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Abstract

We consider the nonparametric estimation problem of conditional regression quantiles
with high-dimensional covariates. For the additive quantile regression mode, we propose
a new procedure such that the estimated marginal effects of additive conditional quantile
curves do not cross. The method is based on a combination of the marginal integration tech-
nique and non-increasing rearrangements, which were recently introduced in the context
of estimating a monotone regression function. Asymptotic normality of the estimates is es-
tablished with a one-dimensional rate of convergence and the finite sample properties are
studied by means of a simulation study and a data example.

Keywords and Phrases: conditional quantiles, additive models, marginal integration, non-increasing
rearrangements

1 Introduction

Regression techniques are widely used to quantify the relation between a response and a predic-
tor. While ordinary least squares regression refers to the conditional mean, quantile regression
was introduced by Koenker and Bassett (1978) to obtain a more sophisticated picture of the re-
lation between the response and covariates. Since the seminal paper of these authors numerous
scientists have worked on methodological and practical aspects of this method and the inter-
ested reader is refered to the recent monograph of Koenker (2005). Nonparametric methods
for estimating conditional quantiles have lately found considerable interest in the literature [see
e.g. Keming and Jones (1997), or Yu and Jones (1998)]. These authors concentrate on a univari-
ate predictor and it is well known that for high-dimensional covariates nonparametric methods
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suffer from the curse of dimensionality, which does not allow precise estimation of conditional
quantiles with reasonable sample sizes. For this reason several authors have recommended to
use additive quantile models of the form

Q(α|x) =
d∑

k=1

Qk(α|xk) + c(α)(1.1)

where α ∈ (0, 1) [see Doksum and Koo (2000), Gooijer and Zerom (2003) and Horowitz and Lee
(2005), among others]. In equation (1.1) the quantity c(α) denotes a constant, x = (x1, . . . , xd)

T

are the predictors, and Qk(α|xk) are functions relating the α-quantile of the conditional distri-
bution functions to each coordinate of the predictor [note that these have to be normalized in
order to make the model (1.1) identifiable – see the discussion in Section 2]. So far several au-
thors have proposed methods for estimating the additive components in (1.1). Doksum and Koo
(2000) suggest a spline estimate but do not provide rates of convergence of their estimator. De
Gooijer and Zerom (2003) use a marginal integration estimate, while Horowitz and Lee (2005)
propose a two step procedure, which fits a parametric model in the first step (with increasing
dimension) for each coordinate and smooths in a second step by the local polynomial technique
[see Fan and Gijbels (1996)]. In contrast to the estimate of De Gooijer and Zerom (2003), this
method does not suffer from the curse of dimensionality [see below].

In the present paper we propose an alternative estimate of conditional quantiles in the additive
model (1.1). Our investigations are motivated by the observation that in the one-dimensional
case many nonparametric estimates of quantile curves are not monotone with respect to α ∈
(0, 1) [see e.g. He (1997), Yu, Lu, and Stander (2003), or Koenker (2005), Chap. 7]. As a con-
sequence quantile curves for different values of α may cross, which is an embarassing phe-
nomenon in applications. In the context of estimating a conditional quantile curve in the addi-
tive model (1.1), the situation is similar, but the focus lies on the marginal effects of the condi-
tional quantile function. The marginal effect of the conditional quantile function is the additive
component Qk(α|xk) with respect to a certain covariate xk plus the constant term c(α), which is
denoted by qk(α|xk). Because Horowitz and Lee (2005) use a parametric fit based on the check
function the resulting conditional quantile estimator is not necessarily monotone with respect
to α, and a similar comment applies to the method proposed by Doksum and Koo (2000). On
the other hand the procedure proposed by De Gooijer and Zerom (2003) yields non-crossing
marginal effects of conditional quantile surfaces. However, this is only correct if the dimension
of the covariates satisfies d < 5. When d ≥ 5 the bias of the estimate has to be reduced by using
negative kernels, which unfortunately destroys the monotonicity property [see Remark 3.3. in
this paper].

As an alternative estimate of the additive conditional quantile model, we present an approach
which is based on a combination of the marginal integration technique [see Linton and Nielsen
(1995)] with the concept of non-increasing rearrangements [see Benett and Sharpley (1988)]. This
methodology has been successfully applied by Dette and Volgushev (2007) and Chernozhukov,
Fernandez-Val and Galichon (2007). The last named authors use the concept of non-increasing
rearrangements to isotonize parametric (possible crossing) quantile estimates and study the
weak convergence of the resulting statistics. Dette and Volgushev (2007) concentrate on the

2



case of a one-dimensional covariate and isotonize and invert a nonparametric estimate of the
conditional distribution function simultaneously in order to obtain nonparametric non-crossing
estimates of quantile curves. The rest of the article is organized as follows. In Section 2, we de-
scribe the main concept of the method for estimating the marginal effects in an additive quantile
regression model, which is based on a combination of these methods with the marginal integra-
tion technique. Our approach is applicable to any parametric or nonparametric estimate of the
conditional distribution function. In Section 3, we state the asymptotic distributional properties
of new statistic, if the the conditional distribution function is estimated by local constant or lo-
cal linear techniques. The internalized marginal integration estimator is also investigated [see
Hengartner and Sperlich (2005)], since in higher dimensional problems this estimator is inter-
esting from a computational point of view. In Section 4 we present a small simulation study to
compare the finite sample properties of the new method with the procedure introduced by De
Gooijner and Zerom (2003), which is most similar in spirit with the estimate suggested in this
paper. Finally, some of the technical details of the proofs of the asymptotic results are presented
in Section 5.

2 Monotone rearrangements and marginal integration

Let (X1, Y1), . . . , (Xn, Yn) denote a sample of independent and identically distributed observa-
tions, where the d-dimensional random variable Xj = (Xj1, . . . , Xjd)

T has a q times continuously
differentiable density, say p,with compact support [0, 1]d. Following Hall, Rodney, Wolff and Yao
(1999), we introduce the random variable Zj = I{Yj ≤ y}with

E[Zj|Xj = x] = P (Yj ≤ y|Xj = x) = F (y|x)

and the nonparametric regression model

Zj = F (y|Xj) + σ(y|Xj)εj j = 1, . . . , n(2.1)

where E[εj] = 0, Var(εj) = 1, and E[ε4
j ] ≤ c < ∞. The variance function σ(y|x) can be further

specified in terms of F (y|x), i.e.

σ2(y|x) = E[(Zj − F (y|x))2|Xj = x] = F (y|x)(1− F (y|x)).

We consider the model (1.1) and add the conditions

E[Qk(α|Xjk)] = 0, k = 1, . . . , d, (j = 1, . . . , n)(2.2)

in order to make the components of the additive decomposition (1.1) identifiable. Let F̂ (y|x)
denote an estimate of the conditional distribution function F (y|x) = P (Yj ≤ y | Xj = x), which
will be specified below. Define H : R → [0, 1] as a strictly increasing distribution function,
which will be used as a transformation to the compact interval [0, 1], since F (·|x) might have
unbounded support. Note that F̂ (y|x) is obtained by nonparametric methods and for this reason
usually not increasing which yields some difficulties in the determination of the corresponding
quantiles. In the following, we solve this problem and the problem of inversion simultaneously
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using the concept of monotone rearrangements [see Benett and Sharpley (1988)], which was
introduced in the context of estimating a monotone regression function by Dette, Neumeyer
and Pilz (2006). To be precise, let Kd denote a positive kernel function with compact support
[−1, 1] and hd denote a bandwidth, then we define

ĤI(α|x) =
1

Nhd

N∑
i=1

∫ α

−∞
Kd

(
F̂ (H−1( i

N
)|x)− u

hd

)
du.(2.3)

If F̂ (y|x) is uniformly consistent and N →∞, hd → 0, it is intuitively clear that

ĤI(α|x) ≈ HN(α|x) :=
1

Nhd

N∑
i=1

∫ α

−∞
Kd

(
F (H−1( i

N
)|x)− u

hd

)
du(2.4)

≈
∫
I{F (H−1(s)|x) ≤ α}ds = H(Q(α|x)),

where Q(α|x) = F−1(α|x). Consequently, we define

Q̂I(α|x) = H−1(ĤI(α|x))(2.5)

as the estimate of the conditional quantile Q(y|x), and

QN(α|x) = H−1(HN(α|x))(2.6)

as an approximation of the conditional quantile Q(y|x). It will be demonstrated in the following
section that the choice of the function H has no impact on the asymptotic properties of the
estimate. Moreover, even for realistic sample sizes the impact of the choice of H is negligible
and a practical recommendation regarding this choice will be given in Section 4.

Note that the estimate ĤI is monotone with respect to α provided that the kernel Kd is posi-
tive on its support, which will be assumed throughout this paper. In the next step, we now
apply the marginal integration technique [see Linton and Nielsen (1995), Chen, Härdle, Lin-
ton, Severence-Lossin (1996), or Hengartner and Sperlich (2005)] to obtain an estimator in the
model (1.1). Without loss of generality, we focus on the problem of estimating the first com-
ponent Q1(α|x1) in model (1.1) and the marginal effect of the first covariate, respectively. We
introduce the following notations to be precise Xj = (Xj1, . . . , Xjd)

T , Xj1 = (Xj2, . . . , Xjd)
T , and

x = (x1, x1)
T . Now we define the marginal integration estimator of the first marginal effect

q̂1(α|x1) =
1

n

n∑
j=1

Q̂I(α|x1, Xj1),(2.7)

which can be regarded as the expection of Q̂I(α|X) with respect to the empirical distribution of
X1 = (X2, . . . , Xd)

T . This estimator is obviously monotone in α for fixed x1. Note that by the
strong law of large numbers and from the normalizing condition (2.2), we have

1

n

n∑
k=1

QN(α|x1, Xk1)
a.s.−→

∫
Q(α|x)p1(x1)dx1 = Q1(α|x1) + c(α) =: q1(α|x1),(2.8)
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where p1 denotes the marginal density of X1 = (X2, . . . , Xd)
T . Consequently, if Q̂I(α|x) is a

(uniformly) consistent estimate of Q(α|x) it follows that q̂1(α|x1) is a consistent estimate of
q1(α|x1) := Q1(α|x1) + c(α). Finally,

q̂1(α|x1)−
1

n

n∑
i=1

q̂1(α|Xi1)(2.9)

defines a consistent estimate of Q1(α|x1) (note that 1
n

∑n
i=1Q1(α|Xi1)

a.s.→ E[Q1(α|Xi1)] = 0). The
estimates of the other components are defined exactly in the same way, and the final estimate in
the additive model (1.1) is given by

Q̂add(α|x) :=
d∑

k=1

q̂k(α|xk)−
(

1− 1

d

) d∑
k=1

1

n

n∑
i=1

q̂k(α|Xik).(2.10)

In the following section, we study the asymptotic properties of the estimate q̂1(α|x1). The corre-
sponding properties of the estimate q̂k(α|xk) for k = 2, . . . , d follow in a straightforward manner.

3 Asymptotic properties

A precise statement of the main results requires the specification of an initial estimate of the con-
ditional distribution function F (y|x). For the sake of definiteness, we first consider a Nadaraya-
Watson type estimator

F̂ (y|x) = F̂ (y|x1, x1) =

∑n
i=1Kh1(x1 −Xi1)LG(x1 −Xi1)I{Yi ≤ y}∑n

i=1Kh1(x1 −Xi1)LG(x1 −Xi1)
.(3.1)

The kernel K in (3.1) is a one-dimensional kernel with compact support, say [−1, 1], and existing
second moments satisfying∫ 1

−1

xK(x)dx = 0,
1

2

∫ 1

−1

x2K(x)dx = κ2(K).(3.2)

Let ν1 = (ν2, . . . , νd) be a multiindex of integers with νi ≥ 0, so that xν11 = xν22 . . . xνd
d . Moreover,

define |ν1| =
∑d

i=2 νi. The kernel L in (3.1) refers to a (d − 1)-dimensional kernel of order q
supported on [−1, 1]d−1, i.e., L satisfies the conditions

(i) L is symmetric, i.e. L(−x1) = L(x1) for x1 ∈ [−1, 1]d−1,

(ii)
∫

[−1,1]d−1 L(x1)dx1 = 1,

(iii)
∫

[−1,1]d−1 |x
ν1
1 ||L(x1)|dx1 <∞ for |ν1| ≤ q,

(iv)
∫

[−1,1]d−1 x
ν1
1 L(x1)dx1 = 0 for 1 ≤ |ν1| ≤ q − 1,
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(v)
∫

[−1,1]d−1 x
ν1
1 L(x1)dx1 6= 0 for some |ν1| = q.

Note that the kernel L is for q > 2 not a probability density function anymore. The bandwidth
h1 corresponds to the first covariate. Denote Kh1(·) = 1

h1
K(·/h1) and

LG(x) =
1

det(G)
L(G−1x)

for the bandwidth matrix G = diag(g2, . . . , gd) ∈ R(d−1)×(d−1), where gk refers to the bandwidth
of the kth coordinate (k = 2, . . . , d).
Throughout this paper we make the following basic assumptions regarding the underlying
model

Xj has a positive density p with supp (p) = [0, 1]d, p ∈ Cq([0, 1]d),(3.3)
for any y ∈ R F (y|·) ∈ Cq([0, 1]d),(3.4)
F (·|x) ∈ C1([0, 1]) andQ′(α|x) > 0,(3.5)
K ′d is Lipschitz continuous.(3.6)

In (3.5) the function Q′ denotes the derivative of the quantile function Q(α|x) with respect to the
variable α (and its existence in a neighbourhood of the quantile of interest is assumed through-
out this paper), while the partial derivatives with respect to the coordinates of the predictor
x = (x1, . . . , xd)

T are denoted by ∂s/∂sxk (s = 1, . . . , q; k = 1, . . . , d). Assumption (3.6) refers to
the kernel used for the monotonizing inversion in (2.3).
In the following discussion we will investigate the asymptotic properties of the estimate q̂1(α|x1)
defined in (2.7). We focus on the marginal effect of the first component, but corresponding results
for the other marginal effects can easily derived in the same way. For the sake of simplicity, we
assume the same bandwidth for the remaining coordinates x1 = (x2, . . . , xd), that is

g2 = . . . = gd.(3.7)

Regarding the bandwidths h1, g2 and hd, we make the following assumptions

N = O(n)(3.8)
nh1 →∞, ngd−1

2 →∞, nh1g
d−1
2 →∞, nhd →∞(3.9)

nh5
1 = O(1)(3.10)

ng2q+1
2 = O(1)(3.11)
hd
h1

= o(1)(3.12)

1

nh1g
2(d−1)
2 h2

d

= o(1)(3.13)

Our first result specifies the asymptotic properties of the estimate q̂1(α|x1) defined in (2.7) if the
Nadaraya-Watson estimator is used for estimating the conditional distribution function. The
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case of the local linear estimate is briefly discussed in Remark 3.1. For a precise statement of the
asymptotic properties, we recall the notation x = (x1, x1)

T and obtain the following result.

Theorem 3.1. If the assumptions (3.4) – (3.6) and (3.7) - (3.13) are satisfied, then we have for any
α ∈ (0, 1) √

nh1(q̂1(α|x1)− q1(α|x1) + b1(α|x1))
D→ N (0, s2(α|x1)),

where

b1(α|x1) = κ2(K)h2
1

∫ [
∂2

∂x2
1

F (Q(α|x1, x1)|x1, x1)

+2
∂
∂x1
F (Q(α|x1, x1)|x1, x1)

∂
∂x1
p(x1, x1)

p(x1, x1)

]
1

F ′(Q(α|x1, x1)|x1, x1)
p1(x1)dx1,

s2(α|x1) =

∫
K2(v)dv

∫
α(1− α)p2

1(x1)

(F ′(Q(α|x1, x1)|x1, x1))2p(x1, x1)
dx1,

κs(K) =
1

s!

∫
vsK(v)dv.

Remark 3.1. There are numerous alternative estimates for the conditional distribution function
which could be used as initial estimate. For example, if the conditional distribution function is
estimated by a local linear techniques [see Masry and Fan (1997)], then asymptotic normality of
the resulting estimate is still true but the bias term b1(α|x1) in Theorem 3.1 has to be replaced by

b1(α|x1) = κ2(K)h2
1

∫ ∂2

∂x2
1
F (Q(α|x1, x1)|x1, x1)

F ′(Q(α|x1, x1)|x1, x1)
p1(x1)dx1.

The local linear estimator for the conditional distribution function is not necessarily mono-
tone increasing. Using our method, this does not pose a problem for the estimation of the
marginal effects of the conditional quantile q1(α|x1), since the monotonizing inversion takes
care for the monotonicity of the conditional quantile function with respect to α. The estimate
for the marginal effect can be calculated as in the case of the Nadaraya-Watson estimator for the
conditional distribution function.

Our second result of this section specifies the asymptotic properties of the estimate for q1(α|x1),
if the internalized Nadaraya-Watson estimate is used for the estimation of the conditional dis-
tribution function, that is

F̃ (y|x) =
n∑
i=1

Kh1(x1 −Xi1)LG(x1 −Xi1)I{Yi ≤ y}∑n
k=1Kh1(Xk1 −Xi1)LG(Xk1 −Xi1)

(3.14)
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[see Jones, Davies, and Park (1994) or Kim, Linton and Hengartner (1999)]. The internalized
estimate is interesting from a computational point of view, since it can be regarded as a weighted
sum

F̃ (y|x) =
1

n

n∑
i=1

Kh1(x1 −Xi1)LG(x1 −Xi1)Ỹi

over the adjusted data Ỹi = I{Yi ≤ y}/p̂(Xi1, Xi1), where

p̂(x1, x1) =
1

n

n∑
i=1

Kh1(x1 −Xi1)LG(x1 −Xi1).

The corresponding estimate of q1(α|x1) is defined by

q̃1(α|x1) =
1

n

n∑
j=1

Q̃I(α|x1, Xj1),(3.15)

where

H̃I(α|x1, Xj1) =
1

Nhd

N∑
i=1

∫ α

−∞
Kd

(
F̃ (H−1( i

N
)|x1, Xj1)− u
hd

)
du

and Q̃I(α|x1, Xj1) = H−1(H̃I(α|x1, Xj1)) as in (2.3) and (2.5). The following result specifies the
asymptotic behaviour of the estimate q̃1(α|x1).

Theorem 3.2. If the assumptions of Theorem 3.1 are satisfied, then we have for any α ∈ (0, 1)√
nh1(q̃1(α|x1)− q1(α|x1) + b̃1(α|x1) + b̃2(α|x1))

D→ N (0, s̃2(α|x1)),

where

b̃1(α|x1) = κ2(K)h2
1

∫ ∂2

∂x2
1
F (Q(α|x1, x1)|x1, x1)

F ′(Q(α|x1, x1)|x1, x1)
p1(x1)dx1,

b̃2(α|x1) = κ2(K)h2
1

∫ F (Q(α|x1, x1)|x1, x1)
∂2

∂x2
1
p(x1, x1)

F ′(Q(α|x1, x1)|x1, x1)p(x1, x1)
p1(x1)dx1,

s̃2(α|x1) =

∫
K2(w)dw

∫
((F (Q(α|x1, x1)|x1, x1))

2 + α(1− α)) p2
1(x1)

p(x1, x1)(F ′(Q(α|x1, x1)|x1, x1))2
dx1.

To work with the internalized estimator as initial estimate yields an additional term to bias and
variance, and is therefore less efficient. For a further discussion about the properties of external
and internal estimation methods see Jones, Davies, and Park (1994). It is possible to get rid of
the additional bias term by using a different bandwidth for the kernel density estimator in the
denominator of (3.14). If the bandwidth of the kernel density estimator converges somewhat
slower to 0 but still sufficiently fast, the term b̃2(α|x1) vanishes. See Mack and Müller (1989) for
more details.

8



Remark 3.2. The asymptotic properties of the additive quantile function

Q̂add(α|x) =
d∑

k=1

q̂k(α|xk)−
(

1− 1

d

) d∑
k=1

1

n

n∑
j=1

q̂k(α|Xjk)

can be derived as well. The asymptotic bias of Q̂add(α|x) is

d∑
k=1

bk(α|xk)−
(

1− 1

d

)∫
bk(α|xk)pk(xk)dxk,

where bk(α|xk) is the bias of q̂k(α|xk). But the asymptotic variance is just the sum of the variances
of q̂k(α|xk), since the terms in Qadd(α|x) are asymptotically uncorrelated.

Remark 3.3. At the end of this section, some remarks about the conditions regarding the band-
widths might be appropriate. A general drawback of the marginal integration method is that
for higher dimensions d ≥ 5 the third condition in (3.9), namely nh1g

d−1
2 → ∞, is not fulfilled

using the bandwidth g2 with the rate n−1/5. In this case, the bias-term in the directions not of
interest dominate the asymptotic properties of the estimate. A way out of this problem is to take
L to be a higher order kernel. For our estimator q̂1(α|x1), we have to deal with an additional
bandwidth which yield that even for dimension d = 2 higher order kernel must be used or one
has to weaken condition (3.12) and accept an extra bias-term. However, in the stated Theorems
we over-smooth the variables not of interest by taking g2 at the rate n

1
2q+1 for q > 2. This method

still demonstrates simplicity and flexibility in its usage which is illustrated in more details in
the following section. Furthermore, even for higher dimensions the estimator q̂1(α|x1) of the
marginal effects of x1 is monotone in α.

Remark 3.4. Note that we can relax the assumption of independent data. In a more general
setup, we assume that the process {(Xj, Yj)}∞−∞ is α-mixing or strongly mixing, that is

sup
A∈F0

−∞,B∈F∞k

|P (AB)− P (A)P (B)| = α(k)→ 0 ask →∞ ,

where F ba denotes the σ-algebra generated by the random variables {(Xj, Yj), a ≤ j ≤ b} [Rosen-
blatt (1956)]. To retain the assertion of Theorem 3.1 for dependent data, we assume that the
mixing coefficients α(k) fulfill

∞∑
j=1

ja(α(j))1/2 <∞

for a > 1
2

and that there exists a sequence {vn} of positive integers satisfying vn → ∞ and

vn = o
(√

nhd1

)
such that √

n

hd1
α(vn)→ 0, as n→∞.

With these two additional assumptions, the assertion of Theorem 3.1 and 3.2 remain valid. For
more details and a discussion of strongly mixing data in multivariate nonparametric regression
settings see Masry (1996).
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4 Finite sample properties and data analysis

In this section, we compare our estimator q̂1(α|x1) with a procedure proposed by De Gooijner
and Zerom (2003) in terms of finite sample properties. Their estimator, which they call an aver-
age quantile estimator, is the inverse of the reweighted Nadaraya-Watson estimator for a condi-
tional distribution function introduced by Hall, Wolff, and Yao (1999). The reweighted estimator
for the conditional distribution function has the following form

F̆ (y|x) =
n∑
i=1

pi(x)Kh1(x1 −Xi1)LG(x1 −Xi1)I{Yi ≤ y}∑n
i=1 pi(x)Kh1(x1 −Xi1)LG(x1 −Xi1)

,

where pi(x) denote weights depending on the data X1, . . . ,Xn with the properties that pi ≥ 0 for
i = 1, . . . , n,

∑n
i=1 pi = 1, and

n∑
i=1

pi(x)(Xi1 − x1)Kh1(x1 −Xi1)LG(x1 −Xi1) = 0.

The weights pi are chosen by maximizing
∏n

i=1 pi. The estimator F̆ (y|x) conserves the positivity
and the monotonicity of the Nadaraya-Watson estimator with positive kernel functionsK and L,
but provides the more attractive bias of the local linear estimator. Since F̆ (y|x) is monotone in-
creasing, the inversion is easily obtained. For our approach, the monotonicity is not a constraint
for the estimators of conditional distribution functions. Therefore local linear methods can also
be used to estimate the conditional distribution function. In the following, we will compare three
different estimators for the marginal effect of the additive quantile regression model. Instead of
using the Nadaraya and Watson estimate for the conditional distribution function, we use the
local linear estimator and apply afterwards the monotonizing inversion and the marginal inte-
gration technique. We call this estimator for the marginal effect of the first variable q̂1(α|x1) and
the estimate for the additive component Q̂1(α|x1). The estimator proposed by De Gooijner and
Zerom (2003) is denoted by q̆1(α|x1) and Q̆1(α|x1), respectively. Finally, we also investigate the
finite sample properties of the internalized estimator discussed in the previous section q̃1(α|x1)
and Q̃1(α|x1).
For the sake of practical convencience, we use a uniform distribution function on the interval

[min(Xj1),max(Xj1)]× . . .× [min(Xjd),max(Xjd)]

for the function H to transform the data to [0, 1]d.

Example 4.1 We consider the two-dimensional model

Y = 0.75X1 + 1.5 sin(0.5πX2) + 0.25ε,(4.1)

where ε ∼ N (0, 1). We assume that the covariates (X1, X2)
T are bivariate normal with mean 0,

variance 1, and correlation ρ. For the correlation, we distinguish two cases: a weak correlation

10



Q̂1(.5|x1) Q̃k(.5|xk) Q̆k(.5|xk)
ρ n Component (local linear) (internalized NW) (De Gooijer and Zerom)
.2 100 .75x1 0.1176 0.2661 0.1374

1.5 sin(.5πx2) 0.2112 0.3543 0.1818
200 .75x1 0.0630 0.1971 0.1066

1.5 sin(.5πx2) 0.0969 0.1849 0.1272
400 .75x1 0.0474 0.1570 0.0734

sin(.5πx2) 0.1169 0.2138 0.0936
.8 100 .75x1 0.1939 0.4145 0.1365

1.5 sin(.5πx2) 0.2801 0.4611 0.4865
200 .75x1 0.1882 0.4385 0.1272

1.5 sin(.5πx2) 0.2305 0.3646 0.4350
400 .75x1 0.1829 0.4207 0.0985

sin(.5πx2) 0.2152 0.3871 0.4009

Table 1: The mean absolute deviation error of the different approaches.

ρ = 0.2 and a strong correlation ρ = 0.8. This experiment was originally carried out by De Gooi-
jer and Zerom (2003). The Epanechnikov kernel is used to estimate the conditional distribution
function and to compute the monotonizing inversion, i.e.

K(x) = L(x) = Kd(x) =
3

4
(1− x2)I[−1,1](x).

We choose the bandwidths as in De Gooijer and Zerom (2003): h1 = 3σ̂1n
−1/5 for X1 and h2 =

σ̂2n
−1/5 for X2, where σ̂i is the standard deviation of the corresponding covariate. The quantile

estimates are computed for α = 0.5 and the sample sizes n = 100, 200, and 400. Instead of
using the mean squared error, the mean absolute deviation error (MADE) is collected, whereas
observations outside of the square [−2, 2]2 are disregarded to avoid boundary effects. In Table
1, we display the results of this finite sample study for model (4.1). In order to make our results
comparable to De Gooijer and Zerom (2003) 41 simulation runs have been performed in each
scenario. The results of the performance of Q̆1(.5|α) are extracted from De Gooijer and Zerom
(2003). We observe that the internalized marginal integration estimate yields a larger MADE
than the local linear approach in all cases. A comparison with the estimates of De Gooijer and
Zerom (2003) shows only advantages for the internalized marginal integration estimate, if the
second (more oscillating) component is estimated and the data is strongly correlated. In all other
cases the estimate of De Gooijer and Zerom (2003) yields a smaller MADE. On the other hand
the local linear estimate has a smaller MADE than the estimate of De Grooijer and Zerom (2003),
except in the case ρ = 0.8, n = 100, 200 and 400 for Q1(.5|x1) = 0.75x1.

Example 4.2 As a demonstration of the applicability of the presented method to estimate addi-
tive conditional quantile function in higher dimension than d = 2, we consider the model

Y =
4∑

k=1

sin(Xk) + ε, ε ∼ N (0, 1),X ∼ N (0,Σ)(4.2)

11



with two choices for Σ [for low and high correlation among the variables]

Σ1 =


1.0 0.3 0.5 0.1
0.3 1.0 0.3 0.5
0.5 0.3 1.0 0.3
0.1 0.5 0.3 1.0

 and Σ2 =


1.0 0.5 0.8 0.3
0.5 1.0 0.5 0.8
0.8 0.5 1.0 0.5
0.3 0.8 0.5 1.0

 ,

which was originally discussed by Hengartner and Sperlich (2005) in the context of traditional
additive regression models. n = 250 observations are generated from this model for each of the
130 replications. Since the additive components and the marginal distributions are the same,
we can average over all components at the same time. In the following table, the mean abso-
lute deviation error and the mean squared error of the new estimate Q̂k(.5|xk) and the estimate
Q̆k(.5|xk) proposed by De Gooijer and Zerom (2003) is recorded for the observations restricted to
the square [−2, 2]4. Note that the estimates behave slightly better in the model with low correla-

AADE(Q̂k(.5|xk)) AADE(Q̆k(.5|xk)) MSE(Q̂k(.5|xk)) MSE(Q̆k(.5|xk))
Σ1 0.08459 0.14766 0.01017 0.05335
Σ2 0.08473 0.15500 0.01269 0.05806

Table 2: AADE and MSE of Q̂k(.5|xk) and Q̆k(.5|xk) in the low and high correlation model (4.2).

tion among the covariates. Furthermore, a comparison of the two estimates with respect to both
criteria shows that the new estimate Q̂k(.5|xk) performs substantially better than the estimate
Q̆k(.5|xk) suggested by De Gooijner and Zerom (2003).

Example 4.3 To illustrate the performance on a real data set, we estimate the marginal effects
for the Boston housing data. The Boston housing data contains the housing values of suburbs
of Boston and 13 variables/criterias, which might have an influence on the housing prices like
pollution, crime, and urban amenities. This dataset has been analyzed by several authors, also
in the context of quantile regression. We focus on four covariates

• per capita crime rate (crime),

• average number of rooms per dwelling (rooms),

• weighted mean of distance to five Boston employment centres (distance),

• lower status of the population (econstatus),

and fit an additive conditional quantile model. We applied cross validation to determine the
bandwidth for the four different variables. To simplify this problem, we set

h1 = σ̂crimek, h2 = σ̂roomsk, h3 = σ̂distancek, h4 = σ̂econstatusk,

where σ̂ is the standard deviation of the corresponding variables. The cross validation criteria
is minimized for k ∈ [1/11, 30/11] for each marginal effect separately. Since the values are quite
similar, we set k = 1 for all covariates. In Figure 1, we display five different curves of the
marginal effects Q(α|Xk) for fixed α = 0.05, 0.25, 0.5, 0.75, 0.95. Note that the marginal effects are
monotone in α.
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Figure 1: Boston housing dataset: The marginal effects at five different levels of α

13



5 Appendix: proof of main results

Proof of Theorem 3.1: For the sake of simplicity, we assume thatN = n and that the distribution
function H corresponds to the uniform distribution. Recall the definition of q1 in (2.8) and of
Qn(α|x) in (2.6), then it is easy to see that by the law of the iterated logarithm and the bandwidth
conditions (3.12)

q1(α|x1) = q1,n(α|x1) + o
( 1√

nh1

)
,

where

q1,n(α|x1) =
1

n

n∑
i=1

Qn(α|x1, Xi1).

Now a straightforward argument shows that the assertion follows from the weak convergence√
nh1(q̂1(α|x1)− q1,n(α|x1) + b1(α|x1))

D→ N (0, s2(α|x1)),(5.1)

where the bias b1(α|x1) and the variance s2(α|x1) are defined in Theorem 3.1. For a proof of (5.1)
we use a Taylor expansion and obtain

q̂1(α|x1)− q1,n(α|x1) =
1

n

n∑
j=1

[
Q̂I(α|x1, Xj1)−Qn(α|x1, Xj1)

]
(5.2)

= ∆(1)
n (α|x1) +

1

2
∆(2)
n (α|x1),

where

∆(1)
n (α|x1) = − 1

n2hd

n∑
j=1

n∑
i=1

Kd

(
F ( i

n
|x1, Xj1)− α

hd

)(
F̂ (

i

n
|x1, Xj1)− F (

i

n
|x1, Xj1)

)
,

∆(2)
n (α|x1) = − 1

n2h2
d

n∑
j=1

n∑
i=1

K ′d

(
ξi − α
hd

)(
F̂ (

i

n
|x1, Xj1)− F (

i

n
|x1, Xj1)

)2

,

where ξi = ξi(α, x1, Xj1) satisfies |ξi−F ( i
n
|x1, Xj1)| ≤ |F̂ ( i

n
|x1, Xj1)−F ( i

n
|x1, Xj1)| for i = 1, . . . , n.

In the first step, we show that ∆
(2)
n (α|x1) = op

(
1√
nh1

)
. We obtain

|∆(2)
n (α|x1)| =

1

n2h2
d

∣∣∣ n∑
j=1

n∑
i=1

K ′d

(
ξi − α
hd

)(
F̂ (

i

n
|x1, Xj1)− F (

i

n
|x1, Xj1)

)2∣∣∣
=

1

n2h2
d

∣∣∣∣ n∑
j=1

n∑
i=1

K ′d

(
F ( i

n
|x1, Xj1)− α

hd

)[
1 +

(
K ′d

(
F ( i

n
|x1, Xj1)− α

hd

))−1

×

(
K ′d

(
ξi − α
hd

)
−K ′d

(
F ( i

n
|x1, Xj1)− α

hd

))](
F̂ (

i

n
|x1, Xj1)− F (

i

n
|x1, Xj1)

)2∣∣∣∣
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=
(1 + op(1))

n2h2
d

∣∣∣∣∣
n∑
j=1

n∑
i=1

K ′d

(
F ( i

n
|x1, Xj1)− α

hd

)(
F̂ (

i

n
|x1, Xj1)− F (

i

n
|x1, Xj1)

)2
∣∣∣∣∣(5.3)

= (1 + op(1))∆(2.1)
n (α|xk),

where the last equation defines the quantity ∆
(2.1)
n in an obvious manner. In line (5.3), we used

the Lipschitz continuity of K ′d and the uniform convergence rate of F̂ (α|x1, x1) [see Collomb and
Härdle (1986)], since∣∣∣∣K ′d(ξi − αhd

)
−K ′d

(
F ( i

n
|x1, Xj1)− α

hd

)∣∣∣∣ ≤ L

∣∣∣∣ξi − F ( i
n
|x1, Xj1)

hd

∣∣∣∣(5.4)

≤ L

∣∣∣∣∣ F̂ ( i
n
|x1, Xj1)− F ( i

n
|x1, Xj1)

hd

∣∣∣∣∣
= Op

(
log n

nh1g
d−1
2 h2

d

)1/2

= op(1).

Using the bandwidth condition (3.13), it follows

E[|∆(2.1)
n (α|xk)|Xj] ≤

1

n2h2
d

n∑
j=1

n∑
i=1

∣∣∣∣K ′d(F ( i
n
|x1, Xj1)− α

hd

)∣∣∣∣×
E

[(
F̂ (

i

n
|x1, Xj1)− F (

i

n
|x1, Xj1)

)2

|Xj

]

= Op

(
1

hd

(
1

nh1g
d−1
2

))
= op

(
1√
nh1

)
.

Now we can turn to the remaining term ∆
(1)
n (α|x1) which can be decomposed into bias- and

variance-part. We obtain observing the representation (2.1)

∆(1)
n (α|x1) = −(1 + op(1))

nhd

n∑
j=1

∫ 1

0

Kd

(
F (t|x1, Xj1)− α

hd

)(
F̂ (t|x1, Xj1)− F (t|x1, Xj1)

)
(5.5)

= −(1 + op(1))

n2hd

n∑
j=1

n∑
k=1

∫ 1

0

Kd

(
F (t|x1, Xj1)− α

hd

)
Kh1 (x1 −Xk1)×

LG (Xj1 −Xk1)
I{Yk ≤ t} − F (t|x1, Xj1)

p(x1, Xj1)
dt

= (1 + op(1))
(
∆(1.1)
n (α|x1) + ∆(1.2)

n (α|x1)
)
,(5.6)

where

∆(1.1)
n (α|x1) = − 1

n2hd

n∑
j=1

n∑
k=1

∫ 1

0

Kd

(
F (t|x1, Xj1)− α

hd

)
Kh1 (x1 −Xk1)×(5.7)
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LG (Xj1 −Xk1)

(
F (t|Xk1, Xk1)− F (t|x1, Xj1)

p(x1, Xj1)

)
dt

∆(1.2)
n (α|x1) = − 1

n2hd

n∑
j=1

n∑
k=1

∫ 1

0

Kd

(
F (t|x1, Xj1)− α

hd

)
Kh1 (x1 −Xk1)×(5.8)

LG (Xj1 −Xk1)

(
σ(t|Xk1, Xk1)εk
p(x1, Xj1)

)
dt.

The terms ∆
(1.1)
n and ∆

(1.2)
n are now investigated separately with an analysis similar as in Chen,

Härdle, Linton and Severance-Lossin (1996). First of all, ∆
(1.1)
n (α|x1) can be written as

∆(1.1)
n (y|x1) = − 1

n

n∑
j=1

ηj(α|x1),

where

ηj(α|x1) =
1

n

n∑
k=1

Kh1 (x1 −Xk1)LG (Xj1 −Xk1)(5.9)

(F (Q(α|x1, Xj1)|Xk1, Xk1)− F (Q(α|x1, Xj1)|x1, Xj1))

F ′(Q(α|x1, Xj1)|x1, Xj1)p(x1, Xj1)
.

We break ηj(α|x1) into two uncorrelated parts

ηj(α|x1) = E[ηj(α|x1)|Xj] + (ηj(α|x1)− E[ηj(α|x1)|Xj]) .

For the conditional expectation of ηj(α|x1), we have

E[ηj(α|x1)|Xj] =

∫
Kh1 (x1 − u1)LG (Xj1 − u1)×

(F (Q(α|x1, Xj1)|u1, u1)− F (Q(α|x1, Xj1)|x1, Xj1))

F ′(Q(α|x1, Xj1)|x1, Xj1)p(x1, Xj1)
p(u1, u1)du1du1

=

∫
K(v1)L(v1)p(x1 − h1v1, Xj1 − g2v1)

(F (Q(α|x1, Xj1)|x1 − h1v1, Xj1 − g2v1)− F (Q(α|x1, Xj1)|x1, Xj1))

F ′(Q(α|x1, Xj1)|x1, Xj1)p(x1, Xj1)
dv1dv1

= (1 + o(1))h2
1κ2(K)

( 1
2
∂2

∂x2
1
F (Q(α|x1, Xj1)|x1, Xj1)

F ′(Q(α|x1, Xj1)|x1, Xj1)

+
∂
∂x1
F (Q(α|x1, Xj1)|x1, Xj1)

F ′(Q(α|x1, Xj1)|x1, Xj1)p(x1, Xj1)

)
+Op(g

q
2).

Now it is easy to see that

E[∆(1.1)
n (α|x1)] = −(1 + o(1))b1(α|x1).
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To evaluate the variance of ∆
(1.1)
n (α|x1), we use the decomposition through ηj(α|x1). Since

E[(ηj(α|x1)− E[ηj(α|x1)|Xj])
2|Xj] ≤ Op

(
1

nh1g
d−1
2

(h2
1 + g2

2)

)
we can estimate the variance of ∆

(1.1)
n (α|x1) as

Var(∆(1.1)
n (α|x1)) ≤ E

[
(∆(1.1)

n (α|x1))
2
]

=
1

n
E
[
(E[ηj(α|x1)|Xj])

2
]

+O

(
(h1 + g2)

2

n2h1g
d−1
2

)
= O

(
(h2

1 + gq2)2

n
+

(h1 + g2)
2

n2h1g
d−1
2

)
= o

(
1

nh1

)
,

which shows
∆(1.1)
n (α|x1) + b(α|x1) = op

( 1√
nh1

)
.(5.10)

Now we consider the term ∆
(1.2)
n in (5.8), which has expectation E[∆(1.2)(α|x1)] = 0. To calculate

the variance, we use a similar analysis as for ∆
(1.1)
n

∆(1.2)
n (α|x1) = − 1

nh1

n∑
k=1

K

(
x1 −Xk1

h1

)
εkβk(α|x1),

where

βk(α|x1) =
1

n

n∑
j=1

LG (Xj1 −Xk1)σ(Q(α|x1, Xj1)|Xk1, Xk1)

p(x1, Xj1)F ′(Q(α|x1, Xj1)|x1, Xj1)
.

Now we treat βk(α|x1) as ηk(α|x1) and split it up into

E[βk(α|x1)|Xk] + (βk(α|x1)− E[βk(α|x1)|Xk]).

We calculate the conditional expectation of βk(α|x1) as

E[βk(α|x1)|Xk] =

∫
LG (u1 −Xk1)σ(Q(α|x1, u1)|Xk1, Xk1)p(u1, u1)

p(x1, u1)F ′(Q(α|x1, u1)|x1, u1)
du1du1

=
σ(Q(α|x1, Xk1)|Xk1, Xk1)p1(Xk1)

p(x1, Xk1)F ′(Q(α|x1, Xk1)|x1, Xk1)
+Op(g

q
2)

Furthermore we have

E
[
(βk(α|x1)− E[βk(α|x1)|Xk])

2|Xk

]
≤ 1

n

∫ (
LG (u1 −Xk1)σ(Q(α|x1, u1)|Xk1, Xk1)

p(x1, u1)F ′(Q(α|x1, u1)|x1, u1)

)2

p(u1, u1)du1du1

=
1

ngd−1
2

(∫
L2(v1)dv1

)
σ(Q(α|x1, Xk1)|Xk1, Xk1)p1(Xk1)

p2(x1, Xk1) (F ′(Q(α|x1, Xk1)|x1, Xk1))
2

= Op

(
1

ngd−1
2

)
.
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So basically ∆
(1.2)
n (α|x1) is of the form

∆(1.2)
n (α|x1) = − 1

n

n∑
k=1

Kh1 (x1 −Xk1)
p1(Xk1)σ(Q(α|x1, Xk1)|Xk1, Xk1)εk
p(x1, Xk1)F ′(Q(α|x1, Xk1)|x1, Xk1)

+ op

(
1√
nh1

)
,

and the variance of the dominating term on the right hand side, say ∆̂
(1.2)
n (α|x1), can be easily

calculated. i.e.

Var(
√
nh1∆̂

(1.2)
n (α|x1)) =

(∫
K2(v)dv

)∫
α(1− α)p2

1(x1)dx1

p(x1, x1)(F ′(Q(α|x1, x1)|x1, x1)
+ o(1).(5.11)

A similar calculation shows that Ljapunoff’s condition is satisfied for the term ∆
(1.2)
n , that is

n∑
j=1

E

[√
nh1

nh1

n∑
k=1

K

(
x1 −Xk1

h1

)
(5.12)

×
p1(Xk1)σ(Q(α|x1, Xk1)|Xk1, Xk1)εk
p(x1, Xk1)F ′(Q(α|x1, Xk1)|x1, Xk1))

]4

=
E[ε4

1]

nh2
1

∫
K4

(
x1 − u1

h1

)(
σ(Q(α|x1, u1)|u1, u1)p1(u1)

F ′(Q(α|x1, u1)|x1, u1)p(x1, u1)

)4

p(u1, u1)du1du1

=
E[ε4

1]

nh1

(∫
K4(v)dv

)∫
α2(1− α)2p4

1(u1)

(F ′(Q(α|x1, u1)|x1, u1))4p3(x1, u1)
du1 = O

(
1

nh1

)
,

which establishes the weak convergence√
nh1∆

(1.2)
n (α|x1)

D−→ N (0, s2(α|x1)).

A combination with (5.10) and (5.5) yields (5.1) which proves Theorem 3.1.
2

Proof of Theorem 3.2: Again we consider the uniform distribution H , and N = n. A similar
argument as presented at the beginning of the proof of Theorem 3.1 shows that the assertion of
the theorem follows from the weak convergence√

nh1(q̃(α|x1)− q1,n(α|x1) + b̃1(α|x1) + b̃2(α|x1))
D→ N (0, s̃2(α|x1)),(5.13)

where

q1,n(α|x1) =
1

n

n∑
k=1

Qn(α|x1, Xk2)

and Qn(α|x1, X2k) is defined in (2.4). A Taylor expansion yields

q̃1(α|x1)− q1,n(α|x1) = ∆̃(1)
n (α|x1) +

1

2
∆̃(2)
n (α|x1) ,(5.14)
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where

∆̃(1)
n (α|x1) = − 1

n2hd

n∑
k,i=1

Kd

(
F ( i

n
|x1, Xk1)− α

hd

)
(F̃ (

i

n
|x1, Xk1)− F (

i

n
|x1, Xk1)),(5.15)

∆̃(2)
n (α|x1) = −1

2

1

n2h2
d

n∑
k,i=1

K ′d

(
ξi(α, x1, Xk1)− α

hd

)
(F̃ (

i

n
|x1, Xk1)− F (

i

n
|x1, Xk1))

2.(5.16)

As in the proof of Theorem 3.1, we can show that the term ∆̃
(2)
n is asymptotically negligible. The

Term ∆̃
(1)
n requires a more sophisticated treatment and we use the decomposition

ã(1)
n (α|x1) = (1 + o(1)){∆̃(1.1)

n (α|x1) + ∆̃(1.2)
n (α|x1) + ∆̃(1.3)

n (α|x1)},(5.17)

where

∆̃(1.1)
n (α|x1) = − 1

nhd

n∑
k=1

∫ 1

0

Kd

(
F (t|x1, Xk1)− α

hd

)
(5.18)

×

[
1

n

n∑
j=1

Kh1 (x1 −Xj1)LG (Xk1 −Xj1)σ(t|Xj1, Xj1)εj
1
n

∑n
l=1Kh1 (Xj1 −Xl1)LG (Xj1 −Xl1)

]
dt,

∆̃(1.2)
n (α|x1) = − 1

nhd

n∑
k=1

∫ 1

0

Kd

(
F (t|x1, Xk1)− α

hd

)
(5.19)

×

[
1

n

n∑
j=1

Kh1 (x1 −Xj1)LG (Xk1 −Xj1) (F (t|Xj1, Xj1)− F (t|x1, Xk1))
1
n

∑n
l=1Kh1 (Xj1 −Xl1)LG (Xj1 −Xl1)

]
dt

∆̃(1.3)
n (α|x1) = − 1

nhd

n∑
k=1

∫ 1

0

Kd

(
F (t|x1, Xk1)− α

hd

)
F (t|x1, Xk1)(5.20)

×

[
1

n

n∑
j=1

Kh1 (x1 −Xj1)LG (Xk1 −Xj1)
1
n

∑n
l=1Kh1 (Xj1 −Xl1)LG (Xj1 −Xl1)

− 1

]
dt.

Like in the proof of Theorem 3.1 we show that

∆̃(1.1)
n (α|x1) = − 1

n

n∑
j=1

Kh1 (x1 −Xj1) p1(Xj1)σ(Q(α|x1, Xj1)|Xj1, Xj1)εj
p(Xj1, Xj1)F ′(Q(α|x1, Xj1)|x1, Xj1)

+ op

(
1√
nh1

)
,

and it follows in a similar manner as in the last proof that√
nh1∆̃

(1.1)
n (α|x1)

D→ N
(

0,

∫
K2(w)dw

∫
α(1− α)p2

1(x1)

p(x1, x1)(F ′(Q(α|x1, x1)|x1, x1))2
dx1

)
,(5.21)

where the representation of the variance and the Ljapunoff condition are established by a straight-
forward calculation. We now investigate the random variable ∆̃

(1.2)
n (α|x1) in (5.19), for which we

obtain

∆̃(1.2)
n (α|x1) =

1

n

n∑
k=1

β̃k(α|x1) + op

(
1√
nh1

)
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where

β̃k(α|x1) = − 1

n

n∑
j=1

Kh1 (x1 −Xj1)LG (Xk1 −Xj1)

×
(F (Q(α|x1, Xk1)|Xj1, Xj1)− F (Q(α|x1, Xk1)|x1, Xk1))

p(Xj1, Xj1)F ′(Q(α|x1, Xk1)|x1, Xk1)

The calculation of the expectation and variance of 1
n

∑n
k=1 β̃k(α|x1) is straightforward and gives

E
[ 1

n

n∑
k=1

β̃k(α|x1)
]

= −b̃1(α|x1) + o
( 1√

nh1

)
(5.22)

Var
[ 1

n

n∑
k=1

β̃k(α|x1)
]

= o
( 1

nh1

)
(5.23)

For the remaining term ∆̃
(1.3)
n we obtain by similar arguments as in Kim, Linton, and Hengartner

(1999),which yield

∆̃(1.3)
n (α|x1) = −(1 + op(1))

n

n∑
k=1

F (Q(α|x1, Xk1)|x1, Xk1)

F ′(Q(α|x1, Xk1)|x1, Xk1)

[
Kh1(x1 −Xk1)p1(Xk1)

p̂(Xk1, Xk1)
− 1

]
+op

(
1√
nh1

)
Consequently we have

√
nh1(∆̃

(1.3)
n (α|x1) + b̃2(α|x1))

D→ N
(

0,

∫
K2(w)dw

∫
(F (Q(α|x1, x1)|x1, x1))

2p2
1(x1)

p(x1, x1)(F ′(Q(α|x1, x1)|x1, x1))2
dx1

)
.

Moreover, the terms ∆̃
(1.1)
n (α|x1) and ∆̃

(1.3)
n (α|x1) are uncorrelated which gives (by the Cramér-

Wold device). √
nh1(∆̃

(1.1)
n (α|x1) + ∆̃(1.3)

n (α|x1) + b̃2(α|x1))
D→ N

(
0, s̃2(α|x1)

)
(5.24)

The assertion of the theorem now follows from (5.22), (5.23), and (5.24).
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