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Abstract: Censoring occurs in many industrial or biomedical ‘time to event’ ex-

periments. Finding efficient designs for such experiments can be problematic since

the statistical models involved will usually be nonlinear, making the optimal choice

of design parameter dependent. We provide analytical characterisations of locally

D- and c-optimal designs for a class of models, thus reducing the numerical ef-

fort for design search substantially. We also investigate standadised maximin D-

and c-optimal designs. We illustrate our results using the natural proportional

hazards parameterisation of the exponential regression model. Different censor-

ing mechanisms are incorporated and the robustness of designs against parameter

misspecification is assessed.
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1. Introduction

There is a large literature on optimal designs for nonlinear models but there

is little reasearch on designs for models with potentially censored data. Ford,

Torsney and Wu (1992) consider optimal designs for nonlinear models where the

response is distributed as a member of the exponential family and Sebastiani

and Settimi (1997) prove the optimality of these designs for a logistic regression

model. Sitter and Torsney (1992) study D-optimal designs for generalised linear

models with multiple design variables using the geometry of the design space in

Ford, Torsney and Wu (1992), and Sitter and Torsney (1995) consider D- and

c-optimal designs for binary response models with two design variables. However,

neither paper considers the case where the data are subject to censoring.

Becker, McDonald and Khoo (1989) find D-optimal designs for proportional

hazards models with one or two parameters and specified baseline hazard. They

use geometric arguments and empirical values for the hazard to investigate how
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censoring affects the D-optimal designs for different shapes of the design region.

López-Fidalgo, Rivas-López and Del Campo (2009) propose an algorithm to find

D-optimal designs conditional on arrival time, where the design space is binary.

They consider a two-parameter exponential regression model that requires con-

straints on the parameters. For recent results on accelerated life testing see, for

example, Wu, Lin and Chen (2006) and McGree and Eccleston (2010).

Our research was motivated by the following problem. Let T1, . . . , Tn be in-

dependent survival times of the n subjects in the experiment with t1, . . . , tn the

corresponding observed values. Let α and β be the unknown model parameters.

In survival models involving one explanatory variable, α relates to the baseline

hazard whereas β describes how the hazard varies with the explanatory variable.

Let xj ∈ X be the experimental condition at which the jth observation is taken.

In what follows, the design space X is either binary, with X = {0, 1}, correspond-

ing, for example, to two different treatments, or an interval, that is X = [u, v],

corresponding, for example, to the doses of a drug.

The period of the experiment is the interval [0, c]. We consider two different

types of censoring. Type I censoring corresponds to the situation where all

subjects enter the study at the same time and are observed until time c or until

failure, whichever is earlier. Survival times greater than c are therefore right-

censored. Another relevant scenario is random censoring. The jth individual

enters the study at a random time in [0, c] which is independent of the survival

time. Therefore the censoring time for this individual is also random. The

example we shall use to illustrate our general results is the exponential regression

model in its proportional hazards parameterisation, naturally used in survival

analysis (see, for example, Collett (2003)), which is specified by the probability

density function f(tj , xj) with corresponding survivor function S(tj , xj),

f(tj , xj) = eα+βxje−tje
α+βxj

, S(tj , xj) = e−tje
α+βxj

, (tj > 0) (1.1)

This parameterisation avoids the need to specify constraints on the parameters.

Optimal design is concerned with finding the experimental conditions at

which measurements should be taken in order to draw the most precise conclu-

sions. In what follows, we consider approximate designs of the form

ξ =

{
x1 . . . xm

ω1 . . . ωm

}
, 0 < ωi ≤ 1,

m∑
i=1

ωi = 1,
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where the support points xi, i = 1, . . . ,m, m ≤ n are the distinct experimental

conditions in the design and the weights ωi represent the proportion of observa-

tions taken in the corresponding support point.

A recent trend in optimal design literature is to solve problems in more

generality. Hedayat, Zhong and Nie (2004) characterise D-optimal designs for

a class of two parameter models. However, these results are not applicable to

many models such as model (1.1). Yang and Stufken (2009) consider Loewner

optimality and a more general class of models. They obtain excellent results,

showing that under some conditions, for each given design there is always a

design from a simple class which is better in the Loewner sense. These results

were generalised to models with more than two parameters by Yang (2010).

Depending on the model, however, the conditions can be difficult to verify, even

with symbolic computational software.

This paper aims to provide characterisations of D- and c-optimal designs

under assumptions which are somewhat less restrictive and easier to verify than

those in Yang and Stufken (2009) and which are satisfied by a large class of

models, including model (1.1) for the censoring schemes considered. In section 2

we develop this approach for D-optimality. Section 3 contains the corresponding

results for c-optimality when only the slope parameter β is of interest. The

results are applied to model (1.1) with type I and random censoring in section 4.

Section 5 provides analytical characterisations of the standardised maximin D-

and c-optimal designs when a parameter space can be specified even when the

locally optimal designs are not available in closed form. In section 6, we assess

the robustness of locally optimal and parameter robust designs for model (1.1)

and compare their efficiency with traditional designs currently in use. A brief

discussion is given in section 7. The more technical proofs are in the appendix.

2. D-optimal designs

A D-optimal design maximises the determinant of the Fisher information

M(ξ, α, β) with respect to the design, thereby minimising the volume of the

confidence ellipsoid for the parameter estimators, so making the estimators as

precise as possible. A design ξ∗ is D-optimal if

ξ∗ = arg max
ξ
|M(ξ, α, β)|.

We consider two-parameter models with Fisher information of the form
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M(ξ, α, β) =

m∑
i=1

ωiI(xi, α, β) =

m∑
i=1

ωiQ(θi)

(
1 xi

xi x2i

)
, (2.1)

where I(xi, α, β) is the Fisher information at the point xi and θi = α+βxi, which

satisfy the conditions (a)-(d) below. Following Ford, Torsney and Wu (1992), an

equivalent problem to maximising |M(ξ, α, β)| is to maximise the determinant of

this matrix with xi replaced by θi = α + βxi, i = 1, . . . ,m where β 6= 0, which

will also be denoted M(ξ, α, β) in what follows. The parameter dependence of

the design problem thus enters only via the transformed design space Θ = α+βX
where β 6= 0. The assumptions are therefore given for θ ∈ R, so they are valid

for all possible ranges for Θ.

(a) The function Q(θ) implicitly defined in (2.1) is positive for all θ ∈ R and

twice continuously differentiable.

(b) The function Q(θ) is strictly increasing on R.

(c) The second derivative g′′(θ) of the function g(θ) = 2/Q(θ) is an injective

function.

(d) For any s ∈ R, the function r(θ) = Q(θ)(s − θ)2 satisfies r′(θ) = 0 for

exactly two values of θ ∈ (−∞, s].

For the case of c-optimality we require the extra condition

(d1) : The function logQ(θ) is concave for θ ∈ R.

which implies assumption (d) given that (a) and (b) hold. Our assumptions hold

for Poisson, Gamma and Inverse Gamma regression models and for parametric

proportional hazards models with a hazard function of the form

h(t) = eαg(t)eβx, (2.2)

where eαg(t) is the baseline hazard.

To allow estimation of both parameters, a design must have at least two

support points. For the binary design space X = {0, 1} this means that both 0

and 1 are support points of the D-optimal design. From Lemma 5.1.3 in Silvey

(1980), it then follows that the D-optimal design has equal weights.

For the rest of this section we will consider interval design spaces, X = [u, v].

The locally D-optimal design for given α and β, on an arbitrary interval [u, v], can
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be obtained from the locally D-optimal design on the interval [0, 1] for parameter

values α̃ = α + βu and β̃ = β(v − u) by transforming its support points x∗i via

z∗i = u + (v − u)x∗i . Therefore without loss of generality we consider the design

space X = [0, 1]. A tool for characterising D-optimal designs and for checking the

D-optimality of a candidate design is the equivalence theorem (see, for example,

Silvey (1980)).

Theorem 1. A design ξ∗ is D-optimal for a model with information matrix (2.1)

if the inequality

d(ξ∗, α, β) = tr{M−1(ξ∗, α, β)I(x, α, β)} ≤ 2,

holds for all x ∈ [0, 1], with equality in the support points of ξ∗.

From Caratheodory’s Theorem (see, for example, Silvey (1980)), there exists

a D-optimal design with at most three support points. Lemma 1 shows that this

number can be further reduced.

Lemma 1. Let β 6= 0 and assumptions (a)-(c) be satisfied. Then the D-optimal

design for a model with Fisher information (2.1) is unique and has two equally

weighted support points.

The proof of Lemma 1 is in the appendix. We next present the main result

of this section, an analytical characterisation of D-optimal designs.

Theorem 2. Let assumptions (a)-(d) be satisfied.

(a) If β > 0, the design

ξ∗ =

{
x∗1 1

0.5 0.5

}
,

is D-optimal on X , where x∗1 = 0 if β < 2Q(α)/Q′(α). Otherwise x∗1 is the

unique solution of the equation β(x1 − 1) + 2Q(α+ βx1)/Q
′(α+ βx1) = 0.

(b) If β < 0, the design

ξ∗ =

{
0 x∗2

0.5 0.5

}
,

is D-optimal on X , where x∗2 = 1 if β > −2Q(α + β)/Q′(α + β). Otherwise x∗2

is the unique solution of the equation βx2 + 2Q(α+ βx2)/Q
′(α+ βx2) = 0.

Theorem 2 (proved in the appendix) provides a complete classification of D-

optimal designs. Depending on some easily verifiable conditions on the parame-
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ters, the design problem has been either reduced to an optimisation problem in

one variable or solved entirely.

3. c-optimal designs

Often interest centers on estimating β while treating α as a nuisance param-

eter. For example, for model (1.1) β is a log hazard ratio. Therefore, an appro-

priate optimality criterion is c-optimality for β which minimises the asymptotic

variance of the maximum likelihood estimator β̂. Thus a design ξ∗ is c-optimal

for β if (0 1)T ∈ range(M(ξ∗, α, β)) and

ξ∗ = arg min
ξ

(0 1)M−(ξ, α, β)

(
0

1

)
, (3.1)

where M− is a generalised inverse of the matrix M .

Lemma 2, which is proved in the appendix, shows that the c-optimal design for

β is supported on two points.

Lemma 2. For any real α, β 6= 0 and any model with Fisher information (2.1)

there exists a c-optimal design for β with exactly two support points.

From Pukelsheim and Torsney (1991), we obtain an expression for the op-

timal weights. A c-optimal design ξ∗ for β with support points x∗1 and x∗2 is

ξ∗ =

 x∗1 x∗2√
Q(α+βx∗2)√

Q(α+βx∗1)+
√
Q(α+βx∗2)

√
Q(α+βx∗1)√

Q(α+βx∗1)+
√
Q(α+βx∗2)

 . (3.2)

The design problem for X = {0, 1} has thus been solved completely. It remains to

find the optimal support points when X = [u, v] ⊂ R. In this case, an analytical

characterisation of the c-optimal designs for β for models with information matrix

of the form (2.1) is given in Theorem 3, which is proved in the appendix.

Theorem 3. Let assumptions (a)-(c) and (d1) be satisfied.

(a) If β > 0, the design ξ∗ with support points x∗1 and v and the optimal weights

given in (3.2) is c-optimal for β, where x∗1 = u if

β(u− v) + 2Q(α+βu)/Q′(α+βu)
(

1 +
√
Q(α+ βu)/

√
Q(α+ βv)

)
> 0. (3.3)

Otherwise x∗1 is the unique solution of the equation

β(x1 − v) + 2Q(α+ βx1)/Q
′(α+ βx1)

(
1 +

√
Q(α+ βx1)/

√
Q(α+ βv)

)
= 0.

(3.4)
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(b) If β < 0, the design ξ∗ with support points u and x∗2 and the optimal weights

given in (3.2) is c-optimal for β, where x∗2 = v if

β(u− v)− 2Q(α+ βv)/Q′(α+ βv)
(

1 +
√
Q(α+ βv)/

√
Q(α+ βu)

)
< 0.

Otherwise x∗2 is the unique solution of the equation

β(u− x2)− 2Q(α+ βx2)/Q
′(α+ βx2)

(
1 +

√
Q(α+ βx2)/

√
Q(α+ βu)

)
= 0.

4. Application to an exponential regression model

In this section we apply the previous results to model (1.1) for an interval

design space. We briefly discuss the special case of no censoring, corresponding

to c = ∞, a study running for as long as necessary to record all survival times.

From (1.1), the log-likelihood at xj is l(α, β, xj) = α + βxj − tjeα+βxj and thus

the Fisher information at the point xj is

I(xj , α, β) =

(
1 xj

xj x2j

)
,

since E(Tj) = 1/eα+βxj . In this case the Fisher information is the same as for

the linear model for independent identically distributed errors. The D-optimal

design for this model is equally supported at the end points of the design space

X (see, for example, Atkinson, Donev and Tobias (2007)) and coincides with the

c-optimal design for β.

4.1. Type I censoring

In Type I censoring the censoring time c is fixed and common for all individ-

uals. This occurs, for example, when all individuals have been recruited at the

same time to a study of duration c. If the event of interest has not occurred by

the end of the study the observation is right-censored. Let Yj = min{Tj , c} be

the jth possibly censored observation and let Tj follow model (1.1). Then

E(Yj) =

c∫
0

yeα+βxje−ye
α+βxj

dy + cP (Yj = c) = (1− e−ce
α+βxj

)/eα+βxj , (4.1)

and the log-likelihood at xj is l(α, β, xj) = δj(α+βxj)−yjeα+βxj , where δj is an

event indicator which is zero if yj is a censored observation and unity otherwise.

Hence the Fisher information at xj is

I(xj , α, β) = (1− e−ce
α+βxj

)

(
1 xj

xj x2j

)
,
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which yields (2.1) with Q(θ) = (1 − e−ceθ). It can be shown that assumptions

(a)-(d) hold here. Hence Theorems 2 and 3 hold for Type I censoring.

4.2. Random censoring

Random censoring occurs, for example, if the jth individual enters the study

at random time Zj ∈ [0, c], where Zj is independent of the survival time Tj . Now

the censoring time Cj = c − Zj for this individual is also random. We assume

that Z1, . . . , Zn follow a uniform distribution on [0, c], thus C1, . . . , Cn also have

a uniform distribution on [0, c] with probability density function fc(cj) = 1/c.

We observe Yj = min{Tj , Cj} where E(Yj |Cj = cj) is given by the right hand

side of (4.1) with c replaced by cj . Thus

E(Yj) = E(E(Yj |Cj = cj)) =

c∫
0

(1− e−cje
α+βxj

)/ceα+βxj dcj

=
(
ceα+βxj + e−ce

α+βxj − 1
)
/ce2(α+βxj),

and the log-likelihood at xj is l(α, β, xj) = δj(− log c+α+βxj)−yjeα+βxj . Hence

the Fisher information at point xj is

I(xj , α, β) =
(
ceα+βxj + e−ce

α+βxj − 1
)
/ceα+βxj

(
1 xj

xj x2j

)
.

Again this is of the form (2.1) for Q(θ) = 1 +
(
e−ce

θ − 1
)
/ceθ and assumptions

(a)-(d) and (d1) hold.

For β > 0 (< 0) the Q-functions above are increasing (decreasing) with x.

Therefore from (3.2) the c-optimal weight corresponding to the smaller support

point is greater (smaller) than the other weight if β > 0 (< 0). This means, for

example, that more patients are allocated to the more effective dose. Note that

the popular equal allocation rule leads to a suboptimal design.

5. Standardised optimal designs

The optimal designs found above depend on the model parameters which

are unknown in practice. Nevertheless, in many practical situations some infor-

mation about the parameter values can be provided by the experimenter. For

example, α may determine the baseline hazard for a standard treatment. Hence

precise knowledge of its value might be available, whereas for β the experimenter

can specify a range of values for a clinically significant improvement with new

treatment. We further assume that the experimenter has no preference for spe-

cific β-values and that the total duration of the study, c, is known.
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Following Dette (1997) we seek designs that maximise the worst efficiencies

with respect to the locally optimal designs over a range of parameter values.

This allows us to construct robust designs which protect against the worst case

scenario. Dette and Sahm (1998) compare a standardised and a nonstandardised

maximum variance optimality criterion and show that in some cases the optimal

designs based on the latter criterion may be inefficient. A design ξ∗ maximising

Φ(ξ) = min
{
|M(ξ,α,β)|
|M(ξ∗β ,α,β)|

β ∈ [β0, β1]
}
, (5.1)

is called a standardised maximin D-optimal design and a design ξ∗ maximising

Φ(ξ) = min

{
(0 1)M−(ξ∗β ,α,β)(

0
1)

(0 1)M−(ξ,α,β)(01)
β ∈ [β0, β1]

}
, (5.2)

is called a standardised maximin c-optimal design for β, where ξ∗β is the locally

optimal design. Criteria (5.1) and (5.2) seek a design that maximises the worst

D-efficiency and c-efficiency respectively, given by

effD(ξ) =

(
|M(ξ, α, β)|
|M(ξ∗β, α, β)|

) 1
2

, (5.3)

and

effc(ξ) =
(0 1)M−(ξ∗β, α, β)

(
0
1

)
(0 1)M−(ξ, α, β)

(
0
1

) . (5.4)

For a binary design space the locally D-optimal design is equally supported

at 0 and 1 for any parameter values, so no further investigation need be done. For

an interval design space X = [0, 1], the following theorem provides an analytical

characterisation of the standardised maximin D-optimal two point design for a

given range of negative β-values and its proof is given in the appendix.

Theorem 4. Let β ∈ [β0, β1] where β1 < 0, α be fixed and assumptions (a), (b)

and (d1) be satisfied. The standardised maximin D-optimal two-point design is

equally supported at points 0 and x∗2 where x∗2 = 1 if β0 > −2Q(α+β0)/Q
′(α+β0).

Otherwise x∗2 is the solution of the equation

Q(α+ β0x)Q(α+ β1x(β1))x(β1)
2 = Q(α+ β1x)Q(α+ β0x(β0))x(β0)

2, (5.5)

where x(β0), x(β1) are the solutions of the equation βx+2Q(α+βx)/Q′(α+βx) =

0, 0 < x ≤ 1 for β0 and β1 respectively.
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Note that Theorem 4 applies when β < 0. The proof used in this case is not

applicable when β > 0 and this is a topic for further investigation.

As shown in section 3, the locally c-optimal designs for β depend on the model

parameters. Theorem 5, which is proven in the appendix, gives an analytical

characterisation of the standardised maximin c-optimal design for β, for a binary

design space.

Theorem 5. Let β ∈ [β0, β1], α be fixed and assumptions (a), (b) and (d1) be

satisfied. Also let the design space be binary, that is X = {0, 1}. The standardised

maximin c-optimal two-point design is

ξ∗ =

{
0 1

ω∗ 1− ω∗

}
,

where ω∗ = (ω(β0)+ω(β1))/2 and ω(β0) and ω(β1) is the optimal weight on zero

for the locally c-optimal design for β given in (3.2) for β0 and β1 respectively.

6. Robustness analysis

In the following we assess the robustness of our designs by calculating their

efficiency if the parameters have been misspecified. As a starting point we used

the maximum likelihood estimates for α and β from the Freireich data (see Collett

(2003)), -2.163 and -1.526 respectively, and c = 30. To compare the performance

of an arbitrary design ξ to a locally D-optimal design ξ∗ we use the D-efficiency

(5.3), whereas for the comparison of ξ to a locally c-optimal design ξ∗ we use

the c-efficiency (5.4). Type I censoring is assumed throughout this numerical

example for demonstration purposes.

6.1. Locally D-optimal designs

We consider locally D-optimal designs for a vector of parameter values γ =

(α, β). The value of the maximum likelihood estimator for α was used, whereas

the β-values were chosen to have small, medium and large treatment effect. Table

6.1 gives the parameter vectors used and the corresponding D-efficiencies of the

locally D-optimal designs when the parameter values are misspecified.

For the first three sets of parameter values the locally D-optimal design is

the “standard design” supported at 0 and 1, with equal weights whereas ξγ3 is

equally supported at 0 and 0.9. The “standard design” has high D-efficiency for

all the values of the parameter vectors. The lowest efficiency, 0.900, is obtained
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Table 6.1: D-efficiencies for some selected locally D-optimal designs

Design

Parameter vector ξγ0
ξγ1

ξγ2
ξγ3

γ0 = (−2.163,−0.1) 1 1 1 0.900

γ1 = (−2.163,−0.405) 1 1 1 0.905

γ2 = (−2.163,−1.526) 1 1 1 0.946

γ3 = (−2.163,−2.623) 0.992 0.992 0.992 1

if the true value is γ0 and the experimenter has misspecified this value as γ3

and hence used the design ξγ3 . In other words if the experimenter has used

design ξγ3 assuming a large treatment effect when the true effect is actually

small, the D-efficiency is 0.9 which is quite satisfying. Hence ξγ3 seems to be a

good alternative to the “standard design” if, for example, the experimenter does

not want to expose the patients at the highest drug doses.

6.2. Locally c-optimal designs

For the same parameter vectors used in section 6.1, their locally c-optimal

designs have support points 0 and 1. The weights were found using (3.2) and are

shown in Table 6.2. The c-efficiencies of each of these designs were also calculated

when the parameter values are misspecified and are presented in Table 6.3.

Table 6.2: Weights for some selected locally c-optimal designs

Design

Weight ξγ0
ξγ1

ξγ2
ξγ3

ω1 0.498 0.491 0.425 0.323

ω2 0.502 0.509 0.575 0.677

Table 6.3: c-efficiencies for the locally c-optimal designs of Table 6.2

Design

Parameter vector ξγ0
ξγ1

ξγ2
ξγ3

γ0 1 0.9998 0.9782 0.8772

γ1 0.9998 1 0.9824 0.8864

γ2 0.9787 0.9828 1 0.9552

γ3 0.8908 0.8991 0.9597 1

The locally c-optimal designs have high c-efficiencies for all the four sets

of parameter values. The lowest efficiency, 0.8772, occurs when the assumed



12 MARIA KONSTANTINOU, STEFANIE BIEDERMANN AND ALAN KIMBER

value is γ3 and the true value is γ0. Note that the design ξγ2 , which is locally

c-optimal for a parameter value near the center of the parameter space, has a

lowest efficiency of 0.9597 and hence is more robust than the other three designs.

6.3. Standardised maximin optimal designs

According to the analysis in section 5 we can find the standardised maximin

D- and c-optimal designs for the range of β-values used above which are denoted

by ξγ4 in both cases. We note that although here we consider the case of an

interval design space all the locally c-optimal designs found in section 6.2 are

supported at points 0 and 1 and so the result of Theorem 5 can be used.

The standardised maximin D-optimal design is supported at 0 and 0.993,

with equal weights and is locally D-optimal for γ4 = (−2.163,−2.380), whereas

the standardised maximin c-optimal design allocates 41.1% of the observations

at the experimental point 0 and the rest at point 1, and is locally c-optimal for

γ4 = (−2.163,−1.690). The minimum (median) efficiencies are 0.993 (0.993) for

the D-optimal design and 0.969 (0.974) for the c-optimal design. For both of the

above designs the minimum efficiencies are obtained at γ0 and γ3.

6.4. Cluster designs

This is a modification (see Biedermann and Woods (2011)) of the method

introduced by Dror and Steinberg (2006). For each of 1000 parameter vectors,

found by drawing 1000 β-values from a uniform distribution on the interval from

−2.623 to −0.1, the locally D- and c-optimal designs were obtained. Then a

clustering algorithm was applied where the cluster centroids are chosen as the

support points and each weight is chosen to be proportional to the corresponding

cluster size, reflecting the relative importance of each cluster.

The number of clusters for the D-optimal designs was chosen to vary from

2 to 6 and for each value the D-efficiency of a cluster design was calculated via

(5.3) relative to each of the 1000 locally D-optimal designs. The two-point cluster

design is equally supported at 0 and 1 whereas the rest of the cluster designs with

more than two support points allocate half the observations at point 0, very little

weight at points other than 0 and 1 and the rest at point 1. The minimum and

median efficiencies are found to be the same for all the cluster designs (0.993 and

0.997 respectively) and this may be a result of the very low weight that all of our

cluster designs give to experimental points other than 0 and 1.
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The support points of the 1000 locally c-optimal designs are always 0 and 1,

hence the cluster design must have two support points: 0 and 1. Also the cluster-

ing here was applied to design points, rather than support points as the support

points of the locally c-optimal points have differing weights. The resulting cluster

design allocates 43% of the observations at 0 and the rest at 1, and performs well

as the minimum (median) efficiencies found via (5.4) are 0.956 (0.990).

6.5. Comparison of designs

First we compare the performance of the following 11 designs: the locally

D-optimal designs ξγ0 , . . . , ξγ3 , the standardised maximin D-optimal design ξγ4 ,

the cluster designs ξ1, . . . , ξ5 and the equally spaced design ξ0 with support points

0, 0.5, 1 and equal weights. The D-efficiency (5.3) of each of the above designs

is calculated with respect to each of the 1000 locally optimal designs and the

results are summarised in Figure 6.1. Designs ξ0 and ξγ3 were omitted since they

were clearly outperformed, although design ξγ3 was reasonably efficient.
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Figure 6.1: Boxplots of D-efficiencies calculated for 9 different designs for 1000 parameter

vectors

Figure 6.1 shows that the standardised maximin D-optimal design ξγ4 has

the highest minimum efficiency but lower median efficiency: there is a trade off



14 MARIA KONSTANTINOU, STEFANIE BIEDERMANN AND ALAN KIMBER

between protecting against the worst case scenario and having a worse median

efficiency. The cluster designs ξ2, . . . , ξ5 with more than 2 support points are

useful since they allow for linearity of the regression to be checked and do not

perform worse than the two-point cluster design ξ1. All cluster designs are good

alternatives to locally optimal designs and perform similarly to the standardised

maximin D-optimal design.

The locally c-optimal designs ξγ0 , . . . , ξγ3 , the standardised maximin c-optimal

design ξγ4 and the two-point cluster design ξ1 are compared in Figure 6.2. Among

the locally c-optimal designs only ξγ2 performs well across the parameter space.

As for D-optimality, there is a trade off between best minimum efficiency and

a lower median efficiency for the standardised maximin c-optimal design ξγ4 .

Overall both ξγ4 and ξ1 are good alternatives to the locally optimal designs.
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Figure 6.2: Boxplots of c-efficiencies calculated for 6 different designs for 1000 parameter

vectors

7. Discussion

Survival models used in applications are usually nonlinear and hence the

optimal designs depend on the unknown model parameters. To overcome this

difficulty robust designs must be constructed which will perform well across a
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wide range of parameter values. Another difficulty in finding optimal designs for

these applications is that the data are often subject to censoring.

For models with Fisher information of the form (2.1) that satisfy assump-

tions (a)-(d) and (d1) we have provided a complete classification of locally D-

and c-optimal designs. Our assumptions are somewhat less restrictive and easier

to check than those provided by Yang and Stufken (2009) and are satisfied by

many models. Our results were then applied to the proportional hazards param-

eterisation of the exponential regression model (1.1), for the cases of Type I and

random censoring. Under some conditions on the parameters the optimal design

is not the “standard design” supported at 0 and 1 with equal weights, which is

the one usually used in these experiments.

In order to construct robust designs we have found optimal designs based on

standardised maximin criteria when there is some knowledge about the parameter

values (that is a range of values is specified), which maximise the worst efficiency

among all two-point designs. To the best of our knowledge, Theorem 4 is the

first analytical characterisation of standardised maximin D-optimal designs in a

situation where the locally D-optimal designs are not available in closed form.

Additionally, cluster designs were built from the locally optimal designs for a

specific set of parameter values and their computation was facilitated by our

results for the locally optimal designs. In section 6 we have shown that good

alternatives to the locally optimal designs are the cluster designs which in some

cases (see D-optimality), have more than 2 support points, thereby enabling the

linearity of the regression function to be checked.

Appendix

Proof of Lemma 1. Let α and β > 0 be fixed and α+βx = θ. The case where

β < 0 can be shown analogously and is therefore not presented. From Theorem

1, we obtain that a D-optimal design ξ∗ must satisfy the inequality

z(θ) := z1 + z2θ + z3θ
2 ≤ 2/Q(θ) =: g(θ) ∀θ ∈ [α, α+ β],

for some coefficients z1, z2, z3 ∈ R, with equality at the support points of ξ∗.

Now suppose a D-optimal design has three support points, α ≤ θ1 < θ2 < θ3 ≤
α + β. Then z(θi) = g(θi), i = 1, 2, 3. By Cauchy’s mean value theorem, there

exist points θ̃i, i = 1, 2 such that θ1 < θ̃1 < θ2 < θ̃2 < θ3 and z′(θ̃i) = g′(θ̃i).

Since z(θ) ≤ g(θ) on [α, α+ β], we also have z′(θ2) = g′(θ2). By the mean value
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theorem, there exist points θ̂i, i = 1, 2 such that θ̃1 < θ̂1 < θ2 < θ̂2 < θ̃2 and

z′′(θ̂i) = g′′(θ̂i). Now z′′(θ) is constant, so can intersect with g′′(θ) at most once

on [α, α + β], which contradicts the assumption of three support points. Hence

a D-optimal design has exactly two support points, with equal weights.

Let ξ1 and ξ2 be two D-optimal designs. By log-concavity of the D-criterion,

the design ξ3 = 0.5ξ1 + 0.5ξ2 must also be D-optimal. However, if ξ1 and ξ2

are different, ξ3 has more than two support points, which contradicts the result

above. Hence the D-optimal design is unique.

Proof of Theorem 2. We give a sketch of the proof for part (a). The proof of

(b) follows along similarly using symmetry arguments and is therefore omitted.

Let β > 0. For a design with two support points x1, x2 ∈ [0, 1], with x1 < x2,

the determinant of (2.1) is increasing with x2, regardless of the value of x1, and

therefore maximised for x2 = 1. It remains to maximise the function

r(α+ βx1) = Q(α+ βx1)(x1 − 1)2, 0 ≤ x1 < 1.

Using assumption (d), r(α+βx1) has exactly two turning points on (−∞, 1], one

of which is a minimum at x1 = 1, hence the other one must be a maximum. If this

maximum is attained outside the design space, r(α+βx1) is maximised at x1 = 0,

which will then be the second support point of the D-optimal design. This occurs

if and only r′(α + βx1) < 0 at x1 = 0, which is equivalent to β < 2Q(α)/Q′(α).

Otherwise the point at which the maximum is attained will be the second support

point. This is found by solving r′(α + βx1) = 0, which is equivalent to solving

β(x1 − 1) + 2Q(α+ βx1)/Q
′(α+ βx1) = 0.

Proof of Lemma 2. From Caratheodory’s theorem, there exists a c-optimal

design for β with at most two support points. We now assume that there exists

an optimal design ξ̃ with only one support point θ̃. For estimability we require

that (0 1)T is in the range of M(ξ, α, β), that is, there exists a vector η =

(η1, η2)
T ∈ R2 such that(

0

1

)
= Q(θ̃)

(
1 θ̃

θ̃ θ̃2

)(
η1
η2

)
⇐⇒

(
0 = Q(θ̃)(η1 + η2θ̃)

1 = Q(θ̃)θ̃(η1 + η2θ̃)

)
, (7.1)

which yields a contradiction.

Proof of Theorem 3. We give only a sketch of the proof of part (a). The proof

of part (b) is similar and therefore omitted.
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Let β > 0 and x1 < x2. Substituting the expressions for the optimal weights

from (3.2), we obtain for the objective function defined in (3.1):

k(x1, x2) :=
(

1/
√
Q(α+ βx1) + 1/

√
Q(α+ βx2)

)2
/(x1 − x2)2.

Holding x1 fixed, k(x1, x2) is decreasing with x2 and therefore attains its min-

imum in [u, v] at the upper boundary v. Now k(x1, v) has exactly one turning

point x∗1 on (−∞, v] and so there is at most one turning point in [u, v], which

is a minimum since limx1→−∞ k(x1, v) = limx1→v k(x1, v) = ∞. If x∗1 /∈ [u, v]

the lower boundary, u, is the smaller support point. This occurs if and only if

k′(x1, v) > 0 at x1 = u, which is equivalent to condition (3.3). Otherwise x∗1

is the smaller support point and can be found solving k′(x1, v) = 0, which is

equivalent to solving (3.4).

Proof of Theorem 4. Using condition (d2) the function β+ 2Q(α+β)/Q′(α+

β) := l(β) is increasing with β. Hence if l(β0) > 0 then l(β) > 0 for all β ∈ [β0, β1]

and using part (b) in Theorem 2 the locally D-optimal design ξ∗β is equally

supported at points 0 and 1 for all β ∈ [β0, β1]. Hence the standardised maximin

D-optimal design is also supported at 0 and 1 with equal weights.

Now let l(β0) ≤ 0. Since l(β) is increasing with β there exists β∗ ∈ (β0, β1]

such that l(β) > 0 for all β ≥ β∗. Again using part (b) in Theorem 2 the locally

D-optimal design ξ∗β is equally supported at points 0 and xβ where xβ = 1 for

β ≥ β∗. Otherwise xβ is the solution of the equation

βxβ + 2Q(α+ βxβ)/Q′(α+ βxβ) = 0, 0 < xβ ≤ 1. (7.2)

From (5.3) the D-efficiency of a two-point design ξ equally supported at 0 and x

is given by

effD(ξ) =

(
Q(α+ βx)x2

Q(α+ βxβ)x2β

) 1
2

:= (u(x, β))
1
2 .

For β ≥ β∗, xβ = 1 and for fixed 0 < x ≤ 1

du(x, β)

dβ
= x2/Q2(α+ β)

[
Q′(α+ βx)xQ(α+ β)−Q(α+ βx)Q′(α+ β)

]
,

which is non-positive for all β ∈ [β∗, β1] using condition (d2). Hence for fixed x,

u(x, β) is minimised at β1.
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For β < β∗ and fixed 0 < x ≤ 1, solving du(x,β)
dβ = 0 is equivalent to solving

βx+ 2Q(α+ βx)/Q′(α+ βx) = 0,

using equation (7.2). This has a unique solution β such that xβ = x. So the

function β → u(x, β) is unimodal for fixed x and it is minimised at β0 or β1. We

note that if l(β1) ≤ 0 then for all l(β) ≤ 0 and xβ is the solution of equation

(7.2). Following the same arguments as in the above case for fixed 0 < x ≤ 1,

the function β → u(x, β) is unimodal and minimised at β0 or β1. Hence the

standardised maximin design can be found by maximising

Φ(ξ) = min
{
u(x, β0), u(x, β1)

}
.

This maximisation can be divided into maximisation over the sets

M< :=
{
x ∈ (0, 1] u(x, β0) < u(x, β1)

}
M> :=

{
x ∈ (0, 1] u(x, β0) > u(x, β1)

}
M= :=

{
x ∈ (0, 1] u(x, β0) = u(x, β1)

}
Now assume that the standardised maximin D-optimal design is in the set M<

and so we must maximise the function u(x, β0). Taking its first derivative with

respect to x and equating it to zero yields

β0x+ 2Q(α+ β0x)/βQ′(α+ β0x) = 0⇒ x = x(β0).

Hence (u(x(β0), β0))
1
2 = 1 < (u(x(β0), β1))

1
2 which is a contradiction. Following

similar arguments for set M> also leads to a contradiction and so the standardised

maximin D-optimal design can be found by solving u(x, β0) = u(x, β1) which is

equivalent to solving

Q(α+ β0x)Q(α+ β1x(β1))x(β1)
2 = Q(α+ β1x)Q(α+ β0x(β0))x(β0)

2.

Proof of Theorem 5. For a binary design space the c-optimal weights ωβ and

1 − ωβ for β are defined in (3.2). From (5.4) the c-efficiency of a design ξ with

support points 0 and 1 and weights ω and 1− ω respectively is

effc(ξ) = ω(1− ω)/((1− ω)(ωβ)2 + ω(1− ωβ)2) := u(ω, ωβ)
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and the standardised maximin c-optimal criterion is

Φ(ξ) = min
{
u(ω, ωβ) ωβ ∈ [ωβ0 , ωβ1 ]

}
For fixed ω the function ωβ → u(ω, ωβ) is unimodal and the standardised max-

imin design ω∗ is inM=. Hence we can find ω∗ by solving the equation u(ω, ω(β0)) =

u(ω, ω(ω1)) which yields ω∗ = (ω(β0) + ω(β1))/2.
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