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This is a (highly unfinished) version of my manuscript on adic spaces. I started to write it as
as a preparation for a lecture course, which I planned to give at the University of Bonn. Due
to moving to another university, I had not yet given this lecture, but continued to write this
manuscript.

The manuscript does not contain any new/original results. I tried to find my own path
through the theory of adic spaces. However, in big parts of the manuscript I heavily relied on
other sources, specifically on the lecture notes of T. Wedhorn [Wed19], the lecture notes of S.
Morel [Mor19] and some parts of the book of Scholze–Weinstein [SW20] and of the lecture notes
of J. Anschütz [Ans]. Most of the time I tried to give precise references to these (or other)
sources, however sometimes explicit references are missing.

1. Valuations and valuation rings

1.1. Valuations. The simpliest example of a valuation ring is a discrete valuation ring (DVR).
For example, if k is a field, then the ring of power series k[[t]] in the variable t over k is a DVR.
The corresponding valuation is the map v : k[[t]] → Z≥0, v(

∑
i≥0 ait

i) = min{i ≥ 0: ai ̸= 0}.
Note that this map extends to v : k((t)) = Frac k[[t]] → Z, defined in the same way. One can
extend this by drastically enlarging the group of possible values.

Definition 1.1. (1) A totally ordered (abelian) group is an abelian group1 (Γ, ·) equipped
with a total order ≤ on the underlying set Γ, such that for all x, y, z ∈ Γ one has
x ≤ y ⇒ xz ≤ yz.

Given Γ as above, we often also consider the monoid Γ∪{0}, with multiplication given
by γ · 0 = 0 for all γ ∈ Γ and with 0 < γ for all γ ∈ Γ.

(2) A homomorphism Γ→ Γ′ of totally ordered groups is a homomorphism of groups, which
preserves the order relation. (And similar for monoids Γ ∪ {0}.)

Remark 1.2. A group homomorphism f : Γ→ Γ′ is a homomorphism of totally ordered groups
if x ≤ 1⇒ f(x) ≤ 1 for all x ∈ Γ. (This is immediate.)

Example 1.3. (1) (R>0,×) with the usual order. Note that that the additive group (R,+)
with the usual order is isomorphic to this group via exp and log maps.

1we write the group Γ always multiplicatively.
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(2) Any subgroup of (R>0,×) with the usual order. For example, for any q ∈ R>0, the group
(qZ, ·). Or, the subgroup generated by 2 and π.

(3) For n ≥ 1, the group (Rn
>0,×) with lexicographic order, i.e., (x1, . . . , xn) > (y1, . . . , yn)

if and only if there is some 1 ≤ k ≤ n with xi = yi for i < k, and xk > yk.
(4) More generally, if I is any totally ordered set,

∏
i∈I R>0 with lexicographic order is a

totally ordered group. Even more generally, if for each i ∈ I, Γi is a totally ordered
group, then

∏
i∈I Γi is totally ordered (with lexicographic order).

Definition 1.4. Let R be a ring.

(1) A valuation on R is a map

| · | : R→ Γ ∪ {0},
into a totally ordered group Γ, which satisfies the following conditions:
(a) |ab| = |a| · |b|
(b) |a+ b| ≤ max(|a|, |b|)
(c) |1| = 1 and |0| = 0.

(2) The value group of | · | is the (totally ordered) subgroup Γ|·| of Γ generated by Γ ∩ |R|.
(3) The support (or kernel) of | · | is the set supp| · | = {x ∈ R : |x| = 0}.
(4) Two valuations | · |1, | · |2 with values in Γ1,Γ2 are equivalent, if |a|1 ≤ |b|1 ⇔ |a|2 ≤ |b|2

holds for all a, b ∈ R.

Example 1.5. (1) Let K be a field. The trivial valuation on K is given by |x| = 1 for all
x ∈ K× and |0| = 0. (So, Γ = {1} suffices. But actually we can take any Γ here, to
obtain an equivalent valuation.)

(2) Let p be a prime. We have the p-adic valuation on the rings Z,Q,Zp,Qp, all having the
value group pZ ⊆ R>0.

We will see much more examples of valuations soon. Let us summarize some basic facts about
valuations in the following lemma.

Lemma 1.6. Let R be a ring. Let | · |, | · |′ be two valuations on R with values in totally ordered
groups Γ,Γ′ respectively.

(1) supp| · | is a prime ideal of R.

(2) Let K|·| = Frac(R/supp| · |). Then | · | factors uniquely as R→ K|·|
|̃·|→ Γ∪{0}, where |̃ · |

is a valuation of K. Moreover, V|·| = {x ∈ K|·| : |̃x| ≤ 1} is a subring of K, called the

valuation ring of |̃ · |.
(3) The following are equivalent:

(a) | · |, | · |′ are equivalent.
(b) There is an isomorphism of ordered groups f : Γ|·| → Γ|·|′, such that | · |′ = f ◦ | · |.
(c) supp| · | = supp| · |′ and V|·| = V|·|′.

Proof. (1) is easy and (2) is easy too, once we note that a valuation | · | on a domain A admits
a unique extension | · | to the quotient field given by |a/b| = |a| · |b|−1 for a, b ∈ A, b ̸= 0. To
prove (3), note first that all conditions imply that supp(| · |) = supp(| · |′) (clear for (b),(c); for
(a): insert b = 0 in Definition 1.4(3)). Moreover, using part (2) of the lemma, we may replace
R by the quotient by this prime ideal, and hence assume that R is a domain and the support
of | · |, | · |′ is trivial. Moreover, we may extend | · |, | · |′ to the quotient field K = FracR and it
suffices to prove the claimed equivalence for valuations on a field K. It is clear that (b) ⇒ (a)
⇒ (c). Suppose (c) holds. Then, note that | · | : K× → Γ|·| is a group homomorphism. As K is a

field, K ∖ {0} = K×, and it follows that K× → Γ|·| is surjective (and similar for | · |′). Moreover,
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by (c) we have {x ∈ K× : |x| ≤ 1} = {x ∈ K× : |x|′ ≤ 1}, and hence (applying the isomorphism
x 7→ x−1 of K×) we get the equality of the similar sets with “≤” replaced by “≥”. Intersecting
both, we deduce {x ∈ K× : |x| = 1} = {x ∈ K× : |x|′ = 1}. Altogether, | · | : K× → Γ|·| and

| · |′ : K× → Γ|·|′ are surjective homomorphisms with equal kernels, i.e., there is an isomorphism

Γ|·|
∼→ Γ|·|′ as in (b). □

1.2. Valuation rings. We will deal a lot with local rings here. If A is a local ring, we usually
will write mA for its maximal ideal and κA = A/mA for its residue field.

Lemma 1.6 (and its proof) suggests to study valuations on fields first. Therefore, let us make
the following important definition.

Definition 1.7. Let K be a field. A subring V of K is called a valuation ring of K, if there
exists a valuation | · | on V such that V = {a ∈ K : |a| ≤ 1} (with other words, V is the valuation
ring of | · | in the sense of Lemma 1.6(2)).

We also say that an integral domain V is a valuation ring, if V is a valuation ring of its fields
of fractions.

Note that a valuation ring V is clearly a local ring with maximal ideal mV = {x ∈ V : |x| < 1}.
Example 1.8. The valuation ring of the trivial valuation on a field K is K itself.

Valuation rings are rings of very special kind; the next theorem shows that they can be
characterized by a number of quite different looking, but equivalent, properties. If A ⊆ B are
local rings, then we say that B dominates A if mB ∩ A = mA.

2 Note that if K is a field, then
“B dominates A” defines an partial order on the set of all local subrings of K. In the rest of
this section we write A ≤ B if B dominates A.

Theorem 1.9. Let A be an integral domain contained in a field K. The following conditions
are equivalent:

(1) A is a valuation ring of K.
(2) For any a ∈ K× one has a ∈ A or a−1 ∈ A.
(3) FracA = K and the set of ideals of A is totally ordered by inclusion.
(3)’ FracA = K and the set of principal ideals is totally ordered by inclusion.
(4) A is a local and maximal with respect to respect to the dominance order.
(5) There exists an algebraically closed field L and a ring homomorphism f : A→ L, which

is maximal in the set of homomoprphisms from subrings of K to L, i.e., if A ⊆ A′ ⊆ K
is another subring of K and f ′ : A′ → L restricts to f , then A′ = A.

There are canonical mutually inverse bijections

{valuation subrings of K} ∼←→ {eqivalence classes of valuations on K}
V 7→ (| · |V : K → K×/V × ∪ {0}), cf. the proof of (1) ⇔ (2) below

{x ∈ K : |x| ≤ 1} ←[ | · |.

Proof. (1) ⇔ (2): “⇒” is obvious. For “⇐”, note that K×/A× is a totally ordered group with
the order defined by |a| ≤ |b| :⇔ ba−1 ∈ A (note that condition (2) is needed to justify the word
“totally”), and that the map | · |A : K → (K×/A×) ∪ {0} sending x ̸= 0 to xA× ∈ K×/A× and
0 to 0 is a valuation.

(2)⇒ (3): FracA = K is clear; if a, b ⊆ A are ideals with a ̸⊆ b, then there is some a ∈ a∖ b,
and so for all b ∈ b, b−1a ̸∈ A. Hence, by (2), ba−1 ∈ A for all b ∈ b, i.e., Ab ⊆ Aa for all b ∈ b,
i.e., b ⊆ Aa ⊆ a.

2The inclusion A → B induces a map f : SpecB → SpecA of local schemes and the condition mB ∩ A = mA

simply means that f maps the closed point to the closed point.



LECTURE NOTES ON ADIC SPACES 5

For other equivalences, all of which are standard facts in commutative algebra, cf. for example
[Wed19, Prop. 2.2] or [Mat89, Thm. 10.2]. The last claim is immediate. □

Thus, if V is a valuation ring, then SpecV is a “linear” chain of points with specialization
relations. Clearly, it has a generic and a closed point. Also apart from this condition, it cannot
be completely arbitrary:

Corollary 1.10. Let V be a valuation ring. Then the following hold:

(1) If I ⊆ V is any ideal, then
√
I is a prime ideal. In particular, any (proper) reduced ideal

of V is prime
(2) Let f ∈ V be non-zero and non-unit. Then q =

√
fV is the smallest prime ideal contain-

ing f , p =
⋂

n f
nV is the biggest prime ideal contained in fV and p⇝ q is an immediate

specialization relation in SpecV , i.e., there is no prime ideal p1 in V with p ⊊ p1 ⊊ q.
(3) Any quotient of V by a prime ideal is a valuation ring.
(4) Subrings of K := FracV containing V are precisely the localizations of V at various

prime ideals. All of them are valuation rings.

Proof. (1)-(3): Exercise. (4): From characterization in Theorem 1.9(1) it is clear that any ring
R with V ⊆ R is a valuation subring of K. It thus is enough to show that any such R is the
localization of V at a prime ideal. Let x ∈ mR. Then x−1 ̸∈ R, hence x−1 ̸∈ V , hence (as
x ∈ V ) also x ∈ mV . I.e., mR ⊆ mV ⊆ V . Now, V ↪→ R induces a map of spectra, under which
mR 7→ mR ∩ V , i.e., mR ∩ V = mR is a prime ideal of V . Now, we have the localization VmR ,
and its universal property implies that VmR ⊆ R. Conversely, R ⊆ VmR . Indeed: as V ⊆ VmR ,
it suffices to check that any x ∈ R∖V lies in VmR . But for such x, x−1 ∈ V and x ̸∈ mR, i.e.,
x ∈ V ∖mR, so x

−1 becomes invertible in VmR , i.e, x ∈ VmR . □

Exercise 1.11. Let V be a valuation ring. Describe all closed, all pro-open, all closed con-
structible and all pro-open constructible subsets of SpecV .

Corollary 1.10(4) motivates the following definition.

Definition 1.12. Let | · | be a valuation of any ring. Let V = A(| · |) be its valuation ring (as
in Definition 1.4 and Lemma 1.6(2)). The rank (sometimes also height) of | · | is the cardinality
of | SpecV | minus 1, or, equivalently, the (Krull) dimension of SpecR.

For example, the rank of a discrete valuation always equals 1. Valuations on fields allow quite
some flexbility. An important example is given by the following construction.

Construction 1.13 (Concatenation of valuation rings). Let V be a valuation ring of a field K,
and let κV = V/mV be the residue field. Then

W 7→W ′ := {x ∈ V : x mod mV ∈W}
induces a bijection between valuation rings W of κV and valuation rings of K, which are con-
tained in V . We have ht(W ′) = ht(V ) + ht(W ).

Exercise 1.14. Prove this. What does this mean geometrically?

Thus if K is field and V a valuation ring of K, then Corollary 1.10(4) resp. Construction 1.13
(which are in a sense dual to each other) describe the less resp. the more fine valuations on K
in terms of points of SpecV resp. of valuations of κV .

Example 1.15 (A valuation of rank 2). All valuations we know from discrete valuation rings,
and also all valuations coming from norms on rings are of rank 1 (essentially by definition).
Using Construction 1.13 we can give an example of a rank 2 valuation. Therefore, let k be any
field, let K = K((x))((u)) (it’s a field) and let V = k((x))[[u]]. So, V is the valuation ring of the



6 ALEXANDER B. IVANOV

u-adic valuation on K. Now consider the x-adic valuation on κV = k((x)), with valuation ring
k[[x]] and let

W = {f =
∑
n≥0

fnu
n ∈ V = k((x))[[u]] : fn ∈ k[[x]] for all n}.

By Constuction 1.13, W is a valuation ring of rank 2. Similarly, one can construct valuation of
arbitrary big rank (including ∞).

Let us list some further consequences of the above characterization of valuation rings.

Corollary 1.16. Let K be a field, R a subring of K and p a prime ideal of R. Then there is
some valuation ring V of K, such that mV ∩R = p.

Proof. We have R ⊆ Rp (R ⊆ K, so R is a domain) and pRp ∩R = p. Replacing R by Rp and p
by pRp, we thus may assume that R is local and p is the maximal ideal of R. But in this case,
the result follows from Theorem 1.9 (1) ⇔ (4). □

Corollary 1.17. Any valuation ring is integrally closed. If R is a subring of a field K, then
the integral closure of R in K equals the intersection of all valuation rings of K containing R.

Proof. Let V be a valuation ring and K = FracV . If x ∈ K ∖V with xn+a1x
n−1+ · · ·+an = 0

with ai ∈ V , then by Theorem 1.9(2), x−1 ∈ V . We even have x−1 ∈ mV , as x ̸∈ V and so
x−1 ̸∈ V ×. But then −1 = a1x

−1+a2x
−2+ · · ·+anx−n ∈ mV , which is a contradiction, showing

the first claim. For the second claim, note that the first claim implies that the integral closure of
R is contained in the intersection R′ of all valuation rings of K containing R. For the converse,
it suffices to show that if x ∈ K is not integral over R, then x ̸∈ R′, i.e., that there is a valuation
ring V of K with R ⊆ V and x ̸∈ V . Consider the ring R[x−1] ⊆ K. The then x−1R[x−1]
is a proper ideal: indeed, if 1 ∈ x−1R[x−1], then 1 = a1x

−1 + . . . amx
−m for some m ≥ 1

and ai ∈ R, which contradicts the non-integrality of x over R. Let p be any maximal ideal of
R[x−1] containing x−1R[x−1]. By Corollary 1.16 there is some valuation ring V of K containing
R[x−1] and with mV ∩ R[x−1] = p. But in particular, R ⊆ V and x−1 ∈ x−1R[x−1] ⊆ mV , i.e.,
x ̸∈ V . □

1.2.1. Appendix: Field extensions. Valuations (on fields) are quite flexible with respect to ex-
tensions:

Proposition 1.18. Let K ′/K be a an extension of fields and | · | a valuation of K. Then there
exists a valuation | · |′ of K ′, such that its restriction | · |′|K to K is equivalent to | · |.

Moreover, if x1, . . . , xn ∈ K ′ are algebraically independent over K and γ1, . . . , γn ∈ Γ, then
there exists such an extension with |xi|′ = γi for all i.

Proof. See [Bou, VI,§2.4,Prop.4]. □

Corollary 1.19. Let K1 ↪→ K2 be a map of fields. Let V2 and V1 := V2 ∩K1 be valuation rings
of K2 resp. of K1. Then there are surjections:

{Val. rings of K2 containing V2}↠ {Val. rings of K2 containing V1}
{Val. rings of K2 contained in V2}↠ {Val. rings of K2 contained in V1}

induced by R2 7→ R2 ∩K1. Moreover, if K2/K1 is algebraic, the first map is bijective.

Proof. Cf. [Wed19, 2.25] for the precise argument. Essentially, this follows from the ability to
extend valuations by Proposition 1.18 and the descriptions of valuations which are more fine resp.
more coarse than the one given by V in Corollary 1.10(4) and Construction 1.13. The bijectivity
part is equivalent by Construction 1.13 and passage to the limit over finite subextensions to the
statement that if V,W are valuation rings then any generically finite and faithfully flat map
SpecW → SpecV is bijective. □
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1.3. Convex subgroups. It is common to reformulate the rank in terms of the (totally ordered)
value group of the valuation. It turns out (not very surprisingly) that the structure of totally
ordered groups is not very complicated.

Definition 1.20. Let Γ be a totally ordered group. A subgroup ∆ of Γ is convex (or isolated)
any element of Γ, which lies between two elements of ∆ is itself in ∆, i.e., if for all a, b, c ∈ Γ
holds:

a ≤ b ≤ c and a, c ∈ ∆ ⇒ b ∈ ∆

The height of Γ, ht(Γ) ∈ Z ∪ {∞}, is the number of convex subgroups of Γ minus 1.

All one should know about convex subgroups is contained in the following example and the
next result:

Example 1.21. For n ≥ 0, let Γ = (Rn
>0,≤) be the lexicographically ordered group from

Example 1.3(3). Then for any 0 ≤ k ≤ n, {1}k × Rn−k
>0 is a convex subgroup, and every convex

subgroup is one of these. So, ht(Γ) = n.

Proposition 1.22. Let Γ be a totally ordered group.

(1) The convex subgroups of Γ are precisely the kernels of homomorphisms of ordered groups
with source Γ.

(2) Let ∆ ⊆ Γ be a subgroup, and define for ā, b̄ ∈ Γ/∆,

ā ≤ b̄ :⇔ ∃a ∈ ā, b ∈ b̄ with a ≤ b.3

Then (Γ/∆,≤) is a totally ordered group if and only if ∆ is convex. Assume this holds.
Then ht(Γ) = ht(∆) + ht(Γ/∆). Moreover, if ā, b̄ ∈ Γ/∆, then ā < b̄ ⇔ for all lifts
a ∈ ā, b ∈ b̄ one has a < b.

(3) We have ht(Γ) = 0⇔ Γ = 1.
(4) Suppose Γ ̸= 1. Then the following are equivalent:

(a) ht(Γ) = 1.
(b) there exists an injective homomorphism of ordered groups Γ→ R>0.
(c) For all a, b ∈ Γ with a < 1 and b ≤ 1, there exists some n ∈ N with an < b.

Proof. (1) and (2): Exercise or [Bou, §4 No 2, Prop.3 (p.108) and §4 No4, Expl. (p.111)]. Last
claim of (2): exercise! (3) is clear as 1 and Γ are convex subgroups of Γ. (4): (a) ⇒ (c): Let H
be the smallest convex subgroup of Γ containing a. By inspection, H is the set of all β ∈ Γ which
sit between am and 1 for some m ∈ Z. On the other hand, as a ̸= 1, condition (a) implies that
H = Γ. Thus b is sandwiched between 1 and some an; as b < 1, we also must have an < 1, i.e.,
n > 0. (c) ⇒ (a): the characterization above shows that (c) implies that the smallest convex
subgroup containing an element ̸= 1 must be Γ. (b) ⇒ (c): clear. (c) ⇒ (b): a somewhat
technical but easy construction; see [Mat89, Thm. 10.6]. □

Remark 1.23. Note that if ∆ ⊆ Γ is not convex, then Γ/∆ with the order defined in Proposition
1.22(2) is not a totally ordered group. Indeed, as ∆ is not convex, there exist (after scaling)
δ < a < 1 in Γ with δ ∈ ∆ and a ̸∈ ∆. With respect to the given order in Γ/∆, one thus has
a ≤ 1̄ (as a < 1 in Γ) and 1̄ ≤ ā (as 1 · δ ≤ a in Γ). But as a ̸∈ ∆, we have 1̄ ̸= ā, and hence
1̄ < ā < 1̄, contradiction. (Exercise: look at the example Γ = R2

>0 ⊇ ∆ = R>0 × {1} with
lexicographic order.)

3This might not hold for all lifts a, b, as the example Γ = R2
>0 ⊇ ∆ = {1} × R>0 with lex. order shows.
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Corollary 1.24. Let V be a valuation ring of a field K, and let ΓV := K×/V × be the corre-
sponding value group. We have a natural bijection

SpecV
Cor. 1.10(4)∼= {V ⊆ R ⊆ K : R (valuation) ring} ∼−→ {convex subgroups of ΓV }

R 7→ ker(ΓV ↠ ΓR)

V∆ = {a ∈ K : ∃δ ∈ ∆ with |a|Γ ≤ δ} = V · ∆̃←[ ∆,

where ∆̃ is the preimage of ∆ under K× ↠ K×/V × = Γ. Moreover, the maximal ideal of V∆ is

p∆ = {a ∈ K : |a|V < δ ∀ δ ∈ ∆}.

(Note that this agrees with pV∆
⊆ pV ⊆ V ⊆ V∆ ⊆ K.)

Proof. By Proposition 1.22(1), ker(ΓV ↠ ΓR) is a convex subgroup of ΓV . Conversely, the
convex subgroup ∆ ⊆ ΓV goes to the subring Vp∆ with p∆. (Exercise: check the details. Use
the description of the order on Γ/∆ in Proposition 1.22(2).) □

Corollary 1.25. Let K be a field. Let V ⊆ K be a valuation subring. Then the V has rank 1
if and only if it is maximal among all proper subrings of K.

Remark 1.26. A valuation is discrete (i.e., the value group is isomorphic to (qZ,≥) for some
q > 0) if and only if the corresponding valuation ring is noetherian if and only if it is a principal
ideal domain. Cf. [Bou, §3 No 6, Prop. 9 (p. 105)].

Note that a valuation of rank 1 needs not to be discrete. E.g., the p-adic valuation of Qp

(normalized such that |p| = p−1) is of rank 1, but has pQ as its value group and hence is not
discrete.

2. The valuation spectrum

2.1. The valuation spectrum of a ring. We first study the adic spectrum of discrete rings
(that is with rings equipped with discrete topology).

Definition 2.1 (valuation spectrum and standard opens). Let R be a ring and S ⊆ R a subset.

(1) We denote by

Spv(R,S) = {| · | valuation on R : |S| ≤ 1}/ ∼

the set of all equivalence classes of valuations on R which are ≤ 1 on S.
(2) We equip Spv(R,S) with the topology generated by the standard open subsets

Spv(R,S)

(
f1, . . . , fn

g

)
:= {| · | ∈ Spv(R,S) : |f1|, . . . , |fn| ≤ |g| ≠ 0}

for varying n ≥ 0, f1, . . . , fn, g ∈ R.
(3) Let R′, S′ be another pair as above and let φ : R→ R′ be a map of rings with φ(S) ⊆ S′.

The induced map Spvφ : Spv(R′, S′)→ Spv(R,S) sends | · | to | · | ◦ φ.
(4) The valuation spectrum of R is the space Spv(R,Z).

Notation 2.2. We sometimes denote points of SpvR by letters x, y, . . . , and write | · |x or | · (x)|
for the corresponding valuation on R (so, x and | · |x, | · (x)| are identical objects). As in the
case of schemes, we wish to regard elements of R as functions on the space of all valuations, the
function given by f ∈ R being x 7→ |f(x)| – this explains the latter notation.

We collect some simple facts about the valuation spectrum:
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Remark 2.3. (1) All appearing valuations are non-archimedean, so we always have |Z| ≤ 1
and so SpvR := Spv(R,Z) = Spv(R,∅).

(2) (Exercise!) Prove that the collection of all standard opens of Spv(R,S) is stable under
finite intersections. In particular, they form a base for topology on Spa(R,S) (and not
just a subbase), and every open is a union of standard opens. Moreover, one has

Spv(R,S)

(
f

g

)
∩ Spv(R,S)

(
f ′

g′

)
= Spv(R,S)

(
fg′, f ′g

gg′

)
, (2.1)

and so in particular, Spv(R,S)
(
f1
g

)
∩ Spv(R,S)

(
f2
g

)
= Spv(R,S)

(
f1,f2
g

)
4. In particu-

lar,
{
Spv(R,S)(fg ) : f, g ∈ R

}
form a subbase for the topology on Spv(R,S).

(3) For any ring map φ, the map Spvφ is continuous as (Spvφ)−1(U
(
f
g

)
) = U

(
φ(f)
φ(g)

)
.

(4) Note that U
(
f
0

)
= ∅ and that all U

(
0
f

)
= {x : |f(x)| ̸= 0} and U

(
f
1

)
= {x : |f(x)| ≤

1} are open subsets of Spv(R,S). Thus the topology on Spv(R,S) unifies the flavor
of the Zariski topology on schemes (where opens are given by non-vanishing sets) as
well as the real topology (where opens are given by inequalities). However, here strict
inequalities define open subsets.

(5) (Exercise!) Show that Spv(R,S) = Spv(R,S′), where S′ is the smallest integrally closed
subring of R containing S. Thus there is no loss in assuming that S is itself an integrally
closed subring of R.

Example 2.4. (1) We have SpvQ = {| · |triv} ∪ {| · |p : p prime}. Here | · |triv resp. | · |p
is the trivial resp. p-adic valuation on Q. (Check that there are no further points!)
Moreover, for f, g ∈ Q with g ̸= 0, U(f/g) = {| · |triv} ∪ {| · |p : vp(f/g) ≥ 0}, where
vp is the (additive) p-adic order of f/g ∈ Q; so SpvQ∖U(f/g) is finite. We deduce
SpvQ ∼= SpecZ.

(2) We have SpvZ = SpvQ ∪ {| · |p,triv : p prime}, where | · |p,triv is the valuation given by

Z ↠ Fp
triv→ {0, 1}. As U(p/p) = SpvZ∖ {| · |p,triv} is open, | · |p,triv is closed in SpvZ.

Moreover, {| · |p} = {| · |p, | · |p,triv} (indeed, this means that any open which contains
| · |p,triv also contains | · |p. It suffices to show the last claim for the opens in a subbase;
but if | · | := | · |p,triv ∈ U(f/g) for some f, g ∈ Z, then |g| ≠ 0 (i.e., (p, g) ̸= 0), and so
|g|p = 1 and then also |f |p ≤ 1 = |g|p for all f ∈ Z.)

(3) Let k be a (say, algebraically closed) field and let K/k be a finitely generated field

extension of transcendence degree 1 (e.g., K = k(t), or K = k(t)[
√
t2 − 1]). We then

have the uniquely determined smooth projective curve C over k with function field K, cf.
[Har77, I §6, p.42]. It is a classical observation that Spv(K, k) = C as topological spaces5

(and in fact, also as ringed spaces, once we define the structure sheaf on Spv(K, k)).
Note also that SpvK is in general far too big: we have the restruction map SpvK →

Spv k, the fiber over the trivial valuation on k is precisely Spv(K, k), but all the other
fibers, as well as the base Spv k, will be huge in general (the latter will hold whenever k

4Note that in general, we have Spv(R,S)( fh
gh

) ⊆ U( f
g
), but the inclusion might be strict; however, if h = g, it is

always an equality.
5To be precise, from [Har77, I §6, p.42] it only follows that the subset consisting of K itself and all discrete
valuation rings k ⊆ V ⊆ K is in bijection with C; moreover, Constuction 1.13 shows that each of the discrete
ones does not contain further ones. Unfortunately, this does not exclude the possibility that there are some
non-microbial (cf. §?? below) valuation rings in K containing k ... However, it is not very hard to show that all
valuation rings V of K with k ⊆ V ⊊ K are disrete, cf. for example [Sch, Lm. 23.1].
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is not algebraic over Fp). This observation indicates that Spv(R,S), and not SpvR, is
the right object to look at.

(4) Let K be a field and K+ a valuation ring of K, then we have a homeomorphism

Spv(K,K+) ∼= Spec(K+), | · | 7→ {a ∈ K+ : |a| < 1}. (2.2)

Indeed, Spv(K,K+) in bijection with valuation subrings ofK containingK+ (indeed, the
support of any valuation ofK is the zero ideal, and so the equivalence classes of valuations
which are ≤ 1 on K+ are in bijection with valuation subrings containing K+) and hence
with Spec(K+) by Corollary 1.24. Exercise: check that this is a homeomorphism.

Let R be a ring and S ⊆ R a subset. There is a natural map

supp: Spv(R,S)→ SpecR, x 7→ supp(x)

This map is continuous and in fact induces a homeomorphism supp′ : Spv(R,S)triv → SpecR,
where Spv(R,S)triv is the subset of trivial valuations at all prime ideals of R. (Proof : For f ∈ R,
supp−1(D(f)) = {x ∈ Spv(R,S) : f ̸∈ supp(x)} = {x ∈ Spv(R,S) : |f |x ̸= 0} = Spv(R,S)

(
0
f

)
.

This proves continuity. Further, note that supp′ is clearly bijective, and it suffices to show

that it is open; but if Spv(R,S)
(
f1,...,fn

g

)
⊆ Spv(R,S) is a standard open, then supp′ maps

Spv(R,S)((fi)
n
i=1/g) ∩ (SpvR)triv = {| · |p,triv : g ̸∈ p} to D(g)).

2.2. Digression: Riemann–Zariski space of a field. In this section we consider the valua-
tion spectrum of a field. By Theorem 1.9 this is the same as just looking at valuation rings of
K. Furthermore, note that as K has no non-trivial ideals, the support of any valuation is 0 and
so |g| ̸= 0 for all g ∈ K× and all | · | ∈ SpvK. Thus, U(f/g) = U(fg−1/1), i.e., a (sub)base for
topology on SpvK is given by {|f | ≤ 1} for f ∈ K× varying.

As Example 2.4(3) suggests, it makes sense to introduce some constrains (pass to a subset of
Spv(R)) to obtain a more adequate notion in relative situations.

Definition 2.5. Let K be a field and A ⊆ K any subring.

(1) The Riemann–Zariski space RZ(K,A) of K over A is the set of all valuation subrings
A ⊆ V ⊆ K.

(2) The Zariski topology on RZ(K,A) is defined by declaring

U(f1, . . . , fn) := RZ(K,A[f1, . . . , fn]) = {V ∈ RZ(K,A) : f1, . . . , fn ∈ V }
to be a base of open subsets (note that U((fi)

n
i=1) ∩U((gj)

m
j=1) = U((fi)

n
i=1, (gj)

m
j=1), so

it’s indeed a base).
Furthermore, RZ(K) := RZ(K,Z) is called the Riemann–Zariski space of K.

Example 2.6. (1) RZ(Q) ∼= Spv(Q) (see Proposition 2.8 below for the isomorphism) we
have already seen in Example 2.4. (Determine also RZ(Qp) and RZ(Q,Q).)

(2) If k is a field and K/k is a finitely generated extension of transcendence degree 1, then
RZ(K, k) is homeomorphic to the unique smooth projective k-curve with function field
K. (Cf. Example 2.4(3))

(3) If K/k is as in (1) but of transcendence degree 2, the situation is more complicated. It
is still true, that all points of RZ(K, k) will be valuation rings of height ≤ 2. However,
a unique smooth projective model X/k such that X ∼= RZ(K, k) does not exist. The
informal reason is that there are many different candidates for such a model, and none of
them should be preferred. E.g., if K = k(x, y), then both, X1 = P2 and X2 = P1×P1 are
smooth projective integral k-schemes with function field K. Now the valuative criterion
for properness (with arbitrary, not necessarily discrete, valuation rings!) shows that
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there are maps RZ(K, k)→ Xi for i = 1, 2, which are in fact continuous for the Zariski
topology on both sides. Note that there exists a third smooth projective surface X3 with
the same fraction field and birational maps X1 ← X3 → X2 (in fact, blow-ups), and by
the same reason as before there is a map RZ(K, k)→ X3.

The same argument as in Example 2.6(3) shows in fact the following:

Proposition 2.7. Let K/k be a finitely generated field extension. Then RZ(K, k) is homeomor-
phic to the inverse limit over all projective integral k-schemes with function field K.

Continuing Example 2.6(3), all possibilities for points of RZ(K, k) with K/k finitely generated
of transcendence degree 2, were determined by Zariski in 1939.6.

Note that we can reformulate the definition in terms of valuations: then RZ(K,A) becomes
the set of equivalence classes of valuations | · | on K, for which |A| ≤ 1, and similarly for the
open subsets. From this remark and the observations in the beginning of §2.2 it is clear that
the bijection from Theorem 1.9 induces a natural homeomorphism

Spv(K,A)
∼→ RZ(K,A).

In fact even a more general statement is true (by essentially the same arguments):

Proposition 2.8. Let R be any ring. The fiber of supp: SpvR→ SpecR over any p ∈ SpecR
is homeomorphic to RZ(Frac(R/p)).

Proof. Exercise. □

In particular, the Riemann–Zariski space of a field is a special case of a valuation spectrum.
As already the space RZ(K, k) with tr.degk(K) = 2 is quite complicated, we should not expect
SpvR of a general ring R to be a very accessible object. However, we will show that SpvR is
always a spectral space (i.e., homeomorphic to SpecR for some –possibly horrible– ring R). In
particular, RZ(K,A) should be quasi-compact, and the proof of this fact is not very hard.

Proposition 2.9 ( [Mat89], Theorem 10.5). Let K be a field and A ⊆ K be any subring. The
Riemann–Zariski space RZ(K,A) is quasi-compact.

Proof. We omit the proof, because this result will be a special case of the quasi-compactness of
valuation spectrum Spv(R,S) in §3. □

It is remarkable that using the classification of valuation rings in dimensions 2,3 (see above
for a reference) and the quasi-compactness of RZ(K, k), Zariski gave a valuation theoretic proof
of resolution of singularities in characteristic 0 for varieties of dimension ≤ 3.

3. Spv(R,S) is a spectral space

To do geometry on Spv(R,S), we need it to be a reasonably well-behaved space. Towards
this, we show that it is spectral. Recall what spectrality means:

Theorem 3.1 (Hochster). For a topological space X the following conditions are equivalent:

(a) X has the following properties:
– X is quasi-compact (i.e., any open cover has a finite subcover),
– X is sober (i.e., any irreducible closed subset of X has a unique generic point),
– the intersection of two qc opens of X is qc open, and
– the collection of qc opens of X form a basis for the topology on X.

6See [Har77, II §4 Ex. 4.12(b)]; for a brief overview (and the reference to Zariski’s original work), see https:

//en.wikipedia.org/wiki/Zariski%E2%80%93Riemann_space.

https://en.wikipedia.org/wiki/Zariski%E2%80%93Riemann_space
https://en.wikipedia.org/wiki/Zariski%E2%80%93Riemann_space
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(b) X can be written as an inverse limit of finite T0-spaces.
(c) X ∼= SpecA for some ring A.

Recall that a space X is T0 (sometimes also called Kolmogorov), if for any two points in X
there is an open subset of X, which contains exactly one of these points. For any topological
space X, we have the map X → {closed irred. subsets of X}, x 7→ {x}; then X is T0 (resp.
sober) if and only if this map is injective (resp. bijective). In particular, a finite space is T0 if
and only if it is sober.

Definition 3.2. A topological space X is called spectral if it satisfies the equivalent conditions
of Theorem 3.1.

Our aim is to prove the following theorem.

Theorem 3.3 (Spv(R,S) is spectral). For any ring R, the space Spv(R,S) is spectral. Moreover,

Σ =

{
Spv(R,S)

(
f1, . . . , fn

g

)
: f1, . . . , fn, g ∈ R

}
is a basis for topology of SpvR which consists of quasi-compact opens and is stable under finite
intersections.

The key steps in proving (c)⇒ (a) in Theorem 3.1 are: (i) show that SpecR is quasi-compact
for any ring R; (ii) show that the collection of principal opens {D(f) : f ∈ R} is a basis for
topology consisting of qc opens and stable under finite intersection: indeed, D(f)∩D(g) = D(fg)
implies that last part, D(f) is homeomorphic to SpecRf , hence (i) implies quasi-compactness,
and it is easy to show that they form a basis; finally, (iii) check that a closed subset V (I) ⊆ SpecR

is irreducible if and only if I is a prime ideal, by noting that V (I) ∼= SpecR/I ∼= SpecR/
√
I.

Whereas step (i) can be done for SpvR (just as in Proposition 2.9), the problem with steps

(ii) and (iii) is that U
(
f
g

)
are their closed complements are usually not of the form SpvR′ for a

ring R′ (e.g., in contrast to the case of spectra of rings, neither U
(
f
g

)
nor SpvR∖U

(
f
g

)
need

be homeomorphic to valuation spectra themselves).7

We will need some preliminaries. First, note that the collection of all open subsets of a
spectral space has a much nicer companion, namely the collection of all qc open subsets. For
a general topological space, this latter might not be big enough to “see” the topology, but for
a spectral space it is, essentially by definition. Maps preserving this collection are particularly
nice:

Definition 3.4. (i) A continuous map of topological spaces f : Y → X is quasi-compact, if
for any qc open U ⊆ X, f−1(U) is qc open.

(ii) A topological space is quasi-separated, if the intersection of any two qc opens is again
qc open. Equivalently, X is quasi-separated if the diagonal embedding X → X ×X is
quasi-compact.

Example 3.5. Let k be a field and let A∞ = Spec k[x1, x2, . . . ]. Then A∞ is qc (as follows from
Hochster’s theorem), but e.g., the subset D(x1, x2, . . . ) = A∞∖ {(0, 0, . . . )} is a an open subset
which is not quasi-compact. Moreover, if we glue two copies of A∞ along the identity on U , we
get a quasi-compact scheme, which is not quasi-separated.

7In fact, this problem does not appear for the standard opens of the spaces Spv(R,S), cf. the discrete case of
Proposition 7.7. This is because the choice of S provides additional flexibility.
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We abbreviate “quasi-compact and quasi-separated” by qcqs. Note that the definition of a
spectral space (Theorem 3.1(a)) can be rephrased as: X is qcqs + sober + the qc opens form a
basis of topology. In a qcqs space we have the following well-behaved notions:

Definition 3.6. Let X be a qcqs topological space.

(1) A subset ofX is locally closed constructible, if it is of the form U∩(X ∖V ) with U, V ⊆ X
qc opens.

(2) A subset of X is constructible, if it is a finite union of subsets of locally closed con-
structible subsets.

(3) The constructible topology on X is topology generated by constructible subsets (they
form a base for topology). We denote Xcons the set X equipped with the constructible
topology.

(4) A subset of X is pro-constructible (resp. ind-constructible), if it an intersection (resp. a
union) of constructible subsets of X.

Before diving into the study of the constructible topology, let us recall the classical reason to
study it:

Theorem 3.7 (Chevalley). Let X be a qcqs scheme.

(1) The pro-constructible sets in X are precisely the images of all morphisms Y → X with
Y an affine (or, equivalently, qcqs) scheme.

(2) The constructible sets in X are precisely the images of all morphisms of finite presenta-
tion Y → X with Y affine (or, equivalently, qcqs) scheme.

Note that part (1) follows from part (2), as we can write any morphism Y → X between
affine schemes as an inverse limit Y = lim←−i

Yi → X with all Yi affine and all Yi → X of finite

presentation, and as in such a situation im(Y → X) =
⋂

i im(Yi → X).

Example 3.8. Let X be a smooth curve over a (say, algebraically closed) field k. Then Xcons

is the one point compactification of the (discrete) set X(k). So, each closed point x ∈ X is
clopen in Xcons, and if η ∈ X is the generic point, then any open neighboorhood of η contains
all but finitely many points in X(k). Exercise: verify this and show that Xcons is a profinite set.
(Note: this profinite set is similar to the one point compactification N∪ {∞} of N with discrete
topology.)

Example 3.8 suggests the right intuition for the general case:

Proposition 3.9. Let X be a spectral space. Then Xcons is profinite, i.e., quasi-compact,
Hausdorff and totally disconnected space.

Proof. Let x, y ∈ X with x ̸= y. As X is sober, it is T0, so there is an open subset U containing
x but not y or vice versa. Wlog, assume x ∈ U, y ̸∈ U . As X has a basis of topology by
qc opens, we may shrink U and assume it is qc open. But then U,X ∖U are both clopen in
Xcons and x ∈ U, y ∈ X ∖U . This shows that Xcons is Hausdorff and totally disconnected. A
somewhat technical argument (similar to that in the proof of Proposition 2.9) shows that Xcons

is quasi-compact, cf. [Sta14, 08YF]. □

Note that the collection of constructible subsets is stable under finite unions, finite intersec-
tions and complements. Using the latter property and the quasi-compactness part of Proposition
3.9, we deduce:

Lemma 3.10. Let X be qcqs topological space. A subset of X is closed (resp. open; resp.
clopen) in the constructible topology if and only if it is pro-constructible (resp. ind-constructible;
resp. constructible).
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Proof. As the collection of constructible subsets is stable under complements and form a base for
the constructible topology, it is clear that any constructible subset is clopen in Xcons. It follows
that any pro- (resp. ind-) constructible subset is closed (resp. open) in Xcons. Conversely, it
is clear that any open in Xcons is a union of constructibles, hence ind-constructible. Finally, if
Z ⊆ X is pro-constructible, then Z =

⋂
iCi with Ci ⊆ X constructibles. But then X ∖Z =⋃

i(X ∖Ci). As all X ∖Ci are constructible, X ∖Z is ind-constructible, hence open in Xcons by
the above, and hence X ∖Z is closed in Xcons.

Finally, we have to show that any C ⊆ X, which is clopen in Xcons, is constructible. First,
as C is open in Xcons, we can write C =

⋃
i Yi with all Yi constructible (hence open in Xcons).

Second, as C is closed in Xcons, it is quasi-compact by Proposition 3.9, and hence the open
covering C =

⋃
i Yi (in Xcons) has a finite refinement. Thus C is the union of finitely many

constructible subsets, hence itself constructible. □

Pro- and ind-constructible sets are also very useful because of the following properties:

Lemma 3.11. Let X be a spectral space.

(1) A subset S ⊆ X is closed (resp. open) if and only if it is pro-constructible and stable
under specialization (resp. ind-constructible and stable under generization).

(2) Let S ⊆ X be pro-constructible subset. Then S =
⋃

s∈S {s}.

Proof. Cf. [Sta14, 0903]. □

Before we come to the application of the constructible topology to the proof of spectrality of
SpvR, let us outline another important aspect of it:

Remark 3.12. By Hochster’s Theorem 3.1, any spectral space is homeomorphic to SpecR
for some ring R. One might ask, whether the same holds for continuous maps between spec-
tral spaces. Hochster proved that it indeed does, but only for quasi-compact continuous maps
between spectral spaces. This additional condition has a very natural interpretation in the
constructible topology:

Proposition 3.13. Let f : Y → X be a continuous map of spectral spaces. The following are
equivalent:

(1) f is quasi-compact.
(2) f cons : Y cons → Xcons is continuous.
(3) Preimage under f of any constructible set is constructible.

Proof. (1) ⇒ (3) is clear; (3) ⇒ (2): if (3) holds, then (as preimage commutes with taking
intersections) the same condition as in (3) holds for pro-constructible sets, which are (by Lemma
3.10) the same as the closed ones in the constructible topology. Thus f−1 takes closed subsets
to closed ones in the constructible topology. With other words, f cons is continuous. (2) ⇒ (1):
Let U ⊆ X be qc open. Then U is clopen in Xcons, and hence, by assumption, f−1(U) is clopen
in Y cons. As Y cons is quasi-compact by Proposition 3.9, the closed subset f−1(U) is too. Now,
the identity map f−1(U)cons → f−1(U) is8 surjective and continuous (with respect to the usual
on the right side). As the image of a quasi-compact subset under a continuous map is always
quasi-compact, it follows that f−1(U) is also quasi-compact with the usual topology. □

Remark 3.12 makes the following definition natural.

8To be precise, f−1(U)cons means here “f−1(U) equipped with the subspace topology of Xcons”, and not “the
constructible topology on f−1(U)”, although (as one can prove) both notions coincide a posteriori (note that
we actually aim to prove that f−1(U) is quasi-compact, hence itself a spectral space, so we cannot yet form its
constructible topology).
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Definition 3.14. A spectral map between spectral spaces is a continuous map, which satisfies
the equivalent conditions of Proposition 3.13.

Now we prove Theorem 3.3.

Proof of Theorem 3.3. By Remark 2.3(2), the collection of standard opens is stable under finite
intersections. We have to show that X = Spv(R,S) itself and all of them are quasi-compact.
This follows from the combination of Lemma 3.15 and Proposition 3.16 (which is the cornerstone
of the proof). Finally, by Lemma 3.17, X is sober. □

Lemma 3.15. Let A be a ring and A+ an integrally closed subring. For any n > 0 and

f1, . . . , fn, g ∈ A, put B := A
[
1
g

]
and B+ := A+

[
f1
g , . . . ,

fn
g

]
. Then restriction of valuations

induces a homeomorphism

Spv(B,B+)
∼−→ Spv(A,A+)

(
f1, . . . , fn

g

)
. (3.1)

Proof. Any valuation | · | : A→ Γ∪{0} with |g| ≠ 0 extends uniquely to a valuation of A
[
1
g

]
(by

the universal property of localization) and the condition |fi| ≤ |g| translates into the condition∣∣∣fig ∣∣∣ ≤ 1. With other words, this defines an inverse to the restriction map in (3.1), proving that

it is a bijection.
Moreover (to simplify notation, assume n := 1 and f := f1, general case is similar), if

f ′, g′ ∈ A, then

Spv
(
A,A+

)(f
g

)
∩Spv

(
A,A+

)(f ′
g′

)
= Spv

(
A,A+

)(fg′, f ′g
gg′

)
= Spv

(
A

[
1

g

]
, A+

[
f

g

])(
f ′

g′

)
.

Thus standard opens on the left side of (3.1) map to opens on the right side, and conversely,
opens on the right are determined by some pairs (in general n+1-tuples) of the form f ′gi, g′gj ,
with i, j ∈ Z. and such a pair determines the same open as f ′gi+N , g′gj+N for arbitrary N ∈ Z
as g is invertible in A[1g ], so we may assume that all these elements lie in A. Hence any open on

the right side of (3.1) comes from the left. With other words, (3.1) is a homeomorphism. □

Proposition 3.16. The space Spv(A,A+) is quasi-compact.

Proof. Write X = Spv(A,A+). Consider the coarsest topology on X, in which all standard open
subsets are open and closed.9 We denote X equipped with this topology by X ′.

Note that by Lemma 1.6(3) each valuation x ∈ X is uniquely determined by the set |x :=
{(a, b) ∈ A×A : |b|x ≤ |a|x} ⊆ A×A. This defines an injection

i : X ′ ↪→ 2A×A :=
∏

a,b∈A×A

{0, 1}, x 7→ (δx(a, b))a,b, where δx(a, b) = 1⇔ (a, b) ∈ |x.

The product of the finite discrete sets on the right side carries the product topology, with respect
to which it is compact (=Hausdorff + quasi-compact) by Tychonoff’s theorem. Now we claim
that i is continuous and that the topology on X ′ coincides with the subspace topology of 2A×A.
For continuity, it suffices to show that the composition of i with each projection pa,b : 2

A×A →
{0, 1} (a, b ∈ A) is continuous. But p−1

a,b(1) ∩ i(X
′) is the image under i of the union of subsets

Spv(A,A+)(ab ),
(
Spv(A,A+)∖ Spv(A,A+)(0b )

)
∩
(
Spv(A,A+)∖ Spv(A,A+)( 0a)

)
of X ′, both of

which are open inX ′. Thus i is continuous, i.e., the subspace topology on i(X ′) is coarser or equal

9Once Theorem 3.3 is proven and we know that all Spv(A,A+) are spectral, this topology is just the constructible
topology on X. At the moment we do not know this.
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to the defining topology of X ′. Conversely, if a, b ∈ A, then i(Spv(A,A+)(ab )) = p−1
a,b(1)∖ p−1

0,b(1)

is clopen in the subspace topology on i(X ′). This shows our claim.

Suppose for a second that we know that i(X ′) is a closed subset of 2A×A. As 2A×A is compact,
also i(X ′) is compact. By the above claim, also X ′ is compact, and in particular, quasi-compact.
By definition of topology on X ′, the identity map X ′ → X is evidently continuous. As the image
of a quasi-compact set under a continuous map is quasi-compact, the proposition follows.

It remains to show that i(X) is closed in 2A×A. Towards this, we claim that i(X) is charac-
terised as exactly the set of those | ∈ 2A×A, which satisfy the following conditions (we write a|b
for “(a, b) ∈ |”, i.e., for |a|x ≥ |b|x if x is a valuation corresponding to |) for all a, b, c ∈ A:

• a|b or b|a holds, and 0 ̸ | 1 holds,
• a|b and b|c ⇒ a|c,
• a|b ⇒ ∀d ∈ A : ad|bd,
• a|b, a|c ⇒ a|b+ c,
• ac|bc and c ̸= 0 ⇒ a|b,
• ∀s ∈ A+ : 1|s.

It is clear that any valuation on A satisfies all these conditions except possibly the last one,
and all the valuations in X ′ also satisfy the last one. Thus, i(X ′) is contained in the set of
all | satisfying this list of conditions. Conversely, suppose that | satiesfies all conditions. Let
M := A/ ∼ where ∼ is the equivalence relation is defined by a ∼ b ⇔ a|b and b|a. Then
one verifies quickly by means of (1)-(5) that M is a totally ordered commutative monoid with
neutral element, with respect to a multiplication, which descends from A; that M× :=M ∖ {0}
is a totally ordered submonoid (with neutral element) and with the cancellation property (i.e.,
if mn = mk for m,n, k ∈M×, then n = k). For any commutative monoid with neutral element,
there is a universal map into an abelian group; moreover, this map is injective if the monoid is
has the cancellation property; moreover, if the monoid was totally ordered, it defines a unique
compatible order on the “quotient group”. Applying these considerations to M× we deduce a
totally ordered group Γ and a composed map A ↠ M → Γ ∪ {0}, which is in fact a valuation.
This shows the claim.

After we have characterised i(X) as the set those | satisfying the above list of conditions, it
remains to show that any condition cuts out a closed subset of 2A×A, which is easy. Let us
check this (for example) for the second condition above. For a, b ∈ A consider the function
pa,b : 2

A×A → {0, 0} be the projection to the (a, b)-component. Then p−1(1) = {| ∈ 2A×A : a|b}
is closed. Then the set of all | which satisfy the second condition is equal to p−1

a,c(1) ∪ (p−1
a,c(0) ∩

(p−1
a,b(0) ∪ p

−1
b,c (0))). □

Lemma 3.17. The space Spv(A,A+) is sober. That is, any irreducible closed subset of Spv(A,A+)
has a unique generic point.

Proof. Write X = Spv(A,A+). If x ̸= y ∈ X, then (up to exchanging x, y), there is some
f, g ∈ A with |f(x)| ≤ |g(x)| and |f(y)| > |g(y)| (otherwise x, y are equivalent). If |g(x)| ̸= 0,

then x ∈ X
(
f
g

)
, y ̸∈ X

(
f
g

)
. If |g(x)| = 0, then x ̸∈ X

(
0
g

)
but y ∈ X

(
0
g

)
. This shows that X

is T0.

It remains to show that any closed irreducible set Z ⊆ X has a unique generic point. We
define a valuation xZ by the binary relation |Z which it determines (as in the proof of Proposition
3.16). Namely, for an element a ∈ A, let V (a) = X ∖X

(
0
a

)
be the vanishing locus of a. For

a, b ∈ A then put

a|Zb :⇔ Z ⊆ V (a) ∩ V (b) or X

(
b

a

)
∩ Z ̸= ∅,
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that is either a, b are 0 on Z or there is some point z ∈ Z with |b(z)| ≤ |a(z)| ̸= 0. Then, using
irreducibility of Z, one checks that |Z is a valuation in X (we omit the details) and we denote

the corresponding point in X by η. We have to show that {η} = Z. Let x ∈ Z. If x ∈ X
(
b
a

)
,

then X
(
b
a

)
∩ Z ̸= ∅, so by definition of η, ηZ(b) ≤ η(a). Moreover, note that η(a) ̸= 0, as

η(a) = 0 (by definition of η) implies that either Z ⊆ V (a) ∩ V (b), or that X
(
0
a

)
∩ Z ̸= ∅;

but both cannot hold as a ̸= 0 on the whole set Z). Thus η ∈ X
(
a
b

)
. This shows Z ⊆ {η}.

Conversely, suppose x ̸∈ Z. As Z is closed, there must be some open X
(
a
b

)
containing x and

satisfying X
(
a
b

)
∩Z = ∅. We claim that η ̸∈ X

(
a
b

)
. Indeed, η ∈ X

(
a
b

)
would mean that either

X
(
a
b

)
∩ Z = ∅ (which is not true by assumption), or Z ⊆ V (a) ∩ V (b), i.e., b = 0 on Z – but

then η(b) ≤ η(0), and so η(b) = 0, and so η ̸∈ X
(
a
b

)
, contradiction. □

4. Specializations in Spv(R,R+)

Our goal in the following next lectures is to add topology on the ring R itself, introduce
the adic spectrum Spa(R,R+) ⊆ Spv(R,R+) (only looking at continuous valuations on R),
prove that Spa(R,R+) is a spectral space too (however, in general not closed and not even
pro-constructible in Spv(R,R+)), study its properties and consider examples. Before doing so,
we need some understanding of specialization relations in the the spectral space Spv(R,R+).

Recall that in any T0-space (in particular, in any spectral space), a point x specializes to a

point y, or equivalently y generalizes to x (notation: x ⇝ y) if y ∈ {x}. By the T0 property,
we cannot have x ⇝ y and y ⇝ x simultaneously, unless x = y. It follows that specialization
defines a partial order, the specialization order, on the space. E.g., in an affine scheme p⇝ q⇔
q ∈ {p} ⇔ p ⊆ q. Specialization in SpvR is more subtle. To understand it, we break it up in
two special cases, the horizontal and the vertical specialization.

4.1. Vertical specializations.

Vertical specialization is easy and happens in the fibers of the support map (whence the name):
Let X = Spv(R,R+) and recall the map supp: X ⊆ SpvR→ SpecR from Proposition 2.8. Let
x ∈ X be a point with p = supp(x), so that x ∈ supp−1(p) = Spv(Frac(R/p), R̄+), where R̄+ is
the image of R+ ⊆ R → R/p → Frac(R/p). Then by Corollary 1.10(4) we understand all the
generizations y ∈ Spv(R,R+) of x which are contained in supp−1(p).

Definition 4.1. Let R be a ring. A specialization x⇝ y in SpvR is vertical if suppx = supp y.

Thus, vertical specialization with support p ∈ SpecR happens in the Riemann–Zariski space
RZ(FracR/p), where points are given by valuation rings, and we can describe them more ex-
plicitly.

Lemma 4.2. Let R be a ring, x ∈ SpvR with corresponding valuation ring k(x)+ ⊆ k(x) =
Frac(R/ supp(x)). Then there is a natural bijection

{vertical generizations of x in X} ∼= Spec k(x)+ ∼= Spv(k(x), k(x)+) ∼= {convex subgroups of Γ}
Under the first isomorphism, x itself corresponds to the closed point of Spec k(x)+ and the trivial
valuation | · |triv,supp(x) with support supp(x) corresponds to the generic point.

Proof. All vertical generizations y of x lie in RZ(k(x)), so correspond to valuation rings of k(x).
The condition that y specializes to x means that any open of SpvR –or, equivalently, of RZ(K)–
containing x also contains y. This is equivalent to the fact that the valuation ring Vy ⊆ K of y
contains k(x)+. But those are in bijection with Spec k(x)+ by Corollary 1.10(4). The two last
bijection follow from Corollary 1.24. □
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We spell out which valuation corresponds to a convex subgroup ∆ ⊆ Γx under the bijection
in Lemma 4.2: it is

x/∆ : R
|·|x→ Γ ∪ {0}↠ Γ/∆ ∪ {0}, (4.1)

where Γ/∆ is totally ordered as in Proposition 1.22(2).

Example 4.3. If R = K is a field and S any subset, then X = Spv(K,S) = RZ(K,S) admits
only vertical specializations. In particlar, the set of all generizations of a point x ∈ X corre-
sponding to a valuation subring V ⊆ K is homeomorphic to SpecV , and thus looks quite simple.
But given y ∈ X, the set {y} might be much more complicated. In particular, | · |triv ∈ X is the
generic point of X.

4.2. Horizontal specializations. In analytic adic spaces, considered below, horizontal spe-
cializations do not appear: all specializations are vertical. However in discrete adic spaces,
horizontal specializations do appear and are as important as vertical ones.

To define horizontal specializations we need the characteristic subgroup of a valuation. Let
x ∈ X = SpvR, given by | · |x : R → Γx ∪ {0}, where Γx is the value group of x (by definition
generated by the submonoid |R|x∖ {0}). Note that in general we can have |R|x∖ {0} ̸= Γx.
The difference is measured by the characteristic subgroup:

Definition 4.4. Let R be a ring and x ∈ SpvR. The convex subgroup cΓx of Γx, generated by
im(x) ∩ Γx,≥1 is called the characteristic subgroup of x.

Example 4.5. (1) If R = K is a field, then |R|x∖ {0} is a group, and hence cΓx = Γx

for all x. (This will translate to the fact that in Spv of a field there are no horizontal
specializations.)

(2) If R = V is a valuation ring and x is its defining valuation, then |R|x∖ {0} ⊆ Γx,≤1, and
so cΓx = 1.

To understand the characteristic subgroup better, recall the factorization of | · |x as

R→ Kx → Γx ∪ {0}

and the valuation subring Vx = {a ∈ Kx : |a|x ≤ 1}. We then have Γx
∼= K×

x /V
×
x (cf. the last

statement of Theorem 1.9). Now, in the extreme case that im(R→ Kx) ⊆ Vx, we have cΓx = 1;
in the other extreme case when R → Kx is surjective, we have cΓx = Γx. In general, recall
(Proposition 1.10 and Corollary 1.24) the bijections

{Vx ⊆W ⊆ Kx : W (valuation) ring} ∼← SpecVx
∼←− {convex subgroups of Γx}

Vx,∆ := Vx,px,∆ ← [ p := px,∆ ←[ ∆

where

Vx,∆ = {a ∈ Kx : ∃ δ ∈ ∆ with |a|x ≤ δ} and px,∆ = {a ∈ Vx : |a|x < δ ∀δ ∈ ∆}

Lemma 4.7 below will show that cΓx is the smallest convex subgroup ∆ ⊆ Γx such that im(R→
Kx) ⊆ Vx,px,∆ .

Construction 4.6. Let R be a ring, x ∈ SpvR, ∆ ⊆ Γx a (convex) subgroup. Define the
function | · |x|∆ : R→ ∆ ∪ {0} by

|a|x|∆ =

{
|a|x if |a|x ∈ ∆

0 otherwise.

This turns out to define a valuation on R if and only if ∆ ⊇ cΓx. Let us study this.
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Proposition 4.7. Let x ∈ SpvR and ∆ ⊆ Γx be a convex subgroup. Write p = px,∆. The
following are equivalent:

(1) | · |x|∆ is a valuation on R.

(2) ∆ ⊇ cΓx.
10

(3) The image of R→ Kx is contained in the localization Vx,p.

If these hold, then we have

(a) x|∆ is a specialization of x,
(b) supp(x|∆) = π−1(pVx,p)(⊇ supp(x)), where π : R → Vx,p is the map given by condition

(3); equality holds if and only if ∆ = Γx,
(c) Vx/p ⊆ Vx,p/pVx,p is a valuation ring and x|∆ is the composition of R → Vx,p →

Vx,p/pVx,p with the corresponding valuation.

Point (3) in Proposition 4.7 tells us that, rouhgly, the more “field-like” (as opposed to “valua-
tion ring-like”) the ring R/ supp(x) looks, the less horizontal specializations will x ∈ Spv(R,R+)
have.

Proof. (1) ⇒ (2): It suffices to show that ∆ ⊇ Γx,≥1 ∩ |R|x, as the latter generates cΓx as
a convex subgroup and as ∆ is convex. Let a ∈ R with |a|x ≥ 1. If |a|x = 1, then clearly
|a|x ∈ ∆. Suppose |a|x > 1 and |a|x ̸∈ ∆. Then |a + 1|x = |a|x ̸∈ ∆, and so 0 = |a + 1|x|∆ =
max(|a|x|∆ , 1) = max(0, 1) = 1, contradiction (second equality, as | · |x|∆ is a valuation).

(2) ⇒ (3): Recall that Vp = {y ∈ Kx : ∃ δ ∈ ∆ with |y|x ≤ δ}. Now, suppose ∆ ⊇ cΓx, and
let a ∈ R. We have to show that there is some δ ∈ ∆ with |a|x ≤ δ. If |a|x ≤ 1, we may take
δ = 1. If |a|x > 1, then |a|x ∈ Γx,≥1 ∩ |R|x = cΓx ⊆ ∆, and so we may take δ = |a|x.

(3) ⇒ (1): We need a lemma.

Lemma 4.8. Suppose (3) holds. If a ∈ R with |a|x ̸∈ ∆, then |a|x < 1.

Proof. Suppose |a|x ≥ 1. By (3) we must have |a|x ∈ Vx,p = Vx,∆, that is there is some δ ∈ ∆
with |a|x ≤ δ. Thus 1 ≤ |a|x ≤ δ. As 1, δ ∈ ∆ and ∆ ⊆ Γx convex, we deduce |a|x ∈ ∆,
contradicting the assumption. □

Now we show, using this observation, that | · |x|∆ is a valuation. Clearly, |0|x|∆ = 0 and
|1|x|∆ = 1. Let a, b ∈ R. If |a|x ∈ ∆ ∪ {0} or |b|x ∈ ∆ ∪ {0}, then |ab|x ∈ ∆ ∪ {0} (as
∆ is a subgroup) and so |a|x|∆ |b|x|∆ = |ab|x|∆ . Assume |a|x, |b|x ̸∈ ∆ ∪ {0}. By Lemma 4.8,
|a|x, |b|x < 1. Thus |ab|x ≤ |a|x ≤ 1, and as ∆ is convex, we would get a contradiction if
|ab|x ∈ ∆. Thus |ab|x ̸∈ ∆, and then |a|x|∆ |b|x|∆ = 0 = |ab|x|∆ by definition. Finally, we
must check that |a + b|x|∆ = max(|a|x|∆ , |b|x|∆). If |a + b|x ̸∈ ∆, then this is clear. If not, let

wlog |a|x ≤ |b|x. Using the just proven multiplicativity, we may, multiplying with |b|−1
x , assume

|b|x ≤ 1. Then |a+ b|x ≤ |b|x ≤ 1, and convexity of ∆ implies that |b|x ∈ ∆. But then the result
is clear. This finishes the proof of the equivalences.

(a): Let f, g ∈ R, such that |f |x|∆ ≤ |g|x|∆ ̸= 0 (i.e., x|∆ ∈ U
(
f
g

)
). We must check that

|f |x ≤ |g|x ̸= 0. First, directly from definition, |g|x|∆ ̸= 0 implies |g|x ̸= 0. In particular,
|g|x ∈ ∆. Assume that |f |x > |g|x. Then (from definition of x|∆ and as |f |x ≤ |g|x ̸= 0) we
must have |f |x ̸∈ ∆. Then Lemma 4.8 gives |f |x < 1. But then we have |g|x < |f |x < 1 with
|g|x, 1 ∈ ∆ and |f |x ̸∈ ∆, contradicting the convexity of ∆.

10Note that R/ supp(x) ⊆ Vx,∆ need not to hold in general: e.g. when R = K is a field, so that necessarily
Kx = K, we always have R/ supp(x) = Kx but Vx and Vx,∆ might be strictly smaller than Kx. This just means
that in the case of Spv of a field there are no horizontal specializations. Note that this agrees with the fact that
for a field, the support map has only one fiber, so that all specializations are vertical.
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(b): It is clear that supp(x) ⊆ supp(x|∆). Now, Vx,p ⊆ Kx is the valuation ring corresponding

to the valuation Kx
|·|x→ Γx ∪ {0}↠ Γx/∆ ∪ {0}. Thus its maximal ideal is

pVx,p = {ā ∈ Kx : |ā|x < γ ∀γ ∈ ∆} (4.2)

An element a ∈ R lies in supp(x|∆) if and only if |a|x ̸∈ ∆. We would be done by (4.2) once
we show that this is equivalent to |a|x < γ for all γ ∈ ∆. Clearly, the implication ⇐ holds.
Conversely, suppse |a|x ̸∈ ∆. Then by Lemma 4.8, |a|x < 1. □

Let us consider a simple special case:

Example 4.9. Let V be a valuation ring with K = Frac(V ) and with defining valuation
x : V → Γ ∪ {0}, so that x ∈ Spv(V, V ). Let ∆ ⊆ Γ be a convex subgroup, let p∆ ∈ SpecV
denote the corresponding prime ideal and let x/∆ ∈ Spv(V, V ) be the corresponding valuation
(note that the Vx/∆

= Vp∆ ⊆ K contains V = Vx, so indeed x/∆ ∈ Spv(V, V )). Then x/∆ is a
vertical generization of x.

Note that as |V |x ⊆ Γ≤1, cΓ = 1. Thus x|∆ is a valuation by Proposition 4.7. Moreover,
x|∆ ∈ Spv(V, V ), and we explicate it now. Therefore note that we have

{a ∈ V : |a|x ̸∈ ∆} = p∆

by Proposition 4.7(b). So the valuation x|∆ is given by V ↠ V/p∆
|·|x−→ ∆∪{0} and in particular

the support of x|∆ is p∆. Whereas x, x/∆ lie over the generic point of SpecV , the point x∆ lies
over the point p∆.

Example 4.10. Suppose cΓx = 1. Then the minimal horizontal specialization of x ∈ SpvR is

x|1. By definition it is the valuation R → R/ supp(x) → Vx ↠ Vx/mx
triv−→ {0, 1}. With other

words, x|1 is the trivial valuation on R with support equal to the (preimage in R) of the maximal
ideal of x.

Given x ∈ SpvR, which prime ideals p ∈ SpecR can appear as supports of horizontal special-
izations of x?

Definition 4.11. Let x ∈ SpvR. A prime p ∈ SpecR is called x-convex if for all a ∈ R we
have: |a|x ≤ |t|x for some t ∈ p ⇒ a ∈ p.11

Note that supp(x) is x-convex and is contained in any x-convex prime.

Proposition 4.12 ( [Mor19], I.3.3.9-10). Let x ∈ SpvR. Let

S = {horizontal specializations of x} ⊆ {x} ⊆ SpvR

C = {x-convex primes in SpecR} ⊆ {supp(x)} ⊆ SpecR.

Then supp: SpvR → SpecR restricts to a homeomorphism S
∼→ C and both sets are totally

ordered.

Thus, for a point x ∈ SpvR the set of vertical generizations of x and the set of horizontal
specializations of x are both totally ordered. Also note that both, vertical generization and
horizontal specialization decrease the rank of the valuation.

Proof. Let Vx ⊆ Frac(R/ supp(x)) is the valuation ring of x and Γx the value group. If y = x|∆
is a horizontal specialization of x corresoponding to some convex subgroup ∆ ⊆ Γ, then the
support of y is x-convex: indeed, it is the preimage under x of the prime ideal p∆ ⊆ Vx; it

11We can rephrase this condition as follows: |0|x ≤ |a|x ≤ |t|x for 0 ∈ p and some t ∈ p ⇒ a ∈ p. This motivates
the terminology.
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suffices to check x-convexity of p∆ = {a ∈ Vx : |a|x < δ ∀ δ ∈ ∆} ⊆ Vx, which is clear by
definition of convexity of an ideal. Thus we get a map S → C.

Next, recall from Proposition 4.7 that S is in bijection with convex subgroups cΓ ⊆ ∆ ⊆ Γ,
or equivalently, with an open subset of the totally ordered SpecVx. Moreover, y specializes to
y′ in S if py′ ⊇ py in SpecVx, so that this bijection is a homeomorphism.

Moreover, SpecVx is a (pro-open) subset of SpecR/ supp(x), and it remains to show that
its open subset (Spec of the localization at pcΓ) coincides with the set of x-convex primes in
SpecR/ supp(x). We may assume here that supp(x) = 0. By the first paragraph, any p ∈ SpecVx
with p ⊆ pcΓ is x-convex. Conversely, assume q ∈ SpecR is a x-convex prime. By definition of
x-convexity, we have |a|x < |b|x for all a ∈ q, b ∈ R∖ q. In particular, |q|x ⊆ Γx,<1, and hence
|R∖ q|x ⊇ |R|x∩Γx,≥1. Passing to the convex subgroups of Γx generated by these sets, we deduce
∆ := ⟨|R∖ q|x⟩convex ⊇ cΓx. In particular, by Proposition 4.7 we deduce that x|∆ is a valuation
and that its support is the ideal supp(x|∆) = {a ∈ R : |a|x < δ ∀ δ ∈ ∆}. As ∆ ⊆ Γ is the
convex subgroup generated by |R∖ q|x this is equal to {a ∈ R : |a|x < |b|x ∀ b ∈ R∖ q} = q. □

Let us summarize what we know about specalizations/generizations so far in one picture. Let
x ∈ SpvR. When interested in horizontal specializations and vertical specalizations/generizations
only (but not horizontal generizations, which might make the support smaller), we may and do
pass to R/ supp(x) and hence assume that supp(x) = 0. Thus we have R ⊆ Vx ⊆ K = Frac(R)
with Vx being the valuation ring of x with maximal ideal mx.

Thus both, the set of vertical generizations of x and the set of horizontal specializations of
x are homeomorphic to SpecVx, but x corresponds to the zero ideal under the first and to the
maximal ideal under the second isomorphism.

Example 4.13. Let K be a field, x a valuation on K with valuation ring V ⊆ K and value
group Γ. First, note that we have a diagram with cartesian squares:

Spv(K,V ) �
�

//
� _

��

Spv(V, V )� _

��

SpvK �
�

//

��

Spv V

��

SpecK �
�

// SpecV

(easy exercise: check injectivity of the arrows and the cartesian property). Moreover, we already
know that Spv(K,V ) ∼= SpecV ∼= {convex subgroups of Γ} (a “vertical isomorphism”). Let us
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now use our knowledge on vertical/horizontal specializations to understand Spv(V, V ), proceed-
ing fiber by fiber over SpecV . (See figure 4.13). Note that the fiber over a point p∆ ∈ SpecV
is Spv(Frac(V/p∆), V/p∆). Thus we arrive at the following picture of Spv(V, V ):

The top points in all columns (equally, the most right points in all rows) are precisely the trivial
valuations.

4.3. Factoring arbitrary specializaions.

Remark 4.14. (transitivity for vertical generizations) Let y be a vertical generization of x and
let z be a vertical generization of y. Then y corresponds to an ideal py of the valuation ring Vx,
and Vy = (Vx)py ; z correpsonds to a prime ideal of Vy and hence to a prime ideal of Vx. Thus z
is a vertical generization of x.

The same holds for horizontal specializations, but is less obvious:

Lemma 4.15 ( [Mor19], I.3.3.11). If x ⇝ y ⇝ z are two horizontal specializaions, then the
specialization x⇝ z is also horizontal.

Proof. Omitted. □

Let us collect further properties of vertical/horizontal specializaions without proofs. Note
that they (all) can be visualized in the example Spv(V, V ).

Theorem 4.16. Let x, y, z, ... denote points of Spv(R).

(i) ( [Mor19, Prop.I.3.4.1(i)] or [Wed19, Lemma 4.19(2)]) If x ⇝ y is a horizontal spe-
cialization and y ⇝ z is a vertical specalization, then there exist a vertical specialization
x⇝ y′ that admits z as a horizontal specialization:

x

∃
��

// y

��
y′ // z

(ii) ( [Mor19, Prop.I.3.4.1(ii)] or [Wed19, Lemma 4.19(1)]) If x ⇝ y is a horizontal spe-
cialization and x ⇝ y′ is a vertical specialization, then there eixsts a unique horizontal
specialization y′ ⇝ z, such that z is a vertical specalization of y:

x

��

// y

∃!
��

y′ // z
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(iii) [Mor19, Cor I.3.4.2]. Let y 7→ py = supp(y) under SpvR → SpecR. Any generization
p⇝ py in SpecR may be lifted to some horizontal generization x⇝ y with p = supp(x).

(iv) [Mor19, I.3.4.3(i)] or [Wed19, 4.21](1). Any specialization x ⇝ y in SpvR can be
factored as

x

��
��

x′ // y

with x⇝ x′ vertical and x′ ⇝ y horizontal.
(v) [Mor19, I.3.4.3(ii)] or [Wed19, 4.21](2). For any specialization x⇝ y in SpvR, there

exist a vertical generization y′ ⇝ y such that either

x

��

// y′

��
y

or cΓx = 1 (⇔ |Rx| ⊆ Γx,≤1) and y
′ is the trivial valuation with supp(y′) ⊇ supp(x|1).12

(v’) [Mor19, I.3.4.4] Assume |R|x ̸⊆ Γx,≤1 (that is cΓx ̸= 1). Then the minimal horizontal
specialization x|cΓx of x admits only vertical specializations.

(vi) [Mor19, I.3.4.5] Assume |R|x ̸⊆ Γx,≤1 (that is cΓx ̸= 1). Then the image of {x} ↪→
SpvR→ SpecR is the set conv(x) of x-convex primes in R, the fibers of

{x}↠ conv(x)

are irreducible, and the (unique) generic points of the fibers of this map are precisely the
horizontal specializations of x.

The condition cΓx ̸= 1 (⇔ |Rx| ⊊ Γx,≤1) simply means that the minimal horizontal special-
ization of x in Spv(R) is not a trivial valuation. (This tends to hold when R/ supp(x) tends to
be more field-like than valuation ring-like.)

Remark 4.17. Note that if R contains a subfield on which the valuation | · |x is non-trivial,
then clearly |R|x ̸⊆ Γx,≤1, and so cΓx ̸= 1. Then the minimal horizontal specialization of x is a
non-trivial valuation (cf. Example 4.10).

Exercise 4.18. Visualize all of properties of Theorem 4.16 in the above picture of Spv(V, V )!

Theorem 4.16(vi) refines Figure 4.2: In particular, this says that any point in {xn} has the

same support as xn, that is is a vertical specialization of xn.

12In the latter case, y′ can be thought of as being “even further away” in the horizontal direction from x than
the most special horizontal specialization x|1 of x. Note that this already happens in the picture of Spv(V, V )!
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5. Tate and Huber rings

Most rings naturally appearing in our setup carry a natural topology (think of affinoid Tate
algebras, formal schemes, Witt vectors, ... ). But SpvR does not catch the information about
the topology on R. We wish to consider valuations on R, which are continuous, i.e., compatible
with the topology on R, ultimately ending up with a certain subset Spa(R,R+) ⊆ Spv(R,R+).
To carry out this program, we need a suffiently well-behaved notion of topological rings, which
however covers all cases appearing in practice. This leads us to the notion of Huber and Tate
(and analytic Huber) rings.

Recall that a topological ring is a ring, equipped with a topology, such that addition and mul-
tiplication maps are continuous. As (additive) translation by an element is a homeomorphism,
the topology on a topological ring is determined by a fundamental system of open neighboor-
hoods13 of 0. We will have to make several somewhat technical definitions regarding special
topological rings.

Definition 5.1. Let A be a topological ring.

(1) A is called non-archimedean if it has a fundamental system of open neighboorhoods
consisting of subgroups.

(2) A is called adic, if there is an ideal I (called ideal of definition), such that {In}n≥0 is a
fundamental system of open neighboorhoods of 0.

(3) A is called Huber14, if there exists an open subring A0 ⊆ A (called ring of definition),
which is adic with a finitely generated ideal of definition. I.e., there is a finitely generated
ideal I ⊆ A0, such that {In : n ≥ 0} is a basis of open neighboorhoods of 0 in A0 (and
hence also in A). The pair (A0, I) is sometimes called a couple of definition.

(4) A Huber ring is called Tate, if it contains a topologically nilpotent15 unit. Any such
element is called a pseudo-uniformizer.

Note that I in (1) and A0, I in (2) are far from being unique (example later). They are also
not part of the datum defining an adic resp. Huber ring (only their existence is). In the case of
fields, let us also make the following definition.

Definition 5.2. (a) A topological field is a topological ringK, which is a field, and for which
the inversion map x 7→ x−1 : K× → K× is continuous (K× equipped with subspace
topology).16

(b) A non-archimedean field is a topological field K, whose topology is induced by a non-
trivial valuation of rank 1.

Example 5.3. (1) Let A be a discrete ring. Then A is Huber, but not Tate. Indeed, we
can take A0 = A, I = 0 as ring/ideal of definition. Clearly, no non-zero element is
topologically nilpotent.

(2) Let A be a discrete ring. For any n ≥ 1, A[[T1, . . . , Tn]], equipped with (T1, . . . , Tn)-adic
topology, is a Huber ring, which is not Tate. Indeed, A[[T1, . . . , Tn]], (T1, . . . , Tn) are
ring/ideal of definition. Clearly, any unit u ∈ A[[T1, . . . , Tn]]

× must have a unit of A

13Recall what this means: if R is the topological ring, then a system {Uα}α∈I of open neighboorhoods of 0 is
fundamental if any neighboorhood V of 0 contains Uα for some α.
14Huber’s original terminology: f-adic
15An element x ∈ A is topologically nilpotent, if limxn = 0 (meaning that 0 is a limit of this sequence; no
uniqueness claim, in particular, the topology on A is not required to be Hausdorff).
16Note that the condition in the definition is not automatic: for example, there is a topology on Q, making
it a topological ring, such that inversion is not continuous, cf. https://math.stackexchange.com/questions/

1393303/group-of-units-in-a-topological-ring.

https://math.stackexchange.com/questions/1393303/group-of-units-in-a-topological-ring
https://math.stackexchange.com/questions/1393303/group-of-units-in-a-topological-ring
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as the constant coefficient, thus each un (n ≥ 1) is not in (T1, . . . , Tn), thus u is not
topologically nilpotent.

(3) Let (K, | · |) be a non-archimedean field. As the norm | · | is non-trivial, there is some
element ϖ ∈ K with 0 < |ϖ| < 1. Note that K is a Huber ring with ring of definition
K◦ := {x ∈ K : |x| ≤ 1} and ideal of definition (ϖ).17 Moreover, ϖ is a pseudo-
uniformizer, hence K is Tate. Examples of non-archimedean fields are: any algebraic
extension of Qp or Fp((t)). Completion Cp of the algebraic closure Qp of Qp.

(4) Let (K, | · |) be a non-archimedean field with pseudo-uniformizer ϖ. For n ≥ 1, we have
the Tate algebra

K⟨T ⟩ := K⟨T1, . . . , Tn⟩ :=

{∑
ν∈Nn

aνT
ν ∈ K[[T1, . . . , Tn]] : |aν | → 0 as |ν| :=

n∑
i=1

νi →∞

}
.

For ε > 0, let Uε ⊆ K⟨T ⟩ be the set of all elements
∑

ν aνT
ν with |aν | ≤ ε for all ν.

Declaring Uε as a fundametal set of open neighboorhoods of 0 makes K⟨T ⟩ a topological
K-algebra. It is a Tate Huber ring, with ring of definitionK◦⟨T ⟩ := U1, ideal of definition
(ϖ) = U|ϖ| and pseudo-uniformizer ϖ.

(5) More generally than in (4), if A0 is any ring, g ∈ A a non-zero divisor, and A = A0[g
−1]

is equipped with the topology for which {gnA0}n≥0 is a fundamental system of open
neighboorhoods of 0, then A is Huber with ring of definition A0 and ideal of definition
gA0. Moreover, A is Tate with pseudo-uniformizer g.

In particular, ifK is a non-archimedean field and A is a Banach K-algebra(= complete
normed K-algebra), then taking A0 = {x ∈ A : |x| ≤ 1} and g ∈ A0 any element with
|g| < 1, makes A a Huber ring of this type. In particular, all rings which give rise to
affinoid rigid-analytic spaces are also Huber.

(6) Let K,ϖ, n be as in (4). Then A = K◦[[T1, . . . , Tn]], equipped with (ϖ,T1, . . . , Tn)-adic
topology, is a Huber ring, having itself as a ring of definition and (ϖ,T1, . . . , Tn) as an
ideal of definition. Note however that A is not Tate.

(7) If A is adic with a finitely generated ideal of definition, then A is Huber. Conversely, let
A be a Huber ring. Then A is adic⇔ A is bounded in itself. [Proof: ⇒: if A is bounded,
then A is a ring of definition (in itself) by Proposition 5.6(5) below. ⇒: We show, more
generally, that if A is any topological ring and B ⊆ A is an open adic subring, then B is
bounded. Indeed, let J ⊆ B be an ideal such that the topology on B (the one induced
from A) is the J-adic topology. As B ⊆ A is open, Jn also form a fundamental system
of neighboorhoods of 0 in A. Let U ⊆ A be open, then Jn ⊆ U for some n ≫ 0. Then
Jn.B = Jn ⊆ U , i.e., B is bounded.]

(8) Let us give also an example of perfectoids. For example, Cp = Q̂p (completion of

algebraic closure of Qp) is a perfectoid field, and the p-adic completion of Cp⟨T 1/p∞⟩ :=⋃
n≥0Cp⟨T 1/pn⟩ is a perfectoid Cp-algebra. Any such is a Huber and Tate.

(9) Let K be a non-archimedean field. There is no topology on K[[T ]] such that K◦[[T ]] is
a ring of definition and (ϖ,T ) is a ideal of definition. Indeed, suppose there is such a
topology. Then we have Tn → 0, and hence also ϖ−1Tn → 0 (as multiplication by ϖ−1

is continuous). But no member of the sequence ϖ−1Tn lies in K◦[[T ]], which contradicts
the fact that K◦[[T ]] (being a ring of definition) is open.

17For non-uniqueness of ring/ideal of definition, observe that (ϖ) ̸= (ϖ2) and also that if ι : Z → K is the natural
map, then ι(Z) +ϖ.K◦ is a ring of definition
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Definition 5.4. (1) A subset S of a topological ring is bounded if for any open neighboor-
hoods U of 0, there is some open neighboorhood V of 0, such that SV ⊆ U .

(2) Let A be a Huber ring. An element f ∈ A is called power-bounded, if {fn : n ≥ 0} is a
bounded subset of A. The set of power-bounded elements is denoted by A◦.

(3) The set of topologically nilpotent elements of a Huber ring A is denoted by A◦◦.

Clearly, in a Huber ring one has A◦◦ ⊆ A◦ ⊆ A.

Exercise 5.5. Show that A◦ is a subring of A and A◦◦ is an ideal of A◦. Show that A◦◦ is open
in A and contains any ideal of definition of any ring of definition.

To check that a subset S ⊆ A of a Huber ring is bounded, it suffices to consider only sets
U = In in Definition 5.4(1), as those form a fundamental system of open neighboorhoods of 0.

Proposition 5.6. Let A be Huber ring, A◦ the subset of bounded elemenets.

(1) Any ring of definition is contained in A◦.
(2) Let B ⊆ A be a subring. Then B is a ring of definition ⇔ B is open and bounded.
(3) The collection of all subrings of definition of A is filtered; their union is A◦.
(4) A◦ is a open subring of A.
(5) A◦ is a ring of definition ⇔ A◦ is bounded.
(6) If I is any ideal of definition of A, then I ⊆ A◦◦.

Proof. (1): Let A0, I be a ring and an ideal of definition in A. Let x ∈ A0. Then S = {xn}n≥0

is bounded, as S.Im = Im for all m ≥ 0 (as Im is an ideal).

(2): If B is a ring of definition (with ideal of definition I), then B is open (by definition), and
bounded as BIn ⊆ In for each n (cf. the observation preceeding the proposition), which holds
as each In is an ideal of B. For the converse, assume B is open and bounded subring of A.
Let A0, I0 be any ring+ideal of definition in A. Let T be a finite set of generators of I0 (recall
that I0 is finitely generated). As B is open, there is some k > 0 with B ⊇ Ik0 ⊇ T (k) :=
{t1 . . . tk : all ti ∈ T}. Put I := T (k) · B. As B is open, it suffices to show that {In}n≥0 form a
fundamental system of open neighboorhoods of 0 in A. First, we check that for any n ≥ 0, In is
open: as B is open, there is some ℓ > 0 with Iℓ0 ⊆ B. Then In = T (kn).B ⊇ T (kn)Iℓ0 = Iℓ+kn

0 ,
i.e., In contains an open neighboorhood of 0, and hence is itself open (as it is stable under
addition). Next, we check that any open neighboorhood V ⊆ A of 0 contains In for n≫ 0. As
B is bounded, there is some m ≥ 0 with Im0 .B ⊆ V . Clearly, Im0 contains T (k′) for all k′ ≫ 0.
Hence Im0 .B ⊇ T (kn).B = In for all n≫ 0. Thus V ⊇ In for n≫ 0. This proves (2).

(3): We first claim that the set of all rings of definition of A is filtered, i.e., any two such,
A0, A

′
0, are contained in a third. Let A′′

0 be the subring of A generated by A0, A
′
0. As A

′′
0 ⊇ A0,

A′′
0 is open. By (2) it suffices to check that A′′

0 is bounded. Let U be an open neighboorhood
of 0, which is stable under addition. As A0 and A′

0 are bounded, there exists some open
nieghboorhoods U1, V of 0 with U1A0 ⊆ U and V A′

0 ⊆ U1. Let
∑r

i=1 xiyi be any element of A′′
0

with xi ∈ A0, yi ∈ A′
0. Then(

r∑
i=1

xiyi

)
V ⊆

r∑
i=1

xiyiV ⊆
r∑

i=1

xiU1 ⊆
r∑

i=1

U = U,

i.e., A′′
0V ⊆ U and hence A′′

0 is bounded, proving our claim. Now, a similar argument shows
that if A0 is any ring of definition, and x ∈ A◦, then A0[x] is again open and bounded, hence
by (2) a ring of definition. Thus any element of A◦ lies in a ring of definition, proving (3). (4)

follows from (3). (5) follows from (2). (6) is easy. □
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Remark 5.7 (Completion). A Huber ring is not assumed to be complete (:= Hausdorff and
complete), but one always may pass to completion without big harm. More precisely, if A is

Huber with pair of definition A0, I, then we may form Â (= Cauchy sequences in A modulo

zero sequences) and Â0 := limnA0/I
n (I-adic completion of A0). Then Â0 is complete and the

induced topology on it is I ↪→ A0-adic by the standard commutative algebra fact [Sta14, 05GG]

(which uses that I is finitely generated!) Then Â0 ⊆ Â and Â0, I.Â0 is a pair of definition of Â,

which makes it a complete Huber ring. Moreover, Â0 = closure of A0 in Â and Â = Â0 ⊗A0 A
(see [Hub93, Lm.1.6] for more details).

In the case of a Tate ring, the topology is particularly nice:

Lemma 5.8. Let A be a Tate ring with pseudo-uniformizer g. Let A0 be any ring of definition
in A. Then gn ∈ A0 for some n > 0, and the topology on A0 is gn-adic. Moreover, a subset
S ⊆ A is bounded if and only if S ⊆ g−mA0 for some m > 0. Finally, A = A0[g

−1].

Proof. Let I ⊆ A0 be an ideal of definition. As g is topologically nilpotent, there exists some
k > 0 with gk ∈ I. Replacing g by gk, we may assume that g ∈ I. Now, multiplication by g−1

on A is a homeomorphism and A0 is open, hence gA0 is open too. Hence there is some ℓ > 0
with Iℓ ⊆ gA0. On the other side, g ∈ I and I is an ideal in A0, so g

ℓA0 ⊆ Iℓ ⊆ A0. Thus
gℓA0 ⊆ Iℓ ⊆ gA0. It follows that gA0 and I define the same topology on A0. For the last claim,
if S is bounded, then there is some N ≫ 0 with gNS ⊆ A0 (as the topology is gn-adic by the
previous claim), and hence S ⊆ g−NA0. Conversely, if A0 is bounded, hence g−NA0 is for any
N , and hence any of its subsets is. The last claim follows from the second, as for any a ∈ A,
{a} is finite and hence contained in g−nA0 for some n > 0. □

Remark 5.9 (Tate vs. analytic rings). Tate rings are more convenient than general Huber rings.
All classical rigid-analytic spaces give rise to Tate rings (whence the name), and also all affinoid
perfectoids are Tate. However, there are important examples of adic spaces which are not Tate,
like discrete adic spaces and formal schemes. Also, for an affinoid adic space Spa(A,A+) the
condition to be Tate is not local18.

To repair this failure of locality, we can use the following notion (introduced by Kedlaya):
a Huber ring A is analytic if the topologically nilpotent elements A◦◦ generate the unit ideal
in A. Now the expectation would be that an analytic ring is Zariski-locally Tate: indeed,
SpecA =

⋃
t∈A◦◦ D(t), and the part of Spa(A,A+) over D(t) should have A[t−1] as its Huber

“coordinate ring”, which should be Tate with pseudo-uniformizer t. This argumentation does
not work on the nose, because the map Spa(A,A+) → SpecA is bad-behaved in general (non-
spectral). However, we will show in Proposition 8.5 that Spa(A,A+) for an analytic Huber pair
(A,A+) is covered by finitely many opens Spa(Bi, B

+
i ) with (Bi, B

+
i ) Tate.

On the other side, we will define the notion of analytic points of an adic spaceX = Spa(A,A+).
Then A is analytic if and only if all points ofX are analytic. The notion for a point to be analytic
is local, and so the notion of a Huber ring to be analytic is local.

A major technical problem of adic spaces is that it is not true in general that the structure
presheaf OX on X = Spa(A,A+) (to be defined later, similarly as for schemes) is not a sheaf.
However, it is a sheaf under various finiteness conditions; moreover, it also is a sheaf under the
uniformity condition on A, which includes the case of perfectoid Huber rings (which are far from
being of finite type):

Definition 5.10. A Huber ring A is called uniform, if A◦ is bounded (hence, by Proposition
5.6(4), a ring of definition).

18There exists an affinoid adic space Spa(A,A+) with A not Tate, which is covered by two open affinoid subsets
Spa(B,B+), Spa(C,C+) which are Tate.
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Remark 5.11. (1) All Huber rings in Example 5.3 are uniform. Here is an example of a
non-uniform Huber ring. Let A = Qp[T ]/T

2 with ring of definition Zp[T ]/T
2 and ideal

of definition (p). Then A◦ = Zp +Qp · T is not bounded.
(2) If A is separated, Tate and uniform, then A is reduced. Proof: let x ∈ A nilpotent

and let g ∈ A be a pseudo-uniformizer. Then for all n ≥ 0, g−nx is nilpotent, hence
power-bounded, hence in A◦. So, we have x ∈ gnA◦ for all n ≥ 0. But A◦ is bounded,
hence has the g-adic topology (by Lemma 5.8), and is separated (since A is), hence⋂

n≥0 g
nA◦ = 0. Thus x = 0.

Remark 5.11(2) is in particular responsible for the fact that all perfectoid spaces are reduced.
Let us rightaway mention one criterion for uniformity. Recall that a ring R of characteristic p
is perfect, if x 7→ xp : R→ R is an isomorphism.

Lemma 5.12 (Perfect implies uniform). Let A be a complete Tate ring of characteristic p which
is perfect. Then A is uniform.

Proof. Let A0 be a ring of definition and ϖ ∈ A0 a pseudo-uniformizer. For any n ≥ 0 we have

the subring An = A
1/pn

0 . Then A0 ⊆ A1 ⊆ A2 ⊆ . . . and Aperf =
⋃

nAn is the perfection of A0.

First we claim that Aperf is bounded. The Frobenius x 7→ xp : A→ A is open by the (analogue
for A) of the Banach open mapping theorem (use that F is surjective (even bijective) and A
complete Tate), hence homeomorphism. Thus A1 = F−1(A0) is bounded, i.e., there is some

n ≥ 0 with ϖnA1 ⊂ A0 by Lemma 5.8. Applying F−r for all r ≥ 1, we get ϖ
n
prAr+1 ⊆ Ar.

Applying this formula succesively r times, we get ϖ
∑r

i=1
n

piAr+1 ⊆ A0. It follows that for any
c > np

p−1 we have ϖcAperf ⊆ A0, showing the boundedness of Aperf .

Now let a ∈ A◦. Then aN := {ak}k∈N is bounded, so there is some N > 0 with ϖnaN ⊆ A0 ⊆
Aperf . But if x ∈ Aperf , then also x1/p

n ∈ Aperf . Extracting the pn-th root from ϖnan we deduce
that ϖa ∈ Aperf . Thus ϖA◦ ⊆ Aperf , i.e., A◦ ⊆ ϖ−1Aperf is bounded too. □

5.1. Morphisms of Huber rings. Let f : A → B be a continuous homomorphism of Huber
rings. If B0, J is any pair of definition of B, then f−1(B0) ⊇ f−1(J) is an open subring and
an open ideal of A, and so if A′

0 ⊆ A is any ring of definition of A, then A0 = A′
0 ∩ f−1(B0) is

bounded and open, and f(A0) ⊆ B0. Clearly, we also may find an ideal of definition I ⊆ A0 with
f(I) ⊆ J . However, f(I)B0 needs not be an ideal of definition of B. This, leads to the fact that
not all continuous morphisms between Huber rings are appropriate, cf. Example 5.15(1),(2).
The relevant definition is the following.

Definition 5.13. A morphism f : A→ B of Huber rings is called adic, if there exists a pair of
definition (A0, I) of A and a ring of definition B0 of B, such that f(A0) ⊆ B0 and B0, f(I)B0 is
a pair of definition of B.

This is a reasonable definition:

Lemma 5.14. Let f : A→ B be an adic morphism of Huber rings. Then the following hold:

(1) f is continuous,
(2) if A0, B0 are rings of definition of A,B such that f(A0) ⊆ B0, then for every ideal of

definition I in A0, f(I)B0 is an ideal of definition of B0.
(3) if S ⊆ A is bounded, then f(S) is bounded.

Proof. Fix A0, B0, I as in Definition 5.13. Then J := f(I)B0 is an ideal of definition of B0.
Thus, f−1(Jn) ⊇ In and hence f is continuous, showing (1). For (3), we have to show that for
each n > 0 there is some m > 0 with f(S)Jm ⊆ In. Let m be such that EIm ⊆ In. Then
f(S)Jm = f(S)f(I)mB0 = f(SIm)B0 ⊆ f(In)B0 = Jn, proving (3). (2): Let A′

0, B
′
0 be rings of
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definition of A,B with f(A′
0) ⊆ B′

0, and let I ′ be an ideal of definition in A′
0. Then there are

some a, b > 0 with I ⊇ I ′a ⊇ Ib; the same holds after applying f , i.e. f(I) ⊇ f(I ′)a ⊇ f(I)b.
Then f(I ′)aB0 is a ideal of definition (note that it is finitely generated as I ′ is). If J ′ denotes
any ideal of definition of B′

0, then ...
JM ⊆ (f(I ′)aB0)

N = f(I ′aN )B0 ⊆ J ′ for some N,M ≫ 0. (TODO: finish proof.) □

Example 5.15. (1) If A is discrete Huber ring and B is any Huber ring, then any homo-
morphism A→ B is continuous, but it is adic if and only if B is discrete.

(2) The inclusion Zp → Zp[[T ]] is not adic, when the left side carries p-adic topology and the
right side the (p, T )-topology.

(3) Any continuous surjective and open morphism is adic.

Luckily, for Tate rings the situation is less subtle:

Lemma 5.16. Let f : A→ B be a homomorphism between Huber rings. If A is Tate, then f is
adic if and only if it is continuous. Moreover, in this case, B is Tate and if B0 is any ring of
definition of B, then f(A)B0 = B.

Proof. Let B0 be a ring of definition of B, and let A0 be a ring of definition of A with f(A0) ⊆ B0.
Let g ∈ A0 be a pseudo-uniformizer in A, i.e., a topologically nilpotent unit. Now, f(g) is again a
topologically nilpotent unit, as f is continuous and a homeomorphism. It follows that B is a Tate
ring. Now, by Lemma 5.8, it follows that gA0 is an ideal of definition of A0 and f(g)B0 is an ideal
of definition of B0. Hence f is adic. Again, by Lemma 5.8 we have B = B0[g

−1] = f(A)B0 □

Note that the map Zp → Zp[[T ]] in Example 5.15(2) is not a counterexample to the above
lemma, as Zp is not Tate, and when we make it Tate by inverting p, then there is again no
contradiction, as in the resulting map Qp → Qp[[T ]] there is no (p, T )-adic topology making the
target a Huber ring, cf. Example 5.3(9).

5.2. Huber pairs. For a Huber ring A, the space SpvA contains too many points (think for
example of all the trivial valuations). We will sort them out in two ways: by considering only
valuations which are continuous with respect to the topology on A, and by considering valuations
which are ≤ 1 on some subring A+. Moreover, as we already have seen in the proof of Theorem
3.3, it is very convenient to make this ring A+ part of our datum. Thus, ultimately, we will
roughly define later

Spa(A,A+) := Spv(A,A+) ∩ Cont(A) ⊆ SpvA,

where Cont(A) will be the set of continuous valuations, studied in §6 below.

Definition 5.17. Let A be a Huber ring.

(1) A subring A+ ⊆ A is called a ring of integral elements in A, if it is open, contained in
A◦, and integrally closed in A.

(2) A Huber pair (or affinoid ring in Huber’s original terminology) is a pair (A,A+) con-
sisting of a Huber ring A together with a ring of integral elements A+.

(3) A Huber pair (A,A+) is called adic, resp. complete, resp. Tate, if A has the same
property.

(4) A morphism of Huber pairs (A,A+) → (B,B+) is a continuous ring homomorphism
A→ B, which maps A+ into B+. It is called adic if the underlying map A→ B is adic.

Lemma 5.18. Let A be a Huber ring. Then

(1) A◦ is integrally closed and hence a ring of integral elements.
(2) Any ring of integral elements in A contains A◦◦.
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(3) A+ 7→ A+/A◦◦ induces a bijection between all possible rings of integral elements and all
integrally closed subrings of A◦/A◦◦.

Proof. (1): If x ∈ A integral over A◦, then xn = a0 + a1x+ · · ·+ an−1x
n−1 for some n ≥ 1 and

ai ∈ A◦. Let A0 be any ring of definition of A containing a0, . . . , an−1 (exists by Proposition

5.6(3)). Thus xN is contained in the A0-submodule of A generated by the set
⋃n−1

i=0 a
N
i , which is

bounded by assumption. Thus x is power-bounded, i.e., x ∈ A◦. (2): If x ∈ A◦◦, then xn → 0
for n→∞. Thus, as A+ is open, xn ∈ A+ for n≫ 0. But then also x ∈ A+, as A+ is integrally
closed. (3): Clearly, the image of any A◦ ⊇ A+ ⊇ A◦◦ in A◦/A◦◦ is integrally closed. Conversely,
if Ā ⊆ A◦/A◦◦ is intergrally closed with preimage A+, then A+ is integrally closed. Indeed, if
f ∈ A is integral over A+, then it is so over A◦, hence lies in A◦ by part (1); from integrality of
Ā, it follows that f mod A◦◦ lies in A+, i.e., f + α ∈ A+ for some α ∈ A◦◦. Thus f ∈ A+ as
A◦◦ ⊆ A+. □

Any ring of integral elements is the filtered union of all rings of definition contained in it (by
Proposition 5.6(3)) and the intersection of any two rings of integral elements is again one (by
Lemma 5.18(3)).

Example 5.19. (1) To get the classical rigid-analyic geometry setup one takes A+ = A◦

throughout.
(2) A prototypical example at the other extreme: let K be a topological field whose topology

is defined by a valuation x. Then for any vertical generization y of x we have the valuation
subring Ky ⊆ K. It is open since it contains the maximal ideal of Kx, and it is integrally
closed, since it is a valuation ring. Hence it is a ring of integral elements. We will come
back to this example later.

(3) Note that in any Huber ring there is always the biggest and the smallest ring of integral
elements, namely A◦ and Z+A◦◦.

6. Continuous valuations

6.1. Continuous valuations. The desired adic spectrum of the Tate ring Qp should consist
of one point, whereas Spv(Qp,Zp) = {| · |triv, | · |p} has two points. To rule out the slightly
disturbing trivial valuation, which “does not belong to the p-adic world”, we introduce the
notion of continuity of valuations. For example | · |triv on Qp is not continuous with respect to
the p-adic topology.

Definition 6.1. Let A be any topological ring. A valuation x ∈ SpvA is continuous if for all
γ ∈ Γx, the set {a ∈ A : |a| < γ} is open in A. We denote by Cont(A) ⊆ SpvA the subset of all
continuous valuations, equipped with the subspace topology.

Some remarks are in order, hopefully helping to clarify this definition.

Remark 6.2. Let A be a topological ring, x a valuation on A with value group Γ.

(1) Evidently, continuity of x only depends on the equivalence class of x.
(2) If | · | : A → Γ′ ∪ {0} is a valuation, then the condition “for all γ ∈ Γ′ the set {a ∈

A : |a| < γ′} is open” is in general stronger than continuity19. It depends on the choice
of a particular representative of an equivalence class of valuations.

(3) If A is discrete, then any valuation is continuous, and so Cont(A) = SpvA.

19For example, let | · | : K → Γ1 := R×
≥0 be a discrete valuation on a field (with topology defined by the valuation),

Γ2 := R×
>0 × R×

>0 with lexicographic order, and ι : Γ1 ↪→ Γ2, r 7→ (1, r) the inclusion of a convex subgroup. Then
the valuation | · |′ := ι ◦ | · | is continuous, just as | · | is. On the other hand, | · | satisfies the condition in question,
whereas | · |′ does not, as {a ∈ K : |a|′ < ( 1

2
, 1)} = {0} is not open in K.
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(4) The support of a continuous valuation is a closed prime ideal. Indeed, it is the intersection
of the open subsets {a ∈ A : |a|x < γ} for all γ ∈ Γ. All of these opens are ideals, hence
they are also closed.

Remark 6.3 (Valuation topology). (1) Let Γ be a totally ordered group. Assume Γ ̸= 1.
Topologize Γ∪{0} by declaring all subsets of Γ to be open and a subset 0 ∋ U ⊆ Γ∪{0}
to be open if and only if there is some γ ∈ Γ with {δ ∈ Γ: δ < γ} ⊆ U .20

(2) Let A be any ring and let x be a valuation on A with value group Γ. Then there
is an associated valuation topology on A, with basis of opens given by the open balls
Bγ(a) = {b ∈ A : |b−a| < γ} for all γ ∈ Γ. It is the coarsest topology such that the map
| · | : A → Γ ∪ {0} is continuous, where Γ ∪ {0} is equipped with the topology as in (1).
(Check this!)

(3) Let A, x,Γ be as in (2). Assume that A is a topological ring. Then x is continuous if and
only if | · |x : A→ Γ∪{0} is continuous, where the topology on Γ∪{0} is as in (1). (This
follows from (2).) Equivalently, x is continuous if and only if its valuation topology is
coarser of equal to the given topology on A.

(4) Let A, x,Γ be as in (2). We also have the closed balls Bγ(a) = {b ∈ A : |b − a| ≤ γ}.
As the valuations are non-archimedean, Bγ(a) ⊇ Bγ(x) for all x ∈ Bγ(a). If | · | is a
non-trivial valuation, then the closed balls also form a basis for topology on A, as then
Bγ(a) =

⋃
β<γ Bβ(a).

Remark 6.4 (Continuity vs. trivial valuations). Let A be a topological ring.

(1) Let x be the trivial valuation with support p on A, that is |f |x = 0 if f ∈ p and |f |x = 1
otherwise. Then x is continuous if and only if p is an open prime ideal. (If we would
change “<” in the definition to “≤”, any trivial valuation would be continuous).

(2) Suppose A is Huber. An ideal a is open if and only if
√
a ⊇ A◦◦. Indeed, if a open, and

f ∈ A◦◦, then fn ∈ a, and so f ∈
√
a. Conversely, if

√
a ⊇ A◦◦, then let (A0, I) be some

couple of definition of A. As I ⊆ A◦◦, also I ⊆
√
a. As I is finitely generated, Im ⊆ a

for some m≫ 0. But Im is open and so a is too.
(3) Parts (1),(2) above imply that if A is Tate, or more generally, analytic (cf. Remark 5.9),

then no of the trivial valuations on A is continuous.
(4) Let x be a non-trivial valuation. Then changing “<” to “≤” in Definition 6.1 would not

affect the definition. Indeed, this follows from Remark 6.3(4).

6.2. Cofinal elements and microbial valuations. For Huber rings continuity can be refor-
mulated in terms of cofinal elements.

Definition 6.5. Let Γ be a totally ordered group. Then γ ∈ Γ ∪ {0} is called cofinal if for any
δ ∈ Γ, there is some n > 0 with γn < δ.

Remark 6.6. Note that γ ∈ Γ is cofinal if and only if γn → 0 in the topology of Remark
6.3(2). Further, notice that if V is a valuation ring of rank ≥ 1 and K = FracV , then x ∈ K
is topologically nilpotent (in the valuation topology of K) if and only if |x| ∈ K×/V × ∪ {0} is
cofinal.

The following lemma is very useful to remember. It says that a valuation is continuous, if it
preserves topological nilpotence of elements.

Lemma 6.7. Let (A,A+) be a Huber pair and let | · | : A→ Γ∪{0} be a valuation with |A+| ≤ 1.
Then | · | is continuous if and only if the image of any element a ∈ A◦◦ in k(x) is topologically
nilpotent.

20Note that for Γ = 1 this definition does not output a topological space as Γ ∪ {0} = {0, 1} would not be open.
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It also suffices to check topological nilpotency for a set of generators of any ideal of definition
I of any ring of definition A0 ⊆ A+.

Proof. The valuation | · | = | · |x factors as

A→ k(x) = FracA/ supp(x)→ Γx ∪ {0}.

All maps are continuous with repsect to the valuation topologies on A and k(x) and the discrete
topology on Γx ∪ {0}, by Remark 6.3(1). By Remark 6.3(2), continuity of | · | means that the
valuation topology on A is coarser of equal to the defining topology on A. Thus A → k(x) is
continuous when A has its given topology and k(x) its valuation topology. Now if a ∈ A◦◦, then
an → 0 and hence also ān → 0, where ā ∈ k(x) is the image of a.

Conversely, assume that A0, I is a couple of definition (then necessarily I ⊆ A◦◦), with
A0 ⊆ A+, so that |A0| ⊆ |A+| ≤ 1. As I is finitely generated, we may assume the set T of
generators of I for which topological nilpotency is known to be finite. Let γ ∈ Γx. As the
image of each t ∈ T in k(x) is topologically nilpotent and T is finite, it follows that there
is some n > 0 with |Tn| < γ (where Tn = {t1 . . . tn : ti ∈ T}). As |A0| ≤ 1 it follows that
|In| = |TnA0| < γ. □

Let A be a analytic Huber ring (cf. Remark 5.9). Then Cont(A) does not contain any trivial
valuation (Remark 6.4(3)), which is good, since trivial valuations should not show up in adic
spectra (except discrete cases, where this is OK “by design”). Now we are ready to show that
the valuations in Cont(A) will all automatically have a further nice proprty:

Definition 6.8. A valuation ring V is called microbial if it has a prime ideal of height 1. A
valuation of a ring is called microbial, if its valuation ring has this property.

Equivalently, V is microbial if it contains a non-zero topologically nilpotent element. The
(unique) height 1 prime ideal in V is precisely the collection of all topologically nilpotent elenents.
(Note that by Corollary 1.10, if V is a valuation ring and f ∈ V ∖ {0} topologically nilpotent,
then

√
fV is the prime ideal of height 1 and

⋂
n≥0 f

nV = 0.) Note also that f is a pseudo-

uniformizer of V if and only if Frac(V ) = V [f−1].

Proposition 6.9. Let A be an analytic Huber ring. Then all points in Cont(A) have rank ≥ 1
and are microbial.

Proof. By Remark 6.4(3), the trivial valuations are not in Cont(A), so the rank of all points in
Cont(A) is ≥ 1. Let x ∈ Cont(A). Note that supp(x) ̸⊇ A◦◦ as A◦◦ generate the unit ideal in
A. Let a ∈ A◦◦∖ supp(x). Then the image ā ∈ k(x) is non-zero and topologically nilpotent
for the valuation topology on k(x) (as by continuity of x the map A → k(x) is continuous, cf.
Remark 6.3(3)). But the existence of a non-zero topologically nilpotent element (in the valuation
topology) shows that the valuation ring of x in k(x), and hence also x itself, are microbial. □

It’s time for an example.

Example 6.10. Let V be a valuation ring with K = Frac(V ), let x denote the valuation on V
and let Γ = K×/V × denote the value group of x. Equip V with the valuation topology given
by x. So, a basis of open neighboorhoods of 0 ∈ V is given by Bγ(0) = {a ∈ V : |a|x < γ} with
γ varying through Γ. In Example 4.13 we studied how Spv(V, V ) looks like. Now may ask two
questions:

A. When is V a Huber (and (V, V ) a Huber pair)?
B. How Cont(V ) ∩ Spv(V, V ) looks like? (If (V, V ) is a Huber pair, then Spa(V, V ) =

Cont(V ) ∩ Spv(V, V ) by definition.)
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(Note that V is never Tate as |a|x = 1 for all a ∈ V ×, so V ◦◦ ∩ V × = ∅.) There are three
disjoint cases: V = K is a field; V is microbial; V is non-microbial.

1) V = K is a field. Then x = | · |triv is trivial and the topology on V is discrete. As any
discrete ring, V is Huber, and as |a|x < 2 for all a ∈ V , V is bounded, so that (V, V ) is
a Huber pair. This answers question A. For question B note that x is the only point of
Spv(V, V ) and that 0 ⊆ V is an open prime ideal, so x is continuous by Remark 6.4(1).
Thus Spa(V, V ) = Spv(V, V ) = {x}.

2) V is microbial. Let ϖ ∈ V be a topologically nilpotent element. Then the valuation
topology on V agrees with the ϖ-adic topology (by cofinality). Thus V is an adic ring
and hence a Huber ring and (V, V ) is a Huber pair.

Now consider the prime ideals of V . Clearly, {0} is not open (as the valuation topology
on V is not discrete), but all other p ∈ SpecV are open. (Indeed, let p = p∆ = {a ∈
V : |a|x < δ ∀ δ ∈ ∆} for some convex subgroup ∆ ⊊ Γ. Then we may find some n≫ 0
with |ϖn| < δ for all δ ∈ ∆ (otherwise, by convexity of ∆ top.nilpotency of ϖ, we wuold
deduce the contradiction ∆ = Γ). This implies p ⊇ B|ϖn|(0), so that being a subgroup
of V , p is open.

As {0} ⊆ V is not open, the maximal vertical generization x/Γ = | · |triv,K of x is
not continuous. On the other hand, all other points in Spv(V, V ) are reached from x by
vertical generizations resp. horizontal specializations. Thus all of them (including the
trivial ones, for which we have checked above) are continuous by Proposition ?? below
(Exercise: check directly.) Thus Spa(V, V ) = Spv(V, V )∖ {| · |triv,K}.

3) V is non-microbial . First note that V is not discrete as {0} ⊆ Γ ∪ {0} is not open
(topology as in Remark 6.4) and {0} ⊆ V is not open. Next note that V ◦◦ = {0}.21
Thus, if V would be a Huber ring, then any ideal of definition I ⊆ V ◦◦ = 0. Thus the
topology on V is discrete; contradiction. Thus V is not Huber.

7. The topological space Spa(A,A+)

Definition 7.1 (Adic spectrum). Let (A,A+) be a Huber pair. The adic spectrum of (A,A+)
is the subset

Spa(A,A+) = {x ∈ Spv(A,A+) : x continuous}
of Spv(A,A+), equipped with the subspace topology.

A morphism φ : (A,A+)→ (B,B+) of Huber pairs induces a map

Spaφ : Spa(B,B+)→ Spa(A,A+),

sending | · | to | · | ◦ φ. It is clearly continuous (as Spvφ is).

Remark 7.2. (1) If S ⊆ A is any subset (contained in A◦), then one may consider the
subset Spa(A,S) ⊆ SpvA consisting of all continuous valuations | · | satisfying |f | ≤ 1
for all f ∈ S. Then Spa(A,S) = Spa(A,A+), where A+ is the smallest ring of integral
elements containing S (i.e., the intersection of all such).

(2) If A is a discrete Huber ring and (A,A+) a Huber pair, then any valuation is continuous
and so Spa(A,A+) = Spv(A,A+).

21Indeed, suppose a ∈ V ∖ {0} topologically nilpotent. Let p =
√

(a), which is a non-zero prime ideal of V . We
claim htp = 1. Thus, we have to show that any prime ideal {0} ⊊ q ⊆ p satisfies q = p. Pick some 0 ̸= b ∈ q, let

c ∈ p =
√

(a) arbitrary. Then cn ∈ (a) for n ≫ 0; and aN ∈ (b) for N ≫ 0 (as a topologically nilpotent). Thus

cnN ∈ (b), i.e., c ∈
√

(b) ⊆ q, proving the claim. As V is non-microbial, we get a contradiction.
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7.1. Rational open subsets. If X = Spa(A,A+) for a Huber pair (A,A+). For f1, . . . , fn, g ∈
A, we denote the corresponding open of X by

X

(
f1, . . . , fn

g

)
= X ∩ Spv(A,A+)

(
f1, . . . , fn

g

)
.

There is one subtlety here, namely X(fg ) does not need to be quasi-compact (in contrast to the

standard opens of Spv(A,A+), cf. Theorem 3.3:

Example 7.3. Let K be a non-archimedean field with K◦ = OK , then (K⟨T ⟩,O⟨T ⟩) is a Huber
pair and X = B = Spa(K⟨T ⟩,K◦⟨T ⟩) = {|T | ≤ 1} is the adic closed ball over K (see below
§9). Then X( 0

T ) = B1
K ∖ {0} is not quasi-compact, as it admits the open covering by subsets

X(ϖ
n

T ) = {|T | ≥ |ϖ|n}, which has no finite refinement.
Note that this example also shows that the map Spa(A,A+) → SpvA is not necessarily

quasi-compact (Question: Is Spa(A,A+)→ Spv(A,A+) also not qc in general?), and hence not
spectral (once we show that Spa(A,A+) is spectral). Also the map Spa(A,A+) → SpecA is in
general not spectral (for the same reason: in the above example, the preimage of the qc open
D(T ) ⊆ SpecK⟨T ⟩ in B is not quasi-compact).

However, adding one more condition related to the topology of A will rescue the desired
quasi-compactness again:

Definition 7.4 (Rational subsets). Let (A,A+) be a Huber pair. A rational open subset of

X = Spa(A,A+) is a subset of the form X(f1,...,fng ) with f1, . . . , fn, g ∈ A such that the ideal of

A generated by f1, . . . , fn is open.

Remark 7.5. (1) If A is an analytic Huber ring, then “f1, . . . , fn ∈ A generate an open
ideal” ⇔ “f1, . . . , fn generate the unit ideal”22. This implies that we can write the
rational opens without the condition “g(x) ̸= 0” (cf. Definition 2.1). That is, if (A,A+)
is an analyic Huber pair, X = Spa(A,A+) and (f1, . . . , fn)A is open in A, then

X

(
f1, . . . , fn

g

)
= {x ∈ X : |fi(x)| ≤ |g(x)| ≠ 0∀i } = {x ∈ X : |fi(x)| ≤ |g(x)| ∀i }

(2) If (A,A+) is a Tate–Huber pair with pseudo-uniformizer ϖ, then any rational open of

X = Spa(A,A+) is of the form X
(
f1,...,fn

g

)
with f1, . . . , fn, g ∈ A+ (moreover, one also

may assume that f1 = ϖN for N ≫ 0). Indeed, for an arbitrary rational open we have

X
(
f1,...,fn

g

)
= X

(
f1ϖN ,...,fnϖN

gϖN

)
for any N > 0, just as ϖ is a unit of A.

Lemma 7.6 (Rational opens form basis stable under finite intersections). Let A,A+ be a Huber
pair. The rational open subsets of Spa(A,A+) form a basis for topology of Spa(A,A+), stable
under intersections.

Proof. Product of two open ideals is open (why?). If f1, . . . , fn = g, f ′1, . . . , f
′
m, g

′ ∈ A are such
that the ideals (fi) ·A, (f ′i) ·A are open in A, then (fi)i · (f ′j)j = (fifj)ij is also open and formula

(2.1) shows that intersections of rational opens are again rational.

Fix a couple of definition A0, I in A. Let T be a finite set of generators of I. Write T r =
{t1 · · · · · tr : ti ∈ T}. Then we have, for any f1, . . . , fn, g ∈ A:

Spa(A,A+)

(
f1, . . . , fn

g

)
=
⋃
n≥1

Spa(A,A+)

(
f1, . . . , fn, T

r

g

)
,

22Indeed, by Remark 6.4(2), an ideal is open if and only if its radical contains A◦◦; but in an analytic Huber ring,
A◦◦ generate the unit ideal of A, so the radical of (f1, . . . , fn)A is the unit ideal, and so (f1, . . . , fn)A itself is too.
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Indeed, ⊇ is clear, and ⊆ holds by (the easy direction of) Lemma 6.7. Now the ideal of A0

generated by T r contains Ir, hence is open, and so (f1, . . . , fn, T
r) ·A is also open. □

A fundamental fact in the theory of schemes is that in SpecA we have D(f) ∼= SpecA[f−1]
for any f ∈ A. The analogous statement for Spv is Lemma 3.15. For Spa we have the following,
slightly more complicated analogue, which takes into acount the topology.

Proposition 7.7 (rational opens are adic spectra). Let (A,A+) be a Huber pair. Let f1, . . . , fn, g ∈
A such that f1, . . . , fn generate an open ideal of A. Then the pair of rings (B,B+) = (A[1g ], A

+[f1,...,fng ])

can be equipped with a topology making it a Huber pair, such that there is a natural homeomor-
phism

Spa(A,A+)

(
f1, . . . , fn

g

)
∼= Spa(B,B+).

Proof. Neglecting the topology on A,A+, we have the homeomorphism

Spv

(
A

[
1

g

]
, A+

[
f1, . . . , fn

g

])
∼= Spv(A,A+)

(
f1, . . . , fn

g

)
from Lemma 3.15, induced by restriction of valuations.

To prove the proposition, it remains to endow B = A[1g ] with a topology, such that B,B+

becomes a Huber pair, and such that a valuation on B which is ≤ 1 on B+ is continuous if and
only if its restriction to A is so. Therefore, fix a couple of definition A0, I in A, set

B0 := A0

[
f1
g
, . . . ,

fn
g

]
⊆ B = B0

[
1

g

]
and let J = I · B0. We wish that B has (B0, J) as a couple of definition. Therefore, equip B
–as a topological group under addition– with the (coarsest) topology such that {Jn}n≥1 form
a fundamental system of open neighboorhoods of 0. In particular, the subgroup B0 carries the
J-adic topology.

Lemma 7.8. With the above topology, B is a topological ring.

Proof. We need to check that the multiplication map B × B → B is continuous. Therefore, it
suffices to show that for all b ∈ B and n > 0, there is an m > 0 with bJm ⊆ Jn (check this!).
For all b ∈ A this is clear as the same claim holds for A and I. If it holds for two elements, then
also for their product and sum. Thus, if it holds for some b ∈ B, then for all elements in the
A-subalgebra A[b] ⊆ B. Thus, it suffices to show the claim for b = g−1. Suppose we know that
for any n > 0, there is some m > 0 with

f1I
n + · · ·+ fnI

n ⊇ Im. (7.1)

Then g−1Im ⊆ f1
g I

n + · · · + fn
g I

n ⊆ InA0[
f1,...,fn

g ] = InB0 = Jn, and hence also g−1Jm ⊆ Jn

and we are done. So, it remains to show (7.1). Write T := {f1, . . . , fn}, so we have to show
that for given n, there is some m with TIn ⊃ Im. By assumption, T ·A is open in A, so there is
some k ≥ 0 with Ik ⊆ T ·A. We may replace I by Ik. Now, I is finitely generated, so let S ⊆ I
be a finite set of generators. Let also V ⊆ A be a finite set such that V · T ⊇ S. A finite set is
bounded, so there is some m ≥ 1 with V · Im ⊆ In. But then

T · In ⊇ T · V · Im ⊇ S · Im = Im+1,

and we are done. □
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Now, B0 with the induced topology is J-adic, hence in particular open and bounded, and J
is finitely generated (as I is), so B0, J is a couple of definition and B is therefore a Huber ring.
Now let | · | be a valuation of B satisfying |B+| ≤ 1. Then also |A+| ≤ 1, and it follows from
Lemma 6.7 applied twice to the (same) set of generators of I ⊆ A0 resp. J ⊆ B0, that | · | is
continuous if and only if its restriction to A is. □

Remark 7.9. (1) The topology on B,B+ does not depend on the choice of the couple A0, I,
as follows from the the fact that the set of all such couples is cofiltered (Proposition
5.6(3)).

(2) The ring B in the proposition is not unique, as it depends on f1, . . . , fn, g and not just the
rational open of Spa(A,A+) which they cut out. However, after passing to completion,
this ambiguity will vanish, cf. ?? below.

(3) It is the additional flexibility of choosing B+ that ensures us that one can describe

Spa(A,A+)(f1,...,fng ) as Spa of some pair (B,B+).

7.2. Spectrality of Spa(A,A+).

Theorem 7.10 (Spa(A,A+) is spectral). Let (A,A+) be a Huber ring. Then Spa(A,A+) is
spectral and the set of rational open subsets forms a basis of qc opens, which is stable under
intersections.

Remark 7.11. Ideally, we would like to prove Theorem 7.10 by showing that Spa(A,A+) is pro-
constructible subset of Spv(A,A+) (of which we know that it is spectral by Theorem 3.3), and
using that spectrality passes to pro-constructible subsets. However, in general, the inclusion
Spa(A,A+) ↪→ Spv(A,A+) is not a spectral map (this follows from Example 7.3), hence the
image is not pro-constructible (as inclusions of pro-constructible subsets are spectral).

Proof of Theorem 7.10. First we note that X = Spa(A,A+) is sober: indeed, therefore it suffices
to look again at the proof of Lemma 3.17 and notice that the T0-part of the proof goes through
without change for X, and it only suffices to check that the valuation η constructed in the second
half of the proof is continuous, if any element of Z is so23.

To finish the proof we will construct a continuous retraction from a closed subset of Spv(A,A+)
to Spa(A,A+); then from quasi-compactness of all Spv(A,A+) –which we know by Theorem
3.3– (and hence their closed subsets) it follows that also Spa(A,A+) is quasi-compact. This and
Proposition 7.7 implies that all rational opens of Spa(A,A+) are quasi-compact, and by Lemma
7.6 they form a basis of topology. □

Thus, to finish the proof of Theorem 7.10 it remains to construct a continuous retraction from
a certain closed subset of Spv(A,A+) to Spa(A,A+). First note that by Lemma 6.7 for each a ∈
A◦◦ we have Spa(A,A+)∩Spv(A,A+)

(
1
a

)
= ∅. Thus Spa(A,A+) ⊆ Spv(A,A+)∖

⋃
a∈A◦◦ Spv(A,A+)

(
1
a

)
.

We now will construct a continuous retraction

r : Spv(A,A+)∖
⋃

a∈A◦◦

Spv(A,A+)

(
1

a

)
→ Spa(A,A+). (7.2)

Therefore, fix a valuation x ∈ Spv(A,A+)∖
⋃

a∈A◦◦ Spv(A,A+)( 1a). In particular, we have
|A+|x ≤ 1 and |A◦◦|x < 1. We have to attach to x a continuous valuation r(x) on A satisfying
|A+|r(x) ≤ 1. Let k(x)+ ↪→ k(x) be the valuation ring of x and its field of fractions. As |A|x ≤ 1,

23To do this, notice that by Lemma 6.7 the continuity of a valuation x ∈ X is encoded in the following property
of the corresponding relation | = |x ∈ 2A×A (as in the proof of Proposition 3.16): ∀ t ∈ A◦◦ and ∀ a ∈ A with
a ̸ | 0, there exists some n > 0 with tn|a.
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the natural map A+ ↪→ A → k(x) factors through a map φx : A
+ → k(x)+. Fix a couple of

definition A0, I in A, such that A0 ⊆ A+. Then consider the composed map

φr(x) : A
+ φx−→ k(x)+ ↠ Vr(x) := k(x)+

/ ⋂
n≥0

(φx(I) · k(x)+)n. (7.3)

The ideal I is finitely generated in A0, thus φx(I) ·k(x)+ is a finitely generated –hence principal–
ideal of the valuation ring k(x)+. Moreover, as I ⊆ A◦◦, we have |I|x < 1, so that φx(I)·k(x)+ ⊆
k(x)+ is a proper ideal and the quotient ring is not the zero ring. Thus φr(x) is indeed a

valuation of A+.24 Note that φr(x) does not depend on the choice of I. We even can be

more precise: the principal ideal φx(I) · k(x)+ of k(x)+ sits between two prime ideals of k(x)+

(as in Corollary 1.10!):
√
φx(I) = φxA

◦◦ ⊇ φx(I) · k(x)+ ⊇
⋂

n≥0(φx(I) · k(x)+)n and the

specialization relation between these two ideals is immediate. Thus the image of φx(A
◦◦) in the

quotient k(x)+/
⋂

n≥0(φx(I) · k(x)+)n is a prime ideal of height one.

Exercise 7.12. Show that Vr(x) is a microbial valuation ring, and the image of any element I
under φr(x) is topologically nilpotent. (Use Corollary 1.10)

As A◦◦ =
√
I (and so the same holds for their images in k(x)+), we also have that the image

under φr(x) of any element in A◦◦ is topologically nilpotent25. Thus, by Lemma 6.7 it becomes

clear that φr(x) defines a continuous valuation on A+, which we denote by x′ : A+ → Γx′ ∪ {0}.
We now extend it to a continuous valuation r(x) on A. If |t(x)| = 0 for all t ∈ I, then I ⊆ supp(x)
and Vr(x) = k(x)+. In this case, x′ is the restriction of x to A+ and we define r(x) = x. In the
other case we have the following lemma:

Lemma 7.13. Let | · | : A+ → Γ ∪ {0} be a valuation. Assume that there exists some t ∈ A◦◦

with |t| ≠ 0. Then | · | extends uniquely to a valuation on A. Moreover, | · | is continuous if and
only if its extension is.

Proof. As t is topologically nilpotent and A+ ⊆ A open, for any a ∈ A there is some n ≫ 0
with tna ∈ A+. Put |a| := |t|−n|tna|. Clearly, this is an extension of | · | to A. Moreover,
each extension has to satisfy this equation, hence is unique. The last assertion follows from the
characterization of continuity in Lemma 6.7. □

Denote by r(x) the unique continuous valuation on A attached to x′ by Lemma 7.13. As
|A+|r(x) ≤ 1, this finishes the construction of a map (7.2).

Remark 7.14. Note the splitting in two cases: if φx(I) = 0, then r(x) = x, and so r(x) might
be microbial or non-microbial. If φx(I) ̸= 0, then r(x) is necessarily microbial. If A is not
analytic, there might be non-microbial valuations in Spa(A,A+), and all of them must land in
the first case.

Lemma 7.15. The map

r : Spv(A,A+)∖
⋃

a∈A◦◦

U

(
1

a

)
→ Spa(A,A+)

is a continuous retraction (i.e., r(x) = x if x ∈ Spa(A,A+)). In particular, Spa(A,A+) is
quasi-compact.

24Note that φr(x) is a horizontal specialization of (restriction to A+ of) x.
25Actually, φr(x) is the largest (say, by rank) horizontal specialization of x, for which this holds
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Proof. Note that the quasi-compactness assertion follows from the preceeding ones and Theorem
3.3, as a retraction is in particular surjective and the image of a quasi-compact space under a
continuous map is quasi-compact again.

First we show that r is a retraction. Indeed, using Lemma 6.7 we see that if x was continuous,
|I(x)| ⊆ Γx∪{0} are cofinal, hence φx(I)k

+(x) is the principal ideal generated by a topologically
nilpotent element, hence

⋂
n≥1(φx(I)k

+(x))n = 0, and hence Vr(x) = k(x)+ and r(x) = x.

By Lemma 7.6 it suffices to show that r−1(U) is open for any rational open U ⊆ Spa(A,A+).
We claim that we have

r−1(Spa(A,A+)

(
f1, . . . , fn

g

)
) = Spv(A,A+)(

f1, . . . , fn
g

)∖
⋃

a∈A◦◦

Spv(A,A+)(

(
1

a

)
.

whenever f1, . . . , fn generate an open ideal in A. The inclusion ⊇ is immediate from the fact
that the map r commutes with the “localization” map (A,A+)→ (B,B+) from in Proposition

7.7. For the converse, let x ∈ r−1(Spa(A,A+)
(
f1,...,fn

g

)
), that is r(x) ∈ Spa(A,A+)

(
f1,...,fn

g

)
,

so |fi(r(x))| ≤ |g(r(x))| ≠ 0 for all 1 ≤ i ≤ n. Then either |t(x)| = 0 for all t ∈ I (I is an ideal

of definition as above), in which case r(x) = x and so x ∈ Spv(A,A+)
(
f1,...,fn

g

)
is automatic,

or there is some t ∈ I with 1 > |t(r(x))| ≠ 0, in which case we may, replacing all fi, g by
fit

N , gtN with N ≫ 0, assume that all fi, g ∈ A+. But then, by definition of x′ = r(x)|A+ ,

|fi(r(x))| ≤ |g(r(x))| simply means that φr(x)

(
fi
g

)
∈ Vr(x) (a priori it lies in only in FracVr(x)).

Then, looking at (7.3), it follows that φx

(
fi
g

)
∈ k(x)+, i.e., |fi(x)| ≤ |g(x)| for all i. To

show that x lies in Spv(A,A+)
(
f1,...,fn

g

)
it thus remains to show that |g(x)| ̸= 0. Suppose that

|g(x)| = 0. But then |fi(x)| = 0 for all i, and as f1, . . . , fn generate an open ideal of A, |t(x)| = 0
for all t ∈ IN with N ≫ 0. But then also |t(x)| = 0 for all t ∈ I, contradicting our assumption
on x. □

(Note that a posteriori r−1(Spa(A,A+)
(
f1,...,fn

g

)
) is also open when the ideal generated in A

by f1, . . . , fn is not open, but it need not be a standard open.) Theorem 7.10 is finally proven.

Remark 7.16. In [Mor19] a more conceptual/more general treatment of the retraction r is
given. Here we –relying on the presentation in [Ans]– have essentially considered the relevant
special case of [Mor19].

8. First examples and properties of analytic Spa(A,A+)

We have seen examples of Spa(A,A+) = Spv(A,A+) for a discrete Huber pair (A,A+) before.
Now let us make the first steps towards understanding the structure of Spa(A,A+) for analytic
(A,A+). First we recall some old and fix some new notation.

8.1. Residue fields and further notation. Let A,A+ be a (for now, arbitrary) Huber pair
and let X = Spa(A,A+). Given x ∈ X (and choosing a representative of the equivalence class of
valuations), we have the field k(x) = FracA/ supp(x), which we call the (uncompleted) residue
field of x. The valuation x factors as

A
φx−→ k(x)

|·|x−→ Γx ∪ {0}.
We denote the valuation of k(x) induced by x again by a 7→ |a(x)| ∈ Γx If f ∈ A, we write
f(x) := φx(f) ∈ k(x), and refer to it as the value of f at x.

Inside k(x) we have the valuation ring

k(x)+ = {a ∈ k(x) : |a(x)| ≤ 1}
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of x. Note that the value group of x can be written as Γx
∼= k(x)×/(k(x)+)×. As x ∈ X,

|f(x)| ≤ 1 for all f ∈ A+. Thus φx induces a map

φ+
x : A+ −→ k(x)+ and φx : A

+ → k(x)+ ↠ κ(x),

where κ(x) = k(x)+/mk(x)+ is the residue field of the valuation ring k(x)+ (not to be confused
with k(x)!)

We equip the field k(x) and its subring k(x)+ with a topology:

• If supp(x) is not open in A26 (i.e., x is analytic, cf. Definition 10.1), then we equip k(x)
with the topology induced by the valuation ring k(x)+.
• If supp(x) is an open ideal in A (i.e., x is not analytic), then we equip k(x), k(x)+ with
the discrete topology.

In particular, k(x) is a topological field. The maps φx, φ
+
x are continuous.

8.2. Case of a non-archimedean field. Let K be a non-archimedean field with defining
valuation | · | of rank 1. Then

K◦ = {a ∈ K : |a| ≤ 1}
are the integers of K, and

K◦◦ = {a ∈ K : |a| < 1}
is its maximal ideal. We also denote by ϖ a fixed pseudo-uniformizer of K (so ϖ ∈ K◦◦∖ {0}
is an arbitrary element) and by K = K◦/K◦◦ the residue field of K. (It would also be natural
to denote K◦,K◦◦ by OK ,mK . To prevent confusion, we try to avoid this notation.)

We want to understand Spa(K,K+) for a valuation ring K+ of K. This will turn out to be
a quite fundamental example of an analytic adic space. We want K+ to be a ring of integral
elements, so we better assume it to be open and bounded. In particular K◦ ⊇ K+ ⊇ K◦◦ .
All possible such K+ are in bijection with all valuation rings of the residue field K by Lemma
5.18(3) and Theorem 1.9(2), so in general there are very many such.

Proposition 8.1. With K,K+ as above, there is a natural homeomorphism

Spa(K,K+)
∼−→ Spec(K+/K◦◦). (8.1)

obtained from Spv(K,K+)
∼−→ SpecK+ (cf. (2.2)) by removing the trivial valuation on the left

and the generic point on the right.
In particular, taking K+ = K◦, we get the Huber pair (K,K◦) and Spa(K,K◦) = {∗}, the

only point being | · |.

Proof. Note that K+ is microbial with K◦◦ being its prime ideal of height 1 (as K+ ⊆ K◦ ⊆ K,
and so by Corollary 1.10(4), K◦ is a rank 1 localization of K+). Now, let x ∈ Spv(K,K+)
corresponding to a valuation ring K+ ⊆ V ⊆ K under the bijection (2.2). If V ⊆ K◦, then
K◦◦ ⊆ mV is the height 1 prime ideal and so x is continuous (by Lemma 6.7; as by the above
K◦◦ coincides with the set of topologically nilpotent elements in K with respect to the valuation
topology defined by V ). On the other side, if V = K, then x is the trivial valuation, which
is not continuous, cf. Remark 6.4(3). This shows bijectivity. As topologies on both sides are
induced by the topologies on from the corresponding Spv’s, the result follows from (2.2). □

Thus all points of Spa(K,K+) have the same residue field K, but the valuation rings vary:
the most generic point has the valuation ring K◦ and the closed point has the valuation ring
K+.

26Note that in this case there is some a ∈ A◦◦ ∖ supp(x), and then |a|x is a topologically nilpotent element of
k(x)+, which forces k(x)+ to be microbial!
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Remark 8.2. A point of a scheme is a map of schemes Spec k → X where k is a field. By
analogy a point in the analytic adic world should be something like a map Spa(K, ?)→ X with
K a non-archimedean field. It turns out that it is not enough to take ? = K◦, but it “is enough”
(for the understanding of analytic adic spaces) to let ? = K+ to vary through open bounded
valuation subrings K+ ⊆ K◦. A map Spa(K,K+)→ X with Spa(K,K+) as in Proposition 8.1
turns out to be a good notion of a “point” of an analytic adic space X.

8.3. Generizations and specializations in analytic Spa(A,A+).

Proposition 8.3 (Only vertical specializations). Let X = Spa(A,A+) for an analytic Huber
pair (A,A+). Then any specialization x⇝ y in X is vertical, that is, preserves the support. We
then have k(x) = k(y) as topological fields, and within this field, the valuation ring k(x)+ of x
is a localization of the valuation ring k(y)+ of y.

Proof. Let x⇝ y be a specialization in X. The map supp: Spa(A,A+)→ SpecR is continuous
hence preserves specialization, hence supp(x) ⊆ supp(y). Let f ∈ supp(y). Then |f(y)| = 0.
Note that there must be some t ∈ A◦◦ with |t(y)| ̸= 0 (otherwise | · (y)| is zero on A◦◦ and
hence 0 on A, as A is analytic; but |1(y)| = 1, contradiction). Fix such t ∈ A◦◦. As |f(y)| = 0,

we have y ∈ U( f
tn ) for all n > 0. As x is a generization of y, this implies x ∈ U( f

tn ), i.e.,
|f(x)| ≤ |t(x)|n, for all n. But as x is continuous and t ∈ A◦◦, Lemma 6.7 shows that t(x) is
topologically nilpotent in k(x), and so f(x) = 0, i.e., f ∈ supp(x), proving supp(x) = supp(y)
and hence also k := k(x) = k(y) (as abstract fields).

Now k(x)+, k(y)+ are valuation subrings of k and we check that k(y)+ ⊆ k(x)+. Indeed,

let a ∈ k(y)+; we can represent a = φx(
f
g ) with f ∈ A, g ∈ A∖ supp(y). As a ∈ k(y)+, we

have |f(y)| ≤ |g(y)| and as g ̸∈ supp(y), |g(y)| ≠ 0. Thus y ∈ X(fg ). As x ⇝ y, we also have

x ∈ X(fg ), i.e., |f(x)| ≤ |g(x)| ̸= 0, and so |a(x)| = |fg (x)| ≤ 1, i.e., a ∈ k(x)+. This proves

k(y)+ ⊆ k(x)+. Now, Corollary 1.10(4) shows that k(x)+ is a localization of k(y)+.

It remains to show that the topologies on k induced by x and by y agree. Recall the definition
of the valuation topology (Remark 6.3(2)) defined by y on k: a basis of opens neighboorhoods
of 0 is given by {a ∈ k : |a| < γ} for γ ∈ Γy. Now, y microbial (cf. Proposition 6.9; x is the
rank 1 generization) and if γ0 ∈ Γy is a cofinal element, then we replace the above basis of
neighboorhoods by {a ∈ k : |a| < γn0 } for all n > 0. But this is also a basis of neighboorhoods of
0 which define the valuation topology attached to x. This finishes the proof. □

(With other words, the valuation topology on k(x) is equal to the valuation topology defined
by the maximal generization of x, i.e., the one defined by the valuation subring k(x)◦ ⊆ k(x),
and the same for y. – This is a feature of microbial valuation rings.)

Now we look at all generizations (resp. all specializations) of a point of Spa(A,A+) for an
analytic Huber pair (A,A+).

Proposition 8.4 (Generalizations and specializations). Let X = Spa(A,A+) for an analytic
Huber pair (A,A+).

(1) For a point y ∈ X,

{generizations of y in X} ∼= Spa(k(y), k(y)+),

where k(y) carries the valuation topology. Moreover, y has a unique rank 1 generization,
which corresponds to the unique hight 1 prime ideal of k(y)+.

(2) Let x ∈ X be of rank 1. Then k(x)+ = k(x)◦, mk(x)+ = k(x)◦◦ and

{specializations of x in X} ∼= Spv(κ(x), φx(A
+)),
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where κ(x) = k(x)◦/k(x)◦◦ is the residue field of the valuation ring k(x)◦, equipped with
discrete topology, and φx : A

+ → k(x)◦ ↠ κ(x) is as in §8.1. The trivial valuation of
κ(x) corresponds to x.

Proof. (1): It is clear from Proposition 8.3 that the LHS is the subset of Spec k(y)+, consisting
of those valuation rings, which give rise to continuous valuations. Proposition 6.9 shows that
k(y)+ is microbial, so there is precisely one rank 1 generization. We now conclude by Proposition
8.1: the generic point of Spec k(y)+ corresponds to the trivial valuation with support supp(y),
and this is the only non-continuous one.

(2): Write K for k(x). As x is of rank 1, K+ = K◦ and mK+ = K◦◦ are clear from Proposition
8.1. Specializations of x correspond by Proposition 8.3 to valuation rings V of K, which

(i) are contained in K◦,
(ii) the corresponding valuation is continuous (w.r.t. the valuation topology on K), and
(iii) contain φ+

x (A
+).

By (i), K◦ is a localization of V , and so we have K◦ ⊇ V ⊇ mV ⊇ K◦◦. The valuation topologies
on K defined by K◦ and V coincide (cf. Proposition 8.3), so K◦◦ is also the set of topologically
nilpotent elements in K with respect to the topology induced by V . Thus, by Lemma 6.7,
the valuation | · |V corresponding to V is continuous, i.e., condition (ii) is now automatic. It
is immediately checked that taking preimage under the map K◦ ↠ K◦/K◦◦ = κ(x) induces a
bijection between valuation subrings of κ(x) and those of K, which are contained in K◦. So,
the set of all V ’s satisfying (i) and (ii) equals Spv κ(x). Condition (iii) then cuts out the subset
Spv(κ(x), φx(A

+)). The trivial valuation on κ(x) corresponds to V = K◦, and so to x. □

By Proposition 8.4(2), the set of all specilizations of a fixed rank 1 point of an analytic affinoid
adic space Spa(A,A+) has itself the structure of a (discrete) adic space.

8.4. Analytic vs. Tate.

Proposition 8.5. Let (A,A+) be an analytic Huber pair. Then Spa(A,A+) admits a finite
covering by rational open subsets Spa(Bi, B

+
i ) with (Bi, B

+
i ) Tate.

Proof. Write X = Spa(A,A+). Let t ∈ A◦◦. The standard open X
(
t
t

)
is not necessarily quasi-

compact (as the ideal t ·A is not necessarily open), but if I is any ideal of definition in A, which
contains t, and T a finite set of generators of I, then

X

(
t

t

)
=
⋃
N>0

X

(
TN

t

)
,

where each X
(
TN

t

)
is rational open, as TN generates the (open) ideal IN . The equality holds

by Lemma 6.7 as any x ∈ X is continuous. As (A,A+) is analytic, for any x ∈ X there is some
t ∈ A◦◦ with |t(x)| ̸= 0. Thus, varying t ∈ A◦◦, we obtain a cover of X by qc opens of the

form X
(
TN

t

)
with t ∈ A◦◦. By quasi-compactness of X, there is a finite subcover. Now, by

Proposition 7.7, X
(
TN

t

)
∼= Spa(B,B+), with (B = A

[
1
t

]
, B+) a Huber pair. By construction

(cf. proof of Proposition 7.7), t ∈ B◦◦. As t is also a unit of B, B is Tate. □
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9. The (closed) adic unit ball

Let the notation be as in §8.2. Assume that the non-archimedean field K is algebraically
closed. We have the Tate algebra in one variable over K,

K⟨T ⟩ :=

{∑
n

anT
n ∈ K[[T ]] : |an| → 0 as n→∞

}
,

and the of bounded elements

K⟨T ⟩◦ = K◦⟨T ⟩ =

{∑
n

anT
n ∈ K◦[[T ]] : |an| → 0 as n→∞

}
We wish to understand the space

B = B1
K = Spa(K⟨T ⟩,K◦⟨T ⟩).

First of all, note that we have the natural map B→ Spa(K,K◦) = {∗}. The point ∗ corresponds
to the equivalence class of the valuation | · | on K, and it is immediate to check that any point
(=equivalence class of valuations) of B contains precisely one valuation, which extends | · |. For
simplicity, we identify any point with the corresponding valuation (so that we now have to look
at actual valuations, not equivalence classes).

Next, note that

K◦⟨T ⟩ = K◦[T ]∧ϖ and K⟨T ⟩ = K◦⟨T ⟩[ϖ−1]

is the ϖ-adic completion of the polynomial algebra. Passing to completion of a Huber pair does
not change the adic spectrum (Theorem 11.8 below), so the natural map

B = Spa(K⟨T ⟩,K◦⟨T ⟩) ∼= Spa(K[T ],K◦[T ])

is a homeomorphism, and we have to describe the RHS. It turns out that B contains points of
rank 1 and 2. Let us start by describing the points of rank 1:

Lemma 9.1. (1) For any c ∈ K◦ and r ∈ [0, 1], the map

νc,r : K[T ]→ R≥0, f =

n∑
i=0

fi(T − c)i 7→ max
i
{|fi|ri}

lies in B and is of rank 1.
(2) We have

νc,r(f) = sup{|f(x)| : x ∈ D(c, r)},
where

D(c, r) := {x ∈ K : |x− c| ≤ r}
is the “closed” unit disc of radius r with center c. In particular νc,r only depends on this
disc and not on the choice of c.

(3) For any point ν ∈ B of rank 1, there exists a sequence of nested discs D1,r1 ⊇ D2,r2 ⊇ . . .
of radii ri ∈ [0, 1] contained in B, such that

ν(f) = inf
n→∞

sup
y∈Dn,rn

|f(y)|

Remark 9.2. We wrote “closed” in Lemma 9.1(2), as the condition |x − r| ≤ c looks like a
closed condition in the archimedean world. However, for any r = |α| ∈ |K×| the disc D(0, r) =
{x ∈ B : |T (x)| ≤ r} = B(Tα ) ⊆ B is in fact a rational open subset, and is not closed (as we will
see).
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Proof. (1): It is clear that νc,r(0) = 0, νc,r(1) = 1, νc,r(f + g) ≤ max{νc,r(f), νc,r(g)}. Further,
νc,r is continuous as it sends the topologically nilpotent elements K[T ]◦◦ = K◦◦[T ] to elements
[0, 1) ⊆ R≥0, all of which are cofinal. It remains to show that νc,r(fg) = νc,r(f)νc,r(g) for all
f, g ∈ K[T ]. Replacing f(·) by f(· − c) (and same for g) we may assume c = 0. Using that K is
algebraically closed, we may factor f into linear polynomials and it is clear that the claim holds
for arbitrary f, g, if it holds for all f = T − a (a ∈ K arbitrary) and arbitrary g. Assume we are
in this situation. Then there are two cases: either |a| ≠ r or |a| = r. In the first case we deduce

ν0,r(Tg) = rν0,r(g) ̸= |a|ν0,r(g) = ν0,r(ag).

Then we can use the sharp triangle inequality (which holds, as the usual ultrametric one holds):

ν0,r((T − a)g) = max{ν0,r(Tg), ν0,r(ag)} = max{rν0,r(g), |a|ν0,r(g)} = max{r, |a|} · ν0,r(g)
= ν0,r((T − a) · ν0,r(g),

finishing the proof in this case. For the other case note that r 7→ ν0,r(f) : [0, 1] → R≥0 is
continuous (indeed, each function r 7→ |fi| · ri is, and taking the maximum does not destroy
continuity). Now, regarding both sides of the last displayed equation as functions in r (with a, g
fixed), we deduce from the proven case that these functions agree at all points except possibly
r = |a|, and by continuity they must also agree for r = |a|, proving the other case.

(2): Exactly the same argument as in the proof of (1), one shows that f 7→ sup{|f(x)| : x ∈
D(c, r)} is a continuous valuation. This valuation agrees with νc,r on T − a for all a ∈ K, so
they must agree on all f ∈ K[T ].

(3): It suffices to show the equivalent (by (2)) claim that there is a family of nested discs
D(ci, ri), i ∈ I such that

ν(f) = inf
i∈I
{νci,ri(f)} (9.1)

Given ν : K[T ]→ R≥0, let I = OK , ci = i and ri = ν(T − ci). This family of discs is nested.
Indeed, fix two pairs (ci, ri), (cj , rj). Wlog suppose ri ≤ rj . Then |ci − cj | = ν(ci − cj) ≤
max{T − ci, T − cj}, and so for all a ∈ D(ci, ri) we have

|a− cj | ≤ max{|a− ci|, |ci − cj |} ≤ max{|a− ci|, ν(T − ci), ν(T − cj)} = max{ri, rj} = rj .

Thus D(ci, ri) ⊆ D(cj , rj), proving the claim. On both sides of (9.1) we have valuations, so
it suffices to check (9.1) on f = T − y (y ∈ K). Fix an i ∈ I. There are two cases: either
ν(T − y) ≤ ri or ν(T − y) > ri. Suppose the first option holds. Then, similar as above, we
compute

|y − ci| = ν(y − ci) ≤ max{ν(T − y), ν(T − ci)} = max{ν(T − y), ri} = ri,

and so D(y, ν(T − y)) ⊆ D(y, ri) = D(ci, ri). Thus, from (2) we deduce

ν(T − y) = sup
z∈D(y,ν(T−y))

{|z − y|} ≤ sup
z∈D(ci,ri)

{|z − y|} (2)
= νci,ri(T − y).

In the case ν(T − y) > ri, we can use the strict triangle inequality:

|ci − y| = ν(ci − y) = max{ν(T − ci), ν(T − y)} = ν(T − y).

(here we use that ν(T − ci) ≤ ri by the calculation at the beginning of proof of (3)). On the
other side,

νci,ri(T − y)
Def.
= max{ri, |y − ci|} = max{ri, ν(T − y)} = ν(T − y),

where the second equality follows from the preceeding computation. This verifies (9.1) for T −y
for each y ∈ K and we are done. □
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The sequence of nested discs in Lemma 9.1(3) can either converge to a point in B or not. In
fact, there are four options for points of rank 1 in B:

(1) classical points:

limn rn → 0 and
⋂

nDn,rn = {c} for some (necessarily unique) point c ∈ K◦. Then ν is
simply the valuation ν(f) = |f(c)|.

Note that the set SpecMaxK⟨T ⟩ of the maximal ideals of the Tate algebra K⟨T ⟩
is is in bijection with the set of classical points, as any maximal ideal is of the form
(T − c)K⟨T ⟩ for some c ∈ K◦. (This is a fact from the classical rigid-analytic geometry,
proven in [BGR84, 6.1.2 Cor. 3])

(2) Points on the limbs with radii ∈ |K×|:
limn rn = r > 0 and r ∈ |K×|. Then ν = νc,r for some c ∈ B. As proven in Lemma 9.1,
ν only depends on the disc, not on the choice of the point c in it. In particular, there is
exactly one disc with r = 1, namely K◦ = Dc,1 itself (c ∈ K◦ can be chosen arbitrarily!)
and the corresponding ν0,1 is called the Gauß point.

(3) Points on the limbs with radii ̸∈ |K×|:
limn rn = r > 0 and r ̸∈ |K×|. Then still, ν = νc,r for some c ∈ B. But these points
behave differntly than those of type (2).

Such points can only exist if |K×| ≠ R>0. We can get rid of them by enlarging K: if
K ′ ⊇ K is some alagebraically closed non-archimedean extension of K with r ∈ |K ′×|,
then we have a map BK′ → BK and there will be a point of type (2) which maps to ν.
Ultimately, one can arrange |K ′×| = R>0, in which case there are no points of type (3).

(4) “dead ends”: points which become “visible” after spherical completion

limn rn = 0 and
⋂

nDn,rn = ∅. This points “look like” the classical ones, except that
there is no corresponding point in K◦. The appearence of such points corresponds to the
fact that that an algebraically closed non-archimedean field K needs not be spherically

complete.27 An example is Cp = Q̂p. More precisely, one can construct an algebraically
closed non-archimedean field extension Ksc of K, with the same residue field, such that
Ksc is spherically complete. Then, for any point ν = infn νcn,rn ∈ B with rn → 0, there
is some a ∈ (Ksc)◦ such that ν(f) = |f(a)|sc, where | · |sc is the (unique) extension of | · |
to Ksc.

Remark 9.3. The fact that rn → 0 for a point ν of type (4) is a bit misleading for the intuition,
as it suggests that after replacing K by Ksc (notation as above), ν = | · (a)|sc becomes a point
of type (1). However, this is not true, and ν becomes a point of type (2) or (3)! Indeed, note
that as K is complete, it is closed in Ksc. Thus r := infc∈K◦ |c− a| > 0 is always positive. Then
ν becomes the point νa,r ∈ BKsc , which is of type (2) or (3). If we enlarge K further, we can
ensure that r ∈ |K×|, so that ν becomes a point of type (2).

Thus, if one enlargesK, such that it becomes algebraically closed non-archimedean spherically
complete field with |K×| = R>0, then there are only rank 1 points of type (1) and (2).

Sofar (ignoring points of higher rank) we can think of B as a tree having the Gauß point
(r = 1) as its root, points of type (1) (r = 0) as its leaves and the tree-trunk and branches
consisting of points of type (2),(3) (r ∈ (0, 1)) and (4).

27A non-archimedean field is called spherically complete if the intersection of any family of nested balls in K◦ is
non-empty.
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Remark 9.4. The branches of this tree are in a (non-precise) sense “continuous”, meaning that
we may vary the real variable r ∈ [0, 1] moving along the branches from the root to the leaves
(or back). Let us make this more precise. For fixed c ∈ K◦ define a function

γc : [0, 1]→ B, r 7→ νc,r.

Thus when r moves from 0 to 1, γc(r) moves from the Gauß point to c along the branches of the
tree. Note that if c, d ∈ K◦, then γc, γd coincide for r ∈ [0, |c−d|] and do not coincide thereafter
(as D(c, r) = D(d, r)⇔ r ≤ |c− d|). This corresponds to the branching of the tree.

The function γc is not continuous. Indeed, take wlog c = 0. Then for any α ∈ K◦∖ {0},
γ−1
0 (B(Tα )) = [0, r] is a closed intervall, whereas B(Tα ) is an open subset of B. Thus, we should

rather think of γc as being anti-continuous, i.e., the preimage of qc opens are closed. A precise
analysis of continuity of γc shows that it is continuous at r if and only if r ̸∈ |K×|, see [Con15,
Lecture 11, Prop. 11.2.10] for a proof.

Now we determine the residue fields, the value groups and the residue fields of valuation rings
of all points of types (1)-(4). Write K = K◦/K◦◦.

(1) For c ∈ K◦, supp νc,0 = (T − c), so it is clear that

k(νc,0) ∼= K and κ(νc,0) = K and Γνc,0 = |K×|.

(2) Wlog assume c = 0 and let r ∈ (0, 1] ∩ |K×|. Write ν = ν0,r. We claim that

k(ν) = K(T ) and κ(ν) = K

(
T

a

)
and Γν = |K×|

for an arbitrary a ∈ K◦ with |a| = r.

Any f ∈ K[T ] has only finitely many zeros, so supp ν0,r = 0 by Lemma 9.1(2).

Thus k(νc,r) = K(T ).28 We have k(ν)+ = {fg ∈ K(T ) : ν(f) ≤ ν(g)} and its maximal

ideal mk(ν)+ is given by replacing ’≤’ by ’<’. Note that k(ν)+ ∩ K[T ] = K◦[Ta ], and

mk(ν)+ ∩K[T ] = K◦◦[Ta ], for an arbitrary a ∈ K× with |a| = r. Putting K = K◦/K◦◦,

this induces a map on quotients K
[
T
a

]
→ κ(ν), which is injective, as clearly K◦[Ta ] ∩

mk(ν)+ = K◦◦[Ta ]. Now κ(ν) is a field, so this injection factrs through an injection

K

(
T

a

)
↪→ κ(ν).

of fields. This injection is in fact an isomorphism. Let us check this for r = 1 (for
simplicity; to deduce the general case apply the transformation T 7→ T

a ), in which case
ν(h) is the maximum of all valuations coefficients of h ∈ K[T ]. Start with f, g ∈ K[T ]

such that f
g ∈ k(ν)

+, i.e., ν(f) ≤ ν(g). If g ∈ K◦[T ] (and hence also f ∈ K◦[T ]), nothing

is to do. Assume g ̸∈ K◦[T ] and let b ∈ K◦ be any element with |b| = ν(g)−1. Then
f
g = bf

bg and bf, bg ∈ K◦[T ], i.e., f
g ∈ FracK[T ], proving the claim. Fnially, for Γν , we

again may rescale and assume r = 1, in which case Γν = |K×| is clear.
(3) Wlog assume c = 0 and let r ∈ (0, 1]∖ |K×|. Write ν = ν0,r. We claim that

k(ν) = K(T ) and κ(ν) = K and Γν = |K×| × rZ.

The claim about Γν is immediate from definition. Also, as for type (2) points, it is clear
that the support is trivial and so k(ν) = K(T ). For f =

∑n
i=1 fiT

i, ν(f) = maxi{|fi|ri}.
We have ν(f) ≤ 1 (resp. ν(f) < 1) if and only if f0 ∈ K◦ and |fi| < r−i for all i > 0

28Note that we work with the Huber pair (K[T ],K◦[T ]), not (K⟨T ⟩),K◦⟨T ⟩): otherwise, the residue field k(νc,r)
would be bigger. Only the completed residue field (cf. ?? below) is an invariant of the adic space!
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(resp. f0 ∈ K◦◦ and |fi| < r−i for all i > 0). Note that equality can never hold as
r ̸∈ |K×|, which is divisible as K is algebraically closed. We deduce

K[T ] ∩ k(ν)+ =

{∑
i

fiT
i : f0 ∈ K◦; |fi| < r−i ∀i > 0

}
,

and the same formula with K◦ replaced by K◦◦ for K[T ] ∩ mk(ν)+ . Thus K[T ] ∩
k(ν)+/K[T ] ∩ mk(ν)+

∼−→ K, f 7→ f(0) = f0. This quotient is (as in case (2) above)

just a subring of κ(ν) = k(ν)+/mk(ν)+ , so we are not yet done, but essentially the same

argument applies to determine κ(ν) using the following observation: an f
g ∈ K(T ) with

f =
∑

i fiT
i, g =

∑
i giT

i ∈ K[T ], lies in k(ν)+∖mk(ν)+ if and only if ν(f) = ν(g),
which can only be the case if the maximum computing ν(f), ν(g) is attained by the
same value of i. It then follows that κ(ν) ∼= K.

(4) If ν is of type (4), then one can verify that

k(ν) = K(T ) and κ(ν) = K and Γν = |K×| × rZ.

We omit the details.

Now we determine the higher rank points of B. By Proposition 8.4(2), each such point is the
specialization of a unique point of rank 1. We have to consider the image of

φx : A
+ = K◦[T ]→ k(x)+ ↠ κ(x).

If x is of type (1),(3) or (4), then κ(x) = K and φx(K
◦[T ]) = K, and so Spv(K,K) = {∗}.

With other words, x has no proper specializations. When x was of type (2), we obtain some
rank 2 points, which are called of type (5):

(5) Wlog assume c = 0 and let r > 0. Let x = ν0,r be a point of type (2). Then κ(X) =

K
(
T
a

)
for any a ∈ K× with |a| = r. Concerning φx(K

◦[T ]) there are two different cases:

• x is the Gauß point of B (r = 1): then φx(K
◦[T ]) = K[T ] ⊆ K(T ) = κ(x), and

the specializations of x are in bijection with points of

Spv(K(T ),K[T ]) ∼= SpecK[T ] ∼= AK

The generic point of AK corresponds to x, and all closed points correspond to
points of rank 2 of B, with rank 1 generization x.

• x is not the Gauß point of B (r < 1): then φx(K
◦[T ]) = K ⊆ K(T ) = κ(x), and

the specializations of x are in bijection with points of

Spv(K(T ),K) ∼= PK .

To make the rank 2 valuations explicit, let c ∈ K◦, r ∈ (0, 1] ∩ |K×|. Let Γ = R>0 × γZ
with γ infinitisimally less than 1, i.e., s < γ < 1 for any s ∈ (0, 1) ⊆ R>0 (so Γ ∼= R>0×Z
with lexicographical order). Then we can form the valuations

νc,<r : f =
∑
i

fi(T − c)i 7→ max
i
{|fi| · (rγ)i}

νc,>r : f =
∑
i

fi(T − c)i 7→ max
i
{|fi| · (rγ)−i}

One shows (as above) that these are continuous valuations, and all of them, except νc,>1,
are ≤ 1 on K◦[T ] (note that νc,>1(T ) = γ−1 > 1). Moreover, νc,<r only depends on the
open disc D◦(c, r) = {a ∈ K◦ : |a− c| < r}.
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It remains to state which points of type (2) specialize to which ones of type (5). First note
that a point νc,r of rank 2 only depends on the disc D = D(c, r), not on its center c (any point
c′ ∈ D could be the center!), So, if D is any of the discs D(c, r), then let us write

νD

for the corresponding type 2 point. Then νD specializes to νc,<r if and only if D = D(c, r).

We can relate this to open discs: note that each open disc D◦ = D◦(c, r) only depends on
c mod aK◦◦, where a ∈ K× satisfies |a| = r. For example, for r = 1, the open discs are in
bijection with K◦/K◦◦ ∼= K; for r < 1 the picture is similar. Thus, if D is a closed disc, then
the collection of open subdiscs of radius r contained in D is in bijection with K: for c ∈ D, the
disc D◦(c, r) goes to c mod |a|K◦◦.

With other words, the specializations of type (5) of νD are in bijection with the open discs
contianed in D (those sit “below” νD), resp., if r < 1, then there is one more point νc,>r

(independent on the choice of c ∈ D), which sits “above” νD.

Remark 9.5 (Higher rank points replace admissible covers). Let |ϖ| = ε, so that ε ∈ (0, 1).
We have the opens

U := B
(
1

T

)
= {x ∈ B : |T (x)| = 1} , and

V :=
⋃
n>0

B
(

T

ϖ1/n

)
=
⋃
n>0

{
x ∈ B : |T (x)| ≤ ε1/n

}
of B. When we only look at points of type (1) (that is the classical points, so we pass to the
rigid-analytic unit ball), then U, V cover the whole ball set-theoretically. This even holds when
we look at all points of rank 1. In the rigid-analytic world this issue had to be resolved by
introducing the G-topology of admissible coverings and showing that U ∪ V is not an covering
of B in the G-topology.

In adic spaces, –and this is an imporant advantage– the rank 2 point ν0,<1 does not lie in
U ∪ V : ν0,<1 ̸∈ U as ν0,<1(T ) = γ < 1 and ν0,<1 /∈ V as ν0,<1(T ) > λ for any λ ∈ (0, 1) ⊆ R>0.
Thus, in the adic world we have U ∪ V ̸= B.

Remark 9.6 (The “open” and the “closed” closed unit balls). We can make the point ν0,>1

part of our ball by shrinking A+ = K◦[T ]. Let A++ = K◦ +K◦◦[T ] in K[T ]. Then

B′ = Spa(K[T ], A++) = B ∪ {ν0,>1}
(set-theoretically). One might call B the “open closed unit ball” and B′ the “closed closed unit
ball”, for the following reason. When we embed B into the adic unit ball B2(0) = {|T | ≤ 2} of
radius 2, then the image will be the rational open subset B2(0)

(
T
1

)
. Its closure will be exactly

B′.

Remark 9.7 (The “closed open unit ball”). The complement in B of the rational open B
(
1
T

)
=

{x : |T (x)| = 1} is the closed (even closed constructible) subset

B◦ = {x : |T (x)| < 1}.
To it all points belong, whose correponding disc (or family of discs) is contained in the open
unit disc D◦(0, 1) = {c ∈ K◦ : |c| < 1}. Note that by Proposition 8.4(1), B◦ cannot be of the
form Spa(A,A+) for an (at least analytic) Huber pair (A,A+), as its point ν0,<1 has rank two
but has no rank 1 generization. Thus, a closed subset of an affinoid adic space need not to carry
the structure of an affinoid (analytic) adic space (which is quite annoying if one compares to the
situation for schemes).
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Remark 9.8 (The adic affine line). To construct the adic analogue of the affine line over K,
we can take the union of concentric closed balls of growing radii: for n ≥ 0, let

Bn = Spa (K ⟨ϖnT ⟩ ,K◦ ⟨ϖnT ⟩) ,

where K ⟨ϖnT ⟩ =
{∑∞

i=0 ai (ϖ
nT )i : |ai| → 0

}
. Then Bn is a closed unit ball with radius 1

ϖn

(just as on B the inequality |T | ≤ 1 is forced, on Bn we must have |ϖnT | ≤ 1, i.e., |T | ≤ 1
|ϖn|). For

n < m, the inclusion K ⟨ϖmT ⟩ ↪→ K ⟨ϖnT ⟩ induces the inclusion of balls Bn ↪→ Bm. Then –at
least as a topological space– we can construct the adic affine line as the union A1,ad =

⋃
n≥0 Bn.

Note that A1,ad is not quasi-compact.

Remark 9.9 (Maximal Hausdorff quotient). Due to the presence of non-closed points, B is not
Hausdorff. The maximal Hausdorff quotient B ↠ BHd will just identify all points of type (5)
with the corresponding point of type (2), and change nothing otherwise. BHd can be identified
with the Berkovich spectrum of K⟨T ⟩.

More generally, for a Tate–Huber pair (A,A+) the maximal Hausdorff quotient of X =
Spa(A,A+) coincides with the quotient X of X by the equivalence relation killing all specializa-
tions (cf. [Bha17, Proposition 7.4.13])29. Moreover, if A is an affinoid K-algebra and A+ = A◦,
then X also coincides with the Berkovich space of A. In this sense, adic spaces generalize
Berkovich spaces.

Remark 9.10 (Differences to spectra of rings). Spaces Spa(A,A+) for analytic Huber rings
A,A+ are spectral, as we have shown. However, they behave quite differently from schemes. In
particular:

• There are actually not so many specialization relations in B, e.g., it does not have a
generic point (and is, in partuclar, not irreducible). Instead there is the Gauß point.
• More precisely, the space B is quite close to its Hausdorff quotient (cf. Remark 9.9),
whereas the Hausdorff quotient of the topological space of a noetherian scheme X is just
π0(X), the finite discrete set of connected components.
• The set of all generizations of a point y ∈ Spa(A,A+) is a totally ordered chain of points
(Proposition 8.3). This is very different in schemes, where the set of generizations of
x ∈ SpecA is homeomorphic to the local scheme SpecOX,x, which can be arbitrarily
complicated (even if X is of finite type over a field).

10. Affinoid fields and adic points

10.1. Analytic points. We can single out the collection of points of Spa(A,A+) which behave
like points in some Spa(B,B+) with B analytic:

Definition 10.1. Let (A,A+) be a Huber pair. A point x ∈ Spa(A,A+) is called analytic if
supp(x) is not open in A. The subset of all analytic points with subspace topology is denoted
Spa(A,A+)an.

Remark 10.2. If A is analytic, then any point of Spa(A,A+) is analytic. Indeed, if supp(x) is
open, then it contains A◦◦ (by Remark 6.4(2)), and so the unit ideal, contradiction.

Lemma 10.3. Let x ∈ Spa(A,A+). Then the following are equivalent:

(i) x is not analytic
(ii) |t(x)| = 0 for any t ∈ A◦◦

29The situation is a bit subtle: by Proposition 8.4 we know that the subset Xrk=1 ⊆ X of rank 1 points is in
bijection with X, but the subspace topology on it differs from the quotient topology on X, so the natural map
Xrk=1 → X is not a homeomorphism in general.
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(iii) If A0, I = (t1, . . . , tn)A0 is some couple of definition of A, then |ti(x)| = 0 for all i.

Moreover, A is analytic if and only if Spa(A,A+) = Spa(A,A+)an.

Proof. (i) ⇔ (ii): By Remark 6.4(2), supp(x) is open if and only if it contains A◦◦. (ii) ⇒ (iii)
is clear; (iii) ⇒ (ii): any t ∈ A◦◦ is nilpotent, so tN ∈ I for N ≫ 0, and then (iii) implies that
|tN (x)| = 0, and hence also |t(x)| = 0. For the last statement, note that if A is analytic, then any
point in x ∈ Spa(A,A+) is analytic (by equivalence (i)⇔ (ii)). Suppose A is not analytic. Then
we may find some prime ideal A◦◦ ⊆ p ⊆ A. By Remark 6.4(2), p is open. Hence by Remark
6.4(1), the trivial valuation xp on A with support p is continuous. As also |f(xp)| ≤ 1 for all
f ∈ A+, we have xp ∈ Spa(A,A+). As the support supp(xp) = p is open, xp is not analytic. □

Lemma 10.4. Let (A,A+) be a Huber pair with a couple of definition A0, I = (t1, . . . , tn)A0.
Then

Spa(A,A+)an =

n⋃
i=1

Spa(A,A+)

[
f1, . . . , fn

fi

]
.

In particular, Spa(A,A+)an is qc open subset of Spa(A,A+) (and hence spectral).

Proof. Let x ∈ Spa(A,A+). Then x lies in the RHS if and only if |ti(x)| ̸= 0 for some i. By
Lemma 10.3 this is equivalent to x being analytic. □

We can generalize Proposition 6.9:

Exercise 10.5. Let (A,A+) be a Huber pair. Any point in Spa(A,A+)an is microbial and has
rank ≥ 1.

Proposition 10.6 (Description of analytic points). Let (A,A+) be a Huber pair. There is a
natural bijection

Spa(A,A+)an
∼−→
{
φ : A+ → V

∣∣0 ̸= φ(A◦◦) ⊆ pV
}/
∼

where V is a microbial valuation ring, pV its prime ideal of height one, φ a homomorphism,
and the equivalence relation is generated by identifying φ : A+ → V with α ◦ φ : A+ → V →W ,
whenever α is a faithfully flat map of microbial valuation rings, preserving the height one prime
ideals.

Proof. For x ∈ Spa(A,A+)an, we have the attached map φ+ : A+ → k(x)+. Then k(x)+ is micro-
bial by Exercise 10.5 (cf. also Proposition 6.9), φ+

x (A
◦◦) ⊆ pV by Lemma 6.7, and φ+

x (A
◦◦) ̸= 0

(by Lemma 10.3 as x is analytic). This induces the map from left to right side. Conversely, start
with some φ : A+ → V on the right side. By Lemma 6.7, this is a continuous valuation of A+.
By assumption, for some t ∈ A◦◦ we have φ(t) ̸= 0. Thus, by Lemma 7.13, φ extends to a map

φ̃ : A → K = Frac(V ) (defined by φ̃(a) = φ(tNa)
φ(tN )

for N ≫ 0), corresponding to a continuous

valuation x of A. Its restriction to A+ is φ, so in particular |f(x)| ≤ 1 for all f ∈ A+, and |f(x)|
are cofinal for all f ∈ A◦◦. With other words, x ∈ Spa(A,A+). By Lemma 10.3, x is analytic as
there is some t ∈ A◦◦ with |t(x)| ≠ 0. This defines an inverse to the above map. □

Exercise 10.7. Provide a similar description for non-analytic points. (Solution: Spa(A,A+)non−an =
Spv(A/A◦◦ ·A,A+/A◦◦ ·A+), see [Gle24, 1.19].

10.2. Adic points and affinoid fields. In fact, one can unify both cases (analytic and non-
analytic), by introducing the following notion.

Definition 10.8. An affinoid field is a Huber pair (K,K+) where K is either a (complete!)
non-archimedean or a discrete field, and K+ is an open and bounded valuation subring.

Note that in both cases Spa(K,K+) is a chain of specializations:
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• if K is non-archimedean, Spa(K,K+) ∼= SpecK◦/K◦◦, cf. Proposition 8.1.
• if K is discrete, K◦◦ = 0 and Spa(K,K+) ∼= SpecK+.

To any point of an adic spectrum we can attach an affinoid field:

Construction 10.9. Let X = Spa(A,A+) for Huber pair (A,A+). Let x ∈ X. Attached to x
we have the pair (k(x), k(x)+) from §8.1. Recall that both are equipped with a topology: non-
archimedean in the analytic case and discrete in the other case. Then we have the completion

(K(x),K(x)+) = (k̂(x), k̂(x)+)

(so, in the discrete case K(x) = k(x)), which is an affinoid field. Clearly, there is a natural map
(A,A+)→ (K(x),K(x)+), making (K(x),K(x)+) an (A,A+)-algebra.

In fact, we will see soon (Theorem 11.8) that completion does not change the adic spectrum,
so we have

Spa(K(x),K(x)+) ∼= Spa(k(x), k(x)+).

Recall that for an (affine) scheme X(= SpecA), the topological space of X can be described
as the set of equivalence classes of maps A → k to fields. For adic spaces we have something
similar:

Proposition 10.10 (Points correspond to maps to affinoid fields). We have a natural bijection

Spa(A,A+)
∼−→
{
Maps φ : (A,A+)→ (K,K+) into affinoid fields s.t. im(Fracφ(A)→ K) dense in K

}
/ ∼

x 7→ (K(x),K(x)+)

Here, two maps φi : (A,A
+) → (Ki,K

+
i ) (i = 1, 2) are equivalent (φ1 ∼ φ2) if there is an

isomorphism ψ : (K2,K
+
2 )→ (K1,K

+
1 ) of affinoid fields, such that φ1 = ψ ◦ φ2.

Under this bijection, analytic (resp. non-analytic) points correspond to non-archimedean
(resp. discrete) affinoid fields.

Proof. We construct an inverse. Let φ : (A,A+) → (K,K+) be an element of the RHS. Com-
posing it with the valuation of K, we get a valuation x of A which is continuous (as φ is
continuous) and satisfies |f(x)| ≤ 1 on A+ (as φ(A+) ⊆ K+). Thus x ∈ Spa(A,A+). By
construction x is the image of the closed point of Spa(K,K+) under the induced map on adic
spectra. As k(x) = FracA/ supp(x), we get a map (k(x), k(x)+) → (K,K+). This map is
continuous in both cases (analytic and non-analytic), as can be checked directly (in the non-
analytic case A◦◦ 7→ 0 ∈ k(x), so the topology on k(x) is discrete). As (K,K+) is complete, it
then factors through completion to give a map (K(x),K(x)+) → (K,K+). As by assumption
the image of Frac(φ(A)) = k(x) → K was dense in K, we must have K(x) = K and then also
K(x)+ = K+. □

Note that if x ∈ Spa(A,A+) is non-analytic, |t(x)| = 0 for all x ∈ A◦◦, so A◦◦ ⊆ supp(x) and
so the map A → k(x) is indeed continuous, when k(x) has the discrete topology. This is the
reason why we may put the discrete topology on k(x).

11. Further features of Spa(A,A+)

11.1. Zariski closed subsets.

Proposition 11.1. Let (A,A+) be a Huber pair and J ⊆ A an ideal.

(1) The category of Huber pairs (B,B+) over (A,A+) with the property J · B = 0 has an
initial object (A/J,A/J+), where A/J+ is the integral closure of the image of A+ in
A/J .
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(2) The natural map Z = Spa(A/J,A/J+)→ Spa(A,A+) = X is a homeomorphism onto a
closed subset, whose image consists of precisely those valuations whose support contains
J .

(3) If in (2) A is analytic, Z is pro-(qc open) in X.

Proof. (1): Let (A0, I) be a couple of definition of A with A0 ⊆ A+. Let J0 = J ∩ A0. Then
A0/J0 ⊆ A/J . Put I := im(I ↪→ A0 ↠ A0/J0) = I + J0/J0, an ideal of A0/J0. As in the proof

of Proposition 7.7, we make A/J into a topological group under addition by declaring I
n
to be

a system of fundamental neighboorhoods of 0 (so in particular A0/J0 has the I-adic topology).
With this topology A/J is a topological ring. Indeed, as in the proof of loc. cit. it suffices to
prove that for any ā ∈ A/J , n > 0, there is some m > 0 with āI

m ⊆ I
n
; but I

n
= In + J0/J0;

so, fix some lift a of ā and some m > 0 with aIm ⊆ In. Then a(Im + J0) = aIm + aJ0 ⊆ In + J
(as J ⊆ A is an ideal containing J0), which maps to I

n ⊆ A/J .
Thus, A/J is Huber ring with (A0/J0, I + J0/J0) a couple of definition. Now A/J+ contains

the image of A+, hence of some power of I, hence is open; moreover, by construction it is
intergrally closed, so it is a ring of definition and (A/J,A/J+) is a pair of definition. Also, it
is clear that the map (A,A+)→ (A/J,A/J+) is continuous, as In maps into I

n
. The universal

property is straightforward.

(2): Injectivity, continuity and description of the image of Z → X is clear from construction.
In particular, Z is the preimage under supp: Spa(A,A+) → SpecA of the closed subset V (J).
Evidently, standard opens in Z come from standard opens ofX, so the map is a homeomorphism.

(3): If X is analytic, it is covered by finitely many rational opens Xi, all of which are Tate
(Proposition 8.5); Z ∩Xi ↪→ Xi is then is cut out by the image of J ; as a finite union of pro-(qc
open) subsets is pro-(qc open), we may thus assume that X is Tate. In this case, let ϖ ∈ A be
a pseudo-uniformizer. Then

i(Z) ⊆
⋂
f∈J

⋂
n≥0

X

(
f,ϖn

ϖn

)
,

as |f(x)| = 0 for all f ∈ J . Conversely, if x is in the RHS, then |f(x)| ≤ |ϖn(x)| for all f ∈ J
and all n > 0, so f(x) = 0 for all f ∈ J , and so x ∈ Z. □

Note that pro-(qc opens) are stable under generization, so Zariski closed subsets of analytic
adic spectra have this property. This is quite different in the world of schemes!

Example 11.2. Only very few closed subsets are Zariski closed. For example, the proper Zariski
closed subsets of X = B are the finite unions of classical (type (1)) points.

11.2. The specialization map. Let (A,A+) be an analytic Huber pair. We construct a natural
spectral map30

sp: Spa(A,A+) −→ Spec(A+/A◦◦), (11.1)

called the specialization map. For x ∈ Spa(A,A+) we have the corresponding map φ+
x : A+ →

k(x)+, which induces the map

Specφ+
x : Spec k(x)+ → SpecA+.

Now k(x)+ is a local ring, and we define sp(x) ∈ Spec(A+) to be the image (φ+
x )

−1(mk(x)+)

of the closed point mk(x)+ in SpecA+. By continuity (Lemma 6.7), φ+
x (A

◦◦) ⊆ p, where p

is the smallest non-zero prime ideal of k(x)+ (recall that k(x)+ is microbial). In particular,
(Specφ+

x )(mk(x)+) = (φ+
x )

−1(mk(x)+) ⊇ A◦◦. With other words, sp(x) lies in the closed subset

Spec(A+/A◦◦).

30Recall that Spa(A,A+) → SpecA is in general not spectral.
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Lemma 11.3. For an analytic Huber pair (A,A+), the map sp from (11.1) is spectral.

Proof. We have to show that sp is continuous and quasi-compact. Therefore, it suffices to
show that for any f̄ ∈ A+/A◦◦, sp−1(D(f̄)) ⊆ Spa(A,A+) is qc open. Let f ∈ A+ be any
lift of f̄ (so D(f̄) = D(f) ∩ Spec(A+/A◦◦) ⊆ Spec(A+)). Now, for x ∈ Spa(A,A+), sp(x) =
(φ+

x )
−1(mk(x)+) ∈ D(f̄) if and only if φ+

x (f) ̸∈ mk(x)+ , that is |f(x)| = 1. That is, sp−1(D(f̄)) =

Spa(A,A+)
(

1
f

)
is a qc open of Spa(A,A+). □

Example 11.4. Consider X = Spa(K,K+) for a non-archimedean field K and an open and
bounded valuation subring K+. Then sp is nothing else than the isomorphism of Proposition
8.1.

Example 11.5. Consider the closed unit ball B = Spa(K⟨T ⟩,K◦⟨T ⟩) from §9. Then A+/A◦◦ =
K[T ] and the specialization map

sp: B→ A1
K

= SpecK[T ]

Then sp(ν0,1) = the generic point of A1
K
, and for r < 1, sp(νc,r) = c mod K◦◦ ∈ K. Indeed,

let x ∈ B. Let ᾱ ∈ K with (arbitrary) lift α ∈ K◦. As in the proof of Lemma 11.3, sp(x) = ᾱ
(closed point of A1

K
) ⇔ sp(x) ̸∈ D(T − α)⇔ |(T − α)(x)| < 1. If x = νc,r, then

|(T − α)(νc,r)| = max{|c− α|, r}.

So, if r = 1, then ν0,1 ∈ D(T −α) for any α, that is sp(ν0,1) is the generic point of A1
K
. If r < 1,

|(T −α)(νc,r)| < 1 if and only if |α− c| < 1 and so sp(νc,r) = ᾱ⇔ c̄ = ᾱ ∈ K. Similarly, we can
determine sp(x) for x of type (3), and by continuity extend from type (2) points to their type
(5) specializations.

Example 11.6. B′ = Spa(A,A++) be the “closed closed unit ball”, as in Remark 9.6. Then
A++ = K◦ + K◦◦[T ] and so A++/A◦◦ ∼= K. Thus the specialization map sp: B′ → {∗} is
constant.

11.3. Passage to completion.

Definition 11.7. The completion of a Huber pair (A,A+) is the Huber pair (Â, Â+), where Â

is the completion of A and Â+ is the integral closure of the image of A+ in Â.

The adic spectrum does not change when we pass to completion:

Theorem 11.8 (Completion of a Huber pair). Let A,A+ be a Huber pair. Then the natural
map

Spa(Â, Â+)→ Spa(A,A+)

identifies the rational open sets. In particular, it is a homeomorphism.

Proof. Each continuous valuation | · | on A extends uniquely to one on Â by setting |a| :=
limn→∞ |an| for a Cauchy sequence a = (an)n≥1. Clearly, if |a| ≤ 1 for a ∈ A+, then also

|a| ≤ 1 for a ∈ Â+. This gives the natural bijection. It is clear that any rational open of

Spa(A,A+) pulls back to a rational open of Spa(Â, Â+), defined by the same elements. A priori,

Spa(Â, Â+) can have more rational opens, but Proposition 11.9 shows that it does not, finishing
the proof. □

In fact, we show that if we slighty change the defining elements f1, . . . , fn, g, this does not
affect the corresponding rational open:
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Proposition 11.9 (Perturbation of rational opens). Let (A,A+) be a complete Huber pair. Let
f1, . . . , fn, g ∈ A be such that f1, . . . , fn generate an open ideal of A. Then there exists an open
neighboorhood V of 0, such that for all f ′i ∈ fi + V (1 ≤ i ≤ n), g′ ∈ g + V , the ideal generated
by f ′1, . . . , f

′
n is open and

Spa(A,A+)

(
f1, . . . , fn

g

)
= Spa(A,A+)

(
f ′1, . . . , f

′
n

g′

)
.

Proof. First of all, adding the element g to f1, . . . , fn (this does not change the rational open),
and renumbering, we may assume that f1 = g.

Choose a couple of definition (A0, I) of A such that I is contained in the (open!) ideal of A
generated by f1, . . . , fn (first choose any I and then take a high enough power which lies in that
open ideal). Let t1, . . . , tr be a finite set of generators of I.

First, we find an open W ⊆ A such that perturbation of f1, . . . , fn by W does not change the
openness of the ideal generated by the fi. As I ⊆ (f1, . . . , fn)A, we may write, for 1 ≤ j ≤ r,
tj =

∑n
i=1 aijfi with some aij ∈ A. The set S = {aij}ij is finite, hence bounded, and hence we

may find a small open W ⊆ A, such that S ·W ⊆ I2. Then, if for each i, f ′i ∈ fi +W , then
t′j =

∑m
i=1 aijf

′
i ∈ ti + I2, so in particular t′j ∈ A0; Lemma 11.10 then implies that the ideal of

A0 generated by the t′j ’s is equal to I. In particular (f ′1, . . . , f
′
n)A contains I, and is therefore

open.

Lemma 11.10. Let I = (t1, . . . , tr) be an ideal of definition of a complete adic ring A0. If
t′1, . . . , t

′
r ∈ A0 are elements such that tj − t′j ∈ I2 for all 1 ≤ j ≤ r, then I = (t′1, . . . , t

′
r).

Proof. Clearly, t′j ∈ I for all j. We have to show the surjectivity of the A-linear map u′ : Ar → I,

(aj)j 7→
∑r

j=1 ajt
′
j . Now, A

r and I are complete A0-modules, whose I-adic topology defines the

filtrations {InAr}n≥0 and {In+1}n≥0 on them. Clearly, u′ preserves this filtrations: u′(InAr) ⊆
In+1. By completness (this is the only place in the proof of Proposition 11.9 where we used the
completeness assumption on A,A+), it suffices to show that the induced maps on graded objects

grn(u
′) : (InAr)/(In+1Ar)→ In+1/In+2.

are surjective for all n ≥ 0. But if u : Ar → I is the (by assumption, surjective) map (aj)j 7→∑r
j=1 ajtj , then the assumption of the lemma implies that grn(u

′) = grn(u). □

For 1 ≤ i ≤ n, let Ui = Spa(A,A+)
(
f1,...,fn

fi

)
(so, our original rational open is U1). Each Ui

is quasi-compact and |fi(x)| ≠ 0 for all x ∈ Ui. We now need a lemma:

Lemma 11.11. Let (A,A+) be a Huber pair and X ⊆ Spa(A,A+) a quasi-compact subset. Let
t ∈ A be such that |t(x)| ≠ 0 for all x ∈ X. Then there exists an open neighboorhood N of 0 in
A, such that |a(x)| < |t(x)| for all a ∈ N and all x ∈ X.

Proof. Let S be a finite set of generators of some ideal of definition J of A, and let Sr =
{s1 . . . sr : si ∈ S}. Consider

Xr = {x ∈ Spa(A,A+) : ∀|s(x)| ≤ |t(x)| ≠ 0∀ s ∈ Sr}

This is a rational open(i.e., Sr generates an open ideal of A. Indeed, this ideal contains Jr. Note,
however, that we just use that Xr is open below). Any x ∈ Spa(A,A+) is continuous, hence
|a(x)| is cofinal for any a ∈ J (Lemma 6.7). Hence, as Sr is finite, any x for which |t(x)| ≠ 0
lies in Xr for r ≫ 0. Thus, X ⊆

⋃
r>0Xr. But as X is quasi-compact, there is some r with

X ⊆ Xr. Replacing the ideal of definition J by Jr, we may replace Sr by S and Xr by X1.
Take now N = J · A◦◦, which is an additive subgroup of A, and evidently open, as it contains
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J2. If S = {s1, . . . , sm}, any a ∈ N can be written as a =
∑m

i=1 αisi with some αi ∈ A◦◦. Then
for any x ∈ X1,

|a(x)| ≤ maxi |αi(x)| · |si(x)| < maxi 1 · |t(x)| = |t(x)|,
where |αi(x)| < 1 is by continuity of x. □

Continuing with the proof of Proposition 11.9, note that by Lemma 11.11, for every i there
is some open neighboorhood Ni ⊆ A, such that for all x ∈ Ui and all f ∈ Ni, |fi(x)| > |f(x)|.

Now, let V := A◦◦ ∩ W ∩
⋂n

i=1Ni, which is an open neighboorhood of 0 in A. Let now
f ′i ∈ fi+V for all 1 ≤ i ≤ n. By the first part of the proof, the f ′i generate an open ideal of A. Let

U ′ = Spa(A,A+)(
f ′
1,...,f

′
n

g ) be the corresponding rational open. We must show that U ′ = U1. Let

x ∈ U1. For 1 ≤ i ≤ n, f ′i−fi ∈ V ⊆ N1, so |g(x)| = |f1(x)| > |(f ′i−fi)(x)|. For i = 1, we then get
(sharp triangle inequality) |g(x)| = |g′(x)|. For 2 ≤ i ≤ n, |f ′i(x)| ≤ |g(x)| = |g′(x)| (as x ∈ U1),
and this together with |g(x)| > |(f ′i − fi)(x)| implies |f ′i(x)| ≤ maxi{|fi(x)|, |(f ′i − fi))(x)|} ≤
|g′(x)|. Thus x ∈ U ′.

Conversely, let x ∈ Spa(A,A+)∖U1. If |fi(x)| = 0 for all 1 ≤ i ≤ n, then supp(x) ⊇
(f1, . . . , fn)A must be open, hence supp(x) ⊇ A◦◦. Then g′− g ∈ supp(x), i.e. |g′(x)| = |g(x)| =
0, and hence x ̸∈ U ′ and we are done. So, assume there is some 1 ≤ i ≤ n with |fi(x)| ≠ 0.
Replacing i, we may additionally assume that |fi(x)| = maxj{|f ′j(x)|}, so that x ∈ Uj holds by

construction. As x ̸∈ U1, we have |fi(x)| > |g(x)|. For all 1 ≤ j ≤ n we have f ′j − fj ∈ V ⊆ Ni,

and so |fi(x)| > |(f ′j−fj)(x)|. Taking j = i and again using the sharp triangle inequality, we get

|f ′j(x)| = |fj(x)|. Using this we estimate: |g′(x)| = max{|g(x)|, |(g′ − g)(x)|} < |fi(x)| = |f ′(x)|.
With other words, x ̸∈ U ′. The proposition is proved. □

11.4. Spa(A,A+) has “enough points”. We wish to show that Spa(A,A+) for a complete
analytic Huber pair (A,A+) has enough points to detect vanishing of A, units in A and the ring
A+.31

Theorem 11.12 (Spa(A,A+) has enough points). Let X = Spa(A,A+) for a Huber pair
(A,A+). Then

(1) If Â ̸= 0, then Spa(A,A+) is non-empty.
(2) A+ = {f ∈ A : |f(x)| ≤ 1 ∀x ∈ X}
(3) If A is complete, A× = {f ∈ A : |f(x)| ≠ 0 ∀x ∈ X}
(4) If A is Tate(Question: is analytic enough?), then A◦◦ = {f ∈ A : |f(x)|n → 0 ∀x ∈ X}

Proof. We only prove the theorem in the analytic case (for some comments on the non-analytic
case, see Remark 11.17). So assume that A is analytic.

(1): By Theorem 11.8, we may replace A by its completion. By Lemma 11.14 below, Jac(A+) ⊇
A◦◦. So, if m is any maximal ideal of A+, then m ⊇ A◦◦. The map SpecA→ SpecA+ is dense,
so there is some point p ∈ SpecA, such that p ∩ A+ ⊆ m in SpecA+ (use that the image of
SpecA→ SpecA+ is pro-constructible and the closure of a pro-constructible set is the union of
closures of its points). We then obtain inclusions

A := A+/p ∩A+ ↪→ A/p ↪→ Frac(A/p) = κ(p).

Now, the domain A contains the maximal ideal m = m/p∩A+. As valuation rings are maximal
among all local subrings of a field with respect to dominance relation (Theorem 1.9(4) applied to
the localization Am), we may find a valuation ring A ⊆ V ⊆ κ(p) with mV ∩A = m. With other
words, under the composition SpecV → SpecA ↪→ SpecA+, the generic point goes to p ∩ A+

31Note the similarity to the case of schemes, where SpecA = ∅ if and only if A = 0; f ∈ A is a unit if and only
if f ̸= 0 ∈ κ(x) for any x ∈ SpecA; f ∈ A lies in nil(A) if and only if f = 0 ∈ κ(x) for any x.
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and the special to m. In particular, the corresponding map ν : A+ → V satisfies ker(A+ →
V ) = p ∩ A+. So, A◦◦ ̸⊆ ker(A+ → V ) (otherwise we would have A◦◦ ⊆ p, contradicting the
analyticity of A). Let t1, . . . , tn ∈ A◦◦ be a set of generators of some ideal of definition of a ring
of definition of A contained in A+. Let J be the ideal of V generated by ν(t1), . . . , ν(tn). As J
is finitely generated, J = τV is principal. By the above J ̸= 0. Let now W = V

/⋂
r τ

rV be the
τ -adic completion of V , which is microbial (cf. 1.10). Moreover, at least one ti maps to non-zero
element in W (as JW ̸= 0). Alltogether, ν̄ : A+ → V → W is a map into a microbial valuation
ring satisfying 0 ̸= ν̄(A◦◦) ⊆ pV . By Proposition 10.6 this gives a point of Spa(A,A+).

(2): By definition |f(x)| ≤ 1 for all f ∈ A+ and all x ∈ X. Conversely, let f ∈ A with |f(x)| ≤ 1
for all x ∈ X. If f−1 ∈ A+[f−1] is a unit, then f ∈ A+[f−1], which imlies that f is integral over
A+, and hence f ∈ A+. Thus, we may assume that f−1 is not a unit in A+[f−1]. We will derive
a contradiction. Let m ⊆ A+[f−1] be a maximal ideal containing f−1 and let p ⊆ A+[f−1] be a
minimal prime ideal contained in m. Let V ⊆ Frac(A+[f−1]/p) be a valuation ring dominating
A+[f−1]m; that is we have a map α : A+[f−1]→ V such that Specα sends the closed point to m
and the generic to p. This gives a map

ν : A+ → A+[f−1]
α→ V

of A+, to which there correpsponds a valuation x of A+.

Claim. We have 0 ̸= ν(A◦◦) ⊆ mV in V .

Proof of claim. The map A+[f−1]→ A[f−1] is injective, so SpecA[f−1]→ A+[f−1] is dominant.
As its image is pro-constructible (Theorem 3.7), and as the closure of a pro-constructible set is
the union of closures of its elements (Lemma 3.11), it follows that the image of SpecA[f−1] →
A+[f−1] contains all generic points, and in particular, p. Thus there is some P ∈ SpecA[f−1]
with P ∩ A+[f−1] = p. But as A analytic, A◦◦ ̸⊆ P, and hence also A◦◦ ̸⊆ p. As p = ker ν,
ν(A◦◦) ̸= 0.

Further, let t ∈ A◦◦. Then tnf ∈ A+ for n ≫ 0. As ν(A+) ⊆ V , we have |tnf(x)| ≤ 1. On
the other side, x is the restriction of a valuation of A[f−1] and by construction |f−1(x)| < 1.
This implies |tn(x)| < 1 and hence |t(x)| < 1, that is ν(t) ∈ mV . This proves the claim.

“Microbilizing” x as in (1) above, we obtain some continuous valuation x̄ of A+ which, by
Proposition 10.6 gives a point of X. Clearly, we still have |f−1(x̄)| < 1 (as “microbilization”
does not affect the maximal ideal of V ). But by the initial assumption of f we have |f(x)| ≤ 1.
As |f · f−1(x)| = 1, this gives a contradiction. This proves (2).

(3): This is the special case T = {f} of Corollary 11.15 (which is a consequence of part (1)
of the theorem, so there is no circular reasoning).

(4): It is clear that for f ∈ A◦◦, |f(x)|n → 0 for any x ∈ X by Lemma 6.7. Conversely,
assume f ∈ A and for all x ∈ X, |f(x)|n → 0. Let ϖ ∈ A be a pseudo-uniformizer. Then

X =
⋃
n>0

X

(
fn

ϖ

)
.

Indeed, for any x ∈ X, there |ϖ(x)| ≠ 0 as t is a unit in A, then by assumption there is some
n > 0 with |fn(x)| < |ϖ(x)|. Thus, by quasi-compactness of X (Theorem 7.10), there is some

n > 0 with X = X
(
fn

ϖ

)
. Thus |f(x)|n ≤ |ϖ(x)|n, and so fn

ϖ ∈ A
+, that is fn ∈ ϖA+. But

A+ is the cofiltered limit of open bounded subrings contained in it, so fn ∈ ϖA0 for some open
bounded A0. As A0 is Tate, the topology on A0 is ϖ-adic, and so fn is topologically nilpotent
in A0. Hence f ∈ A◦◦. □
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Example 11.13. In Theorem 11.12(3) the completeness assumption can be weakened, but not
omited completely, as the following example shows. Let (A,A+) = (K[T ],K◦[T ]). Then 1+ϖT
is non-zero at all points of the closed unit ball B, but is not invertible. (Note that it becomes
invertible after completion.)

Lemma 11.14. Let (A,A+) be a complete Huber pair. Then A◦◦ ⊆ Jac(A+).

Proof. Recall the notion of a Henselian pair : a pair (R, I) consisting of a ring and an ideal I ⊆ R
is Henselian if, essentially, it satisfies Hensel’s lemma; cf. [Sta14, 09XE]; in particular I ⊆ Jac(R).
Thus it suffices to show that (A+, A◦◦) is Henselian. But filtered colimits of Henselian pairs are
again Henselian [Sta14, 0FWT]. Also, (A+, A◦◦) is the filtered colimit of (Ai, Ii), where Ai goes
through all rings of definition contained in A+ and Ii through (appropriate) ideals of definition
in A0. So we are reduced to show that any couple of definition (A0, I) of A is Henselian, which
holds as A0 is I-adically complete. □

From Theorem 11.12(1) it follows that in the complete case evaluation at points in Spa(A,A+)
may detect whether an ideal of A is a unit ideal:

Corollary 11.15. Let (A,A+) be a complete Huber pair. Let T ⊆ A. Then the following are
equivalent:

(i) The ideal generated by T is A.
(ii) For any x ∈ Spa(A,A+) there exists some t ∈ T with |t(x)| ≠ 0.

Moreover, if these conditions hold and T is finite, then Spa(A,A+) =
⋃

t∈T Spa(A,A+)
(
T
t

)
is

an open covering of Spa(A,A+).

Proof. (i) implies (ii): If for some x ∈ Spa(A,A+), |t(x)| = 0 for all t ∈ T , then also |1(x)| = 0,
which is absurd. (ii) implies (i): If T ·A ̸= A, then let T ·A ⊆ m ⊆ A be a maximal ideal. Then

m is closed in A by Lemma 11.16, and so A/m ̸= 0 is Hausdorff, i.e., the map A/m ↪→ Â/m is

injective. In particular Â/m ̸= 0 and so the Zariski closed subset Spa(A/m, A/m+) ̸= ∅ is non-

empty by Theorem 11.12 for Â/m (and Theorem 11.8 to pass to completion). By Proposition
11.1, Spa(A/m, A/m+) = Spa(A,A+)∩V (m). Thus, there is a valuation x in Spa(A,A+) whose
support contains m. Then |t(x)| = 0 for all t ∈ T . □

Lemma 11.16. Let A be a complete Huber ring. Then A× is open and any maximal ideal is
closed in A.

Proof. For every a ∈ A◦◦, (1− a) is invertible with inverse
∑

n≥0 a
n (as a ∈ A0 for some ring of

definition, which is I-adically complete for some ideal of definition I). Thus 1+A◦◦ ⊆ A×. Hence,
as A◦◦ is open in A, A× is a neighboorhood of 1. Multiplication by a unit is a homeomorphism
of A preserving A×, and so A× is also a neighboorhood of any other a ∈ A×. Thus A× ⊆ A is
open. Let m ⊆ A be a maximal ideal. Then m is contained in the closed subset A∖A×. So the
closure of m, which is again an ideal (this is easy) also lies in A∖A×, i.e., is a proper ideal. As
m is maximal, m is equal to its closure. □

Remark 11.17. Essentially the same argument as in the analytic case shows the following more
general claim: for a Huber pair (A,A+), the set of analytic points Spa(A,A)an is empty if and

only if A/{0} is discrete. Cf. [Mor19, Proposition III.4.4.1]. From this Theorem 11.12(1) is

easy to deduce: if Spa(A,A+) = ∅, then in particular Spa(A,A+)an = ∅, so A/{0} is discrete.
If A/{0} ̸= 0, then there is a prime ideal p of A containing {0}; p is automatically open, so

that the trivial valuation with support p lies in Spa(A,A+), contradiction. So A/{0} = 0, or

equivalently, Â = 0.



LECTURE NOTES ON ADIC SPACES 57

From Remark 11.17 it follows:

Corollary 11.18. If (A,A+) is a complete Huber pair with Spa(A,A+)an = ∅, then A is
discrete.

By Theorem 11.12, regarding elements of A as functions on Spa(A,A+), we can recover
the subsets A◦◦ ⊆ A+ ⊆ A from Spa(A,A+). Note that in the claim about A◦◦ there is no

contradiction to Theorem 11.8: if A is such that Â = 0, e.g., A has the indiscrete topology (and
so Spa(A,A+) = ∅), then any element in A is topologically nilpotent, i.e., A◦◦ = A.

12. The structure presheaf on Spa(A,A+)

12.1. Structure presheaf. Analogously to the case of schemes, to globalize the notion of adic
spectra, we have to define some structure sheaf of rings on the topological spaceX = Spa(A,A+).
Actually, we want a sheaf (OX ,O+

X) taking values in Huber pairs, whose global sections are
(A,A+). As rational opens form a basis of topology stable under finite intersections (Lemma
7.6), the following lemma says that it suffices only to consider rational opens:

Lemma 12.1. Let X be a topological space, and B a basis of topology, stable under finite
intersections. Then the restriction functor from sheaves on X to sheaves on B is an equivalence
of categories.

With other words, a sheaf (resp. morphism of sheaves) on X is uniquely determined by its
values on all elements of B, and any sheaf on B extends uniquely to one on X. Explicitly, if F
is a sheaf on X, then for all U ⊆ X open,

F (U) = lim←−
B∋V⊆U

F (V ),

which defines a quasi-inverse to the functor in the lemma.
We already know (Proposition 7.7) that rational opens are adic spectra of some localizations

of (A,A+) again, so our first guess for OX ,O+
X on rational opens would be

Spa(A,A+)

(
f1, . . . , fn

g

)
7→ A

[
1

g

]
, A+

[
f1, . . . , fn

g

]int
, (12.1)

where (·)int denotes the integral closure within A[g−1]. Thus is indeed a Huber pair by Propo-
sition 7.7. However, this will not satisfy the universal property similar to the one for principal
opens of an affine scheme: indeed, there are many such pairs with the same completion, so with
equal adic spectra (by Theorem 11.8). This suggests that one should pass to completion. And
indeed, this works:

Proposition 12.2. Let X = Spa(A,A+) for a Huber pair (A,A+). Let U be a rational open
subset. Then there exists a (necessarily unique) complete Huber pair (AU , A

+
U ) over (A,A+),

such that Spa(AU , A
+
U ) has image U in X and which satisfies the following universal property.

For any complete Huber pair (A,A+) → (C,C+), such that the image of Spa(C,C+) → X is
contained in U , there exists a unique factorization

(A,A+) //

%%

(AU , A
+
U )

��

(C,C+)

Moreover, if U = X
(
f1,...,fn

g

)
, then (AU , A

+
U ) is the completion of (12.1).
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Proof. Everything except the universal property follows by combining Proposition 7.7 and The-

orem 11.8. Let U = X
(
f1,...,fn

g

)
with f1, . . . , fn, g ∈ A with (f1, . . . , fn)A open in A. As

the map φ̃ = Spa(φ) induced by φ : (A,A+) → (C,C+) factors through U , we have for all
x ∈ Spa(C,C+): |φ(g)(x)| = |g(φ̃(x))| ̸= 0. Thus, by completeness of (C,C+) and by Theorem

11.12(3), φ(g) ∈ C×. Thus, φ : A→ C factors through φ′ : A
[
1
g

]
→ C.

Similarly, for all 1 ≤ i ≤ n and all x ∈ C, we have |φ(fi)(x)| = |fi(φ̃(x))| ≤ |g(φ̃(x))| =
|φ(g)(x)|, and so φ(fi)

φ(g) ∈ C
+ by Theorem 11.12(2). Thus φ′(A+

[
f1,...,fn

g

]
) ⊆ C+. Altogether,

we get a map (
A

[
1

g

]
, A+

[
f1, . . . , fn

g

])
→ (C,C+) (12.2)

of pairs of rings. Moreover, φ(fi)
φ(g) ∈ C

+ ⊆ C◦ are powerbounded for all i. From this (and the

cofinality of rings and ideals of definition of C within C◦, C◦◦), it is easy to see that the map
A[g−1]→ C is continuous (recall from the proof of Proposition 7.7 that if (A0, I) is some couple

of definition of A, then A[g−1] has B0 := A0

[
f1,...,fn

g

]
, I · B0 as a couple of definition), and we

leave this as an exercise (cf. e.g. [Wed19, Proof of Prop.-Def. 5.51]).
Thus (12.2) is a map of Huber pairs, and in fact it is the unique one through which (A,A+)→

(C,C+) factors, by the following lemma (which does not make use of completeness of C, because
it rightaway assumes that the image of g is invertible!):

Lemma 12.3. The map (A,A+)→
(
A
[
1
g

]
, A+

[
f1,...,fn

g

])
is universal among all maps of Huber

pairs α : (A,A+)→ (B,B+) for which

(i) α(g) is a unit in B, and

(ii) α(fi)
α(g) is power-bounded in B for any i.

Proof. This is not very hard. See [Wed19, Prop.-Def. 5.51] or [Mor19, Proposition II.3.4.1] for
details. □

Now, combining the uniqueness of the factorization of φ through φ′ with the universal property
of the completion (exploiting again that (C,C+) is complete), we deduce that there is a unique
factorization of φ through a map (AU , A

+
U ) → (C,C+), where (AU , A

+
U ) is the completion of(

A
[
1
g

]
, A+

[
f1,...,fn

g

])
. □

Clearly, the universal property of Proposition 12.2 implies that if V ⊆ U ⊆ X are two rational
opens, then there is a unique map rU,V : (AU , A

+
U ) → (AV , A

+
V ) of complete Huber pairs over

(A,A+).

Definition 12.4 (Structure presheaf). Let X = Spa(A,A+) for a Huber pair (A,A+). The
structure presheaf OX resp. its +-version O+

X on X are the presheaves (with values in complete
topological rings) on the basis of rational open subsets of X, given by

OX : U 7→ AU and O+
X : U 7→ A+

U

with restriction maps rU,V . A Huber pair (A,A+) is called sheafy, if OX is a sheaf.

Remark 12.5. (1) It is clear what it means for OX to be a sheaf of (abstract) rings. The
condition to be a sheaf of topological rings is more restrictive. It means that for any open
U ⊆ X, any open coveing U =

⋃
i Ui, and any topological ring T , Hom(T,OX(U)) =

Eq(
∏

iHom(T,OX(Ui)) →
∏

ij Hom(T,OX(Uij))) where the Hom’s are taken in the

category of topological rings. With other words, the topology on OX(U) must be the
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weakest one such that all maps OX(U) → OX(Ui) are continuous. Also, it suffices to
check this property on a collection of opens forming a base of topology. Cf. [DG67, I,
chap. 0,(3.1.4) and (3.2.2)] for a discussion.

(2) If OX is a sheaf, then also O+
X is a sheaf. Indeed, as O+

X ⊆ OX , it is clear that O+
X is a

separated presheaf; moreover, by Theorem 11.12(2), for any rational open U ⊆ X,

O+
X(U) = {f ∈ OX(U) : |f(x)| ≤ 1 ∀x ∈ U},

and the sheaf property for O+
X follows from that for OX .

(3) For any Huber pair (A,A+) we can extend OX , O+
X to presheaves on all opens V ⊆ X,

putting

(OX ,O+
X)(V ) = lim←−

U⊆V
U rational open

(OX(U),O+
X(U))

Note that if V is rational open, then the limit is taken over a category with a final
object, namely V itself, so there is no ambiguity in this extension. By Lemma 12.1 this
extension is well-behaved under the sheafiness assumption.

(4) For any (A,A+) we have (OX(X),O+
X(X)) = (Â, Â+).

(5) There exist examples of non-sheafy (Tate-)Huber pairs (A,A+) (only A matters, A+ can
be arbitrary). The (probably) first one, –of a Tate ring, which is of finite type over Z–
was given by Rost, see [Hub94, end of §1]. There are many examples, even in uniform
Tate algebras over a non-archimedean field, cf. [BV18, §4] and [Mih16]. (TODO: add
this.)

(6) Sheafiness of (A,A+) only depends on the Huber ring A, not on A+. (TODO: add proof,
see Kedlaya.)

Directly from Proposition 12.2 we deduce the following corollary:

Corollary 12.6. Let (A,A+)→ (B,B+) be a map of complete Huber pairs, and let f : Y → X
be the corresponding map on adic spectra. Let U ⊆ X be a rational subset and let V = f−1(U)
be its preimage in Y . Then

(A,A+) //

��

(B,B+)

��

(OX(U),O+
X(U)) // (OX(V ),O+

X(V ))

is a pushout in the category of complete Huber pairs.

12.2. Stalks, and the three residue fields at a point. Let X = Spa(A,A+) for a Huber
pair (A,A+). For x ∈ X we may form the stalk of the structure presheaf and its +-version:

OX,x = lim−→
x∈U⊆X

OX(U) and O+
X,x = lim−→

x∈U⊆X

O+
X(U),

where the limit is taken

• in the category of abstract rings (that is, ignoring the topology),
• over all rational opens of X containing x (or equivalently over all opens of X containing
x).

For any x ∈ U ⊆ X, the valuation x of A extends to a valuation of OX(U) (by Proposition
12.2 and the definition of the adic spectrum), and so OX,x comes equipped with a valuation,

denoted | · (x)|, for which |f(x)| ≤ 1 for all f ∈ O+
X,x.
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Proposition 12.7. Let X = Spa(A,A+) for a Huber pair (A,A+). Let x ∈ X.

(1) OX,x is a local ring with maximal ideal

mX,x = {f ∈ OX,x : |f(x)| = 0}.
The valuation x on OX,x factors through a valuation x of the residue field

k(x) = OX,x/mX,x

and the natural map A → OX,x induces a morphism k(x) → k(x) of topological fields,
which is an isomorphism after completion.32 Moreover, k(x)+ is dense in the valuation
subring

k(x)+ = {f ∈ k(x) : |f(x)| ≤ 1}.
of k(x).

(2) O+
X,x is a local ring with maximal ideal m+

X,x,

mX,x ⊆ m+
X,x ⊆ O

+
X,x ⊆ OX,x,

where

O+
X,x = {f ∈ OX,x : |f(x)| ≤ 1}

m+
X,x = {f ∈ OX,x : |f(x)| < 1}

In particular, O+
X,x is the preimage of k(x)+ under OX,x ↠ k(x). The (discrete) residue

fields of O+
X,x and of k(x)+ are canonically isomorphic.

(3) The constructions in (1) and (2) are contravariantly functorial in X,x.

Proof. (1): It is clear that mX,x is an ideal of OX,x. Thus, to show the first claim of (1), it suffices

to prove that OX,x∖mX,x ⊆ O×
X,x. Let x ∈ U ⊆ X be a rational open and let f ∈ OX(U) whose

image in OX,x does not lie in mX,x, i.e., |f(x)| ̸= 0. By Lemma 11.11 applied to the quasi-
compact subset {x} ⊆ U , we may find an open subset N ⊆ OX(U) such that |t(x)| < |f(x)| for
all t ∈ N . Replacing N by some finitely generated ideal of definition it contains, we get a finite
set T ⊆ OX(U) (of generators of this ideal), such that T generates an open ideal of OX(U) and

|T (x)| ≤ |f(x)| ̸= 0. With other words, x ∈ V := U
(
T
f

)
⊆ U . But by definition of rational

opens, |f(v)| ̸= 0 for any v ∈ V . Thus, by Theorem 11.12(3), f is invertible in OX(V ), and
hence also in OX,x.

It is clear that A → OX,x induces the map k(x) → k(x). Towards the isomorphism of
completions, we need a lemma.

Lemma 12.8 (Density of residue fields). Let x ∈ U ⊆ X be a rational open neighboorhood of x,
with corresponding Huber pair (OX(U),O+

X(U)) = (AU , A
+
U ). Write kU (x) = Frac(AU/ supp(x))

and kU (x)
+ for the corresponding valuation subring. The map (A,A+) → (AU , A

+
U ) induces a

map (k(x), k(x)+)→ (kU (x), kU (x)
+). This map is an isomorphism after completion.

Proof. The first claim is clear (as the valuation x on A is the restriction of the valuation, again
called x, of OX(U)). For the second claim it suffices to show that k(x) is dense in kU (x). Write

U = X
(
f1,...,fn

g

)
. The map A → AU factors as A → B = A[g−1] → AU , where AU is the

completion of the Huber ring B. Further, the induced maps on residue fields factors as

k(x) = Frac(A/ suppA(x))→ Frac(B/ suppAU
(x) ∩B)→ Frac(AU/ suppAU

(x)) = kU (x).

32Moreover, the map OX,x ↠ k(x) is also an isomorphism after | · (x)|-completion, as |f(x)| = 0 for any f ∈ mX,x

and so mX,x gets killed by completion.
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The first of this maps is an isomorphism as B = A[g−1] and g ̸∈ suppA(x) (as |g(x)| ≠ 0), and
it suffices that the image of the second map is dense.

By Lemma 12.9, the map A → OX(U) is adic. Thus, by Lemma 12.10, x is analytic as a
point of X if and only it is analytic as a point of U .

First suppose that x is non-analytic. Then suppAU
(x) is open in AU and the image of

B → B̂ = AU is dense, so B + suppAU
(x) = AU (as additive groups), and so the injection

of discrete rings B/ suppAU
(x) ∩ B → AU/ suppAU

(x) is an isomorphism; it remains so after
passing to the fraction fields.

Next, suppose that x is analytic. Let R resp. RU denote the image of B → k(x) resp.
AU → kU (x) (all equipped with valuation topology). Then R ⊆ RU and if we know that R is
dense in RU , then an easy approximation argument shows that also Frac(R) = k(x) is dense
in Frac(RU ) = kU (x). Now, the image of B → AU is dense by construction (both sides have
the natural topology); also, the map AU → RU ⊆ kU (x) is continuous (kU (x) has the valuation
topology), hence the image of B → AU ↠ RU is also dense; but this coincides with the image
of R→ RU , which is therefore also dense.

Finally, consider the rings k(x)+ ⊆ kU (x)+. Both are the unit discs in k(x), kU (x); using the
non-archimedean triangle inequality the density of k(x) in kU (x) implies the density of k(x)+ in
kU (x)

+. □

Now the density of the image of k(x) → k(x) is clear from k(x) = lim−→x∈U⊆X
kU (x), with

notation as in the lemma; similarly for k(x)+ → k(x)+. This proves (1).
(2): It is clear that O+

X,x ⊆ OX,x and also that O+
X,x ⊆ {f ∈ OX,x : |f(x)| ≤ 1}. Let,

conversely, fx ∈ OX,x be a germ satisfying |fx(x)| ≤ 1. Then fx is represented by a function

f ∈ OX(U) for some rational open x ∈ U ⊆ X. The locus U(f1 ) ⊆ U of all points y ∈ U

where |f(y)| ≤ 1 is open (but not necessarily rational open) in U = Spa(OX(U),O+
X(U)) by the

definition of its topology. So, replacing U by some rational open neighboorhood of x contained
in U(f1 ), we see –by Theorem 11.12(2)– that f comes from O+

X(U), i.e., fx ∈ O+
X,x. This proves

that O+
X,x is the preimage of k(x)+ under OX,x ↠ k(x). Clearly, m+

X,x is the preimage of the

maximal ideal of k(x)+. If f ∈ O+
X,x∖m+

X,x, then |f(x)| = 1, so by (1), f ∈ O×
X,x and we clearly

have |f−1(x)| = 1, so by the above, f−1 ∈ O+
X,x; with other words, f is a unit in O+

X,x, proving

that O+
X,x is local.

Part (3) is immediate. □

In course of the proof we used the following two lemmas.

Lemma 12.9. Let X = Spa(A,A+) for a Huber pair (A,A+). Let U be a rational open subset.
Then the natural map A→ OX(U) is adic.

Proof. Write U = X
(
f1,...,fn

g

)
for some f1, . . . , fn, g ∈ A, such that (f1, . . . , fn)A is open in A.

Let A0, I be a couple of definition of A. By construction (cf. Propositions 12.2 and 7.7), the
map A → OX(U) factors as A → B := A[g−1] → AU , where AU is the completion of B, and

B = A[g−1] has B0 := A0

[
f1,...,fn

g

]
as a ring of definition and I ·B0 as an ideal of definition. If

suffices to show that both maps are adic. The first map is adic, because (as recalled above) I ·B0

is an ideal of definition. The completion map B → B̂ = AU is adic, –basically by construction,–

as B̂ has I · B̂0 as an ideal of definition. □

Lemma 12.10. Let φ : (A,A+)→ (B,B+) be a map of Huber pairs, and let f : Y = Spa(B,B+)→
Spa(A,A+) = X be the iduced map on adic spectra. Let y ∈ Y .
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(1) If y is not analytic, then f(y) is not analytic.
(2) Suppose φ is adic. If y is analytic, then f(y) is analytic.

Proof. (1): supp(f(y)) = φ−1(supp(y)). So, if supp(y) is open, then supp(f(y)) is open by
continuity of φ.

(2): Let (A0, I) be a couple of definition of A, and let B0 be a ring of definition of B, such that
φ(I) · B0 is an ideal of definition of B. Suppose that f(y) is not analytic. Then supp(f(y)) =
φ−1(supp(y)) is an open prime ideal of A, so I ⊆ φ−1(supp(y)), and then φ(I) ⊆ supp(y). Then
φ(I) ·B0 ⊆ supp(y), i.e., supp(y) is open, contradiction. □

Note that even if A is complete, the topological field k(x) = FracA/ supp(x) must not be
complete with respect to the valuation topology.

Remark 12.11 (Residue fields; cf. [Bha17], Rem.7.5.7). All in all we have now three residue
fields (along with the valuation rings in them) attached to a point x ∈ X = Spa(A,A+):

(1) The residue field

(k(x), k(x)+)

of the pair (A,A+) at x. That is k(x) = Frac(A/ supp(x)).

(2) The residue field

(k(x),k(x)+) = lim−→
x∈U⊆X

(kU (x), kU (x)
+)

of the stalk of the structure presheaf, with kU (x) as in the proof of Proposition 12.7.

(3) the completed residue field

(K(x),K(x)+) := (k̂(x), k̂(x)+) = (k̂(x), k̂(x)+),

where the completion is taken with respect to the valuation topology. The second equal-
ity follows from Proposition 12.7. Note also that if x is not analytic, then we have
k(x) = k(x) = K(x) (as follows from the proof of Proposition 12.7).

In practice, the completed residue field is most convenient: Firstly, it is complete, in contrast
to k(x), k(x). Secondly, k(x) has the disadvantage of being dependent on the neighboorhood of
x; and k(x) is hard to compute (to compute it one needs to control a cofinal family of rational
neighboorhoods of x), whereas K(x) is the completion of k(x).

For analytic points we have the following surprising (when compared to the world of schemes)
property:

Corollary 12.12. Suppose that A is Tate and let ϖ ∈ A be a pseudo-uniformizer. We have
(O+

X,x)
∧
ϖ
∼= K(x)+.

Proof. As k(x)+ is microbial with pseudo-uniformizer ϖ (by Proposition 12.7, and as k(x)+ is),
its valuation topology coincides with the ϖ-adic topology, and so we have

K(x)+
def.
= (k(x)+)∧x−adic

∼= (k(x)+)∧ϖ

So it suffices to show that the natural map O+
X,x → k(x)+ induces an isomorphism on ϖ-adic

completion. But this is true (Exercise: check why!) as ker(O+
X,x → k(x)+) = mX,x is ϖ-divisible.

Indeed, divisibility follows by noting that mX,x is also an ideal of OX,x, and ϖ is a unit of this
ring. □
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Remark 12.13. Suppose that A is complete and Tate with uniformizer ϖ. The ϖ-adic com-
pletion is in general finer than the | · |x-adic completion. In particular, the preceeding corollary
only works with the stalk O+

X,x, not in general with A+:

A+ = (A+)∧ϖ //

̸=
��

(A+)∧x−adic

��

(O+
X,x)

∧
ϖ

∼= //

∼=Cor.
12.12

��

(O+
X,x)

∧
x−adic

∼=
��

(k(x)+)∧ϖ
∼= // (k(x)+)∧x−adic (k(x)+)∧ϖ

∼= // (k(x)+)∧x−adic

where the lower right isomorphism is because k(x) is microbial and the isomorphism on the right
is obvious as the x-adic completion always factors through the support of x.

13. Pre-adic and adic spaces. Sheafiness

13.1. Definition of adic spaces.

Definition 13.1 (Huber’s categories Vpre and V). The category Vpre is defined as follows. Its
objects are triples (X,OX , (| · (x)|)x∈X), where

• X is a topological space
• OX is a presheaf of complete topological rings on X, subject to the condition that the
stalk (computed in abstract rings) is a local ring
• for any x ∈ X, | · (x)| is a valuation on OX,x, whose support is equal to the maximal
ideal of OX,x.

A morphism (Y,OY , (| · (y)|)y∈Y )→ (X,OX , (| · (x)|)x∈X) in Vpre consists of

• a continuous map f : Y → X and
• a map of presheaves of topological rings f ♭ : OX → f∗OY , such that for any y ∈ Y ,
OX,f(y) → OY,y is compatible with the valuations | · (y)|, | · (f(x))|.

The category V is the full subcategory of Vpre consisting of all triples (X,OX , (| · (x)|)x∈X) such
that OX is a sheaf.

Remark 13.2. (1) From the condition on the support of | · (x)| it follows that for any

morphism (f, f ♭) in Vpre, f ♭ induces local maps on stalks.

(2) By what we have done in the previous lectures, any Huber pair (A,A+) gives rise to
an object of Vpre, denoted Spa(A,A+). Any map of Huber pairs φ : (A,A+)→ (B,B+)
induces a map Spa(φ) in Vpre.

(3) Let (A,A+) be a Huber pair and let X = Spa(A,A+) be the corresponding object in
Vpre. The presheaf O+

X of Definition 12.4 is not part of the datum of Vpre. However,
it can easily be recovered as the subsheaf of OX of all sections f ∈ OX which satisfy
|f(x)| ≤ 1 at all points. Indeed, this follows from Theorem 11.12(2).

(4) Let φ : (A,A+) → (Â, Â+) be the completion of a Huber pair. Then Spa(φ) is an
isomorphism in Vpre. With other words, the functor Spa from Huber pairs to Vpre factors
through the completion functor on Huber pairs. This follows from the construction of
Spa(A,A+), cf. Theorem 11.8 and Definition 12.4.

Proposition 13.3. Let (A,A+), (B,B+) be Huber pairs with (B,B+) complete. Then

Hom((A,A+), (B,B+))→ HomVpre(Spa(B,B+),Spa(A,A+))

is a bijection. In particular, the functor Spa from complete Huber pairs to Vpre is fully faithful.
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Proof. If φ ∈ Hom((A,A+), (B,B+)), then (by definition) taking the global sections of Spaφ

gives back the map of completed Huber pairs Â → B̂ = B, and precomposing with A → Â
gives the map φ : A → B. Write Y = Spa(B,B+), X = Spa(A,A+). We have to show that

any (f, f ♭) ∈ HomVpre(Y,X) is equal to Spaφ for φ := f ♭X ◦ (A → Â). (Note that it is only at

this point, where we use that B is complete: a priori we only get a map A → Â → B̂, and by
completeness this gives a map A→ B.)

As rational opens in X form a basis of topology (Lemma 7.6), it suffices to show that f ♭U and

the localization φU of φ coincide for all rational opens U ⊆ X. Let U = X
(
s1,...,sn

g

)
⊆ X be a

rational open. Its preimage is the open

f−1(U) = {y ∈ Y : |si(f(y))| ≤ |g(f(y))| ≠ 0 ∀ i} = {y ∈ Y : |φ(si)(y)| ≤ |φ(g)(y)| ≠ 0 ∀ i} ,

By Lemma 7.6, f−1(U) is the union of all rational opens V of Y contained in it, andOY (f
−1(U)) =

lim←−V⊆f−1(U)
OY (V ). For each such V , f(V ) ⊆ U , so f ♭ (resp. φ) induces the map f ♭V : OX(U)→

OY (V ) (resp. (Spaφ)♭V ); moreover, the maps f ♭U , (Spaφ)
♭
U : OX(U) → OY (f

−1(U)) are the in-

verse limits of these maps over all V . Thus it suffices to show that f ♭V = (Spaφ)♭V : OX(U) →
OY (V ). But these maps are equal when pulled back along A → OX(U). As OX(U) is a
completion of a localization of A, and both maps are continuous, they must be equal. □

We (finally!) can define adic spaces:

Definition 13.4 (Adic spaces). (1) An affinoid adic space is an object of V, which is iso-
morphic to Spa(A,A+) for some (sheafy) Huber pair (A,A+).

(2) An adic space is an object (X,OX , (| · (x)|)x∈X) of V, which admits an open covering
X =

⋃
i∈I Ui, such that (Ui,OX

∣∣
Ui
, (| · (x)|)x∈Ui) is an affinoid adic space.

(3) A morphism of adic spaces is a morphism in V. With other words, adic spaces form a
full subcategory of V.

We denote the affinoid adic space attached to a sheafy Huber pair (A,A+) by Spa(A,A+).

Remark 13.5. Not every Huber pair is sheafy, so not every Spa(A,A+) will be an (affinoid)
adic space. Actually, we do not yet have a single (non-empty) example of an adic space.

Remark 13.6. We have the commutative diagram

{cpl. sheafy Huber pairs}

��

// V

��

{cpl. Huber pairs} // Vpre

with both vertical functors being inclusions, and both horizontal ones sending (A,A+) to
Spa(A,A+). Note that all four functors are fully faithful.

One might try to avoid the problem of non-sheafy Huber pairs by sheafifying the structure
sheaf of Spa(A,A+). Apart from the problem that it is not clear (and probably not true) that
such a sheafification gives an object of V (and not just an –in general ill-behaved– sheaf of
topological rings) this sheafification is not a fully faithful functor, so that the composition of
functors from complete Huber pairs to V would also not be fully faithful.

13.2. Sheafiness. Recall the Tate algebra over a non-archimedean topological ring A:

A⟨T ⟩ := A⟨T1, . . . , Tn⟩ :=

{∑
ν

aνT
ν : |aν | → 0 for ν → +∞

}
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We now make two observations about it, although we will use them only a bit later. See [Mor19,
II.3.3] for a (more general and more detailed) discussion.

Remark 13.7. (1) Let A be a non-archimedean topological ring. Then A⟨T ⟩ admits a
unique non-archimedean topology with {

∑
ν aνT

ν ∈ A⟨T ⟩ : aν ∈ U} being a fundamental
system of neighboorhoods of 0, where U ⊆ A varies though a fundamental system of
neighboorhoods of 0 in A.

(2) Suppose A is complete. For any complete non-archimedean ring B, any continuous map
φ : A → B and any tuple (b1, . . . , bn) ∈ Bn of power bounded elements, there exist a
unique continuous extension φ̃ : A⟨T ⟩ → B of φ mapping Ti to bi. (Exercise: check this.)

Now, we use the above construction to define strongly Noetherian Tate rings.

Definition 13.8. A complete Tate ring is called strongly Noetherian if A⟨T1, . . . , Tn⟩ is Noe-
therian for any n ≥ 1.

Proposition 13.9 ( [BGR84],§5.2.6, Theorem 1). Any complete non-archimedean field k is
strongly Noetherian.

Recall that a Huber ring A is uniform if A◦ is bounded.

Definition 13.10. A Huber pair (A,A+) is called stably uniform, if for all rational opens
U ⊆ X = Spa(A,A+), the Huber ring OX(U) is uniform.

Theorem 13.11. Let (A,A+) be a complete Huber pair and let X = Spa(A,A+). Suppose that
at least one of the following conditions is satisfied:

(1) A is discrete (⇝ schemes)
(2) A has a Noetherian ring of definition (⇝ Noetherian formal schemes)
(3) A is strongly Noetherian analytic ring (⇝ rigid spaces)
(4) (A,A+) is Tate and stably uniform (⇝ perfectoid spaces)

Then (A,A+) is sheafy and for rational opens U ⊆ X and all i ≥ 1, H i(U,OX) = 0.33

In parentheses the class of examples is outlined to which the item naturally applies. Ultimately
one shows that the respective category (of schemes, rigid spaces, ...) embeds fully faithfully into
adic spaces. In particular, if k is a non-archimedean field, then (3) applies to all topologically
finitely generated (k, k◦)-algebras. Note that if (say) k is algebraically closed, then k◦ is not
noetherian and moreover, k does not admit a Noetherian ring of definition, so part (2) does not
apply to those rings.

The case (2) covers Noetherian formal schemes over Zp. However, if (say) k = Cp is the
completion of an algebraic closure of Qp, then OCp is non-Noetherian, and (2) does not cover
formal schemes over it. Those are recently covered by [?].

Proof of Theorem 13.11 in the discrete case. The map supp: X = Spa(A,A+)→ SpecA is sur-

jective, as for any p ∈ SpecA, the trivial valuation with support p maps to p. If U = X
(
f1,...,fn

g

)
is a rational open, then supp(U) = D(g), the principal open given by g (for the same reason as
above), so that

(supp∗OSpecA)(U) = OSpecA(D(g)) = A[g−1].

(a priori, this formula computes the presheaf pullback of OSpecA. But it also shows that
this presheaf pullback is already a sheaf (as OSpecA is), and so is equal to its sheafifica-
tion supp∗OSpecA.) On the other hand, OX(U) = A[g−1] with the discrete topology. Thus
OX = supp∗OSpecA as presheaves on the collection of all rational opens. As supp∗OSpecA is a

33Here, we consider the cohomology of a sheaf of abelian groups on a topological space.
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sheaf of abelian groups, also OX is. It is then clear that it is a sheaf of topological (discrete)
abelian groups. Similarly, the vanishing of higher cohomology follows from the vanishing of co-
homology of affine schemes, by using Čech cohomology (see the proof in other cases below). □

Below we prove Theorem 13.11 in cases (3) and (4). We will not discuss case (2). We do case
(4) in this chapter; we then deduce case (3) from the Banach open mapping theorem in §14. We
always work with a complete Huber pair (A,A+), with pseudo-uniformizer ϖ ∈ A and we put
X = Spa(A,A+).

13.3. Reduction to simple Laurent covers. It turns out that to verify the sheaf property
of OX it suffices to do so for the following very special and very explicit type of coverings. Let
X = Spa(A,A+) for a Huber pair (A,A+), and let t ∈ A. Then a simple Laurent cover of X is
the cover by two rational open subsets

X = X

(
1, t

1

)
∪X

(
1, t

t

)
, (13.1)

where X
(
1,t
1

)
= {x ∈ X : |t(x)| ≤ 1} and X

(
1,t
t

)
= {x ∈ X : |t(x)| ≥ 1}.

Proposition 13.12. Assume that (A,A+) is complete Tate. Suppose that for all rational opens
U ⊆ X and all simple Laurent coverings U = U1 ∪ U2, the sequence of abelian groups

0→ OX(U)→ OX(U1)⊕OX(U2)→ OX(U1 ∩ U2)→ 0

is exact. Then OX is a sheaf of abelian groups on the collection of rational opens of X. Moreover,
for any rational open U ⊆ X and i ≥ 1, H i(U,OX) = 0.

Proof. The collection of all covers of rational opens (of X) by rational opens (of X) forms
a cofinal collection of open covers, and the collection of rational opens is stable under finite
intersections (Lemma 7.6). Thus, by general formalism [Sta14, 01EW]34 one can reduce to Čech
cohomology: i.e., it suffices to show that for any rational open U ⊆ X, OX(U)→ Ȟ0(U,OX) is
an isomorphism (of abelian groups!) and that Ȟ i(U,OX) = 0 for i > 0. For this it suffices to
show that for any rational open cover U /U of a rational open U ⊆ X, one has

OX(U)
∼→ Ȟ0(U /U,OX) and Ȟ i(U/U,OX) = 0 for all i > 0 (13.2)

This property (of covers of varying rational opens) is local and transitive. That is, if a cover
V /U refines a cover U /U , and (13.2) holds for V /U , then it also holds for U /U . Moreover, let
U /U be a cover, and for each V ∈ U , let VV /V be a cover. If (13.2) holds for U /U and for
VV /V for each V ∈ U , then it also holds for

⋃
V ∈U VV /U .

In order to reduce (13.2) for general U /U to simple Laurent covers, we need to introduce
some special types of covers and prove refinement relations between them.

(a) Standard rational cover : it is a cover X =
⋃n

i=1X
(
t1,...,tn

ti

)
, where t1, . . . , tn ∈ A gener-

ate the unit ideal of A.
(b) Standard rational cover generated by units: a cover as in (a), subject to the condition

that ti ∈ A× for all i.
(c) Laurent cover : let t1, . . . , tn ∈ A and for each I ⊆ {1, . . . , n}, let UI = {x ∈ X : |ti(x)| ≤

1 if i ∈ I and |ti(x)| ≥ 1 if i ̸∈ I}. Then UI is an intersection of finitely many rational
opens, so itself a rational open (check it by hand if n = 2!). Moreover, X =

⋃
I UI is a

finite cover by 2n rational opens.

34and by Lemma 12.1 to ensure that OX satisfies the sheaf property for all open covers of all open subsets
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For example, if in (c) n = 2, then

U∅ = X

(
1, t1, t2
t1t2

)
, U{1} = X

(
1, t1t2
t2

)
, U{1,2} = X

(
1, t1, t2

1

)
For a formula in the general case see [Mor19, Definition IV.2.3.1].

Lemma 13.13 (Refinements of special covers). Suppose (A,A+) is complete Tate.

(1) Any open cover admits a refinement by a standard rational cover.
(2) For any standard rational cover X =

⋃
i Ui there exists a Laurent cover X =

⋃
V V , such

that for each V , the cover V =
⋃

i(Ui ∩ V ) is a standard rational cover generated by
units.

(3) Any standard rational cover generated by units admits a refinement by a Laurent cover.

Proof. (1): Let X =
⋃

i Ui be an open covering. By Lemma 7.6 we may assume that that all Ui

are rational opens and as X is quasi-compact, that this covering is finite, i.e., i ranges from 1

to some n ≥ 1. Write Ui = X
(
Ti
si

)
for some Ti ⊆ A generating an open ideal of A. This open

ideal contains some power ϖN of a pseudo-uniformizer ϖ ∈ A, hence is the unit ideal, that is
Ti ·A = A. Also, adding si to Ti, we may assume that si ∈ Ti. Let S ⊆ A be the subset

S =

{
n∏

i=1

fi : ti ∈ Ti, such that for at least one i, ti = si

}
As each Ti ·A = A, we have S ·A = s1A+ · · ·+ snA. On the other side, Ui cover X, so for any
x ∈ X there is some i with |si(x)| ̸= 0. Then Corollary 11.15 implies S · A = A. It remains to
show that the standard rational covering defined by S refines X =

⋃
i Ui. Let s =

∏
i ti ∈ S and

let X
(
S
s

)
be the correponding member of the standard covering. Let i0 be an index such that

ti0 = si0 . Then X
(
S
s

)
⊆ Ui0 = X

(
Ti0
si0

)
(check this!).

(2): Let t1, . . . , tn ∈ A generating the unit ideal, with U1, . . . , Un the corresponding standard
open cover. Write 1 =

∑
i aiti with ai ∈ A. Let ϖ ∈ A be a pseudo-uniformizer. As A+ is open,

there is some N ≫ 0, such that ϖNai ∈ A+ for each i. Let (VI)I be the Laurent cover of X

given by the elements ϖ−(N+1)t1, . . . , ϖ
−(N+1)tn. Exercise: verify the statement of (2) for this

Laurent cover.

(3): If t1, . . . , tn ∈ A× and U1, . . . , Un is the corresponding stadard rational cover generted by
units, then take I = {(i, j) ∈ {1, . . . , n} : i < j}, let tij = tit

−1
j , and then one checks that the

Laurent cover refines X =
⋃

i Ui. □

Now we can continue with the proof of Proposition 13.12. Note that its assumption is pre-
cisely (13.2) for simple Laurent covers (as any simple Laurent cover U /U has two mebers, one
automatically has Ȟ i(U /U,OX) = 0 for all i > 1).

Let U /U be any rational open cover of a rational open U ⊆ X. By Lemma 13.13(1) we
can refine it by a standard rational cover. By locality of (13.2), if it holds for this refinement,
then also for the original cover. Thus we may assume that U /U is a standard rational cover.
By Lemma 13.13(2), there is a Laurent cover V /U , such that for each V ∈ V , U ∩ V/V is a
rational cover generated by units. Thus, by transitivity and locality of (13.2), it suffices to show
it for Laurent covers and for standard covers generated by units. Finally, any standard cover
generated by units admits a refinement by a Laurent cover by Lemma 13.13(3), so using locality
again, it suffices to check (13.2) only for Laurent covers.

By induction on the number n of elements t1, . . . , tn generating the Laurent cover (and using
the assumption of the proposition as induction start for n = 1), we may assume that we know
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the assertion for all Laurent covers generated by < n elements. For t1, . . . , tn ∈ OX(U), let
(UI)I be the corresponding Laurent cover. If U = U1∪U2 is the simple Laurent cover generated
by t1, then for i = 1, 2, (UI)I ∩ Ui/Ui is a Laurent cover generated by n− 1 elements t2, . . . , tn,
so by induction assumption and by transitivity of (13.2), we are done. □

13.4. Exactness for simple Laurent covers: stably uniform case. Let X = Spa(A,A+)
for a complete Tate Huber pair (A,A+). Let us take a closer look at the Čech complex of a
simple Laurent covering. Therefore, let t ∈ A, and consider

U = X

(
1, t

1

)
= {x ∈ X : |t(x)| ≤ 1}

V = X

(
1, t

t

)
= {x ∈ X : |t(x)| ≥ 1}

U ∩ V = X

(
1, t, t2

t

)
= {x ∈ X : |t(x)| = 1}

as in (13.1). Recall from Propositions 7.7 and 12.2 how OX(U), OX(V ), OX(∩V ) are con-
structed. Let A0, I be a couple of definition of A. First, we localized to get the (non-complete)
Huber pairs, with their respective rings of definitions

BU = A B+
U = A+[t] BU,0 = A0[t]

BV = A[t−1] B+
V = A+[t−1] BV,0 = A0[t

−1]

BU∩V = A[t−1] B+
U∩V = A+[t, t−1] BU∩V,0 = A0[t, t

−1]

Note that the resulting Čech complex

0→ A→ BU ⊕BV → BU∩V → 0 (13.3)

(where the right map is given by x, y 7→ ψU (x) − ψV (y), where ψ∗ : B∗ → BU∩V is the natural
map) is exact, as the natural maps A → BU and BV → BU∩V are isomorphisms. However,
in a second step (see Proposition 12.2) we completed the above rings, to get the completion of
(13.3):

0→ OX(X)→ OX(U)⊕OX(V )→ OX(U ∩ V )→ 0, (13.4)

where OX(X) = A (as A was complete).
Completion can destroy exactness, but it does not under special circumstances. Our goal is

to prove the following:

Proposition 13.14. Suppose we are in case (3) or (4) of Theorem 13.11. Then the assumption
of Proposition 13.12 is verified, i.e. the complex (13.4) is exact (for any rational open of X).

First we handle the stably uniform case, where we use the notion of strictness for maps
between topological groups.

Definition 13.15. A continuous map f : M → N of topological groups is called strict if the
induced isomorphism M/ ker f

∼→ im f (of abstract groups) is a homeomorphism. With other
words, the quotient topology on M/ ker f must coincide with the subspace topology on im f .

Remark 13.16. Suppose we know that OX is a sheaf of abstract abelian groups. Then Remark
12.5(1) tells us that OX is a sheaf of topological abelian groups if and only if for any rational
open cover U =

⋃
i Ui of any rational open U ⊆ X, the map OX(U)→

∏
iOX(Ui) is strict.

Completion of a complex of topological abelian groups with strict maps behaves well:
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Proposition 13.17. [ [Bou], III,§2 N12, Lemme 2] Let L
f→M

g→ N be a sequence of continu-
ous maps between abelian topological groups having countable fundamental systems of neighboor-
hoods of 0. Suppose that the sequence is exact and f, g are strict. Then the completion

L̂
f̂→ M̂

ĝ→ N̂

is exact and f̂ , ĝ are strict.

This proposition encompasses our strategy: we will verify strictness of maps in the exact
complex (13.3) to deduce exactness of (13.4). Recall that we are in the Tate case and that ϖ is
a pseudo-uniformizer of A. Let αU : A→ BU and αV : A→ BV be the natural maps.

Lemma 13.18. For the maps in (13.3) we have:

(1) BU ⊕BV → BU∩V is strict.
(2) A → BU ⊕ BV is strict if and only if there is some n > 0 with ϖn(α−1

U (BU,0) ∩
α−1
V (BV,0)) ⊆ A0.

Proof. (1): As (13.3) is exact, BU ⊕BV → BU∩V is surjective. As an open continuous map is a
homeomorphism, it suffices to show thatBU⊕BV → BU∩V is open. The setsϖnA0[t]⊕ϖnA0[t

−1]
for varying n > 0 for a system of open neighboorhoods of 0 in BU ⊕ BV . It suffices to check
that they are mapped to open subsets in BU∩V . But the image of such a set is ϖnA0[t, t

−1] =
ϖnBU∩V,0 ⊆ BU∩V , which is open.

(2): Endow A (as an abelian group) with the topology in which A′
0 := ϖn(α−1

U (BU,0) ∩
α−1
V (BV,0)) is open (and bounded), and the topology on A′

0 is ϖ-adic. Then A → BU ⊕ BV is
strict if and only if (A,A0, ϖ− adic)→ (A,A′

0, ϖ− adic) is a homeomorphism. This is the case
if and only if A0 is open in the right hand side. But this is precisely the condition in (2). □

Now, uniformicity ensures us the strictness in Lemma 13.18(2):

Proposition 13.19. Suppose A is an uniform Tate algebra. Then for any t ∈ A, the map
A→ BU ⊕BV in (13.3) is strict. In particular, (13.4) is exact.

Note that to apply Proposition 13.12 we need to know the conclusion of Proposition 13.19
for all rational opens in X, which means that we really need to assume stably uniform (and not
just uniform) in Theorem 13.11.

Proof of Proposition 13.19 in the stably uniform case. The last claim follows by combining the
first claim, Lemma 13.18(1) and Proposition 13.17. Let us prove the first claim.

Lemma 13.20 (Local criterion for power-boundedness). Let t1, . . . , tn ∈ A generate the unit

ideal. For each i, let A
φi→ Ai := A[t−1

i ] with ring of definition Ai,0 = A0

[
t1,...,tn

ti

]
. Let a ∈ A. If

φi(a) ∈ Ai,0 for all i, then a ∈ A◦, i.e., a is power-bounded.

Proof. This is slightly tricky, but not very hard, cf. [BV18, Lemma 3]. □

Apply Lemma 13.20 to the pair t, 1. It shows that any element in (α−1
U (BU,0) ∩ α−1

V (BV,0))

is power-bounded, that is (α−1
U (BU,0) ∩ α−1

V (BV,0)) ⊆ A◦. As by assumption, A is uniform, A◦

is bounded, that is for some n > 0, ϖnA◦ ⊆ A0. Combining, we see that ϖn(α−1
U (BU,0) ∩

α−1
V (BV,0)) ⊆ A0. Now we conclude by Lemma 13.18. □

Proof of Theorem 13.11 in the stably uniform case. Combining Propositions 13.14 (in the sta-
bly uniform case) and 13.12 we see that OX is a sheaf of abelian groups and its higher co-
homology vanishes. It remains to show that OX is a sheaf of topological groups, which by
Remark 13.16 amounts to say that for any standard rational cover U =

⋃
i Ui of any rational
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open U ⊆ X, the map OX(U) →
∏

iOX(Ui) is strict (as standard rational covers are cofinal).
We may replace X by U . As strictness is preserved by completion (Proposition ??) it suffices
to show that the uncompleted map φ : A →

∏
iBi is strict (where Bi are the localizations of

A as constructed in Proposition 7.7). As A is uniform we may take A0 = A◦. The subspace
topology on φ(A) ⊆

∏
iBi is given by the fundamental system of opens φ(A)∩

∏
iϖ

nBi,0. The
quotient topology on φ(A) is given by φ(ϖnA0). As φ is continuous, the quotient topology
is at least as fine as the subspace topology. Conversely, Lemma 13.20 tells us precisely that
φ(A) ∩

∏
iϖ

nBi,0 ⊆ φ(ϖnA0), and so both topologies coincide. □

13.5. Appendix to §13.

14. Banach open mapping theorem and consequences

We are aiming to prove Theorem 13.11 in the strongly Noetherian case. First we study some
topological algebra, notably the Banach open mapping theorem, its consequences and the notion
of maps topologically of finite type.

To make the statements less technical, let us rightaway assume that

all commutative topological groups have a countable fundamental system of neighboorhoods of 0.

This has as a consequence that the topology on all such objects is given by a translation invariant
pseudo-metric (if the group is even Hausdorff, then the pseudo-metric is a metric). Thus, we
always may fix such a metric and the topology is defined by the corresponding family of discs
with arbitrary small radii. Also we restrict to the Tate case, the general statements being
somewhat more general.

The hard direction in the following result is that a surjection between complete modules under
a Tate ring is open.

Theorem 14.1 (Banach open mapping theorem). Let A be a Tate ring. Let M,N be Hausdorff
topological A-modules. Assume M is complete. Let f : M → N be an A-linear map. Then the
following are equivalent:

(a) N is complete and f is surjective.
(b) N is complete and f(M) is open.
(c) f is open.

Proof. (a) ⇒ (b) is clear. Suppose (b). Let ϖ ∈ A be a pseudo-uniformizer. Let U ⊆ M be
a neighboorhood of 0. Let V be an open disc centered at 0, with radius small enough such
that V − V ⊆ U . For any m ∈ M , there is an n > 0 with ϖnm ∈ V . With other words,
M =

⋃
n≥0ϖ

−nV . But then

f(M) =
⋃
n≥0

ϖ−nf(V ) ⊆
⋃
n≥0

ϖ−nf(V ).

As ϖ−n ∈ A are units, all sets ϖ−nf(V ) are closed. By assumption, f(M) ⊆ N is open. In

particular,
⋃

n≥0ϖ
−nf(V ) has a non-empty interior, and then Baire category theorem35 implies

that at least one of the closed subsets ϖ−nf(V ) is not nowhere-dense, that is has a non-empty

interior. As multiplication by ϖn is a homeomorphism, also f(V ) has non-empty interior. Let

x ∈ f(V ) be an interior point. Then

0 = x− x ∈ f(V )− f(V ) ⊆ f(V )− f(V ) ⊆ f(U)

35Let X be a non-empty complete metric space. Let A ⊆ X be a subset with non-empty interior. Then A is not
the union of nowhere-dense subsets. (A subset is nowhere-dense if its closure has empty interior.)
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is an interior point (of all these sets). With other words, f(U) is a neighboorhood of 0 in N .

We thus have shown that for any neighboorhood 0 ∈ U ⊆ M , f(U) is a neighboorhood of 0
in N . Now we derive from this that f is open. Fixing a metric defining the topologies on M,N ,
the above says that for any r > 0 there is some ρ(r) > 0 such that

f(BM,r(0)) ⊇ BN,ρ(r)(0) (14.1)

(where B?,r(0) is the open unit disc in ? centered at 0 with radius r).
Let a > r > 0 be arbitrary. Exploiting that the metrics are translation invariant, it is sufficient

to show that

f(BM,a(0)) ⊇ BN,ρ(r)(0). (14.2)

Choose a sequence of real numbers rn (n ≥ 1) such that r1 = r,
∑

n≥1 rn = a. For any n ≥ 1,

choose some 0 < ρn < ρ(rn), subject to the condition that limn→∞ ρn = 0. Let y ∈ BN,ρ(r)(0).
We must show that y ∈ f(BM,a(0)). We now define inductively a sequence of elements xn ∈M
(n ≥ 0), which is subject to the two conditions:

• xn ∈ BM,rn(xn−1) for all n > 0, and
• f(xn) ∈ BN,ρn+1(y).

Put x0 = 0. Let n > 0 and suppose x0, . . . , xn−1 are already defined. Then y ∈ BN,ρn(f(xn−1)) ⊆
BM,rn(xn−1) (where the inclusion follows from (14.1) by exploiting the translation invariance of
the metric). Then BN,ρn+2(y) ∩ f(BM,rn(xn−1)) ̸= ∅. We choose xn ∈ BM,rn(xn−1), such that
f(x) lies in this intersection.

Now the sequence (xn)n≥0 is Cauchy inM , as
∑

n≥1 rn = a and so
∑

n≥N rn → 0 for N →∞.

As M is complete, (xn)n has a limit x ∈ M . Then x ∈ BM,a(0) by the triangle inequality, and
f(x) = limn→∞ f(xn) = y by continuity of f . This establishes (14.2), and hence we are done
with (b) ⇒ (c).

(c) ⇒ (a): By assumption, f(M) is open in N , so is an open neighboorhood of 0. Then for
any x ∈ N we may find some n ≫ 0 with ϖnx ∈ f(M). As f(M) ⊆ N is an A-submodule
and ϖn ∈ A×, we must have f(M) = N , that is f is surjective. As f is open, also the induced
continuous bijection f̄ : M/ ker(f) → N is open, hence homeomorphism. It remains to show
that M/ ker(f) is complete. As N is Hausdorff, ker(f) ⊆ M is a closed submodule, and the
quotient of a complete abelian group by a closed subgroup is again complete. □

The Banach open mapping theorem has numerous important consequences, which we now
discuss.

Corollary 14.2 (automatic continuity). Let A be a Tate ring, f : M → N an A-linear map be-
tween topological A-modules, where M is complete and finitely generated. Then f is continuous.

Proof. There is some n > 0 and a surjective A-linear map π : An →M . It is continuous (as the
scalar multiplication and addition in M are continuous), and similarly f ◦ π is continuous. By
Theorem 14.1, π is open. Let U ⊆ N be an open subset. Then f−1(U) = π(π−1(f−1(U))) is
open. □

Corollary 14.3 (automatic completness). Let A be a complete Tate ring. If the completion of
a topological A-module M is finitely generated, then M is complete.

Proof. Choose a surjection π : An ↠ M̂ to the completion of M . It is automatically continu-
ous. By Theorem 14.1 it is open. Thus, as (A◦◦)n ⊆ An is a neighboorhood of 0, its image∑n

i=1A
◦◦π(ei) in M̂ also is (where (ei)

n
i=1 is the standard basis of An). In a commutative
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topological group, the sum of an open and a dense subset is the whole group. Thus

M +
n∑

i=1

A◦◦π(ei) = M̂.

Now the topological Nakayama lemma 14.4 shows that M = M̂ . □

We have used a topological verison of the Nakayama lemma:

Lemma 14.4 (Nakayama lemma for complete Tate rings). Let A be a complete Tate ring,
M an A-module, and N ⊆ M a submodule, such that there are some m1, . . . ,mr ∈ M with
M = N +

∑r
i=1A

◦◦mi. Then N =M .

Proof. For each 1 ≤ i ≤ r, write mi = ni +
∑r

j=1 aijmj with ni ∈ N and aij ∈ A◦◦. That is, if

a = (aij), m = (m1, . . . ,mr)
T and similarly for n, we have m = n+ a ·m or with other words,

n = (1r − a) ·m
in the ring of r × r-matries over A. If we show that 1r − a is invertible, we are done, as then
it follows that mi ∈ N for each i. To show that 1r − a is invertible it suffices to check that
det(1r − a) ∈ A×. But all aij ∈ A◦◦, and one checks that det(1r − a) ∈ 1 + A◦◦ ⊆ A× (the last
inclusion uses that A is complete). □

Corollary 14.5 (characterization of Noetherian modules). Let A be a complete Tate ring and
M a complete topological A-module. The following are equivalent:

(1) M is Noetherian as an A-module.
(2) All A-submodules of M are closed.

In particular, A Noetherian if and only if all ideals of A are closed.

Proof. (1) ⇒ (2): If N ⊆ M is any submodule. As M is complete (in particular, Hausdorff),

we have N̂ ⊆M . As M is Noetherian, N̂ is finitely generated. Then Corollary 14.3 shows that

N = N̂ is complete. A complete submodule is always closed.

(2)⇒ (1): LetM1 ⊆M2 ⊆ . . . be an ascending chain of submodules ofM . LetM∞ =
⋃

iMi.
This is again a submodule of M , and by assumption it is closed in M , hence complete. Thus,
M∞ is a complete A-module, hence in particular, a complete metric space and we can apply
Baire category theorem to it and the union M∞ =

⋃
iMi of closed subsets. It shows that there

is some i0, such that Mi0 has a non-empty interior (within M∞!). Then Mi0 contains an open
neighborhood of 0 ∈ M∞, hence for any x ∈ M∞, there is some n > 0 with ϖnx ∈ Mi0 , and
hence hence Mi0 =M∞. □

Using the above we can show that any finitely generated (abstract) module over a complete
Noetherian Tate ring has a canonical topology:

Corollary 14.6 (canonical topology). Let A be a complete Noetherian Tate ring.

(1) Every finitely generated A-module has a unique topology making it a complete topological
A-module having a countable fundamental system of neighboorhoods of 0. We call it the
canonical topology.

(2) Let f : M → N be an A-linear map between finitely generated A-modules. With respect to
the canonical topologies on M,N , f is continuous, im(f) ⊆ N is closed and M ↠ im(f)
is open.

Proof. (1): If T , T ′ are two such topologies on M , then id: (M, T ) → (M, T ′) and its inverse
are continuous by Corollary 14.2, that is, homeomorphisms. This shows uniqueness. For the
existence, pick some n > 0 and a A-linear surjection π : An ↠ M . As A is Noetherian, An is a
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Noetherian A-module. Hence, by Corollary 14.5, kerπ is a closed submodule. Thus the quotient
topology on An/ kerπ ∼= M is Hausdorff. Clearly, as An was complete and metrizable, also the
quotient topology on An/ kerπ is. Endowing M with this topology finishes the proof of (1).

(2): f is continuous by Corollary 14.2. Also, N is finitely generated A-module, hence Noe-
therian, hence by Corollary 14.5, im f is closed. As the canonical topology on N is complete,
im f is therefore also complete with the subspace topology. The map M → im f is then open
Theorem 14.1. □

14.1. Proof of sheafiness in the strongly Noetherian case. Let A be a complete Noether-
ian Tate ring and let M be a finitely generated A-module, endowed with the canonical topology
(Corollary 14.6). Consider

M⟨T ⟩ =

∑
n≥0

mnT
n : all mn ∈M, and mn → 0 for n→∞

 .

This is a A⟨T ⟩-submodule of M [[T ]].

Lemma 14.7. The natural map

A⟨T ⟩ ⊗A M →M⟨T ⟩, a,m 7→ am

is an isomorphism (of abstract A⟨T ⟩-modules).

Proof. This is clear if M ∼= An is finite free. In the general case, we have an exact sequence of

A-modules Am f→ An g→M → 0. Tensoring it with A⟨T ⟩ we obtain the exact upper row of the
following commutative diagram

A⟨T ⟩ ⊗Am //

��

A⟨T ⟩ ⊗An //

��

A⟨T ⟩ ⊗M //

��

0

Am⟨T ⟩ // An⟨T ⟩ // M⟨T ⟩ // 0

It follows from the properties of the canonical topology (Corollary 14.6(2)) that the lower row is
exact too. As the first two vertical arrows are bijections, also the third is by the 5-lemma. □

Proposition 14.8 (Flatness of completed localization). Let A be a complete Noetheran Tate
ring.

(1) The ring A⟨T ⟩ is faithfully flat over A.
(2) Let t ∈ A. The rings A⟨T ⟩/(t−X) and A⟨T ⟩/(1− tT ) are flat over A.

Proof. If M ↪→ N is an injection of finitely generated A-modules, then M⟨T ⟩ → N⟨T ⟩ is
obviously injective. Hence, by Lemma 14.7, M ⊗A A⟨T ⟩ → N ⊗A A⟨T ⟩ is also injective. This
shows that A→ A⟨T ⟩ is flat. If p ⊆ A is a prime ideal, then the subset {

∑
n≥0 anT

n : a0 ∈ p} ⊆
A⟨T ⟩ is a prime ideal whose intersection with A is p. Thus SpecA⟨T ⟩ → SpecA is surjective
and faithful flatness follows.

(2): Claim: Let g ∈ A⟨T ⟩. Assume that for any finitely generated A-module M , the multi-
plication map x 7→ gx : M⟨T ⟩ →M⟨T ⟩ is injective. Then Bg := A⟨T ⟩/g is flat over A.

Proof of Claim: The sequence

0→ A⟨T ⟩ g→ A⟨T ⟩ → Bg → 0

is exact by assumption applied to M = A. Applying −⊗A M and using that A⟨T ⟩ is A-flat by
(1), we get the exact sequence

0→ Tor1A(M,Bg)→M ⊗A A⟨T ⟩
idM ⊗(g·)−→ M ⊗A A⟨T ⟩ → . . .
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But the last map identifes under the bijection of Lemma 14.7 with the multiplication by g
map M⟨T ⟩ → M⟨T ⟩, which is injective by assumption. Thus Tor1A(M,Bg) = 0 and as M was
arbitrary finitely generated, Bg is flat. This proves the claim.

To finish the proof of (2), we have to verify the assumption of the claim for g = t − T
and for g = 1 − tT . In the second case this is an immediate computation. In the first case,
let
∑

n≥0mnT
n ∈ M⟨T ⟩, such that (t − T )

∑
nmnT

n = 0. This means that tm0 = 0 and

tmn = mn−1 for all n ≥ 1. Let M ′ be the submodule of M generated by all the mn’s. It suffices
to show that M ′ = 0. As M is finitely generated and A Noetherian, M ′ is finitely generated,
hence generated by m0, . . . ,mr for some r ≫ 0. Applying tmn = mn−1 succesively, we see that
M ′ is generated by the single element mr and that tr+1mr = tm0 = 0. We can find some a ∈ A
with m2r+1 = amr. Then mr = tr+1m2r+1 = tr+1amr = 0, and we are done. □

To prove sheafiness in the strongly Noetherian case, we first have to relate the (complete)
A-algebra of sections OX(U) to convergent power series:

Lemma 14.9. Let A be a complete strongly Noetherian Tate algebra and let A+ be any ring of
integral elements. Let X = Spa(A,A+) and let t ∈ A.

(1) If U = {t ≤ 1} ⊆ X, then OX(U) ∼= A⟨T ⟩/(T − t).
(2) If V = {t ≥ 1} ⊆ X, then OX(V ) ∼= A⟨T ⟩/(1− tT ).
(3) Let U, V are as in (1),(2). Then OX(U∩V ) ∼= A⟨T1, T2⟩/(T1−t, 1−T1T2) ∼= A⟨T±1

1 ⟩/(T1−
t), where

A⟨T±1⟩ :=

{∑
n∈Z

anT
n : an → 0 as |n| → ∞

}
,

with multiplication defined by(∑
n∈Z

anT
n

)
·

(∑
n∈Z

bnT
n

)
=

(∑
n∈Z

cnT
n

)
,

where cn =
∑

k+m=n akbm ∈ A is well-defined, as the infinite sum converges.

Proof. (1): As A is strongly Noetherian, A⟨T ⟩ is Noetherian. Thus, by Corollary 14.5, (T − t) is
closed, and so A⟨T ⟩/(T − t) is Hausdorff and hence complete. It is clear that the map induced
by A→ A⟨T ⟩/(T − t) on adic spectra factors through the subset {t ≤ 1}. Moreover, it is easy to
see (compare Remark 13.7(2)) that A⟨T ⟩/(T − t) satisfies the same universal property as OX(U)
(see Proposition 12.2).

(2),(3): Similar. Note that A⟨T1, T2⟩/(1 − T1T2) ∼= A⟨T±1
1 ⟩ as both A-algebras are initial in

the category of maps from A to complete Tate rings B together with a choice of a unit s ∈ B
such that s and s−1 are powerbounded (for A⟨T1, T2⟩/(1 − T1T2) to be complete we used that
A is strongly Noetherian). □

Finally, we can approach Proposition 13.14 and Theorem 13.11 in the strongly Noetherian
case.



LECTURE NOTES ON ADIC SPACES 75

Proof of Proposition 13.14 in the strongly Noetherian case. By Lemma 14.9, the sequence (13.4)
(whose exactness we want to show) fits in as the last row of the following diagram:

0 //

��

(T − t)A⟨T ⟩ × (1− tT−1)A⟨T−1⟩� _

��

// (T − t)A⟨T±1⟩� _

��

// 0

0 // A // A⟨T ⟩ ×A⟨T−1⟩

����

// A⟨T±1⟩ //

����

0

0 // OX(X) // OX(U)×OX(V ) // OX(U ∩ V ) // 0

The second and third columns are exact by Lemma 14.9, and we also know that the lower left
horizontal map is injective. Applying the snake lemma to the second and third columns, it
becomes clear that the exactness of the lower row follows from the exactness of the two upper
rows. One readily checks their exactness, cf. [Wed19, Proof of Lemma 8.33]. □

Remark 14.10. Note that in the above proof we are slightly cheating: in fact, when reducing
sheafiness to exactness of (13.4), we replaced X = Spa(A,A+) by a smaller rational open subset
U ⊆ X. Now, the assumption in Theorem 13.11(3) only guarantees us that A is strongly
Noetherian, but says nothing about OX(U). However, if OX(U) is also strongly Noetherian, as
is sketched below, see Corollary 14.15.

Proof of Theorem 13.11 in the strongly Noetherian case. To finish this proof it just remains to
show that OX is a sheaf of topological groups (not only abstract ones). Therefore, it is enough
to show that for a rational open U ⊆ X, φ : OX(U) →

∏
iOX(Ui) is strict for any covering

U =
⋃

i Ui by rational opens. As U is quasi-compact, we may assume that the covering is finite.
As OX is a sheaf (of abstract groups), im(φ) = ker(

∏
iOX(Ui) →

∏
i,j OX(Ui ∩ Uj)), hence

closed in
∏

iOX(Ui), and hence complete as OX(U)-module. But then the Banach mapping
theorem 14.1 implies that φ : OX(U)→ im(φ) is open. □

Remark 14.11. Suppose (A,A+) is a complete Huber pair with A strictly Noetherian Tate
ring, and let X = Spa(A,A+). Then:

• For U ⊆ X rational open, OX(U) is a quotient of some free A-Tate algebra A⟨T1, . . . , Tr⟩
by a (necessarily closed) ideal.
• For V ⊆ U ⊆ X, OX(U)→ OX(V ) is flat.

Both can be proven in a similar way as the special cases shown above.

14.2. Homomorphisms topologically of finite type. (The discussion in this section is quite
sketchy.)

First, the A-Tate algebras A⟨T ⟩ generalize to the following construction: let A be a non-
archimedean topological ring. Let T = (Ti)i∈I be a family of indeterminates and for each i ∈ I,
let Si ⊆ A be a subset of A such that for each n ≥ 0 and each open subgroup U ⊆ A, the
subgroup Sn

i · U ⊆ A (generated by products of n elements of Si and one of U) is open. Write
S = (Si)i∈I . The we define

A⟨T ⟩S :=

 ∑
ν∈N(I)

aνT
ν ∈ A[[T ]] : for all open subgroups U ⊆ A, aν ∈ SνU for almost all ν

 .
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This is a ring and it has a unique structure of a non-archimedean topological ring for which

UT,S :=

 ∑
ν∈N(I)

aνT
ν ∈ A⟨T ⟩S : aν ∈ SνU for all ν


is a fundamental system of open neighboorhoods of 0, where U varies through all open subgroups
of A.

Remark 14.12. If one assumes A to be complete and Ti to be bounded for each i, then the map
(A⟨T ⟩S , T ) is initial among all pairs (f, (xi)i∈I) consisting of a continuous ring map f : A → B
into a complete non-archimedean ring B, and elements xi ∈ B, such that for each i ∈ I,
{f(t)xi : t ∈ Ti} is bounded. (Cf. [Mor19, Cor.II.3.3.4]).

Definition 14.13. Let A, B be complete Huber rings and let f : A→ B be a (continuous) ring
homomorphism.

(1) f is called strictly topologically of finite type (strictly tft), if there is some n ≥ 0 and a
surjective continuous open map

A⟨T1, . . . , Tn⟩↠ B

of A-algebras.
(2) f is called topologically of finite type (tft) if f is adic, there is a finite set M ⊆ B such

that f(A)[M ] ⊆ B is dense, and there are rings of definition A0 ⊆ A, B0 ⊆ B and a finite
subset N ⊆ B0 such that f(A0)[N ] ⊆ B0 is dense. Equivalently, f is tft if there exist
finite subsets S1, . . . , Sn ⊆ A with Si ·A ⊆ A open, and a continuous open surjection of
A-algebras A⟨T1, . . . , Tn⟩S1,...,Sn ↠ B. (Cf. [Mor19, IV.1.2.1])

Looking at the construction in the proof of Proposition 12.2 we see that if (A,A+) is a Huber
pair, and U ⊆ X = Spa(A,A+) is open, then OX(U) is a tft A-algebra.

Clearly, tft over A implies strictly tft over A. For Tate rings the converse is true:

Proposition 14.14 ( [Wed19], Proposition 6.34). Let A be a Tate ring. Then any tft A-algebra
is strictly tft.

Corollary 14.15. Let A be a strongly Noetherian Tate ring. Then any tft algebra over A is
strongly Noetherian.

In particular, if A is a complete strictly Noetherian Tate ring, X = Spa(A,A+) for some A+,
and U ⊆ X rational open, then OX(U) strongly Noetherian.

Proof. This follows from the definitions of strictly tft, strongly Noetherian and from Proposition
14.14. □

15. Formal schemes and adic spaces

15.1. Formal schemes. Let us first recall formal schemes. This is a brief discussion only.
See [?, 0AHY] (or [Ans, §3], ... ) for more details.

Formal schemes form a full subcategory of locally topologically ringed spaces (LTRS). An
object in LTRS is a pair (X,OX) where X is a topological space and OX is a sheaf of topological
rings, whose stalks (=colimits over open neighboorhoods) are (after forgetting topology) local
rings. The morphisms are evident36. Now, an affine formal scheme is a object in LTRS, which
corresponds to an admissible topological ring37.

36Once one notes that if Y → X is a continuous map, then one can define f∗ for sheaves of topological rings in
the same way as for usual rings.
37Admissible is more general than adic. The main source of examples for us are adic rings with a finitely generated
ideal of definition.
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Definition 15.1. A topological ring A is called admissible, if it is

• linearly topologized, i.e., the topology is determined by a fundamental system {Iα}α of
open neighboorhoods of 0, which are ideals.
• complete (as usual, this means Hausdorff+complete), i.e., A ∼= lim←−α

A/Iα, and
• there is an ideal I of definition, i.e., I is open and any neighboorhood of 0 contains In

for n≫ 0.

For an admissible ring A, let AdmA denote the category of admissible A-algebras B (with A→ B
continuous) with continuous maps.

Note that any abstract ring may be regarded as an admissible one, equipped with the discrete
topology. Note that In itself does not need to be open, and so not any admissible ring is adic.
For an example, let A = k[Ti : i ≥ 0] and let I = (Ti : i ≥ 0) be the ideal generated by all Ti’s.

Then the I-adic completion ÂI is admissible, but not adic, see [Sta14, 05JA]. In this example, I
is not finitely generated, but note that there are examples of Noethereian and admissible rings,
which are not adic. However:

Lemma 15.2. Let A be any ring and I ⊆ A a finitely generated ideal. Then the I-adic comple-

tion ÂI is adic.

Back to the definition of formal schemes. For an admissible ring A, the formal spectrum of A
is

SpfA := {p ∈ SpecA : p is open in A }.
with the topology induced from SpecA. If (Iα)α is a fundamental system of open ideals as in
the definition (wlog, contained in an ideal of definition), for any α, β with Iα ⊇ Iβ, one has

homeomorphisms38

SpecA/Iα
∼→ SpecA/Iβ

∼→ SpfA.

More canonically, we thus can write

SpfA ∼= lim←−
α

SpecA/Iα

(all transition maps homeomorphisms). For each α, we can regard the structure sheaf OSpecA/Iα

as a sheaf of (discrete) rings on SpfA, which we denote by Oα.

If X is any topological space having a basis of qc opens, the forgetful functor from sheaves of
topological rings (groups, modules, ... ) on X to sheaves of rings (groups, modules, ... ) admits
a left(?) adjoint, given by equipping the value of the sheaf on each qc open with the discrete
topology and topologizing the value on remaining opens appropriately. We call sheaves in the
essential image of this adjoint pseudo-discrete.

Let A be an admissible ring. We equip SpfA with the sheaf of topological rings

OSpf A := lim←−
α

Oα,

where Oα is regarded as a pseudo-discrete sheaf of topological rings, and the limit is taken in
topological rings.

Definition 15.3. An affine formal scheme is a locally topologically ringed space isomorphic to

(Spf A,OSpf A)

for some adimssible ring A.

This is a consistent definition, due to the following facts (which we do not check here):

38Existence of these homeomorphisms uses the ideal of definition!
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(a) For A admissible, (Spf A,OSpf A) is indeed in LTRS that is, the stalks are (abstract)
local rings.

(b) For any f ∈ A with corresponding principal open D(f) ⊆ SpecA, one has

Γ(D(f) ∩ Spf A,OSpf A) = A⟨f−1⟩ := lim←−
α

A/Iα[f
−1].

(c) Moreover, for f ∈ A, A⟨f−1⟩ is an admissible ring, and

(Spf A⟨f−1⟩,OSpf A⟨f−1⟩) ∼= (D(f) ∩ Spf A,OSpf A|D(f)∩Spf A).

(d) A 7→ (Spf A,OSpf A) defines a fully faithful contravariant embedding of the category of
admissible rings (with continuous homomorphisms) into LTRS.

In what follows we write Spf A for (Spf A,OSpf A). These facts make the following definition
natural:

Definition 15.4. A formal scheme is an object of LTRS, which is locally isomorphic to an
affine formal scheme. A morphism of formal schemes is a morphism in LTRS.

Example 15.5. We have a fully faithfull (covariant) embedding of the category of schemes into
the category of formal schemes. On affines, it is given by sending SpecA to Spf A, where A is
equipped with discrete topology. Note that then Spf A = SpecA and OSpf A(U) = OSpecA(U)
as abstract rings, but on the LHS the topology might be non-discrete if U is not qc open.

Up to set-theoretic restrictions (omitted), a formal scheme is determined by its evaluation on
schemes (regarded as formal schemes as in Example 15.5):

Lemma 15.6 ( [Sta14], 0AI1). The functor

Formal schemes→ Funop(Schemes, Sets), X 7→ (hX : S 7→Morform. sch.(S,X))

is fully faithful.

Proof. Let us prove this in the affine case. Let A,B be admissible rings, and let f : hSpf B →
hSpf A be a natural transformation of functors. Let Jβ be a fundamental system of open ideals of
B. For each β, we have the natural inclusion SpecB/Jβ ↪→ Spf B, and f maps it to a morphism
SpecB/Jβ → Spf A (in formal schemes). Then by Yoneda (item (d) above), this uniquely
corresponds to a continuous homomorphism of rings φβ : A → B/Jβ. Moreover, if J ′

β ⊆ Jβ,
then φβ′ and φβ are compatible with the projection. Thus we obtain a map

limβ φβ : A→ lim←−β
B/Jβ = B,

which is continuous, since the preimage of each Jβ is open in A (as A → B/Jβ is continuous
and B/Jβ is discrete).

If S = SpecR is an affine scheme, regarded as pseudo-discrete formal affine scheme, any
morphism SpecR → Spf B factors through Spf B/Jα for some open ideal Jβ ⊆ A. With other
words, hSpf B = lim−→β

hSpecB/Jβ . □

Let us also note that a formal scheme, regarded as a functor on schemes, is a sheaf for the
fpqc topology, cf. [Sta14, 0AI2].

Example 15.7. Let R be a discrete ring and let R[[T ]] be the R-algebra with T -adic topology.
Then R[[T ]] is admissible (even adic) and Spf R[[T ]] ∼= SpecR as topological spaces. Regarded as
functors on (affine) R-schemes, we have

Spf(R[[T ]])(R′) = HomR-alg, cont(R[[T ]], R
′) = Nil(R′), (15.1)

the nilradical of R′.
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For f =
∑

n≥0 fnT
n ∈ R[[T ]], let us compute R[[T ]]⟨f−1⟩. For each N > 0, let XN =

Spec SpecR[[T ]]/(TN ). We have

(R[[T ]]/(TN ))[f−1] = Γ(DXN
(f modTN ),OXN

) = Γ(DXN
(f0),OXN

) = (R[[T ]]/(TN ))[f−1
0 ]

= Rf0 [[T ]]/(T
N ),

where we use that (f modTN ) − f0 is a nilpotent element of R[[T ]]/(TN ). Passing to the limit
over N , we then get

R[[T ]]⟨f−1⟩ = Rf0 [[T ]].

Now Spf Rf0 [[T ]]
∼= SpecRf0 as topological spaces. On the other side, the subset D(f) ⊆

Spf R[[T ]] consists of precisely those open idels of R[[T ]], which do not contain f , and via
Spf R[[T ]] ∼= SpecR this agrees with the subset D(f0) ⊆ SpecR. Note also that (say, if f = f0),
we have a proper containement R[[T ]]f0 ⊆ Rf0 [[T ]] and the RHS is the T -adic completion of the
LHS.

Note also that the (pro-Yoneda) Lemma 15.6 allows us to compute the group of endomor-
phisms of the functor Nil on R-algbras. Namely,

End(Nil) = EndR−alg,cont(R[[T ]]) = {f ∈ R[[T ]] : f(0) ∈ Nil(R)} = R[[T ]]◦◦.

Completion along a subscheme. A very rich source for formal schemes are the completions
of schemes along (closed) subschemes. The prototypical situation is that the formal completion
of A1

R = SpecR[T ] along the zero section SpecR ↪→ A1
R

Â1
R = Spf R[[T ]].

Note that both SpecR and Â1
R are subfunctors of A1

R (the first via the zero section), and for
any R-algebra R′, the inclusions

(SpecR)(R′) ⊆ Â1(R′) ⊆ A1(R′) are given by {0} ⊆ Nil(R′) ⊆ R′.

In a much bigger generality, let R be a ring, and let X be any functor on R-algebras, and let

Y be a subfunctor. The completion X̂Y of X along Y is the subfunctor of X given by

X̂Y (R
′) = {f ∈ X(R′) : ∃I ⊆ R′ nilpotent ideal, with f̄ ∈ Y (R′/I)},

where f̄ ∈ X(R′/I) denotes the image of f .

Let A a ring and I ⊆ A an ideal. Let ÂI be the I-adic completion of A. Then one can check
that the completion of X = SpecA along the closed subscheme Y = SpecA/I is canonically
isomorphic to

X̂Y
∼= Spf ÂI .

Affine formal space. There is another important formal version of the affine line. Namely, let
A be an adic ring with an ideal of definition I (you can safely think of A = Zp equipped with
the p-adic topology, but not A = Qp as this is not adic). Then we have the inclusion of functors
on (affine) schemes,

Spf A ⊆ SpecA.

What is the pull-back of A1
A = SpecA[T ] along this inclusion? It is easy to check that it is

represented (in the context of Lemma 15.6) by Spf A⟨T ⟩, where

A⟨T ⟩ = A[T ]∧I =

∑
n≥0

anT
n : |an| → 0 for n→∞


is the I-adic completion of A[T ].
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Question: What is the generic fiber? Now, we specialize the above setup and assume
that A = Zp with p-adic topology. Then A1

Zp
has a generic fiber, namely A1

Qp
, but when we

literally pullback the inclusion A1
Qp

↪→ A1
Zp

to Spf Zp, we get the empty functor. However,

philosophically, this pullback should be (co)represented by the ring

Zp⟨T ⟩ ⊗Zp Qp = Qp⟨T ⟩
(check this equality). As this ring is not admissible, we cannot form its formal spectrum.
However, it is a (strongly Noetherian and Tate) Huber ring, and so has a well-behaved affinoid
adic space attached to it. This adic space will be the generic fiber of Spf Zp⟨T ⟩. To make this
precise, it is best to embed the category of (locally Noetherian) formal schemes into adic spaces.

Fiber products. Let us mention, that fiber products exist in the category of formal schemes,
and that if A is admissible and B,C are admissible A-algebras, then

Spf B ×Spf A Spf C ∼= Spf(B⊗̂AC),

where B⊗̂AC = limβ,γ(B/Iβ ⊗A C/Iγ) is the completed tensor product.

15.2. Formal schemes as adic spaces. The category of locally Noetherian formal schemes
embeds fully faithfully into the category of adic spaces, cf. [Hub94, §4]. This embedding is
induced by

Spf A 7→ Spa(A,A)

for a Noetherian admissible topological ring A. Let us take a slightly closer look. Let F be the
category of locally Noetherian formal schemes.

Theorem 15.8 (Formal schemes as adic spaces). There exists a fully faithful functor

t : F → {Adic spaces},
which is given by

t : Spf A 7→ Spa(A,A)

on affines and is characterized by glueing in general. Moreover, when X ∈ F , then there is a
map in LTRS, π : (t(X),O+

t(X))→ (X,OX), which is universal for LTRS-maps from adic spaces

to (X,OX)39.

Moreover, a map f : X → Y in F is adic resp. locally of finite type if and only if t(f) is.

Proof. We only construct the functor t. By universality of the construction it is sufficient to
assume that X = Spf A is affine.

Claim. Let Y be any adic space. LTRS-maps (Y,O+
Y ) → (X,OX) correspond bijectively to

homomoprphisms A→ O+
Y (Y ).

Proof of claim. By universality, we may assume Y = Spa(B,B+) with (B,B+) complete Huber
pair. Taking global sections gives the map in one direction. Conversely, assume a continuous
map φ : A→ B+ is given. Let y ∈ Y . Then

g(y) = {a ∈ A : |φ(a)(y)| < 1}
is a prime ideal as y is a valuation; as y and φ are continuous, g(y) is open, with other words
it is a point in X = Spf A. For s ∈ A we have g−1(D(s)) = {y ∈ Y : |φ(s)(y)| ≥ 1}, which is
open in Y . Thus g is continuous. We have to define a morphism of sheaves OX → g∗O+

Y . This
can be done on the basis of principal opens in X. Let s ∈ A, so that Γ(D(s),OX) = A⟨s−1⟩
and Γ(g−1(D(s)),O+

Y ) = B+⟨φ(s)−1⟩, and by the universal property of A⟨s−1⟩ the composition

39More precisely, the universal property is: for any adic space (Z,OZ), any map (Z,O+
Z ) → (X,OX) uniquely

factors through π.
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A→ B+ → B+⟨φ(s)−1⟩ factors through a map A⟨s−1⟩ → B+⟨φ(s)−1⟩. This defines the desired
map of sheaves, and it remains to show that it is local, that is, if ψy : OX,g(y) → O+

Y,y is the map

induced on stalks, then ψ−1
y (my) = mg(y), if my, mg(y) denote the respective maximal ideals.

Clearly, we have mg(y) ⊇ ψ−1
y (my). Consider the localization map h : A → OX,g(y). Then we

have the composition ψy ◦ h : A→ OX,g(y) → OY,y, and a germ t̄ ∈ OY,y lies in my if and only if

|t(y)| < 1 by definition of my. Now by definition of g(y), we see that g(y) = (ψy ◦ h)−1(my). As
also g(y) = ψ−1

y (mg(y)) and mg(y) = g(y)OX,g(y), the required equality follows. This proves the
claim.

To finish the proof notice that the universal property follows now from the Yoneda embedding
of complete (sheafy) Huber pairs into adic spaces. □

One also might determine the essential image of the functor t, cf. [Hub94, §4].

Example 15.9. Let V be a complete valuation ring of rank 1, equipped with its valuation
topology. Let m be its maximal ideal, k = V/m, K = FracV . Then A is adic, and we have
Spf A = {m}. Moreover, it is easy to see (use that rank 1 valuation rings are maximal wrt
domination order inside their fraction field), that Spa(A,A) = {| · |m,triv, x} with | · |m,triv the
trivial valuatio with supp(x) = m and x the defining valuation of A. Under the map Spa(A,A)→
Spf(A) from the proof of Theorem 15.8 both points go to m (check this).

15.3. The adic generic fiber of a formal scheme. After having the functor t from locally
Noetherian formal schemes to at our disposal, it is very easy to see what the adic generic fiber
of a formal scheme is.

Definition 15.10. Let K be a discretely valued Non-archimedean field with ring of integers
OK and uniformizer ϖ. Let X be a locally Noethereian formal scheme over OK . The generic
fiber of X is the the fiber product40

Xη = t(X)×Spa(OK ,OK) Spa(K,OK).

in the category of adic spaces. More explicitly,

Xη = {x ∈ t(X) : |ϖ(x)| ≠ 0}

is an open (not necessarily qc) locus of t(X) on which ϖ is non-zero.

For the classical construction of Raynaud, see Berthelot

Example 15.11. For simplicity, fix K = Qp, OK = Zp.

(1) Let X = Spf Zp⟨T ⟩ be as above. Then

Xη = B1
Qp

= Spa(Qp⟨T ⟩,Zp⟨T ⟩)

is the closed unit ball (e.g., equality can be checked as one of LTRS).
(2) Let X = Spf Zp[[T ]] with Zp[[T ]] having its (p, T )-adic topology. Then

Xη = DQp ⊆ {x ∈ B1
Qp

: |T | < 1},

Note that the locus |T | < 1 is closed in B1
Qp

, and that DQp is the locus within this, on

which T is topologically nilpotent. Here {|T | < 1}∖DQp = {ν} consists of the rank
two valuation belonging to the closure of the Gaußpoint, for which T < 1, but not
topologically nilpotent. Note that D1

Qp
is an open but non-qc subset of {|T | < 1}.

40Note that we do not in general know existence of fiber products in adic spaces. However, fiber products along
open immersions exist, as can be shown easily.
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16. Further topics

• Embedding of rigid-analytic spaces into adic spaces ( [Hub94])
• Embedding of (f.t.) schemes into rigid-analytic adic spaces (cf. Berthelot, Coho rigide,
(0.3))
• Relation of the rig/an space attached with a scheme with the generic fiber of the p-adic
completion of the scheme. (cf. Berthelot, Coho rigide, (0.3.5))
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