exists α ∈ Φ∖ΦL and

a group embedding ζ : Ga ↪→ h−1N ′
s,rh ∩ Ps,r such that (p̄ ◦ ζ) = tα. In

particular, RΓc(Ga, (p ◦ ζ)∗F) = 0 for any F ∈ Dψ
Lr
(Lr).

Proof. We adopt the notation in Section 3.1. Fix a Borel subgroup T ⊆
B′ ⊆ P ′, and let ⩾′ be an associated linear order on Φ̃. Let

D′ = {f ∈ Φ̃; f(x) = 0;αf ∈ ΦN ′ ∖w(ΦL)};

D = {f ∈ Φ̃; f(x) = 0, αf ∈ ΦN ∖w−1(ΦL′)}

By replacing h with some suitable element in L′
rhLr we may assume that

h ∈ u′wuG0+:r, where w ∈ NGr(Tr), u
′ ∈ GD′

r and u ∈ GDr , see Section 3.1.
First we assume that u ̸= 1. Let f ∈ D such that prf (u) ̸= 0 and

prf ′(u) = 0 for all f > f ′ ∈ D. Note that −αw(f) ∈ ΦN ′ . Define

ζ : Ga −→ Gr, z 7−→ h−1u′ur−w(f)(z)u
′−1
h.

Then u′G
r−w(f)
r u′−1 ⊆ N ′

r:r ⊆ N ′
s,r and

h−1u′Gr−w(f)r u′
−1
h = u−1Gr−fr u ≡ tαf mod Ns,r.

Hence ζ satisfies our requirements.
Second we assume u = 1. If u′ ̸= 1. Let f ∈ D′ such that prf (u

′) ̸= 0 and
prf ′(u

′) = 0 for all f >′ f ′ ∈ D′. Define

ζ : Ga −→ Gr, z 7−→ h−1ur−f (z)h.

Then Gr−fr ⊆ N ′
s,r and

h−1Gr−fr h = w−1u′
−1
Gr−fr u′w ≡ t

αw−1(f) mod Ns,r + [l, Lr].
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Hence ζ meets our requirements.
Finally we assume u = u′ = 1. Then h ∈ wv with v ∈ G0+:r. Let

Φ̃(Ps,r) (resp. Φ̃(P
′
s,r)) be the set of affine roots in Φ̃ which appears in Ps,r

(resp. P ′
s,r). Again we may assume that there exists f ∈ Φ̃∖ (Φ̃(Ps,r) ∪

w−1(Φ̃(P ′
s,r)) such that prf (v) ̸= 0 and prf ′(v) = 0 for all f > f ′ ∈

Φ̃∖ (Φ̃(Ps,r) ∪ w−1(Φ̃(P ′
s,r)). Define

ζ : Ga −→ Gr, z 7−→ h−1ur−w(f)(z)h.

Then G
r−w(f)
r ∈ N ′

s,r (since w(f) /∈ Φ̃(P ′
s,r)) and

h−1Gr−w(f)r h = v−1Gr−fr v ≡ tw−1(αf ) mod Ns,r.

Hence ζ meets our requirements, and the proof is finished. □

Proposition 10.9. Let notation be as above. For M ∈ Dψ
Lr
(Lr) we have

pResGrP ′
s,r!

pIndGrPs,r!(M) ∼=
⊕

w∈WL′
r
\WGr/WLr

pInd
L′
r

L′
r∩wPs,r!

pRes
wLr
P ′
s,r∩wLr!

(wM),

where wM denotes the pull-back of M under ad(w)−1 : wLr → Lr.

Proof. We follow the idea of [BC24, Proposition 5.9]. Let

Y = {(g, hPs,r) ∈ P ′
s,r ×Gr/Ps,r;h−1gh ∈ Ps,r} ⊆ G̃r.

Set Ŷ = α−1(Ỹ ), ηY = η|
Ŷ
, αY = α|

Ŷ
and πY = π|

Ỹ
. Then we have

pResGrP ′
s,r!

pIndGrPs,r!(M) ∼= πY !η̃
∗
YM [2 dimNs,r].

Note that

Ỹ = Ỹ ′ ⊔ Ỹ ′′,

where Ỹ ′′ = pr−1
2 (P ′

s,rNGr(Tr)Ps,r) and pr2 denote the projection to the sec-

ond item. Let Ŷ ′ = α−1(Ỹ ′), Ŷ ′′ = α−1(Ỹ ′′), η′Y = ηY |Ŷ ′ , η
′′
Y = ηY |Ŷ ′′ and

π′Y = πY |Ỹ ′ and π
′′
Y = πY |Ỹ ′′ . The first step is to show that π′Y !

˜(η′Y )∗M = 0.
This follows from the arguments of loc. cit. by using Lemma 10.8. Then it
remains to show

π′′Y !
˜(η′′Y )∗M [2 dimNs,r] ∼=

⊕
w∈WL′

r
\WGr/WLr

pInd
L′
r

L′
r∩wPs,r!

pRes
wLr
P ′
s,r∩wLr!

(wM).

This follows in the same way as in loc. cit. by using Corollary 10.7. □

10.4. Let φ : Gr → Gr/Ns,r be the natural quotient map. Consider the
following two functors

φ! ◦ ForGrPs,r , φ∗ ◦ ForGrPs,r : DGr(Gr) −→ DPs,r(Gr/Ns,r),

which we denote by φ! and φ∗ for simplicity.
Similar as in [BC24, §5.1], we have the following two general lemmas.
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Lemma 10.10. The functors φ! (resp. φ∗) is monoidal with respect to ⋆!
(resp. ⋆∗).

Lemma 10.11. Let M ∈ DLr(Lr) and N ∈ DGr(Gr) such that M ⋆! φ!N
is supported on Lr = Ps,r/Ns,r. we have

pIndGrPs,r!(M ⋆! φ!N) ∼= pIndGrPs,r!(M) ⋆! N.

Let Js,r = Ns,r[l, Lr] ⊆ Ps,r.

Lemma 10.12. Let h ∈ Gr ∖Ps,r. Then there exists α ∈ Φ∖ΦL and
g ∈ Lr such that

gtαg−1h ⊆ {Js,rzhz−1Js,r; z ∈ Lr}.

Proof. Write h = u′wuδ, where w ∈ NGr(Tr), u, u
′ ∈ Ur and δ ∈ G0+:r.

Note that there exists root subsystem Ψ ⊆ Φ(G0, T0) such that (the natural
image of) w is an elliptic element of the Weyl group of Ψ. In particular,
tαẇ ⊆ {zẇz−1; z ∈ t} for all α ∈ Ψ.

Assume w /∈ Lr. Then there exists α ∈ Ψ∖ΦL. Let z ∈ t such that
zwz−1 = xw with x ∈ tα. Then

zhz−1 = [z, u′]u′zwz−1u[u−1, z]δ ⊆ uu′xwuδu = uxhu.

Hence xh ⊆ uzhz−1u and tαh ⊆ {uzhz−1u; z ∈ t} as desired.
Assume that w ∈ Lr. Let

D = {f ∈ Φ̃; either f(x) > 0 or f(x) = 0 and αf ∈ Φ+∖ΦL}.
Then we can write h = mv, where m ∈ Lr and v ∈ GDr . Let f ∈ D such

that prf (u) ̸= 0 and prf ′(u) = 0 for all f > f ′ ∈ D. Note that f /∈ Φ̃(Ns,r)

since h /∈ Ps,r. Then Gr−fr ∈ Ns,r. Let y ∈ Gr−fr . Then [v, y] = Js,rx with
x ∈ tαf . Then

hy = my[y−1, v]v ⊆ Ns,rmJs,rxv ⊆ Js,rxh.
Hence xh ∈ Js,rhNs,r and tαfh ∈ Js,rtαfhNs,r as desired. □

Proposition 10.13. Let N ∈ Dψ
Gr

(Gr). Then

Lψ,r ⋆! φ!N ∼= Lψ,r ⋆! pResGrPs,r!N

is supported on Ps,r/Ns,r
∼= Lr and is direct summand of φ!N . Similar state-

ment also holds by replacing φ!, ⋆! and pResGrPs,r! with φ∗ and ⋆∗, pRes
Gr
Ps,r∗

respectively.

Proof. The proof follows the same argument as in [BC24, Proposition 5.10].
For completeness, we include the details here and clarify why Lemma 10.12
is essential in our setting. Observe that φ!N and Lψ,r are Ps,r-equivariant
under conjugation. Hence so is Lψ,r ⋆! φ!N . Since Lψ,r ⋆! φ!N is (l,Lψ,r)-
equivariant and Xψ is (L,G)-generic, this implies Lψ,r is equivariant under
the right multiplication action ofM := [Lr, l]. Consider the following map

f :M× Ps,r ×M×Gr/Ns,r −→ Gr/Ns,r
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(m, p,m′, hNs,r) 7−→ (mphp−1Ns,rm
′).

The equivariant properties yield an isomorphism of sheaves:

(10.1) f∗(Lψ,r ⋆! φ!N)|M×Ps,r×M×{hNs,r}
∼= δM×Ps,r×M ⊠Lψ,r ⋆! φ!N |hNs,r

For any h ∈ Gr ∖Ps,r. Lemma 10.12 shows that

f(M×Ps,r×M×{gNs,r}) = {mnzhz−1n′m′;m,m′ ∈M, n, n′ ∈ Ns,r, z ∈ Lr}/Ns,r

contains gtαg−1h for some Φ∖ΦL and g ∈ Lr. On the other hand, Lψ,r⋆!φ!N
is (l,Lψ,r)-equivariant and the generic condition ensures that the restriction
Lψ,r|gtαg−1h remains nontrivial. Combining this with the constancy condi-
tion from Equation (10.1), we necessarily obtain Lψ,r ⋆! φ!N |hNs,r = 0.

Since Lψ,r ⋆! φ!N is supported on Ps,r/Ns,r
∼= Lr, we obtain the natural

identification Lψ,r ⋆!φ!N ∼= Lψ,r ⋆! i∗φ!N via the inclusion i : Lr ↪→ Gr/Ns,r.
On the other hand, by the proper base change theorem for the Cartesian
square

Ps,r //

��

Gr

φ

��

Lr
i
// Gr/Ns,r

we have pResGrPs,r!(N) ∼= i∗φ!N . it follows that Lψ,r ⋆! pResGrPs,r!(N) ∼= Lψ,r ⋆!
φ!N . □

Corollary 10.14. The functor Lψ,r ⋆! pResGrPs,r! on Dψ
Gr

(Gr) is monoidal

with respect to the ⋆!-convolution product. An analogous statement holds for
∗.

Proof. By Lemma 10.10, φ! is monoidal hence so is Lψ,r ⋆! φ! = Lψ,r ⋆!
pResGrPs,r! □

Lemma 10.15. For N ∈ Dψ
Gr

(Gr) we have

φ!N ∼=
⊕

w∈WL\W/WL

φ!N ⋆! pInd
Lr
Lr∩wPs,r!pRes

wLr
Ps,r∩wLr!(

wLψ,r)

Proof. The argument in Proposition 10.13 establishes that for any N ∈
DGr(Gr) such that φ!N is supported on Ps,r/Ns,r

∼= Lr, we have φ!N ∼=
pResGrPs,r!(N). As Fψ is supported on g ⊆ Ps,r, this implies that

φ!Fψ ∼= pResGrPs,r!(Fψ).

Applying Proposition 10.5 and Proposition 10.9, we deduce the decomposi-
tion:

φ!Fψ ∼=
⊕

w∈WL\W/WL

pIndLrLr∩wPs,r!pRes
wLr
Ps,r∩wLr!(

wLψ,r).
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Now, for any N ∈ Dψ
Gr

(Gr), the isomorphism N ∼= N ⋆! Fψ holds. By the
monoidal property in Lemma 10.10, we obtain:

φ!(N ⋆! Fψ) ∼= φ!N ⋆! φ!Fψ.

The desired result follows from this identification. □

Theorem 10.16. The following statements hold:

• The two functors Lψ,r ⋆! pResGrPs,r! and pIndGrPs,r! are inverse equivalences

between Dψ
Lr
(Lr) and Dψ

Gr
(Gr), and similar for Lψ,r ⋆∗ pResGrPs,r∗ and

pIndGrPs,r!;

• Lψ,r ⋆! pResGrPs,r!
∼= Lψ,r ⋆∗ pResGrPs,r∗ on Dψ

Gr
(Gr) and pIndGrPs,r!

∼= pIndGrPs,r∗

on Dψ
Lr
(Lr);

• pIndGrPs,r! is t-exact on Dψ
Lr
(Lr). In particularly, pIndGrPs,r! sends simple

perverse sheaves lying in Dψ
Lr
(Lr) to simple perverse sheaves lying in

Dψ
Gr

(Gr).

Proof. The statement follows in the same way as [BC24, Proposition 5.15]
by using Proposition 10.2, Proposition 10.5, Proposition 10.9, Lemma 10.11,
Proposition 10.13, Corollary 10.14, Lemma 10.15 and Artin’s theorem. □
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