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Abstract. Deep level Deligne–Lusztig representations, which are nat-
ural analogues of classical Deligne–Lusztig representations, recently play
an important role in geometrization of irreducible supercuspidals of p-
adic groups. In this paper, we propose a construction of deep level
Deligne–Lusztig varieties/representations in the tamely ramified case,
extending previous constructions in the unramified case. As an applica-
tion, under a mild assumption on the residue field, we show that each
regular irreducible supercuspidal is the compact induction of a deep
level Deligne–Lusztig representation, and generally, each irreducible su-
percuspidal is a direct summand of the compact induction of the coho-
mology of a deep level Deligne–Lusztig variety.

1. Introduction

Classical Deligne–Lusztig theory [DL76] constructs varieties over the finite
field Fq equipped with the action of the finite group of Lie type G(Fq).
The cohomology of these varieties allows a uniform parametrization of all
irreducible representations of such groups. Initiated by Lusztig [Lus79],
Deligne–Lusztig constructions associated to a reductive group G over a local
non-Archimedean field k have been intensively studied in the literature over
the past decade. We refer for example to the recent works [CS17, Cha20,
CI23, CS23, Cha24, CO23, Nie24, IN25b, CO25] (and references therein),
where the cohomology of deep level Deligne–Lusztig varieties (equipped with
the action of a parahoric subgroup of G(k)) is investigated, and to [Iva23]
and [CI23, §9], where p-adic Deligne–Lusztig spaces equipped with the action
of the whole p-adic group are constructed.

Any (classical or deep level or p-adic) Deligne–Lusztig construction is
attached to a rational maximal torus T ⊆ G. Due to its nature, in the
case of a local field k the construction so far only produced good output for
unramified tori T .

In this article we propose a new Deligne–Lusztig type construction for
tamely ramified maximal tori T of G, and prove that it realizes the expected
correspondence between smooth Howe factorizable characters of T (k) and
smooth representations of G(k). More precisely, we show, under mild as-
sumptions on the residue field of k, that all the irreducible supercuspidals
constructed by J.-K. Yu and Kaletha [Yu01, Kal19] can be realized through
weight spaces of T (k) in the cohomology of these varieties. We refer to
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[Sta11, Iva18, Iva20] for previous attempts to produce a reasonable Deligne–
Lusztig construction for ramified tori. It would be interesting to compare
our construction with these existing approaches.

1.1. The construction and main result. We explain our results in more
detail now. Let k be as above and let Fq be the residue field of k. Denote by

k̆ the completion of a maximal unramified extension of k, by Fq the residue

field of k̆, and by F the Frobenius automorphism of k̆ over k. Let G be a
reductive group over k. We will identify G with G(k̆) so that G(k) = GF .

Let s ∈ R⩾0. Let Gs := Gx,0/Gx,s+ be the sth Moy–Prasad quotient of
the parahoric subgroup Gx,0 ⊆ G. We regard Gs as a linear algebraic group
over Fq. Using the positive loop functor, one can associated to any closed
subgroup M ⊆ G a closed subgroup Ms of Gs, see §2.1.

Let T ⊆ G be an elliptic maximal torus over k, which splits over a tamely

ramified extension. Fix r ∈ R≥0 and a smooth character ϕ : T (k) → Q×
ℓ

of depth ≤ r. Suppose that p > 2 and ϕ admits a Howe factorization
(Gi, ϕi)

d
i=−1 consisting of twisted Levi subgroups

T = G−1 ⊆ G0 ⊊ G1 ⊊ · · · ⊊ Gd = G

and characters ϕi : G
i(k) → Q×

ℓ in the sense of [Kal19, §3.6]. Motivated by
Yu’s construction of irreducible supercuspidals, we require that

(∗) T is a maximally unramified elliptic maximal torus of L := G0.

We will see that such pairs (T, ϕ) are sufficient for our purpose to realize all
tame irreducible supercuspidals of G(k).

Following [Yu01, §3] one can associate to (T, ϕ) a Yu-type subgroup

K ⊆ Gx,0

whose natural image in Gr is denoted by Kr. We construct a variety

Zϕ,r ⊆ Gr

equipped with a natural KF
r × TFr -action. Let us give a few more details on

its construction. First, there is tower of normal subgroups

Gx,r+ ⊆ E ⊆ K+ ⊆ H ⊆ K = HLx,0,

and the short exact sequence

1 −→ K+/E −→ H/E −→ H/K+ −→ 1

gives a central extension of the symplectic-type space H/K+. On the other

hand, by (∗) there exists a Borel subgroup B = TU ⊆ L over k̆ with
unipotent radical U . We show that there exists a subgroup

E ⊆ L ⊆ H
such that L/E is a section of a Lagrangian space in H/K+ both normalized
by Br. Then we put Ir = UrLr = LrUr and define

Zϕ,r = {g ∈ Kr; g
−1F (g) ∈ FIr},
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which admits a natural action by KF
r × TFr .

Remark 1.1. The construction of Zϕ,r extends that in [Nie24] for the un-
ramified case (see also [CS17, CS23] for the generic case). A similar con-
struction is first given in [CKZ]. The idea of using Lagrangian subspace was
communicated to the authors by Xinwen Zhu.

In practice, we put K = K/E , and write T,L and Z for the natural images
of Tr, Lr and Zϕ,r in K respectively. The cohomology groups H i

c(Z,Qℓ)

inherit natural actions by KF × TF , and we denote by H i
c(Z,Qℓ)[ϕ] their

subspaces on which TF acts via ϕ. Let

RK
T (ϕ) = H∗

c (Z,Qℓ)[ϕ] :=
∑
i

(−1)iH i
c(Z,Qℓ)[ϕ],

which is a virtual KF -module, or a virtual KF -module by inflation. Let
WLr(Tr) = {g ∈ Lr : gTrg

−1 = Tr}/Tr. Note that WLr(Tr) = WL(T) is the
Weyl group of T in L. We will always denote this group by WT(L).

Our first main result is the following Mackey type formula of RK
T (ϕ).

Theorem 1.2. We have

⟨RK
T (ϕ),RK

T (ϕ)⟩KF = ♯{w ∈WL(T)F ;wϕ|TF
r
= ϕ|TF

r
}.

To compute RK
T (ϕ), we introduce the following KF -module of Yu-type

RK
T (ϕ) = κ⊗RL0

T0
(ϕ−1),

where

• κ is the Weil–Heisenberg representation as in [Fin21a, §2.5] (see also [Yu01,
§4 and §11]) attached to the positive-depth part (Gi, ϕi)

d
i=0 of the Howe

factorization of ϕ;

• RL0
T0
(ϕ−1) is the classical Deligne–Lusztig representation of LF0 attached

to the depth-zero part ϕ−1 of ϕ.

Our second result is the following.

Theorem 1.3. Suppose q is sufficiently large. Then

RK
T (ϕ)

∼= (−1)d(ϕ)RK
T (ϕ

†),

where d(ϕ) is an integer depending on ϕ, ϕ† = ϕ · εϕ and εϕ =
∏d
i=1 ϵ

Gi/Gi−1

♯,x

is a product of depth zero quadratic characters ϵ
Gi/Gi−1

♯,x of the maximal

bounded subgroup of TF as in [FKS23, Definition 3.1].

Remark 1.4. In the unramified case, Theorem 1.2 is proved in [Nie24,
Proposition 5.5], and Theorem 1.3 is proved in [LN25].
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1.2. The application. Now we discuss applications on irreducible super-
cuspidals of G(k).

Let (T, ϕ) be a tame elliptic regular pair in the sense of [Kal19, Definition
3.7.5]. In particular, our assumption (∗) is satisfied. Following [Kal19, §3.7],
one can associate to (T, ϕ) an irreducible supercuspidal π(T,ϕ) of G(k), which
is referred to as a regular irreducible supercuspidal.

On the other hand, by generalizing the geometric construction of π(T,ϕ)
in the depth zero case (see [Kal19, §3.4.3]), we can extend the KF -modules
H i
c(Z,Qℓ)[ϕ] to KFTF -modules. Thus the alternating sum

R̂K
T (ϕ) := H∗

c (Z,Qℓ)[ϕ]

is a virtual KFTF -module.
Our first application is the following cohomoligical realization of regular

irreducible supercuspidals.

Theorem 1.5. Assume q is sufficiently large and p does not divide the order
of the Weyl group of G. Let (T, ϕ) be a tame elliptic regular pair. Then

π(T,ϕ) ∼= (−1)d(ϕ)+rG−rT c-indG
F

KFTF R̂K
T (ϕ

†),

where rG and rT are the splitting ranks of G and T respectively.

For general irreducible supercuspidals we have the following exhaustion
result.

Proposition 1.6. Assume q is sufficiently large. For each tame irreducible
supercuspidal π of G(k), there exits some pair (T, ϕ) as in §1.1 and i ∈ Z⩾0

such that π is direct summand of the compact induction

c-indG
F

Z(G)FKFH
i
c(Z,Qℓ)[ϕ].

Here we extend the KF -module H i
c(Z,Qℓ)[ϕ] to a Z(G)FKF -module on which

Z(G)F acts via ϕ.

Remark 1.7. In the unramified case, Theorem 1.5 and Proposition 1.6 are
proved in [CO25] and [Nie24, LN25] independently.

Note that by exhaustion results of Kim and Fintzen [Kim07, Fin21b],
any irreducible supercuspidal G(k)-representation is tame when p does not
divide the order of the absolute Weyl group of G.

1.3. The strategy. Now we discuss the ideas for the proofs of the main
results, which combine the methods/strategies from [Nie24], [IN25c] and
[CO25]. Let us explain in more details.

To establish the Mackey type formula in Theorem 1.3, we follow the proof
of [Nie24, Proposition 5.5] by reducing the problem to the computation of
the cohomology group H∗

c (X
H ,Qℓ), where H ⊆ Tr × Tr is a torus and X is

a certain H-invariant subset of the intertwining variety. In the unramified
case, the fixed-point set XH is a finite set and the computation follows
trivially. While in the tamely ramified case, XH is no longer finite in general.
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To overcome this difficulty, we provide a detailed study of XH and manage
to determine its cohomology based on an idea from [IN25c].

To prove Theorem 1.3, we follow the strategy of [CO25]. It consists of

two steps. First we show that RK
T (ϕ) and (−1)d(ϕ)RK

T (ϕ
†) have the same

expansion in terms of their associated Green functions respectively. This
step follows in a similar way as in [CO25]. The remaining task is to show
the compatibility between these two type of Green functions. As observed in
[CO25], by using Theorem 1.2 and the largeness assumption on q, it suffices
to show that

(♭) RK
T (ϕ) = ±κ⊗RL0

T0
(ϕ†−1) if ±RK

T (ϕ) is irreducible.

In the unramified case, the proof of (♭) is based on comparing the values
of sufficiently many regular elements for Gr on both sides. However, in
our case, the set of regular elements is no longer large enough in general.
To handle this difficulty, we first note that RK

T (ϕ) = ±κ ⊗ ρ for some ir-

reducible LF0 -module ρ. So it suffices to show ρ ∼= ±RL0
T0
(ϕ†−1). To this

end, we establish a trace formula of RK
T (ϕ) on the set KF

ss of semi-simple

elements of KF . This is built on a concentration theorem of the cohomology
of the positive-depth part of Z (see Proposition 5.3), which extends [Nie24,
Proposition 6.2] in the unramified case. Then by comparing it with the trace

formula of κ ⊗ ρ, we deduce that ρ and ±RL0
T0
(ϕ†−1) coincide on KF

ss. As q

is large enough, KF
ss has sufficiently many regular elements for L0. Thanks

to [CO25, Theorem 1.2], the two irreducible characters ρ and ±RL0
T0
(ϕ†−1)

coincide with each other as desired.

1.4. The outline. The paper is organized as follows. In §2.1 we lay down
the basic set-up, and introduce subgroups attached to a Howe factorization
in Yu’s framework. In §3 we provide the construction of deep level Deligne–
Lusztig varieties/representations in tamely ramified case. In §4 we establish
the Mackey formula for the inner product of deep level Deligne–Lusztig
representations. In §5, we extend a concentration theorem from [Nie24] on
cohomology groups to the tamely ramified case, which play an essential role
in the proof of our main results. In §6 we prove a character formula for
RK

T (ϕ) by following the approach of [DL76] and [CO25]. In §7 we introduce

and study another representation RK
T (ϕ

†) as a counterpart of RK
T (ϕ). In §8

we prove Theorem 1.3 and Theorem 1.5 by following a strategy of [CO25]
on Green functions of RK

T (ϕ) and R
K
T (ϕ

†). In the last section, we proved the
exhaustion result Proposition 1.6 on irreducible supercuspidals.
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for his kindly answering several technical questions. The first named author
gratefully acknowledges the support of the German Research Foundation
(DFG) via the Heisenberg program (grant nr. 462505253).
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2. Preliminaries

We denote by k a local non-Archimedean field with residue field Fq of

characteristic p. We write k̆ for the completion of a maximal unramified
extension of k, and F for the Frobenius automorphism of k̆ over k. We
denote by Ok and Ok̆ the integer rings of k and k̆ respectively. Let ϖ be a
fixed uniformizer of k.

2.1. Positive loops. Let E/k̆ be a finite tamely ramified extension. It is

automatically Galois with cyclic Galois group Gal(E/k̆) = ⟨τ⟩. Let OE

denote the integers of E. Note that E and k̆ have the same residue field
Fq. Let PerfFq

denote the category of perfect Fq-schemes. Let X be an OE-

scheme. The positive loop functor (also called jet scheme) of X is defined
by

L+
EX : PerfopFq

−→ Sets, R 7−→ X(WOE
(R)),

where WOE
(R) = OE ⊗Fq

R if charE > 0 and WOE
(R) = W (R) ⊗Z̆p

OE

otherwise (here, W (R) denote the p-typical Witt-vectors of R). We only
consider schemes X which are affine and of finite type over OE , in which
case L+

EX is representable by a affine scheme perfectly of finite presentation

over Fq.
When E = k̆, we also write L+X for L+

EX.

2.2. Moy–Prasad quotients. Let G be a reductive group over k, which
splits over a tamely ramified extension of k. Let x be a point in the Bruhat-
Tits building of G over k. We denote by Gx,0 the associated parahoric

Ok-group model of G. For 0 ⩽ r ∈ R̃ := R ⊔ {s+; s ∈ R} let Gx,r be the rth

Moy–Prasad subgroup of Gx,0. For any 0 ⩽ s ⩽ r ∈ R̃, L+(Gx,r+ ×Ok
Ok̆) ⊆

L+(Gx,s ×Ok
Ok̆) is a subgroup. We put

Gs:r = L+(Gx,s ×Ok
Ok̆)/L

+(Gx,r+ ×Ok
Ok̆),

which is a pfp perfectly smooth affine group scheme over Fq. Note that
as F fixes x it acts naturally on Gs:r, equipping it with an Fq-rational
structure. Moreover, as L+Gx,r+ is connected, H1(k̆/k, L+Gx,r+) = 0 by
Lang’s theorem, and hence GFs:r = Gx,s(Ok)/Gx,r+(Ok).

More generally, for any E/k̆ as in §2.1 and 0 ⩽ s ⩽ r ∈ R̃, we also may
form the pfp perfectly smooth affine group scheme

EGs:r = L+
E(Gx,s ×Ok

OE)/L
+
E(Gx,r+ ×Ok

OE),

over Fq. It is equipped with a natural action of Gal(E/k̆) = ⟨τ⟩. The (pro-
version of) Lang–Steinberg theorem does not apply as the τ -fixed points are
not profinite, but we still have the following.

Lemma 2.1 (see page 32 of [PR08]). We have H1(Gal(E/k̆), L+
EGx,r+) = 0.

In particular, (EGs:r)
τ = Gs:r (as perfect Fq-group schemes).
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Proof. As r+ > 0, the group L+
EGx,r+(Fq) = Gx,r+(OE) is an inverse limit

of groups which are iterated extensions of OE-modules. Since the order of τ
is coprime to p, the cohomology of each filtration step vanishes, and hence
H1(Gal(E/k̆), L+

EGx,r+) = 0 by dévissage. The last claim of the lemma
follows from the exact sequence of non-abelian group cohomology and the
fact that a perfectly smooth affine group scheme is (as a variety) uniquely
determined by its Fq-points. □

Let H ⊆ G be a closed subgroup. Following [CI19, §2.5] one can con-
struct an Fq-rational closed subgroup Hs:r ⊆ Gs:r in a similar way. We put
Hr = H0:r for simplicity. If, moreover, H is a k-rational subgroup, then Hs:r

is defined over Fq, and we still denote by F the induced Frobenius automor-
phisms on H or Hs:r. Similarly, we have the groups EHs:r and

EHr. If H is
connected, then (EHs:r)

τ = Hs:r.

2.3. Tamely ramified tori. Let T be a k-rational maximal torus of G
which splits over a finite tamely ramified extension K/k. Let kf/k be the
maximal unramified extension in K. We write [K : k] = ef , with e = [K :
kf ] the (prime to p) ramification index and f = [kf : k] the inertia degree
of K/k. There exist a ∈ kf and a uniformizer π of K such that πe = aϖ.

We write E = Kk̆ for the maximal unramified extension of K. Then E/k̆
is Galois with cyclic Galois group of order e and we denote by τ one of its
generators. Then τ(π) = ζπ for a primitive eth root of unity ζ ∈ k̆. We

write E× = O×
E , and for r ≥ 0 we write E×

r = 1 + π⌈er⌉OE .
We write W = NG(T )/T for the Weyl group of T , Φ = Φ(GE , TE) for

the set of roots of TE in GE ,
EGα ⊆ GE for the root subgroup of α, and

Φ̃ = Φ × 1
eZ ∪ 1

eZ≥0 for the set of affine roots. If f ∈ Φ × 1
eZ, we write

αf ∈ Φ, nf ∈ 1
eZ such that f = (αf , nf ). The affine root subgroup of

f is EGf = (EGα)nf :nf
. If α ∈ Φ, we write α∨ : Gm,K → TK for the

corresponding coroot and for x ∈ E×, α∨ ⊗ x for the image of x under α∨.

If x ∈ E×
r for some r ∈ R̃≥0, we also write α∨⊗x for the image of x in ETr:r′

(for some r′ ≥ r).
We fix a Chevalley system for (GK , TK). Recall from [BT84, §4.2] or

[Adl98, §1.2] that this includes a set ofK-rational isomorphisms uα : Ga,K →
Gα for α ∈ Φ = Φ(GK , TK) satisfying several properties. For an affine root
f = (α, nf ) with α ∈ Φ, we have the parametrization

(2.1) Ga,Fq

∼−→ EGf , induced by x 7−→ uα(π
enf [x]),

where [x] = x if char k > 0, and [x] is the Teichmüller lift otherwise.

Note that τ acts on Φ and on Φ̃. We have the formula

τ(uα(x)) = uτ(α)(aατ(x)) ∀x ∈ E

for some constant aα ∈ K×. Write aα = πvE(aα)ãα with ãα ∈ O×
K .

Lemma 2.2. Let f = (α, nf ) be an affine root with α ∈ Φ, so that τ(f) =
(τ(α), nτ(f)).
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(1) We have

(2.2) τ(uf (y)) = uτ(f)(ζ
enf āαy) ∀y ∈ Fq

where āα = ãα mod πOK ∈ F×
qf

= (OK/πOK)×.

(2) We have a−α = a−1
α and ā−α = ā−1

α .

(3) Let f ∈ Φ̃ and s = f(x). Supppose that for some N > 0, τ2N (f) = f and
τ2N acts trivially on EGf . Then ζ2eNs = 1.

Proof. (1) follows directly from (2.1) and the above formula for the action
of τ on uα(x). For (2) note that uα(x)u−α(y)uα(x) lies in NG(T )(E) if and
only if xy = −1. Applying τ to this expression and noticing that τ preserves
NG(T )(E), one deduces aα · a−α = 1. The second claim follows from the
first by (1). To prove (3), first note that as x is τ -invariant, we have

(2.3) 2s = τN (f)(x)+f(x) = α(x)+nτN (f)+(−α)(x)+nf = nf +nτN (f),

as α is a linear function. Then we compute

uf (y) = τ2N (uf (y))

= τN

(
uτN (f)

(
ζ
e
∑N−1

i=0 nτi(f) ·
N−1∏
i=0

āτ i(α) · y

))

= uf

(
ζ
e
∑N−1

i=0 nτi(f)+nτi+N (f) ·
N−1∏
i=0

(āτ i(α)āτ i+N (α)) · y

)
= uf

(
ζ
e
∑N−1

i=0 nτi(f)+nτi+N (f) · y
)

= uf
(
ζ2seN · y

)
where the first equation is by assumption, the second and the third are by
part (1) of the lemma, the fourth is by part (2) of the lemma, the fifth is by
(2.3). As this holds for any y ∈ Fq, the claim follows. □

2.4. Subgroups attached to a torus character. We keep the setup of
§2.3 and assume additionally that T is elliptic in G. We assume that p > 2.
We fix an r ∈ R≥0, a smooth character

ϕ : TF = T (k) −→ Q×
ℓ

of depth ≤ r, and we denote the character induced by ϕ on TF0:r by the same
letter. Moreover, we assume that

(2.4) ϕ admits a Howe factorization (Gi, ri, ϕi)
d
i=−1 as in [Kal19, §3.6].

Recall that this means that

ϕ = ϕ−1

d∏
i=0

ϕi|T (k),

where ϕ−1 is a character of T (k) of depth zero, and Λ := (Gi, ri, ϕi)
d
i=0 is

generic datum defined by the following conditions:
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• T = G−1 ⊆ G0 ⊊ G1 ⊊ · · · ⊊ Gd = G are k-rational Levi subgroups of G;

• 0 =: r−1 < r0 < · · · < rd−1 ⩽ rd ⩽ r if d ⩾ 1 and 0 ⩽ r0 if d = 0;

• ϕi : G
i(k) → Q×

ℓ is a character of depth ri, and trivial on Gider(k)
1 for

−1 ⩽ i ⩽ d;

• ϕi is of depth ri and is (Gi, Gi+1)-generic in the sense of [Yu01, §9] for
0 ⩽ i ⩽ d− 1.

Remark 2.3. If p is neither a bad prime for G, nor divides |π1(Gder)|, then
any character ϕ admits a Howe factorization by [Kal19, Proposition 3.6.7].

The role of the Levi subgroup G0 will be somewhat special, and we will
often denote

L = G0.

Moreover, for 0 ≤ i ≤ d, we set

si =
ri
2
.

Write T ider = Gider ∩ T . Following [Yu01] (see also [Nie24, §3.2] and [IN25a,
§4]), we associate to the generic datum Λ the following subgroups of G.

K̃Λ = G0
[x]G

1
x,s0 · · ·G

d
x,sd−1

KΛ = G0
x,0G

1
x,s0 · · ·G

d
x,sd−1

HΛ = G0
x,0+G

1
x,s0 · · ·G

d
x,sd−1

K+
Λ = G0

x,0+G
1
s0+ · · ·Gdx,sd−1+

TΛ = (T 0
der)x,0+(T

1
der)x,r0+ · · · (T dder)x,rd−1+.

Here [x] is the natural image of x in the reduced Bruhat-Tits building of G0

and G0
[x] denotes the stabilizer of [x] in G0.

We define another subgroup EΛ as follows. First we put

EEΛ = (EG0
der)x;0+,0+(

EG1
der)x;r0+,s0+ · · · (EGdder)x;rd−1+,sd−1+

EGx,r+,

where (EGider)x;ri−1,si−1 is the subgroup generated by (EGider)ri−1+ and EGf

for f ∈ Φ̃Gi \Φ̃Gi−1 such that f(x) > si−1. Here Φ̃Gi denotes the root system
of TE in GiE for 0 ⩽ i ⩽ d. Note that EEΛ is τ -stable and we set

EΛ = (EEΛ)τ ,

which is a subgroup of K+
Λ .

We put K̃Λ,r = K̃Λ/Gx,r+ and EK̃Λ,r = EK̃Λ/
EGx,r+. Other subgroups

KΛ,r,
EKΛ,r and so on are defined in the same way. Notice that K+

Λ,r =

EΛ,r · T0+:r and hence K+
Λ,r/EΛ,r = T0+:r/TΛ,r.

1In [Kal19, Definition 3.6.2], ϕi is only required to be trivial over Gi
sc(k). However, the

proof of [Kal19, Lemma 3.6.9] shows that ϕi can be chosen to be trivial over Gi
der(k).
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Finally we record a lemma, that guarantees that the subgroups attached
to ϕ above –and hence also all constructions in the rest of the article– are
independent of the choice of the (tamely ramified) splitting field K/k of T .
This seems to be well-known to experts, but we could not find a reference
in the literature.

Lemma 2.4. Let K/k and K ′/k be two finite tamely ramified extensions
splitting T . We can canonically identify Φ = Φ(GK , TK) = Φ(GK′ , TK′).
Then for each r ∈ R>0, we have

{α ∈ Φ: ϕ ◦NK/k ◦ α∨(K×
r ) = 1} = {α ∈ Φ: ϕ ◦NK/k ◦ α∨(K ′×

r ) = 1}.

With other words, the set Rr of [Kal19, Eq. (3.6.1)], and hence also all Levi
subgroups Gi, are independent of the choice of the splitting field K/k of T .

Proof. The compositum of K and K ′ is still finite tame over k and splits
T . Thus, replacing K ′ by this compositum, we may assume that K ⊆ K ′.
Then, as α∨ ◦ NmGm,K′/K = NmT,K′/K ◦ α∨, the statement follows from

the transitivity of norm maps and the fact that NK′/K(K ′×
r ) = K×

r . The
latter equality holds because r > 0 and K ′/K is tamely ramified. Indeed, it
suffices to show this when K ′/K is unramified resp. totally ramified. In the
first case, the claim follows from [Ser79, Cor. to Prop. 3 of Chap. V] and in
the second case it follows from [Ser79, Cor. 3 to Prop. 5 of Chap. V]. □

2.5. Reducing modulo EΛ,r. We introduce the following convenient no-
tation. By fixing r and a Howe factorization (ϕ−1,Λ) of ϕ as in §2.4, we
put

K̃ = K̃Λ,r/EΛ,r and EK̃ = EK̃Λ,r/
EEΛ,r.

We write K,H,L,T,Ts (with 0 ⩽ s ⩽ r ∈ R̃) for the natural images of

KΛ,r,HΛ,r, Lr, Tr, Ts:r in K̃. The subgroups EH, EL, ET and ETs are defined
in a similar way. Note that by Lemma 2.1 we have (E?)τ =? for ? ∈ {H,L,T,
Ts, . . . }.

We note that H/K+ and EH/EK+ are linear Fq-spaces and we denote
them by

V = H/K+ and EV = EH/EK+.

It will also be convenient to write

V̂ = H and EV̂ = EH.

indicating that we treat elements of H as lifts of V .

2.6. Summary of setup. Attached to the character ϕ we have the follow-
ing groups. The subgroup H ⊆ K is the unipotent radical of K, we have
K/H ∼= L0 and K = LH. We also have a short exact sequence

(2.5) 0 −→ K+ −→ V̂ = H −→ V = H/K+ −→ 0,

of Fq-groups, with K+ ∼= T0+ ∼= T0+:r/Tϕ,r. This is an extension of abelian
groups, so that the commutator pairing of H induces a K+-valued symplectic
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pairing on V . We study this pairing in §3 below. We also have a similar
situation, including sequence (2.5), for EK and its respective subgroups.

3. Deligne–Lusztig construction in a Heisenberg group

We keep the setup from §2.3 - 2.6. The groups V̂ = H and EV̂ = EH
are non-canonically isomorphic to Heisenberg groups. We exhibit an ex-
plicit isomorphism by using Yu’s splitting of the sequence (2.5) for EV̂ , and
proving that it is τ -equvariant. In §3.3 we define a Deligne–Lusztig type
subvariety for the group K.

3.1. An isomorphism of Heisenberg groups. Let

π : EV̂ −→ EV

denote the projection homomorphism. Note that EV is a linear space over
Fq. The center of EV̂ is EK+ ∼= ET0+:r/

ETϕ,r.
Let α ∈ Φ∖ΦL. We set 1 ⩽ iα ⩽ d such that α ∈ ΦGi ∖ΦGi−1 and put

rα = riα−1, where ΦGi = Φ(GiE , TE) is the root system of Gi for 0 ⩽ i ⩽
d. We set (EK+)α ⊆ EK+ to be the natural image of α∨(E×

rα). Denote

by EVα ⊆ EV and EV̂α ⊆ EV̂ the subgroups generated by the natural
images of the affine root subgroups EGf such that αf = α and f(x) ⩾ rα/2

respectively (note that both are Fq-vector spaces). Note that π restricts to
an isomorphism of linear spaces

EV̂α ∼= EVα,

which are both isomorphic to the linear space (Gα) rα
2
: rα

2
of dimension ⩽ 1.

Notice that [EV̂α,
EV̂β] = δα,−β(

EK+)α for any α, β ∈ Φ (Kronecker
delta). Hence the map (x, y) 7→ [x, y] = xyx−1y−1 induces a skew sym-
metric pairing

κ : EV̂ × EV̂ −→ EK+.

It descends naturally to a pairing on EV , which we still denote by κ. Then
we have

EV ∼=
⊕
α∈Φ

EVα,
EV ∼= EK+

∏
α∈Φ

EV̂α,

where the product is taken with respect to any fixed order.
Let

EV ♯ = EV × EK+

be the Heisenberg group associated to (EV, κ), whose multiplication law is
given by

(x, a)(y, b) = (x+ y, a+ b+
1

2
κ(x, y)), for (x, a), (y, b) ∈ EV × EK+.

Note that Lr acts on
EV ♯ by g : (x, a) 7→ (ad(g)x, a) for g ∈ Lr and (x, a) ∈

EV ♯.
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Let D ⊆ Φ∖ΦL. We set

EVD =
⊕
α∈D

EVα and EV̂D =
∏
α∈D

EV̂α,

where in the latter case we assume that D ∩ −D = ∅, so that EV̂D is
commutative subgroup of EV̂ . Moreover, if D is τ -invariant, EVD is too,
and we set VD = (EVD)

τ . We warn the reader that we do not yet define V̂D,

this will only happen in §3.3; moreover, V̂D will not be equal to (EV̂D)
τ .

Let P = LUP ⊆ G be a parabolic subgroup (defined over K) with Levi
subgroup L ⊆ G and unipotent radical UP . Denote by ΦUP

⊆ Φ the set

of roots appearing in UP . Let W1 = EV̂ΦUP
and W2 = EV̂−ΦUP

. Then

W1 ∩ EK+ = W2 ∩ EK+ = {0} and each element of EV̂ has a unique
expression w1w2z with w1 ∈W1, w2 ∈W2 and z ∈ EK+.

Proposition 3.1. There is a both EL[x]-equivariant (with respect to the

adjoint actions) and Gal(E/k̆)-equivariant group isomorphism

j : EV̂
∼−→ EV ♯

given by w1w2z 7→ (π(w1w2), z + 1
2κ(w1, w2)) for w1 ∈ W , w2 ∈ W2 and

z ∈ EK+.

Proof. It is proved in [Yu01, Lemma 10.1 & 10.2] that j is an EL[x]-equivariant
group homomorphism. We show j is Gal(E/k)-equivariant.

Let τ ∈ Gal(E/k), w1 ∈ W1, w2 ∈ W2 and z ∈ EK+. Noticing that

τ(EV̂α) =
EV̂τ(α) for α ∈ Φ∖ΦL, we have τ(w1) = x1x2 and τ(w2) = y1y2

for some x1, y1 ∈ W1 and x2, y2 ∈ W2 such that κ(x1, x2) = κ(y1, y2) = 0.
Therefore,

j(τ(w1w2z)) = j(x1x2y1y2τ(z))

= j((x1y1)(x2y2)(τ(z) + κ(x2, y1)))

= (π(x1y1x2y2), τ(z) +
1

2
(κ(x1, y2) + κ(x2, y1)))

= (π(τ(w1w2)), τ(z) +
1

2
κ(x1x2, y1y2)))

= (π(τ(w1w2)), τ(z) +
1

2
κ(τ(w1), τ(w2))

= (τ(π(w1w2)), τ(z) +
1

2
τ(κ(w1, w2)))

= τ(j(w1w2z)),

where the third equality follows from that κ(x1, x2) = κ(y1, y2) = 0; the
fourth follows from that κ(x1, y1) = κ(x2, y2) = 0 and the sixth follows from
that τ commutes with π and κ. The proof is finished. □
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3.2. A Lagrangian subspace. In the rest of the paper, we assume further
that T is a maximally unramified maximal torus of L in the sense of [Kal19,
§3.4.1]. (This is the case if (T, ϕ) is a tame elliptic regular pair in the
sense of [Kal19, Definition 3.7.5].) In particular, there exists a τ -fixed Borel
subgroup B = TU of L with unipotent radical U .

Recall that τ is a generator of Gal(E/k̆) and that K+ = (EK+)τ , V =

(EV )τ and V̂ = (EV̂ )τ . Note that κ : EV ×EV → EK+ restricts to a pairing
V × V → K+, which we again denote by κ.

Let C be the set of τ -orbits C of Φ∖ΦL such that VC ̸= 0, where VC =
(EV̂C)

τ . We have

V ∼=
⊕
C∈C

VC , V̂ ∼= K+
∏
C∈C

V̂C .

Lemma 3.2. Let C be a τ -orbit of Φ∖ΦL. We have
(1) dimVC ⩽ 1;

(2) VC ̸= 0 if and only if EVC ̸= 0 and τ |C| acts on EVC trivially;
(3) κ(VC , VC′) = 0 if C ̸= −C ′;
(4) VC = 0 if C = −C;
(5) VC ̸= 0 if and only if V−C ̸= 0, and in this case, κ(VC , V−C) ̸= 0.

We note that on the F -invariant subspaces, Lemma 3.2(4) is proven in
[DS18, p.66].

Proof. Let α ∈ C, so that C = {τ i(α)}|C|−1
i=0 . By (2.2) the action of τ on EVC

is given by (xi)
|C|−1
i=0 7→ (ci−1xi−1)

|C|−1
i=0 where ci ∈ F×

q is some constant. Parts
(1) and (2) follow directly from this description. For (3) it suffices to show
that κ(EVC ,

EVC′) = 0. We may assume that EVC ̸= 0 ̸= EVC′ , otherwise
there is nothing to prove. It is enough to check that κ(EVα,

EVα′) = 0 for
any α ∈ C, α′ ∈ C ′. Let f (resp. f ′) be the unique affine root over α (resp.

α′) with f(x) = rα
2 (resp. f ′(x) = rα

2 ). Then the image of [EGf ,EGf
′
]

in K+
Λ,r is contained in the natural image of EGf+f

′
. Hence its image in

EK+ ∼= ET0+:r/
ETΛ,r vanishes. This proves (3). To prove (4) assume VC ̸= 0

and C = −C. Let α ∈ C. Write s = rα/2. By assumption there is a (unique)
affine root f = (α, nf ) over α such that f(x) = s. Then there is some N > 0

such that τN (α) = −α. As f(x) = s = rα/2, Lemma 2.2 implies ζeNrα = 1.
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Now let x ∈ Fq, so that 1 + πerα ∈ E×
rα:rα . Then we compute in Trα:rα :

NmK/kf (α
∨ ⊗ 1 + πerαx)

=
2N−1∑
i=0

τ i(α∨ ⊗ 1 + πerαx)

=
N−1∑
i=0

τ i(α∨ ⊗ 1 + πerαx) +
N−1∑
i=0

τ i+N (α∨ ⊗ 1 + πerαx)

=
N−1∑
i=0

τ i(α∨ ⊗ 1 + πerαx) +
N−1∑
i=0

τ i(−α∨ ⊗ 1 + ζNerαx)

=

N−1∑
i=0

τ i(α∨ ⊗ 1 + πerαx)−
N−1∑
i=0

τ i(−α∨ ⊗ 1 + πerαx)

= 0,

as ζNerα = 1. With other words, NmK/kfα
∨(E×

rα) = 1. From the factoriza-
tion NmK/k = Nmkf/k ◦NmK/kf , we deduce that also

NmK/k ◦ α∨(E×
rα) = 1,

and hence also ϕ ◦ NmK/k ◦ α∨(E×
rα) = 1, which contradicts the definition

of rα = riα−1. This proves (4). The first part of (5) follows from (2),
the formula (2.2) and Lemma 2.2. For the second part of (5), suppose

VC ̸= 0 and let C = {τ i(α)}|C|−1
i=0 . Write s = rα/2. Let f = (α, nf ), resp.

f ′ = (−α, nf ′) be the unique affine root with f(x) = s, resp. f ′(x) = s.

Then EVC ≃
⊕|C|−1

i=0
EGτ

i(f) is a product of root subgroups. As VC ̸= 0 by
assumption, Lemma 2.2(1) implies that under this isomorphism VC precisely
consists of tuples

X = (x, ζenf āαx, ζ
e(nf+nτ(f))āαāτ(α)x , . . . , ζ

e
∑|C|−2

j=0 n
τj(f) ·

|C|−2∏
j=0

āτ j(α) · x)

with arbitrary x ∈ Fq. Moreover, by part (2) we see that

(3.1) ζ
e
∑|C|−1

j=0 n
τj(f)

|C|−1∏
j=0

āτ j(α) = 1.

Let Y ∈ V−C is a similar tuple with x replaced by y and f by f ′ everywhere.
Taking the product of (3.1) with the similar expression for α and using

VC ̸= 0 along with Lemma 2.2, we deduce ζerα|C| = 1. Now, we compute in
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Trα:rα :

[X,Y ] =

|C|−1∑
i=0

τ i(α)∨ ⊗ 1 + πerαxyζ
e
∑i−1

j=0(nτj(f)
+n

τj(f ′)) ·
i−1∏
j=0

āτ j(α)ā−τ j(α)

=

|C|−1∑
i=0

τ i(α)∨ ⊗ 1 + πerαxyζierα .

where the second equality follows from Lemma 2.2(2) and that nτ j(f) +

nτ j(f ′) = rα. It thus suffices to show that there exist some x, y ∈ Fq for
which this expression does not vanish in Trα:rα . By definition of rα, we have
ϕ ◦ NmK/k ◦ α∨(K×

rα) ̸= 1 and ϕ ◦ NmK/k ◦ α∨(K×
rα+) = 1. Noting that

ϕ ◦NmK/k ◦ α∨ factors through NmK/kf ◦ α∨, this implies that there exists

some z ∈ Fq with
∑e−1

λ=0 τ
λ(α∨ ⊗ 1 + πerαz) ̸= 1 in Trα:rα . Put d := e

|C| . We

compute in Trα:rα

1 ̸=
e−1∑
λ=0

τλ(α∨ ⊗ 1 + πerαz) =

|C|−1∑
i=0

d−1∑
i′=0

τ i+i
′|C|(α∨ ⊗ 1 + πerαz)

=

|C|−1∑
i=0

τ i(α∨ ⊗ 1 + πerα
d−1∑
i′=0

ζerα|C|i′z)

=

|C|−1∑
i=0

τ i(α∨ ⊗ 1 + πerαdz)

=

|C|−1∑
i=0

τ i(α)∨ ⊗ 1 + πerαζierαdz

where the second equality follows from τ |C|(α) = α, the third equality from

ζerα|C| = 1, and the last equality is the action of τ on the affine coroots.
Note that d is invertible in Fq (as e is), and pick any x, y with xy = dz. This
finishes the proof of (5).

By the same computation as in (2.3) we have nτ j(f) + nτ j(f ′) = 2s = rα
for any j. Thus

[X,Y ] =

|C|−1∑
i=0

α∨ ⊗ 1 + πerαxfyf ′

|C|−1∑
i=0

ζierα

where the second equation is by Lemma 2.2(2). □

Recall that C is the set of τ -orbits C in Φ∖ΦL such that VC ̸= 0. Set
Ψ = Ψϕ = ∪C∈CC. Recall that B = TU ⊆ L is a Borel subgroup with
unipotent radical U .

Proposition 3.3. There exists a subset Ψ+ ⊆ Ψ such that Ψ = Ψ+ ∪−Ψ+,
Ψ+ ∩ −Ψ+ = ∅ and VΨ+ is normalized by B0.
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Proof. By Lemma 3.2 (4), it suffices to construct inductively a sequence of
subsets ∅ = Ψ0,+ ⊆ Ψ1,+ ⊆ · · · ⊆ Ψ|C|/2,+ ⊆ Ψ such that Ψi,+∖Ψi−1,+ is
a τ -orbit of Ψ, Ψi,+ ∩ −Ψi,+ = ∅ and VΨi,+ is normalized by B0 ⊆ L0 for
1 ⩽ i ⩽ |Ci|/2.

Indeed, we put Ψ0,+ = ∅ and suppose Ψi,+ is already constructed with
the desired properties. Suppose i < |C|/2 and we construct Ψi+1,+ as follows.
Let

V ⊥
Ψi,+

:= {v ∈ V ;κ(v, VΨi,+) = 0} = VΨ∖−Ψi,+ ,

where the second equality follows from Lemma 3.2. By induction, VΨi,+ is

B0-invariant. Hence V
⊥
Ψi,+

is also B0-invariant.

Let Φ+
L ⊆ ΦL be the set of positive roots determined by B. For α, β ∈ Φ

we write α ⩽ β if β−α is a sum of roots in Φ+
L . Let αi+1 be a maximal root

in Ψ∖ (Ψi,+ ∪ −Ψi,+) with respect to the partial order ⩽. Let Ci+1 be the
τ -orbit of αi+1, and set Ψi+1,+ = Ψi,+ ∪ Ci+1. Consider the following set

Di+1 := {α ∈ Φ;α ⩾ γ for some γ ∈ Ci+1} = {α ∈ Φ; τ i(α) ⩾ αi+1 for some i ∈ Z},

where the second equality follows from that Φ+
L is τ -invariant. By the choice

of αi+1, we have

(Ψ∖ −Ψi,+) ∩Di+1 ⊆ Ψi+1,+.

By definition,

Ad(B0)(VCi+1) ⊆ V ⊥
Ψi,+

∩EVDi+1 = VΨ∖−Ψi,+ ∩EVDi+1 = V(Ψ∖−Ψi,+)∩Di+1
⊆ VΨi+1,+ .

Thus VΨi+1,+ is B0-invariant, and the induction procedure is finished. □

3.3. A Deligne–Lusztig type construction. Let notation be as in Sec-
tion 3.2. Let Ψ+ be as in Proposition 3.3.

Recall the isomorphism j from Proposition 3.1. By taking τ -invariants,
it induces an isomorphism j : V̂

∼→ V ♯. Now, V ♯ ∼= V × K+ contains a
canonical copy V × {0} of V . For any τ -equivariant subset D ⊆ Φ∖ΦL we

set V̂D = j−1(VD × {0}) ⊆ V̂ . By Proposition 3.1 and Proposition 3.3, V̂Ψ+

is a commutative group normalized by B0 = T0U0 and hence the product

I := U0V̂Ψ+ ⊆ K

is subgroup. Then the attached deep level Deligne–Lusztig variety is defined
by

Z = ZΛ,B,Ψ+,r = {g ∈ K; g−1F (g) ∈ F I}.
As I is normalized by T, the variety Z is endowed with a natural action of
TF given by t : x 7→ xt. Let

H i
c(Z,Qℓ)[ϕ] ⊆ H i

c(Z,Qℓ)

be the subspace of the ith ℓ-adic cohomology of Z on which TF acts via the
character ϕ.

Note that Z admits a second action of KF given by g : x 7→ gx, which com-
mutes with previous action of TF . Therefore, the weight spaces H i

c(Z,Qℓ)[ϕ]
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are natural representations of KF . We define the following virtual KF -
module

RK
T (ϕ) := H∗

c (Z,Qℓ)[ϕ] :=
∑
i

(−1)iH i
c(Z,Qℓ)[ϕ].

By inflation, we also implicitly view RK
T (ϕ) as a virtual KF

Λ -module.

3.4. An extension. As T is elliptic in G, we have a natural adjoint action
of TF on K induced by s : x 7→ sxs−1. Moreover, this action preserves
subgroup I and hence the variety Z.

Following [Kal19, §3.4], we consider the action of KF
Λ ⋊ TF on Z given

by g ⋊ z : x 7→ gzxz−1. This action commutes with the previous action of
TFx,0 on Z by right multiplication. Thus the weight spaces H i

c(Z,Qℓ)[ϕ] are

natural representations of KF
Λ ⋊ TF . Consider the tensor products

H i
c(Z,Qℓ)[ϕ]⊗ ϕ,

where ϕ is viewed as a character of KF
Λ ⋊ TF via the natural projection

KF
Λ ⋊ TF → TF . As T ⊆ L is a maximally unramified maximal torus, we

have KF
Λ ∩TF = LFx,0∩TF = TFx,0. Then by definition the action z⋊ z−1 for

z ∈ TF on H i
c(Z,Qℓ)[ϕ]⊗ ϕ is trivial. Therefore, H i

c(Z,Qℓ)[ϕ]⊗ ϕ descends
to a representation of KF

ΛT
F . We define

R̂K
T (ϕ) := H∗

c (Z,Qℓ)[ϕ]⊗ ϕ

as a virtual KF
ΛT

F -module. Note that R̂K
T (ϕ)|KF

Λ
= RK

T (ϕ).

4. Mackey formula

Let the notation be as in §3.3. Recall that B = TU is a Borel subgroup
of L, and we write L, U and T for the natural images of Lr, Ur and Tr in K
respectively. Let NL(T) = {x ∈ L; xT = T} and WL(T) = NL(T)/T. Then

L = ⊔w∈WL(T)UẇTU,

where ẇ is a lift of w in NL(T).
Let Ψ = Ψ+ ⊔ −Ψ+ be as in Proposition 3.3. Put Ψ− = −Ψ+ and we

have

H = V̂ = V̂Ψ+ V̂Ψ−T0+.

Thus

K = HL =
⊔

w∈WL(T)

UV̂ ẇTU =
⊔

w∈WL(T)

IV̂Ψ−∩wΨ−ẇTI.

Let C ⊆ Ψ. In particular, VC ̸= 0. We set iC = iα (see §3.1) and rC = rα
for some/any α ∈ C. Define

(K+)C = κ(VC , V−C) ⊆ TrC ,

which is a one dimensional Fq-linear space by Lemma 3.2.
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4.1. Auxiliary results. Let D1, D2 ⊆ Ψ be two τ -stable subsets such that
Di ∩ −Di = ∅ for i = 1, 2. Let ẇ ∈ LF which normalizes T. The map
(y1, y2) 7→ y1y2 gives an affine space fibration

γ : V̂D1 × V̂D2 −→ V̂D1 V̂D2
∼= V̂D1 ∖D2 V̂D2 ,

whose fibers are isomorphic to V̂D1∩D2 . Consider the following varieties

X = XD1,D2,w = {(x1, x2, y1, y2, z) ∈ V̂D1 × V̂D2 × V̂D1 × V̂D2 × T; ẇ(x1x2)L(z) = y1y2};

Y = YD1,D2,w = {(x, z) ∈ (V̂D1 V̂D2)× T; ẇ(x)L(z) ∈ V̂D1 V̂D2},

where L : T → T denotes the Lang’s map given by z 7→ z−1F (z). Note that
TF × TF acts on X and Y respectively by

(s, t) : (x1, x2, y1, y2, z) 7−→ (sx1,
sx2,

w(s)y1,
w(s)y2, w(s)zt)

(s, t) : (x, z) 7−→ (sx,w(s)zt).

As γ is an affine space fibration, so is the TF × TF -equivariant map

X −→ Y, (x1, x2, y1, y2, z) 7−→ (x1x2, z).

In particular, for another character ψ of TF we have an isomorphism

H∗
c (X,Qℓ)[ψ ⊠ ϕ] ∼= H∗

c (Y,Qℓ)[ψ ⊠ ϕ].

Set D′
i = Di ∩ w−1

(D1 ∪ D2) for i = 1, 2. As w(D′
1 ∪ D′

2) ⊆ D1 ∪ D2,

we have ẇ(V̂D′
1
V̂D′

2
) ⊆ V̂D1 V̂D2T. Let prT : V̂D1 V̂D2T → T be the natural

projection. We consider the map δ : V̂D′
1
V̂D′

2
→ T given by x 7→ prT (

ẇx).

Lemma 4.1. We have the following Cartesian diagram

Y

pr1
��

pr2 // T

−L
��

V̂D′
1
V̂D′

2

δ // T,

where pr1 : Y → V̂D1 V̂D2 and pr2 : Y → T are the projections given by
(x, τ) 7→ x and (x, τ) 7→ τ respectively.

Proof. Let (x, τ) ∈ Y ⊆ (V̂D1 V̂D2) × T. By taking the natural projection

π : V̂ → V , we deduce by definition that

π(x) ∈ Vw−1 (D1∪D2)
∩ VD1∪D2 = VD′

1∪D′
2
.

As π restricts to a bijection V̂D1 V̂D2
∼= VD1∪D2 , we have x ∈ V̂D′

1
V̂D′

2
. Then

the statement follows by the definition of Y . □

We fix a linear order ⪯ on τ -orbits of D′
1 ∪ D′

2 such that C1 ≺ C2 if
C1 ⊆ D′

1∖D′
2 and C2 ⊆ D′

2. Then we have an isomorphism of varieties

χ :
∏
C

V̂C −→ V̂D′
1
V̂D′

2
, (xC)C 7−→

∏
C

xC ,
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where C ranges over τ -orbits of D′
1 ∪ D′

2, and the product is taken with
respect to ⪯.

We recall the following result from [Boy12, Proposition 2.10].

Proposition 4.2. Let A be a connected commutative algebraic group and
L a multiplicative rank-one local system on A. Let Z1 be a variety and let
ξ : Z = Z1 ×Ga → A be a morphism of the form

(z, y) 7−→ η(z, y)ζ(z)

such that for any z ∈ Z1 the morphism ηz : Ga → Ā given by y 7→ η(z, y) is
a group homomorphism. Then we have

H i
c(Z ∖Z ′, ξ∗L) = 0,

where Z ′ ⊆ Z is the closed subvariety consisting of points (z, y) ∈ Z such
that η∗zL is trivial.

Proof. Let p : Z → Z1 denote the natural projection. Then ξ∗L ≃ η∗L ⊗
p∗ζ∗L, as L is multiplicative. By projection formula this implies Rp!(ξ

∗L) ≃
Rp!η

∗L⊗ ζ∗L. It now suffices to show that Rp!η
∗L restricted to Z1∖ p(Z ′)

is zero. Let pz : {z}×Ga → {z} denote the fiber of p over z ∈ Z. By proper
base change, Rp!(η

∗L)z = Rpz!(η
∗
zL), which is zero if z ∈ Z ∖Z ′ by [Boy10,

Lemma 9.4]. □

Let D = (D2 ∩ −D1) ∩ w−1
(D1 ∩ −D2).

Lemma 4.3. Using the isomorphism χ above, the map δ : V̂D′
1
V̂D′

2
→ T is

given by

(xC)C 7−→
∑
C2

ẇ[x−C2 , xC2 ],

where C2 ranges over τ -orbits of D.

Proof. By definition and that [V̂Di , V̂Di ] = 0 for i = 1, 2, we have

δ((xC)C) =
∑
C1,C2

ẇ[xC1 , xC2 ],

where C1 and C2 range over τ -orbits of D1∖D2 and D2 respectively such
that w(C1) ⊆ D2 and w(C2) ⊆ D1∖D2. The statement then follows by
noticing that [xC1 , xC2 ] = 0 unless C1 = −C2. □

Proposition 4.4. We have

dimQℓ
H∗
c (X,Qℓ)[ψ

−1 ⊠ ϕ] = dimQℓ
H∗
c (Y,Qℓ)[ψ

−1 ⊠ ϕ] = δw−1ψ,ϕ
.

Proof. First we consider the ϕ-weight space H i
c(Y,Qℓ)[ϕ] of {1} × TF for

i ∈ Z. By Lemma 4.1 we have

H i
c(Y,Qℓ)[ϕ] = H i

c(V̂D′
1
V̂D′

2
, δ∗Lϕ).

Let C be a τ -orbit of Ψ and u ∈ V̂−C , the map

δu : V̂C ∼= Ga −→ T, v 7−→ [u, v]
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is a group homomorphism and the pull-back δ∗uLϕ is nontrivial if and only
if u = 0. By Proposition 4.2 and Lemma 4.3 we have

H i
c(Y ∖Y ′,Qℓ)[ϕ] ∼= H i

c((V̂D′
1
V̂D′

2
)∖ V̂D′

1 ∖−DV̂D′
2
, δ∗Lϕ) = 0,

where Y ′ = {(x, τ) ∈ Y ;x ∈ V̂D′
1 ∖−DV̂D′

2
} = V̂D′

1 ∖−DV̂D′
2
× TF . In particu-

lar,

dimQℓ
H∗
c (Y,Qℓ)[ψ

−1 ⊠ ϕ] = dimQℓ
H∗
c (Y

′,Qℓ)[ψ
−1 ⊠ ϕ].

As the natural projection Y ′ = V̂(D′
1∪D′

2)∖−D × TF → TF is a TF × TF -
equivariant affine space fibration, we have

dimQℓ
H∗
c (Y

′,Qℓ)[ψ
−1 ⊠ ϕ] = dimQℓ

H∗
c (TF ,Qℓ)[ψ

−1 ⊠ ϕ] = δw−1ψ,ϕ
.

The proof is finished. □

4.2. Inner product computation. Now we state Mackey formula for the
inner product of the virtual KF -module

Theorem 4.5. We have

⟨RK
T (ϕ),RK

T (ϕ)⟩KF = ♯{w ∈WL(T)F ;wϕ = ϕ}.

Here we identify ϕ with its restriction ϕ|TF .

Proof. For w ∈WL(T) we set

Σw = {(x, x′, v, v̄, τ, u) ∈ F I×F I×I×V̂Ψ−∩wΨ−×T×I;xF (v̄ẇτ) = vv̄ẇτux′}.

Write Σw = Σ′
w ⊔Σ′′

w, where Σ
′
w and Σ′′

w are defined by the conditions v̄ ̸= 0
and v̄ = 0 respectively. Note that TF × TF acts on Σw by

(s, t) : (x, x′, v, v̄, τ, u) 7−→ (sxs−1, tx′t−1, svs, sv̄s−1, ẇ−1(s)τt−1, tut−1).

As in the proof of [Nie24, Proposition 5.5], it suffices to show that

dimH∗
c (Σ

′′
w,Qℓ)[ϕ

−1 ⊠ ϕ] = δw,F (w) · δwϕ,ϕ

and dimH∗
c (Σ

′
w,Qℓ)[ϕ

−1 ⊠ ϕ] = 0.
Let H = {(s, t) ∈ T × T; s−1F−1(s) = ẇt−1F−1(t)ẇ−1}, which acts on

Σ′′
w by

(s, t) : (x, x′, v, τ, u) 7−→ (sxs−1, tx′t−1, svs, ẇ−1(s)τt−1, tut−1).

Let H◦
red and Tred be the reductive parts of the identity component of H◦

and T respectively. As ITred = V̂D with D = {α ∈ Ψ;α(Tred) = {1}}. It
follows that (Σ′′

w)
H◦

red ̸= ∅ only if F (w) = w, and in this case we have

(Σ′′
w)
H◦

red ∼= XD,FD,w−1

as TF ×TF -varieties, where XD,FD,w−1 is as in §4.1. It follows from Proposi-

tion 4.4 that dimQℓ
H i
c((Σ

′′
w)
H◦

red ,Qℓ)[ϕ
−1⊠ϕ] = δwϕ,ϕ. Hence dimH∗

c (Σ
′′
w,Qℓ)[ϕ

−1⊠
ϕ] = δw,F (w) · δwϕ,ϕ as desired.
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It remains to show H∗
c (Σ

′
w,Qℓ)[ϕ

−1 ⊠ ϕ] = 0. Note that

V̂Ψ−∩wΨ− =
⊕

C∈(−C)∩(−wC)

V̂C .

For v̄ ∈ V̂Ψ−∩wΨ− and C ∈ (−C)∩ (−wC) let v̄C ∈ V̂C such that v̄ =
∑

C v̄C .

We fix a total order ⩽ on (−C) ∩ (−wC). Let V̂ C
Ψ−∩wΨ−

be the subset of

elements v̄ such that v̄C ̸= 0 and v̄C′ = 0 for all C ′ < C. Then we have

V̂Ψ−∩wΨ− ∖ {0} =
⊔
C

V̂ C
Ψ−∩wΨ− .

The above decomposition induces a decomposition

Σ′
w =

⊔
C

Σ′,C
w .

It remains to show H∗
c (Σ

′,C
w ,Qℓ)[ϕ

−1 ⊠ ϕ] = 0 for all C ∈ (−C) ∩ (−wC).
Let C ∈ (−C)∩(−wC). Consider the restricted action of TF ∼= TF ×{1} ⊆

TF × TF on Σ′,C
w given by

s : (x, x′, v, v̄, τ, u) 7−→ (sxs−1, x′, svs−1, sv̄s−1, w−1(s)τ, u).

It suffices to show the ϕ−1-weight subspace H∗
c (Σ

′,C
w ,Qℓ)[ϕ

−1] is trivial.

Let v̄ ∈ V̂ C
Ψ−∩wΨ−

. We fix an isomorphism

λv̄ : V̂−C
∼−→ (K+)C , ζ −→ κ(v̄, ζ).

Consider the subgroup

H = {s ∈ TrC ; s−1F−1(s) ∈ (K+)C}.

For s ∈ H we define an isomorphism fs : Σ
′,C
w → Σ′,C

w by

fs : (x, x
′, v, v̄, τ, u) 7−→ (xs, x

′F ((ẇτ)
−1
ζ), svs−1, sv̄s−1, w−1(s)τ, u)

with ζ = λ−1
v̄ (sF−1(s)−1) such that

xsF (v̄ẇτ) = svv̄ẇτux′F ((ẇτ)
−1
ζ).

The induced map of fs on each subspace H i
c(Σ

′,C
w ,Qℓ) is trivial for each

s ∈ NFn

F ((K+)F
n

C ) ⊆ H◦. Here n ∈ Z⩾1 such that Fn(C) = C, and NFn

F :
TrC → TrC is the map given by s 7→ sF (s) · · ·Fn−1(s). On the other hand,
we have

ϕ|NFn
F ((K+)F

n
C ) = ϕiC−1|NFn

F ((K+)F
n

C ),

which is nontrivial since ϕiC−1 is (G
iC−1, GiC )-generic. ThusH∗

c (Σ
′,C
w ,Qℓ)[ϕ

−1]
is trivial as desired. □
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5. A concentration theorem

In this section, we follow the approach in [Nie24, §5] to prove a concen-
tration theorem on the cohomology of the “positive-depth part” of Z in
the tamely ramified case. This will be a crucial ingredient in proving the
character formula of RK

T (ϕ).

5.1. A variation of Boyarchenko–Weinstein’s calculation. Recall that
the natural map Gal(K/k) → Gal(kf/k) admits a splitting. Thus Gal(K/k)

is generated by τ and a lift F of Frobenius with F f = 1. Note that πe = aϖ
for some root of unity a ∈ kf . Let σ : Ga → Ga, x 7→ xq be the Frobenius
map induced by F .

Let C ⊆ Ψ be a τ -orbit. In particular, VC ̸= 0 and C ̸= −C by Lemma 3.2.
We identify ETrC :rC with the Fq-linear space X∗(T ) ⊗ FqπerC . For α ∈ C
we define an isomorphism

θα : Ga −→ (K+)C , x 7−→
|C|−1∑
i=0

τ i(α∨)⊗ ξierCxπerC .

Let N be the minimal positive integer such that FN (C) = C. Suppose

that N is even and FN/2(C) = −C. Let α ∈ C and j ∈ Z such that

FN/2 ◦ τ j(α) = −α.

In particular, for γ = ±α and x ∈ Fq we have

FN/2(θγ(x)) = θ−γ(ησ
N/2(x)),

where η is the natural image of FN/2(ξj)(F (π)/π)erC in Fq. Let ζ ∈ Fq
such that ζσN/2ζ−1 = ησN/2 ∈ Fq ⋊ ⟨σ⟩. Then we have F iN (θα(x)) =
θα(ζσ

iNζ−1(x)) for i ∈ Z.
As F f = 1 ∈ Gal(K/k), for each x ∈ Fqf we have

θα(x) = F f (θα(x)) = θα(ζσ
fζ−1(x)),

which implies that ζ = σf (ζ) and hence ζ ∈ Fqf .

Lemma 5.1. Let C, N , α and ζ be as above. Then we have

NK/k ◦ α∨(K×
rC
) = (

N−1∑
i=0

F i) ◦ θα(ζFqN ).
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Proof. Let x ∈ Fqf . We have

NK/k(α
∨ ⊗ xπerC )

= (

f−1∑
i=0

F i)(

e−1∑
l=0

τ l)(α∨ ⊗ xπerC )

=
e

|C|
(

f∑
i=0

F i)(θα(x))

=
e

|C|
(
N−1∑
i=0

F i)(

f
N
−1∑

l=0

)(F lN (θα(x)))

=
e

|C|
(
N−1∑
i=0

F i)(

f
N
−1∑

l=0

θα(ζσ
lN (ζ−1x)))

=
e

|C|
(
N−1∑
i=0

F i)(θα(ζ trF
qf
/F

qN
(ζ−1x))).

As ζ ∈ Fqf and that e
|C| is invertible in Fq, we deduce that

NK/k(α
∨⊗FqfπerC ) = (

N−1∑
i=0

F i)◦θα(ζ trF
qf
/F

qN
(Fqf )) = (

N−1∑
i=0

F i)◦θα(ζFqN ).

Hence the statement follows. □

Let H be a connected commutative algebraic group over a finite field FQ
of characteristic p. For any character χ : H(FQ) → Q×

ℓ we denote by Lχ the
associated rank-one local system over H.

Let ϕ+ = ϕ|(T0+)F .

Proposition 5.2. Let C, N , α and ζ be as above. Then we have

dimQℓ
H i
c(Ga, ι

∗Lϕ+) =

{
qN/2 if i = 1;

0 otherwise.

Here ι : Ga → T+ is given by x 7→ θα(ζx
qN/2+1).

Proof. Let ϑ : Ga → T0+ be given by x 7→ θα(ζx). Note that FNθα(x) =
θα(ζσ

Nζ−1x) for x ∈ Fq. Hence ϑ is an homomorphism of algebraic groups
over FqN . Consider the following character

ψ : FqN
ϑ−→ (T0+)F

n NFN

F−→ (T0+)F
ϕ+−→ Q×

ℓ ,

where NFN

F : T0+ → T0+ is given by x 7→ xF (x) · · ·FN−1(x). Then we have

Lψ ∼= ϑ∗L
ϕ+◦NFN

F

∼= ϑ∗Lϕ+ ,
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where the second isomorphism follows from that L
ϕ+◦NFN

F

∼= Lϕ+ by [IN25c,

Lemma 5.8].
By Lemma 5.1 we set

Imψ = ϕ+◦(
N−1∑
i=1

F i)(Imϑ) = ϕiC−1◦(
N−1∑
i=1

F i)(Imϑ) = ϕiC−1◦NK/k◦α∨(K×
rC
) ̸= {1},

where the last inequality follows from that ϕiC−1 is (GiC−1, GiC )-generic.
Thus ψ is non-trivial. On the other hand, for x ∈ FqN/2 we have

NFN

F ϑ(x) = NFN

F θα(ζx)

= (

N/2−1∑
i=0

F i)(θα(ζx) + FN/2θα(ζx))

= (

N/2−1∑
i=0

F i)(θα(ζx) + θ−α(ζσ
N/2(x)))

= (

N/2−1∑
i=0

F i)(θα(ζx) + θ−α(ζx))

= 0.

In particular, ψ is trivial over FqN/2 . Let f : Ga → Ga be given by x 7→
xq

N/2+1. We have ι = ϑ ◦ f and hence

ι∗Lϕ+ ∼= f∗ϑ∗Lϕ+ ∼= f∗Lψ.

Then the statement follows from [BW16, Proposition 6.6.1]. □

5.2. The concentration result. Let s ∈ K̃. We denote by Ad(s) : K̃ → K̃
the adjoint action induced by x 7→ sxs−1. Let H be the quotient group of

two closed subgroups of K̃ preserved by Ad(s). We denote by Hs for the
group of Ad(s)-fixed points in H, and write Hs,◦ for the identity component
of Hs.

We write T̄F for the natural image of TF in K̃. Let t ∈ T̄F . We set
Φt = {γ ∈ Φ; γ(t̂) = 1 ∈ πOE}, where t̂ ∈ TF is any lift of t. Define

d(ϕ, t) = |(Ψ ∩ Φt)/Gal(E/k)|,

where Ψ ⊆ Φ is as in §3.2. Let κt denote the Weil–Heisenberg representation

of K̃t associated to generic datum Λ = (Gi, ϕi)
d
i=0 in the sense of [Yu01, §4],

see also [Fin21a, §2]. We write d(ϕ, t) = d(ϕ) and κt = κ if t = 1.

Proposition 5.3. Let t ∈ TF . Then there exists an integer nϕ,t such that

H i
c(Z ∩Ht,Qℓ)[ϕ+] ̸= 0 ⇐⇒ i = nϕ,t.

Moreover, dimH
nϕ,t
c (Z ∩Ht,Qℓ)[ϕ+] = |(V t)F |

1
2 and nϕ,t ≡ d(ϕ, t) mod 2.
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Proof. It follows the same way as [LN25, Theorem 4.1] by using Proposi-
tion 5.2. □

6. A character formula for R̂K
T (ϕ)

Keep the notation in previous sections. The main purpose of this section
is to established a character formula for RK

T (ϕ) and R̂K
T (ϕ) by following

approaches in [DL76] and [CO25].
First we need two auxiliary lemmas.

Lemma 6.1. For t ∈ T̄F the conjugation action Ad(t) on K is semisimple
and has finite order prime to the characteristic of Fq.

Proof. The statement follows from thatK is generated by T and one-dimensional
additive subgroups over Fq which are preserved by Ad(s). □

Lemma 6.2. Let s ∈ KF T̄F and x ∈ T̄F . The map (h, y) 7→ hy induces a
bijection

θ : {h ∈ KF ; shx = h} ×(Kx,◦)F (Z ∩Kx,◦) ∼= {g ∈ Z; sgx = g}.

Proof. First note that map θ is well defined. If θ(h, y) = θ(h′, y′), then

h′−1h = y′y−1 ∈ (Kx,◦)F and hence θ is injective. It remains to show θ is
surjective.

Let g ∈ Z such that sgx = g. Then g−1F (g) ∈ F I and

g−1F (g) = x−1(sg)−1F (sg)F (x) = s−1g−1F (g)s,

which implies that g−1F (g) ∈ (F I)x = F Ix.
By Lemma 6.1, the conjugation action of x ∈ T̄ on K is semisimple, which

implies that Ix is connected (this follows from [Bor91, Proposition 9.3] by
noting that x normalizes the unipotent group I) and hence F Ix ⊆ Kx,◦. By
Lang’s theorem, there exists y ∈ Kx,◦ such that y−1F (y) = g−1F (g) ∈ F I.
Let h = gy−1. Then we have h ∈ KF , g = hy and shx = sgy−1x = sgxy−1 =
gy−1 = h as desired. Hence θ is surjective and the proof is finished. □

Lemma 6.3. Let g ∈ KF T̄F . Then there exist z ∈ T̄F , u ∈ KF and
s ∈ KF T̄F such that g = su = us, u ∈ K is unipotent and (sz−1)⋊Ad(z) ∈
KF ⋊ ⟨Ad(z)⟩ has finite order prime to p.

Moreover, if g ∈ KF we may take z = 1 and g = su = us is the Jordan
decomposition in K.

Proof. Assume g = g′z for some g ∈ KF and z ∈ T̄F . By Lemma 6.1,
the semi-direct product K ⋊ ⟨Ad(z)⟩ is a linear algebraic group. Let x =
g′ ⋊ Ad(z) ∈ K ⋊ ⟨Ad(z)⟩ and let x = xuxs be the usual Jordan decom-
position with xu unipotent and xs semisimple. As z ∈ T̄F , the Frobenius
automorphism of K extends trivially to an automorphism of K⋊⟨Ad(z)⟩. By
the uniqueness of the Jordan decomposition, we have xu, xs ∈ KF ⋊⟨Ad(z)⟩.
As the order of xu is a power of p, it follows from Lemma 6.1 that the im-
age of xu under the natural projection K ⋊ ⟨Ad(z)⟩ → ⟨Ad(z)⟩ is trivial,
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which means xu ∈ KF . Let u = xu and s = δz, where δ ∈ KF such that
xs = δ⋊Ad(z). Note that the order of xs is prime to p. Hence the elements
z, u and s satisfy our requirements. □

Let Tred be the reductive part of T. We have the Jordan decomposition
TF ∼= TFred × (T0+)F . Recall that ϕ+ = ϕ|(T0+)F , and recall the virtual

T̄FKF -module R̂K
T (ϕ) = H∗

c (Z,Qℓ)[ϕ]⊗ ϕ defined in §3.4.
Similarly as in [DL76, Che18, CO25], we have the following character

formula.

Proposition 6.4. Let notation be as in Lemma 6.3. Assume that p ∤
|WL(T)F | if g ∈ KF T̄F ∖KF . Then

R̂K
T (ϕ)(g) =

1

|TFred|
∑

h∈KF /(Ks,◦)F , hs∈T̄

ϕ(hs) tr(hu;H∗
c (Z ∩K

hs,◦,Qℓ)[ϕ+]).

Proof. By definition we have

R̂K
T (ϕ)(g)

= ϕ(z) tr((gz−1)⋊Ad(z);H∗
c (Z,Qℓ)[ϕ])

= ϕ(z)
1

|TF |
∑
t∈TF

ϕ(t−1) tr((gz−1)⋊Ad(z), t);H∗
c (Z,Qℓ))

= ϕ(z)
1

|TF |
∑
t∈TF

ϕ(t)−1 tr((u, t′′);H∗
c (Z

((sz−1)⋊Ad(z),t′),Qℓ)),

where t = t′t′′ is the Jordan decomposition with t′ ∈ Tred and t′′ ∈ (T0+)F ,
and

Z((sz−1)⋊Ad(z),t′) = {g ∈ Z; sz−1(zgz−1)t′ = sgz−1t′ = g}

is the set of points in Z fixed by the action of ((sz−1) ⋊ Ad(z), t′). By
Lemma 6.2,

Z((sz−1)⋊Ad(z),t′) =
⊔

h∈KF /(Ks,◦)F ,hs=zt′−1

h−1(Z ∩K
hs,◦).

If g ∈ KF and g = su is the Jordan decomposition, then hu ∈ Khs,◦ since K
is connected. Otherwise, as p ∤ |WL(T)F | (by assumption) and the order of

u is a power of p, we still have hu ∈ Khs,◦. Thus,

tr((u, t′′);H∗
c (Z

((sz−1)⋊Ad(z),t′),Qℓ)) =
∑

h∈KF /(Ks,◦)F ,hs=zt′−1

tr((hu, t′′);H∗
c (Z∩K

hs,◦,Qℓ)).
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Inserting this equality we have

R̂K
T (ϕ)(g)

= ϕ(z)
1

|TF |
∑

t′∈TF
red

∑
t′′∈TF

unip

ϕ(t′t′′)−1
∑

h∈KF /(Ks,◦)F ,hs=zt′−1

tr((hu, t′′);H∗
c (Z ∩K

hs,◦,Qℓ))

= ϕ(z)
1

|TF |
∑

t′′∈(Tunip)F

ϕ(t′′)−1ϕ(z−1hs)
∑

h∈KF /(Ks,◦)F ,hs∈T̄

tr((hu, t′′);H∗
c (Z ∩K

hs,◦,Qℓ))

=
1

|TFred|
∑

h∈KF /(Ks,◦)F ,hs∈T̄

ϕ(hs) tr(hu;H∗
c (Z ∩K

hs,◦,Qℓ)[ϕ+]).

The proof is finished. □

Let ΦL0 be the set of roots of T0 in L0. We say s ∈ TFred is regular for L0

if α(s) ̸= 1 for all α ∈ ΦL0 .

Corollary 6.5. Let s ∈ TFred be regular for L0. Then

RK
T (ϕ)(s) = (−1)d(ϕ,s)|(V s)F |

1
2

∑
w∈WL(T)F

ϕ(ws).

Proof. As s ∈ TFred is regular for L0, we have Ks,◦ = THs and

{h ∈ K/Ks,◦; hs ∈ T̄} ∼= {h ∈ L/Ls,◦; hs ∈ T̄} ∼=WL(T)F .

Applying Proposition 6.4 we have

RK
T (ϕ)(s) =

1

|TFred|
∑

h∈KF /(Ks,◦)F , hs∈T

ϕ(hs) tr(1;H∗
c (Z ∩K

hs,◦,Qℓ)[ϕ+])

=
1

|TFred|
∑

w∈WL(T)F
ϕ(ws) tr(1;H∗

c (Z ∩K
ws,◦,Qℓ)[ϕ+])

=
1

|TFred|
∑

w∈WL(T)F
ϕ(ws) dimH∗

c (
⊔

γ∈TF
red

γ(Z ∩H
ws),Qℓ)[ϕ+]

=
∑

w∈WL(T)F
ϕ(ws) dimH∗

c (Z ∩H
ws,Qℓ)[ϕ+]

=
∑

w∈WL(T)F
ϕ(ws)(−1)d(ϕ,

ws)|(V ws)F |
1
2

= (−1)d(ϕ,s)|(V s)F |
1
2

∑
w∈WL(T)F

ϕ(ws),

where the third equality follows from that

Z ∩K
ws,◦ =

⊔
γ∈TF

red

γ(Z ∩H
ws),
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the fifth follows from Proposition 5.3, the last one follows from that d(ϕ, s) =
d(ϕ,ws) and |(V s)F | = |(V ws)F |. The proof is finished. □

7. The module R̂K
T (ϕ

†)

In this section, we introduce and study another T̄FKF -module R̂K
T (ϕ

†),

which serves as a counterpart of R̂K
T (ϕ).

Consider the following T̄FKF -module

R̂K
T (ϕ) = κ|T̄FKF ⊗ R̂L0

T0
(ϕ−1),

where R̂L0
T0
(ϕ−1) is the extended classical Deligne–Lusztig representation of

T̄FKF constructed in [Kal19, §3.4.4].
Following [CO23], let

εϕ+ =
d∏
i=1

ϵ
Gi/Gi−1

♯,x ,

where ϵ
Gi/Gi−1

♯,x denotes the quadratic character of T̄F in [FKS23, Definition

3.1] which factors through TF /TFx,0+. We put ϕ† = εϕ+ · ϕ. Then (ϕ†)† = ϕ.

Let ϕ⩾0 =
∏d
i=0 ϕi. The following result is essentially proved in [CO25,

Proposition 7.4].

Proposition 7.1. Let notation be as in Lemma 6.3 and assume that s ∈ T̄F .
Then

κ(g) = (−1)d(ϕ)−d(ϕ,s)κs(u)εϕ+(s)ϕ⩾0(s).

In particular,

κ(s) = (−1)d(ϕ)−d(ϕ,s)|(V s)F |εϕ+(s)ϕ⩾0(s).

Lemma 7.2. Let s ∈ KT̄F such that the action Ad(s) on K has order prime
to p. Then the natural quotient map π : K → L0 induces a bijection

α : {h ∈ K/Ks,◦; hs ∈ TT̄F } ∼= {x ∈ L0/L
s,◦
0 ; xπ(s) ∈ TF /TFx,0+}.

Proof. First we show that α is injective. We may assume s ∈ TT̄F . Then the
natural projection Ls,◦ → Ls,◦0 is surjective. Let h ∈ K such that hs ∈ TT̄F
and π(h) ∈ Ls,◦0 . We need to show that h ∈ Ks,◦. Let h′ ∈ Ls,◦ be a lift

of π(h) under this projection. By replacing h with hh′−1, we can assume
that h ∈ kerπ, that is, h ∈ H. Then the condition hs ∈ T̄ implies that
h ∈ Hs = Hs,◦. Hence α is injective.

Now we show that α is surjective. We may assume s ∈ HT̄F and x =
1 ∈ L0. Write s = δt with δ ∈ H and t ∈ TT̄F . As the action of Ad(t)
on H is a semisimple and [H,H] lies in the center of H, by replacing s with
a suitable H-conjugate, we may assume that s = δt = tδ. Assume that
δ /∈ T. Let N be the order of Ad(s). We have sN = δN tN . As p ∤ N by
assumption, δN /∈ T. Hence the action of Ad(δN tN ) = Ad(sN ) = Ad(s)N

on H is nontrivial, which is a contradiction. So δ ∈ T and α is surjective as
desired. □
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We have the following character formula.

Proposition 7.3. Let notation be as in Lemma 6.3. Then

R̂K
T (ϕ

†)(g) = (−1)d(ϕ)
∑

h∈KF /(Ks,◦)F ,hs∈T̄F

(−1)d(ϕ,
hs)Qhs,ϕ+(

hu)ϕ(hs).

Proof. By definition we have

R̂K
T (ϕ

†)(g)

= κ(g)R̂L0
T0
(ϕ†−1)(g)

= κ(g)
∑

x∈LF
0 /(L

s,◦
0 )F ,xπ(s)∈TF /TF

x,0+

ϕ†−1(
xs)QLs,◦

0 ,T0
(xu)

=
∑

h∈KF /(Ks,◦)F ,hs∈T̄F

κ(hg)ϕ†−1(
hs)Q

L
hs,◦
0 ,T0

(hu)

=
∑

h∈KF /(Ks,◦)F ,hs∈T̄F

(−1)d(ϕ)−d(ϕ,
hs)κhs(

hu)ϕ⩾0(
hs)εϕ+(

hs)ϕ†−1(
hs)Q

L
hs,◦
0 ,T0

(hu)

= (−1)d(ϕ)
∑

h∈KF /(Ks,◦)F ,hs∈T̄F

(−1)d(ϕ,
hs)κhs(

hu)Q
L
hs,◦
0 ,T0

(hu)ϕ(hs)

= (−1)d(ϕ)
∑

h∈KF /(Ks,◦)F ,hs∈T̄F

(−1)d(ϕ,
hs)Qhs,ϕ+(

hu)ϕ(hs),

where the third equality follows from Lemma 7.2, and the fourth follows
from Proposition 7.1. □

8. Green functions

In this section, we introduce Green functions associated to theKF -modules
RK

T (ϕ) and R
K
T (ϕ), and prove Theorem 1.3 based on a strategy of [CO25].

For t ∈ T̄F we consider the following virtual (Kt,◦)F -modules

RKt,◦
T (ϕ) = H∗

c (Z ∩Kt,◦,Qℓ)[ϕ], RKt,◦
T (ϕ) = κt|(Kt,◦)F ⊗R

Lt,◦
0

T0
(ϕ−1),

where R
Lt,◦
0

T0
(ϕ−1) denotes the classical Deligne–Lusztig representation of

(Lt,◦0 )F associated to the pair (T0, ϕ). Following [DL76, §4] and [CO25,
§6-7], we consider for t ∈ T̄F the following deep level Green functions

Qt,ϕ+ = RKt,◦
T (ϕ)|(Kt,◦

unip)
F and Qt,ϕ+ = RKt,◦

T (ϕ)|(Kt,◦
unip)

F .

Here Kt,◦
unip denotes the set of unipotent elements in Kt,◦. Write Qt,ϕ+ = Qϕ+

and Qt,ϕ+ = Qϕ+ if t = 1. By definition,

Qt,ϕ+ = κt|(Kt,◦
unip)

F ·QLt,◦
0 ,T0

.

Here QLt,◦
0 ,T0

denotes the classical Green function attached to the pair

(Lt,◦0 , T0) in the sense of [DL76].
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Proposition 8.1. Both Qϕ+ and Qϕ+ only depend on the positive-depth
part ϕ+ of ϕ.

Proof. Let u ∈ KF
unip. By Proposition 6.4 we have

Qϕ+(u) = RK
T (ϕ)(u) =

1

|TFred|
tr(u;H∗

c (Z,Qℓ)[ϕ+]),

which only depends on ϕ+ as desired. The other statement follows from

that the classical Green function RL0
T0
(ϕ−1)|(L0)Funip

is independent of ϕ−1 by

[DL76, Theorem 4.2]. □

Theorem 8.2. Let notation and assumption be as in Proposition 6.4. Then

R̂K
T (ϕ)(g) =

∑
h∈KF /(Ks,◦)F , hs∈T̄F

ϕ(hs)Qhs,ϕ+(
hu).

Proof. Applying Proposition 6.4 we have

R̂K
T (ϕ)(g) =

∑
h∈KF /(Ks,◦)F , hs∈T

ϕ(hs)
1

|TFred|
tr(hu;H∗

c (Z ∩K
hs,◦,Qℓ)[ϕ+])

=
∑

h∈KF /(Ks,◦)F , hs∈T

ϕ(hs) tr(hu;H∗
c (Z ∩K

hs,◦,Qℓ)[ϕ])

=
∑

h∈KF /(Ks,◦)F , hs∈T

ϕ(hs)Qhs,ϕ+(
hu).

The proof is finished. □

We say ϕ is regular for L0 if the stabilizer of ϕ|TF in WL(T)F ∼=WL(T)F
is trivial.

Proposition 8.3. If ϕ is regular for L0, then there exists an irreducible
LF0 -module ρ such that

±RK
T (ϕ)

∼= κ⊗ ρ.

In particular, ±RK
T (ϕ) is an irreducible KF -module.

Proof. By Theorem 4.5, ±RK
T (ϕ) is an irreducible KF -module. By construc-

tion, (K+)F ∼= (T0+)F lies in the center of K and hence acts on ±RK
T (ϕ) via

the character ϕ. Hence the restriction ±RK
T (ϕ)|HF is a sum of the Heisenberg

representations isomorphic to κ|HF . In particular,

homKF (indK
F

HF κ|HF ,±RK
T (ϕ)) = homHF (κ|HF ,±RK

T (ϕ)|HF ) ̸= 0.

By the projection formula, indK
F

HF κ|HF
∼= κ ⊗ indK

F

HF 1 and hence is a direct

sum of KF -modules of the form κ⊗ ρ, where ρ ranges over irreducible sum-

mands (with multiplicities) of indK
F

HF 1. The statement then follows form that

±RK
T (ϕ) is an irreducible KF -module. □

Proposition 8.4. Assume q is sufficiently large. Then Qt,ϕ+ = (−1)d(ϕ,t)Qt,ϕ+
for t ∈ T̄F .
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Proof. Without loss of generality we may assume t = 1. As q is sufficiently

large, there exists a regular character ψ : TF → Q×
ℓ such that ψ+ = ϕ+. In

view of Proposition 8.1, by replacing ϕ with ψ we may assume further that
ϕ is regular.

By Proposition 8.3, there exists an irreducible LF0 -module ρ such that
±RK

T (ϕ)
∼= κ⊗ ρ. Let s ∈ TF which is regular for L0. By Corollary 6.5 and

Proposition 7.3 we have

RK
T (ϕ)(s) = (−1)d(ϕ,s)|(V s)F |

1
2

∑
w∈WL(T)F

ϕ(ws);

(κ⊗ ρ)(s) = (−1)d(ϕ)−d(ϕ,s)|(V s)F |
1
2 εϕ+(s)ϕ⩾0(s)ρ(s).

Since ϕ = ϕ−1ϕ⩾0 and ±RK
T (ϕ)

∼= κ⊗ ρ we deduce that

±ρ(s) =
∑

w∈WL(T)F
ϕ†−1(

ws) =
∑

w∈WL0
(T0)F

ϕ†−1(
ws) = RL0

T0
(ϕ†−1)(s).

On the other hand, as ϕ is regular, so are ϕ−1 and ϕ†−1. Hence ±RL0
T0
(ϕ†−1)

is irreducible. As q is sufficiently large, it follows from [CO25, Theorem 3.2]

that ρ = ±RL0
T0
(ϕ†−1) and hence

±RK
T (ϕ) = κ⊗RL0

T0
(ϕ†−1) = RK

T (ϕ
†).

By comparing traces on both sides, we deduce thatRK
T (ϕ) = (−1)d(ϕ)RK

T (ϕ
†)

as desired. □

Theorem 8.5. Assume q is sufficiently large. Then we have

RK
T (ϕ) = (−1)d(ϕ)RK

T (ϕ
†).

If, moreover, p ∤ |WL(T)F |, then R̂K
T (ϕ) = (−1)d(ϕ)R̂K

T (ϕ
†).

Proof. We only show the first statement. The second follows in the same
way. Let notation be as in Proposition 6.4. Combining Proposition 7.3,
Theorem 8.2 and Proposition 8.4 we have

RK
T (ϕ

†)(g) = (−1)d(ϕ)
∑

h∈KF /(Ks,◦)F ,hs∈TF

(−1)d(ϕ,
hs)Qhs,ϕ+(

hu)ϕ(hs)

= (−1)d(ϕ)
∑

h∈KF /(Ks,◦)F ,hs∈T

Qhs,ϕ+(
hu)ϕ(hs)

= (−1)d(ϕ)RK
T (ϕ)(g).

The proof is finished. □

8.1. Regular supercuspidal representations. Following [Kal19, §3.7],
we assume further that (T, ϕ) is a tame elliptic regular pair, and let π(T,ϕ)
denote Kaletha’s regular supercuspidal representation associated to (T, ϕ).
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Corollary 8.6. Assume p ∤ |WL(T)| and q is sufficiently large. Then

(−1)d(ϕ)+rL−rT R̂K
T (ϕ) is an irreducible KF

ϕ T
F -module and

π(T,ϕ) ∼= c-indG
F

KF
ΛT

F (−1)d(ϕ)+rL−rT R̂K
T (ϕ

†).

Here rL and rT denote the split ranks of L and T respectively.

Proof. Note that (−1)rL−rT R̂K
T (ϕ) is an irreducibleKF

ΛT
F -module. By [CO23,

Lemma 3.10] we have

π(T,ϕ) ∼= c-indG
F

KF
ΛT

F (−1)rL−rT R̂K
T (ϕ).

Note that (ϕ†)† = ϕ and d(ϕ) = d(ϕ†). The statement then follows from

Theorem 8.5 that R̂K
T (ϕ

†) = (−1)d(ϕ)R̂K
T (ϕ). □

9. Supercuspidal representations

In this section, we show that all the irreducible supercuspidal representa-
tions of GF can be realized by the cohomology of our varieties under mild
assumptions on p and q.

First we recall that a Yu’s datum is a triple Σ = (Λ,x, ρ̃) such that

• Λ = (Gi, ϕi, ri)
d
i=0 is a generic datum as in §2.4;

• Z(G0)/Z(G) is anisotropic;

• x ∈ B(G0, k) is a vertex;

• ρ̃ is a cuspidal representation of (G0
[x]/Gx,0+)

F .

We fix a Yu’s datum Σ = (Λ,x, ρ̃) as above and put L = G0 for simplicity.
Let

K := KΛ ⊆ K̃Λ =: K̃
be the Yu-type subgroups associated to Λ, see §2.4. Let κ be the Weil–

Heisenberg representation of K̃F in the sense of [Yu01].

Theorem 9.1 ([Yu01, Kim07, Fin21b]). Assume p does not divide the order
of the absolute Weyl group of G. Then the map

Σ 7−→ πΣ := c-indG
F

K̃F κ⊗ ρ̃

induces a bijection between equivalence classes of Yu’s data and isomorphism
classes irreducible supercuspidal representations of GF .

By assumption, the restriction ρ̃|Z(G)FLF
x,0

has an irreducible cuspidal

summand ρ. By [DL76], there exist an elliptic torus T ⊆ L0 and a character

θ : TF → Q×
ℓ such that ρ|LF

x,0
appears in the inflation of RL0

T (θ). By [Kal19,

Lemma 3.4.4], there exists a maximally unramified elliptic maximal torus T

of L such that x ∈ A(T, k̆) and T ∼= T0. By inflation we view θ as charac-
ter of TFx,0. Let ω be the central character of ρ̃. By construction, ω and θ

coincide over Z(G)F ∩ TFx,0.
Since Z(L)/Z(G) is anisotropic, T is also elliptic in G. The following

lemma shows that the quotient TF /(Z(G)FTFx,0) is a finite group.
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Lemma 9.2. For an elliptic torus T ⊆ G, the quotient TF /(Z(G)FTFx,0) is
finite.

Proof. The Iwahori subgroup TFx,0 has finite index in the maximal bounded

subgroup T (k)b of T (k) by [KP23, Lemma 2.5.14]. So it suffices to show that
T (k)/(Z(G)(k)T (k)b) is finite. Let Tder = T ∩Gder. Then Tder is anisotropic
and hence Tder(k)b = Tder(k) by [KP23, Proposition 2.5.8]. Let D = G/Gder.
Taking Galois-fixed points of the short exact sequence Tder ↪→ T ↠ D
and using that Tder(k)b ⊆ T (k)b (by [KP23, Proposition 2.5.9]), and that
H1(k, Tder) is finite (by [Ser97, Chap.III, Theorem 4]), we see that it suffices
to show that the image of the composition Z(G)(k) → T (k) → D(k) has
finite index in D(k). But this follows by taking Galois cohomology of the
short exact sequence Z(G) ∩ Gder ↪→ Z(G) ↠ D from the finiteness of
H1(k, Z(G) ∩Gder). □

Let ϕ−1 be a character of TF which extends both ω and θ. In particular,
ϕ−1 is of depth 0. Let

ϕ = ϕ−1

d∏
i=0

ϕi|TF .

Then (ϕ−1,Λ) is a Howe factorization of ϕ. Let Z be the deep level Deligne–
Lusztig variety constructed in §3.3. We extend the KF -modulesH i

c(Z,Qℓ)[ϕ]
to Z(G)FKF -modules on which Z(G)F acts via ϕ−1 or ω.

Theorem 9.3. Let notation be as above. Assume q is sufficiently large.

Then πΣ is a summand of c-indG
F

Z(G)FKFH i
c(Z,Qℓ)[ϕ

†] for some integer i ∈
Z⩾0.

Proof. Let H be a group and letM be a virtual H-module over Qℓ. Suppose
that M =

∑
χ cχχ, where cχ ∈ Z and χ runs over isomorphism classes of

irreducible H-modules. We put |M | =
∑

χ |cχ|χ, which is a genuine H-
module.

We view the virtual LFx,0-module RL0
T (θ) as a natural Z(G)FKF -module

on which HF
Λ acts trivially and Z(G)F acts via ϕ−1. By construction we

have
homK̃F (ind

K̃F

Z(G)FKF ρ, ρ̃) ∼= homZ(G)FKF (ρ, ρ̃) ̸= 0.

As ρ appears in RL0
T (θ), it follows that κ⊗ ρ̃ appears in

κ⊗indK̃
F

Z(G)FKF |RL0
T (θ)| ∼= indK̃

F

Z(G)FKF κ⊗|RL0
T (θ)| ∼= indK̃

F

Z(L)FKF |κ⊗RL0
T (θ)|.

On the other hand, by Theorem 8.5 we have ±κ⊗RL0
T (θ) = H∗

c (Z,Qℓ)[ϕ
†].

In particular, there exists i ∈ Z⩾0 such that κ ⊗ ρ̃ is a direct summand of

indK̃
F

Z(G)FKFH i
c(Z,Qℓ)[ϕ

†]. Therefore, πΣ = c-indG
F

K̃F κ⊗ρ̃ is a direct summand

of

c-indG
F

K̃F ind
K̃F

Z(G)FKFH
i
c(Z,Qℓ)[ϕ

†] ∼= c-indG
F

Z(G)FKFH
i
c(Z,Qℓ)[ϕ

†].

The proof is finished. □
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