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Abstract

In this paper we present a direct and simple approach to obtain bounds on the asymp-
totic minimax risk for the estimation of constrained binomial and multinomial proportions.
Quadratic, normalized quadratic and entropy loss are considered and it is demonstrated
that in all cases linear estimators are asymptotically minimax optimal. For the quadratic
loss function the asymptotic minimax risk does not change unless a neighborhood of the
point 1/2 is excluded by the restrictions on the parameter space. For the two other loss
functions the asymptotic behavior of the minimax risk is not changed by such additional
knowledge about the location of the unknown probability. The results are also extended
to the problem of minimax estimation of a vector of constrained multinomial probabilities.

AMS subject Classification: 62C20
Keywords and phrases: binomial distribution, multinomial distribution, entropy loss, quadratic
loss, constrained parameter space, least favourable distribution

1 Introduction

We consider the problem of estimating the unknown parameter θ of a binomial proportion

Pθ(X = k) = Bn,k(θ) :=
(
n

k

)
θk(1− θ)n−k, 0 ≤ k ≤ n(1.1)

where 0 ≤ θ ≤ 1. In many statistical problems the experimenter has definite prior information
regarding the value of θ, often given in the form of bounds 0 ≤ a < b ≤ 1 such that θ ∈ [a, b].
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A commonly used approach to incorporate information of this type in the construction of an
estimator is the minimax concept. A minimax estimate minimizes the maximal risk over the
bounded parameter space [a, b].
Usually neither the determination of a minimax estimate nor the calculation of the minimax
risk (i.e. the risk of the minimax estimate) is a straightforward problem. For the problem of
minimax estimation of the parameter of the binomial distribution over the bounded parameter
space [a, b] ⊂ [0, 1] Berry (1989) found minimax estimates for small values of n and squared error
loss and a symmetric parameter space, i.e. a = 1−b. Recently Marchand and MacGibbon (2000)
determined minimax estimators for the parameter space [0, b] and quadratic and normalized
quadratic loss, provided that the parameter b is smaller than a certain bound, say b∗(n), which
converges to 0 with increasing sample sizes. These authors also determined the linear minimax
rules and corresponding risks for any bounded parameter space [a, b]; see also Lehn and Rummel
(1987) for some related results on Gamma-minimax estimation of a binomial probability with
restricted parameter space and Charras and van Eeden (1991) for some admissibility results in
this context.
It is the purpose of the present paper to provide more information about this minimax estima-
tion problem from an asymptotic point of view. We present a simple and direct approach to
derive the asymptotic minimax risk for the estimation of a binomial probability, which is known
to be in an interval [a, b]. We consider quadratic, normalized quadratic, and also the entropy
loss. The asymptotic minimax risks for the these loss functions are determined for any interval
[a, b]. If the point 1/2 is not contained in the interval [a, b], the asymptotic minimax risk with
respect to the quadratic loss differs for the constrained and unconstrained case, while there are
no asymptotic improvements if 1

2 ∈ [a, b] or if the normalized quadratic or entropy loss function
are chosen for the comparison of estimators. Some heuristical explanation of these phenomena
is given in Remark 3.6. Our results also show that the linear minimax rules by Marchand
and MacGibbon (2000) are asymptotically minimax optimal. The results are also extended to
the situation, where the probability of success is known to be located in a more general set
Θ ⊂ [0, 1] and to the problem of minimax estimation of a vector of constrained multinomial
probabilities. The last-named problem has found much less attention in the literature. For
some results regarding minimax estimation without restrictions on the vector of parameters we
refer to the work of Steinhaus (1957), Trybula (1958, 1986), Olkin and Sobel (1977), Wilczynski
(1985), He (1990) and Braess, Forster, Sauer, and Simon (2002) among many others.
The remaining part of this paper is organized as follows. Section 2 contains the necessary
notation. The main results and some parts of the proofs for the binomial distribution are
given in Section 3 while some more technical arguments are deferred to an appendix. Although
the multinomial distribution contains the binomial as a special case, the latter case is treated
separately in Section 4, mainly because we think that this organization facilitates the general
reading of the paper.
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2 Notation and point of departure

Consider the problem of estimating the parameter θ of the binomial distribution (1.1) and let

L : [0, 1]× [0, 1] → R

denote a convex loss function. It is well known [see e.g. Ferguson (1967)] that for convex loss
functions it is sufficient to consider nonrandomized rules of the form

δ : {0, 1, 2, . . . , n} → [0, 1](2.1)

for the estimation of the probability θ. The quality of such an estimator is measured by the
expected risk

R(δ, θ) := Eθ[L(θ, δ(X))] =
n∑

k=0

Bn,k(θ)L(δk, θ) ,(2.2)

where Bn,k(θ) :=
(

n
k

)
θ(1 − θ)n−k and we use the notation δk = δ(k) for the sake of simplicity

(k = 0, . . . , n). An estimator δ∗ is called minimax with respect to the loss function L if

sup
a≤θ≤b

R(δ∗, θ) = inf
δ
sup

a≤θ≤b
R(δ, θ),

where the infimum is taken over the class of all nonrandomized estimators. In this paper we
consider the quadratic loss function

Lqu(q, p) := (p− q)2,(2.3)

the normalized or standardized quadratic loss function

Lsq(q, p) :=
(p− q)2
p(1− p) ,(2.4)

and the entropy loss function

LKL(q, p) := p log
p

q
+ (1− p) log 1− p

1− q(2.5)

that is also called Kullback–Leibler distance. The loss functions (2.3) and (2.4) have been
studied by Marchand and McGibbon (2000) in the same context while the entropy loss LKL

has been used for minimax estimation with an unconstrained parameter space by Cover (1972)
and Wieczorkowski and Zieliński (1992), who obtained some numerical results. Braess and
Sauer (2003) established sharp asymptotic bounds for the minimax risk with respect to this
loss function if [a, b] = [0, 1].
In the unconstrained case the minimax rules for the loss functions (2.3), (2.4) are well known
and given by the “add-β-rules”

δβ
k :=

k + β
n+ 2β

, k = 0, . . . , n,(2.6)
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where β = 1
2

√
n and β = 0, respectively; see Lehmann (1983). The phrase add-β-rule is adopted

from learning theory [see Cover (1972), Krichevskiy (1998)], where minimax rules with respect
to entropy loss are used to obtain optimal codings. In particular, add-β-rules are linear and
have the symmetry property

δβ(k) + δβ(n− k) = 1.(2.7)

The corresponding minimax risks are given by

inf
δ
sup

θ∈[0,1]
Rqu(δ, θ) =

n

4(n+
√
n)2

,(2.8)

inf
δ
sup

θ∈[0,1]
Rsq(δ, θ) =

1
n
,(2.9)

and
inf
δ
sup

θ∈[0,1]
RKL(δ, θ) =

1
2n
(1 + o(1)),(2.10)

respectively. The asymptotic minimax estimate for the entropy loss is achieved by the combi-
nation of three add-β-rules, i.e.

δKL
k =




1/2
n+5/4 k = 0,

2
n+7/4 k = 1,
k+3/4
n+3/2 k = 2, . . . , n− 2,
n−1/4
n+7/4 k = n− 1,
n+3/4
n+5/4 k = n;

(2.11)

see Braess and Sauer (2003).

3 Constrained minimax estimation of binomial proba-
bilities

Our first result shows that the minimax rules remain asymptotically optimal if the parameter
space is restricted to an interval [a, b], which contains the point 1/2.

Theorem 3.1 Assume that 0 ≤ a < 1/2 < b ≤ 1, then we have for n → ∞

inf
δ
sup

θ∈[a.b]
Rqu(δ, θ) =

n

4(n+
√
n)2
(1 +O(n−1)) =

1
4n
(1 +O(n−1/2)),

inf
δ
sup

θ∈[a,b]
Rsq(δ, θ) =

1
n
(1 +O(n−1/2)),

inf
δ
sup

θ∈[a,b]
RKL(δ, θ) =

1
2n
(1 + o(1)).
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Proof. The upper bounds are immediate from (2.8)–(2.10) because the maximal risk with
respect to the restricted parameter space [a, b] ⊂ [0, 1] is always smaller than the original one.
The essential step is the proof of the lower bound for the risk with respect to the quadratic loss
function.
We recall that the add-β-rule (2.6) with β = 1

2

√
n is the minimax estimate on the unrestricted

interval; see Lehmann (1983), and it yields a constant risk function,

Rqu(δ
1
2
√

n, θ) =
n

4(n+
√
n)2
.(3.1)

Now let wm(t) := cmt
m(1 − t)m denote the beta-prior, where m = 1

2

√
n − 1 and cm is a

normalizing constant such that wm integrates to 1. Since we are concerned with lower bounds
here, the normalization may refer to the integral over the (larger) interval [0, 1]. The rule δ

1
2
√

n

is the Bayes estimate for quadratic loss on the unrestricted parameter space with respect to
the prior wm, i.e. we have for any estimate δ : {0, 1, . . . , n} → [a, b]:

∫ 1

0
Rqu(δ, t)wm(t)dt ≥

∫ 1

0
Rqu(δ

1
2
√

n, t)wm(t)dt =
n

4(n+
√
n)2
.(3.2)

Next, note that for any estimate δ:

Rqu(δ, θ) ≤ 1 for all θ ∈ [a, b].(3.3)

Therefore we obtain from (3.2) and (3.3) for any estimate δ : {0, 1, . . . , n} → [a, b]:

sup
θ∈[a,b]

Rqu(δ, θ) ≥
∫ b

a

Rqu(δ, t)wm(t)dt

=
∫ 1

0
Rqu(δ, t)wm(t)dt− (

∫ a

0
+

∫ 1

b

)Rqu(δ, t)wm(t)dt

≥
∫ 1

0
Rqu(δ

1
2
√

n, t)wm(t)dt− (
∫ a

0
+

∫ 1

b

)wm(t)dt.(3.4)

Now we use Lemma A.1 with α := 1/2 and s :=
√
n − 2 for estimating the integral over the

interval [0, a]. The integral at the right boundary can be treated in the same way. Noting that∫ 1
0 wmdt = 1 we obtain for sufficiently large n the lower bound

sup
θ∈[a,b]

Rqu(δ, θ) ≥ n

4(n+
√
n)2

− 2 1
n2 ,(3.5)

which proves the assertion of Theorem 3.1 for the quadratic loss function.
The second part of the theorem regarding the normalized quadratic loss is now a simple conse-
quence. From θ(1− θ) ≤ 1

4 it follows that

Lsq(δ, θ) ≥ 4Lqu(δ, θ)(3.6)
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holds for all arguments. Thus we have for any estimate δ : {0, . . . , k} → [0, 1] and sufficiently
large n:

sup
θ∈[a,b]

Rsq(δ, θ) ≥ 4 sup
θ∈[a,b]

Rqu(δ, θ) ≥ n

(n+
√
n)2

+O
( 1
n2

)
=
1
n
(1 +O(n−1/2)).

An alternative proof which also covers the case 1
2 �∈ [a, b] and which is more direct will be

provided in connection with Theorem 3.2.
For the remaining lower bound regarding the entropy loss function we also use a comparison
and observe that

LKL(q, q) =
∂

∂p
LKL(q, p)

∣∣∣
p=q
= 0,

∂2

∂p2LKL(q, p) =
1

p(1− p) .

Hence,
LKL(q, p) ≥ 2Lqu(q, p) := 2(p− q)2.(3.7)

From the result for the quadratic loss function we obtain as above

inf
δ
sup

θ∈[a,b]
RKL(δ, θ) ≥ 2 inf

δ
sup

θ∈[a,b]
Rqu(δ, θ) =

n

2(n+
√
n)2
(1 +O(n−1)) =

1
2n
(1 + o(1)).

✷

In the following we will investigate the situation where the point 1/2 is not contained in the
interval [a, b]. For the normalized quadratic and the entropy loss the asymptotic minimax risks
remain unchanged, while there are differences for the quadratic loss function (2.3).
In the proof of Theorem 3.1 we used a prior distribution that is least favorable for the quadratic
loss and for finite n. Therefore, we got the risk for the quadratic loss with a deviation of O(n−1)
as n → ∞. In all other cases, the prior for the constrained domain differs from the prior for
the full interval, and the deviation from the limit is only of order O(n−1/2) or even o(1). In this
context we observe another feature. In many calculations of a minimax risk a prior is chosen
such that the resulting risk function is a constant or nearly constant function of θ. This will
be different in the analysis of restricted parameter spaces which do not contain the point 1/2.

Theorem 3.2 If 0 ≤ a < b ≤ 1/2, then

inf
δ
sup

θ∈[a,b]
Rqu(δ, θ) =

b(1− b)
n

(1 + o(1)),(3.8)

inf
δ
sup

θ∈[a,b]
Rsq(δ, θ) =

1
n
(1 +O(n−1/2))).(3.9)

Proof. This time we start with the analysis of the normalized quadratic loss.
The upper bound in (3.9) is obvious from (2.9) again. The proof of the lower bound proceeds
in the spirit of the proof of Theorem 3.1, but requires the use of a non symmetric beta-prior

wm,�(t) := cm,� t
m(1− t)�(3.10)
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(here cm,� is again a normalizing constant), which makes the arguments more technical. The
parameters m and � will be fixed later such that the mode of the density wm,� is an interior
point of the interval [a, b] under consideration. The corresponding Bayes estimate (with respect
to the normalized quadratic loss) is known to be

δm,�(k) = δm,�
k =

k +m
n+m+ �

;(3.11)

[see Lehmann (1983)]. We note that for m �= � this estimator does not possess the symmetry
property (2.7). Sums of the Bernstein polynomials (1.1) with quadratic polynomials are easily
treated [see e.g. Lorentz (1952)], and a straightforward calculation gives for the associated risk
function

Rsq(δm,�, θ) =
1

θ(1− θ)
1

(n+m+ �)2
{[(m+ �)θ −m]2 + nθ(1− θ)}.

We now fix (m+ �)2 = n, denote any corresponding estimate by δ∗, and obtain

Rsq(δ∗, θ) =
1

θ(1− θ)
1

(n+
√
n)2
[m2 + (n− 2m√

n)θ].(3.12)

The corresponding Bayes risk is
∫ 1

0
Rsq(δ∗, t)wm,�(t)dt =

1
(n+

√
n)2
[
m

�
(n+

√
n) +

√
n+ 1
�

(n− 2m√
n)]

=
1

n+
√
n
,(3.13)

where we used the condition (m+ �)2 = n and the representations

cm,�

cm−1,�−1
=

∫
tm−1(1− t)�−1dt∫
tm(1− t)�dt =

(m+ �)(m+ �+ 1)
m�

=
n+

√
n

m�
,(3.14)

cm,�

cm,�−1
=

∫
tm(1− t)�−1dt∫
tm(1− t)�dt =

m+ �+ 1
�

=
√
n+ 1
�

.

A comparison with (2.9) shows that (3.13) is only asymptotically optimal, but the prior (3.10)
gives us the flexibility for the analysis of the constrained case. Since δ∗ is the Bayes estimate
on the interval [0, 1], it follows that for any estimate δ

sup
θ∈[a,b]

Rsq(δ, θ) ≥
∫ b

a

Rsq(δ, t)wm,�(t)dt

=
∫ 1

0
Rsq(δ, t)wm,�(t)dt−

(∫ a

0
+

∫ 1

b

)
Rsq(δ, t)wm,�(t)dt

≥
∫ 1

0
Rsq(δ∗, t)wm,�(t)dt−

(∫ a

0
+

∫ 1

b

) wm,�

t(1− t)(t)dt

=
1

n+
√
n

−
(∫ a

0
+

∫ 1

b

)wm,�(t)
t(1− t)dt.(3.15)
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The remaining integrals are now estimated similarly as in the proof of Lemma 3.1 using the
non symmetric beta-prior. We set α := (a+ b)/2 and

m := α(
√
n− 2) + 1, � := (1− α)(√n− 2) + 1.(3.16)

Observing that α is the point, where the function tm−1(1− t)�−1 attains its unique maximum,
and setting s :=

√
n− 2 we conclude with Lemma A.1 that∫ a

0
tm−1(1− t)�−1dt ≤ 1

n2

∫ 1

0
tm(1− t)�dt(3.17)

for sufficiently large n ∈ N. The same bound can be established for the integral over the interval
[b, 1]. Finally, a combination of (3.15) with (3.17) yields

sup
x∈[a,b]

Rsq(δ, θ) ≥ 1
n+

√
n

− 2 1
n2 =

1
n
(1 +O(n−1/2))

for any estimate δ, which gives the lower bound for (3.9).

We now turn to the proof of the estimate (3.8). The analysis of the quadratic loss for the
interval [0, b] heavily depends on a comparison with the normalized quadratic loss. The upper
bound follows by using the estimate δ0k = k/n, and (2.9) gives for any θ ∈ [0, b]

Rqu(δ0, θ) = θ(1− θ)Rsq(δ0, θ) = θ(1− θ) 1
n

≤ b(1− b)
n

,

(note that b ≤ 1
2). For deriving the lower bound we note that we have for any estimate δ and

any 0 < ε < b− a
sup

θ∈[a,b]
Rqu(δ, θ) ≥ (b− ε)(1− b− ε) sup

θ∈[b−ε,b]
Rsq(δ, θ).

From (3.9) we know that the last factor is asymptotically at least 1/n(1 + O(n−1/2)). Since
ε > 0 may be arbitrarily small, the proof is complete. – This short proof, however, does not
provide a rate of convergence for improving (3.8) ✷

Theorem 3.3 If 0 ≤ a < b ≤ 1, then we have for the Kullback–Leibler distance

inf
δ
sup

θ∈[a,b]
RKL(δ, θ) =

1
2n
(1 + o(1)).

A detailed proof of this result will be given in Appendix B. The main idea is to observe that
the beta-prior (3.10) yields

δm,�(k) =
k +m+ 1

n+m+ �+ 2
.

as Bayes estimate. For this estimate a (uniform) risk of the form

1
2n
(1 + o(1))

can be verified in the subinterval [ε, 1− ε] for any ε > 0. Thus we have a nearly constant Bayes
risk in the actual domain and obtain the minimax value by standard arguments.
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Remark 3.4 Marchand and MacGibbon (2000) showed numerically that the ratio of the linear
minimax and minimax risk is close to one. Their explicit representation of the linear minimax
rules [see Theorems 3.5 and 3.9 in Marchand and MacGibbon (2000)] and the results of the
present paper show that the linear minimax estimates for quadratic and standardized quadratic
loss also achieve the global asymptotic minimax risk in the case of a restricted parameter space.

Remark 3.5 The results show that the maximum risk with respect to the quadratic loss
function can only be diminished asymptotically by additional knowledge about the probability
of success, if the parameter space is restricted by that knowledge to an interval, which does not
contain the center 1/2. For the two other risk functions additional knowledge regarding the
location of the probability of success does not decrease the risk asymptotically. The arguments
also show that the truncated estimators

δ
1
2
√

n

k · I{a ≤ k
n

≤ b}+ a · I{ k
n
< a}+ b · I{ k

n
> b}

δ0k · I{a ≤ k
n

≤ b}+ a · I{ k
n
< a}+ b · I{ k

n
> b}

and
δKL
k · I{a ≤ k

n
≤ b}+ a · I{ k

n
< a}+ b · I{ k

n
> b}

are asymptotically minimax rules; see also Charras and van Eeden (1991). We finally note that
for the quadratic loss the linear minimax estimate takes values in the interval [a, b], if b− a is
sufficiently large. In this case no truncation is required.

Remark 3.6 As pointed out by a referee it might be of interest to have some intuitive expla-
nation of our results, which state that the location of the point 1/2 (with respect to the interval
[a, b]) plays such an important role on the asymptotic minimax risk. For the quadratic loss with
an unconstrained parameter space it is well known [see e.g. Lehmann (1983) or Bickel and Dok-
sum (1977)] that the minimax estimate has only a smaller risk than the classical UMVU rule
δ0k = k/n in a neighourhood (−cn + 1/2, 1/2 + cn) of the point 1/2 which shrinks (i.e. cn → 0)
to the point 1/2 for an increasing sample size. The reason for this fact is that the risk function
of δ0 is given by θ(1 − θ)/n, which attains its maximum 1/(4n) at θ = 1/2, Consequently, if
squared error loss and a restricted parameter space Θ = [a, b] are considered, the asymptotic
minimax risk remains unchanged, if and only if 1/2 ∈ [a, b]. Note also that θ(1 − θ)/n is the
optimal bound of the Cramér-Rao inequality for unbiased estimators of θ, and that the nor-
malized squared error criterion takes into account the different size of this bound for different
values of θ. As a consequence there exists no dominating value ϑ for the risk function of the
UMVU rule δ0 with respect to the normalized quadratic loss, and such phenomenon cannot be
observed.
The argument for entropy loss function is similar using the expansion

log(1 + x) = x− x2/2 + o(x2),

that is

p log
p

q
+ (1− p) log 1− p

1− q = −p log
(
1 +

q − p
p

)
− (1− p) log

(
1− q − p

1− p
)

=
(q − p)2
2p(1− p) + o

((q − p)2(1− 2p)
p2(1− p)2

)
.
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Consequently, we expect to observe the same phenomena for the entropy loss as found for the
normalized quadratic loss. Theorems 3.1 – 3.3 make these heuristical arguments rigorous.

Remark 3.7 In the unrestricted case the parameters β in the optimal estimators for the
squared error loss and the normalized squared error loss differ by

√
n/2. The difference in

the resulting risk, however, is only a portion of order n−1/2. Now a restriction of the probabil-
ity θ may induce a shift of the parameter β in such a way that the difference between the two
loss functions becomes less relevant for the choice of the estimator.
The behavior of the Kullback–Leibler distance is closer to that of the normalized squared
error loss function. It is remarkable that the risk is very insensitive to the parameters β in the
estimator as long as we stay in the interior of the interval [0, 1] and β ≤ n1/4. It is an effect of the
boundary that usually parameters β close to 1/2 are chosen. In this context we note (without
proof) that Theorem 3.3 can be improved if the boundary is excluded: If 0 < a < b < 1, then

inf
δ
sup

θ∈[a,b]
RKL(δ, θ) =

1
2n
(1 +O(n−1)).

4 Constrained minimax estimation of multinomial prob-
abilities

In this section we study the problem of minimax estimation for the parameters of a multinomial
distribution under certain constraints. As a by-product we also obtain some generalizations of
the results in Section 3 to more general parameter spaces Θ ⊂ [0, 1]. To be precise, let n, d ∈ N

and assume that X = (X0, . . . , Xd)T is a random vector with probability law

P (Xi = ki; i = 0, . . . , d) =Mn,k(θ) := n!
d∏

i=0

θki
i

ki!
,(4.1)

whenever
∑d

i=0 ki = n and 0 otherwise. Here the vector of probabilities θ = (θ0, . . . , θd)T is
contained in the d-dimensional simplex

∆ :=
{
(x0, . . . , xd)T ∈ [0, 1]d+1 |

d∑
i=0

xi = 1
}
.(4.2)

Throughout this section we let

δ = (δ0, . . . , δd)T :
{
(k0, . . . , kd) ∈ N

d+1
0

∣∣∣
d∑

i=0

ki = n
}

−→ ∆

denote a nonrandomized estimate of θ, and we write for the sake of simplicity

δk = δ(k) = (δ0(k), . . . , δd(k))T = (δ0k, . . . , δ
d
k)

T .
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In the unconstrained case θ ∈ ∆ much effort has been devoted to the problem of minimax
estimation of the vector θ with respect to quadratic and normalized quadratic loss functions
[see e.g. Steinhaus (1957), Trybula (1958, 1986), Olkin and Sobel (1977), Wilczynski (1985), He
(1990) among many others]. Braess, Forster, Sauer, and Simon (2002) consider the multivariate
entropy loss and extend the lower bound of Cover (1972) to the multivariate case. In the present
section we consider the problem of minimax estimation of a vector of constrained multinomial
probabilities with respect to the loss functions

Lqu(δ, θ) =
d∑

i=0

(δi − θi)2,(4.3)

Lsq(δ, θ) =
d∑

i=0

(δi − θi)2
θi

,(4.4)

LKL(δ, θ) =
d∑

i=0

θi log
θi
δi
.(4.5)

The corresponding risks are denoted by Rqu, Rsq, and RKL, respectively. Note that

Lsq(δ, θ) = (δ̄ − θ̄)TΣ−1(δ̄ − θ̄)
where Σ = diag(θ1, . . . , θd)−(θiθj)di,j=1 is the Fisher information matrix of θ̄ and the vectors δ̄, θ̄
are obtained from the corresponding quantities δ, θ by omitting the first component. Conse-
quently, (4.4) is the multivariate analogue of the normalized loss (2.4). The minimax estimators
in the unconstrained case for the quadratic and normalized quadratic loss functions are given
by

δi
qu(k) =

ki +
√
n/(d+ 1)

n+
√
n

, i = 0, . . . , d,(4.6)

[see Steinhaus (1957)] and

δi
sq(k) =

ki

n
, i = 0, . . . , d,(4.7)

[see Olkin and Sobel (1979)], respectively, where the vector k = (k0, . . . , kd) ∈ N
d+1
0 satisfies∑d

i=0 ki = n. The rules (4.6) and (4.7) have the form

δi
β(k) =

ki + β
n+ (d+ 1)β

, i = 0, . . . , d;(4.8)

and are therefore multivariate add-β-rules. The corresponding minimax risks with respect to
the unconstrained parameter space are given by

inf
δ
sup
θ∈∆

Rqu(δ, θ) = sup
θ∈∆

Rqu(δqu, θ) =
d

d+ 1
n

(n+
√
n)2

,(4.9)

inf
δ
sup
θ∈∆

Rsq(δ, θ) = sup
θ∈∆

Rsq(δsq, θ) =
d

n
,(4.10)

inf
δ
sup
θ∈∆

RKL(δ, θ) =
d

2n
(1 + o(1)),(4.11)
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respectively [see Braess and Sauer (2003) for the last estimate].
In the following we establish the asymptotic minimax risks for the estimation of constrained
multinomial probabilities, where the parameter θ is known to be contained in a subset Θ ⊂ ∆.
Here the analysis is more involved since there are no simple generalizations of the inequalities
(3.6) and (3.7).

Theorem 4.1 (a) If Θ ⊂ ∆ contains a neighborhood of the point
(

1
d+1 , . . . ,

1
d+1

)T

, then

inf
δ
sup
θ∈Θ

Rqu(δ, θ) =
d

d+ 1
n

(n+
√
n)2

(1 +O(n−1)).(4.12)

(b) If Θ ⊂ ∆ contains an open set, then

inf
δ
sup
θ∈Θ

Rsq(δ, θ) =
d

n
(1 + o(1)),(4.13)

inf
δ
sup
θ∈Θ

RKL(δ, θ) =
d

2n
(1 + o(1)).(4.14)

Proof. (a) Since the upper bound is clear from (4.9), we turn to the proof of the lower bound.
Priors of the form

wm(t) := cm
d∏

i=0

tmi
i(4.15)

where m = (m1, . . . ,md) and cm is a normalization factor, will be appropriate in all cases.
Here we consider the Bayes risk for priors with mi = � for all i. It is well-known [see e.g.
Steinhaus (1957)] that the Bayes estimate with respect to the prior wm with m = (�, . . . , �) is
the multivariate add-β-rule (4.8) with β = � + 1. This fact is independent of the dimension.
Therefore, the rule δqu as given by (4.6) is the Bayes estimate with respect to the prior wm if
we choose mi :=

√
n/(d+ 1)− 1 for all i. We also recall that Rqu(δqu, ·) is a constant function

given by the right hand side of (4.9) [see Steinhaus (1957)]. Now we can proceed as in the proof
of Theorem 3.1. We note that Rqu(δ, θ) ≤ d + 1 holds for all pairs (δ, θ), and we only have to
apply Lemma A.2 with α = 1

d+1(1, 1, . . . , 1)
T instead of Lemma A.1 to complete the proof.

(b) A proof of (4.13) proceeds in the same manner and is a generalization of the proof of (3.9)
for Theorem 3.2. Let α be an interior point of Θ. In particular, all components of α are positive.
Set mi := (

√
n − d − 1)αi + 1 for i = 0, 1, . . . , d. Obviously,

∑d
i=0mi =

√
n. From Lemma

A.3 it follows that the prior (A.1) leads to a Bayes risk that has the correct asymptotic rate,
i.e. d

n
(1 + o(1)). Moreover, Rsq(δ, θ) ≤ (d + 1)/

∏d
j=0 θj holds for all pairs (δ, θ). Now we also

proceed along the lines of the proof in the univariate case, we only have to apply Lemma A.2
instead of Lemma A.1 to complete the proof of (4.13).
The proof of (4.14) is similar to the proof of Theorem 3.3 after the multidimensional case has
been reduced to a one-dimensional by Lemma 6 in Braess and Sauer (2003). It is abandoned
here. ✷

Finally we deal with the case which was excluded in the preceding theorem.

12



Theorem 4.2 Let Θ ⊂ ∆, and assume that Θ is the closure of its interior points. Then

inf
δ
sup
θ∈Θ

Rqu(δ, θ) =
1
n
sup
θ∈Θ

d∑
i=0

θi(1− θi)(1 + o(1)) .(4.16)

Note that (4.16) is a generalization of (4.12) since

sup
θ∈Θ

d∑
i=0

θi(1− θi) = d

d+ 1
= sup

θ∈∆

d∑
i=0

θi(1− θi) ,

whenever the set Θ contains the point ( 1
d+1 , . . . ,

1
d+1)

T .

Proof of Theorem 4.2. For establishing the upper bound, we consider the minimax estimator
with respect to the normalized quadratic loss function Lsq given in (4.7)

δi
sq(k) =

ki

n
.

The resulting risk is

Rqu(δsq, θ) =
1
n

d∑
i=0

θi(1− θi),(4.17)

and by taking the supremum we obtain the upper bound.
We turn to the verification of the bound from below. Given ε > 0, let α be an interior point of
Θ such that

d∑
i=0

αi(1− αi) ≥ sup
θ∈Θ

d∑
i=0

θi(1− θi)− ε.

We consider the prior (4.15) with

mi := αis, i = 0, 1, . . . , d, s :=
√
n− d− 1.(4.18)

The corresponding Bayes estimate for the quadratic loss function is given by

δ∗i(k) =
ki +mi + 1

n+ |m|+ d+ 1 ,

where we used the notation |m| = ∑d
i=0mi. Note that

∑d
i=0(mi + 1) =

√
n, and a straightfor-

ward calculation analogous to (A.4) yields

Rqu(δ∗, θ) =
1

(n+
√
n)2

d∑
i=0

{
(mi + 1)2 − 2(|m|+ d+ 1)(mi + 1)θi + nθi

}

=
1

(n+
√
n)2

d∑
i=0

{
(mi + 1)2 − 2√n(mi + 1)θi + nθi

}
.

13



Next we note that ∫
∆wm(t)ti dt∫
∆wm(t) dt

=
mi + 1∑d

i=0mi + d+ 1
=
mi + 1√

n
.

Hence, ∫
∆
Rqu(δ∗, t)wm(t) dt =

1
(n+

√
n)2

d∑
i=0

{
n−

d∑
i=0

(mi + 1)2
}

=
1

(n+
√
n)2

d∑
i=0

{
n−

d∑
i=0

m2
i − 2|m| − d− 1

}

≥ 1
(n+

√
n)2

d∑
i=0

{
n−

d∑
i=0

α2
i (

√
n)2 − 2√n

}

=
n

(n+
√
n)2

d∑
i=0

{
1−

d∑
i=0

α2
i

}
(1 +O(n−1/2)).

Since α ∈ ∆, it follows that 1− ∑d
i=0 α

2
i =

∑d
i=0 αi(1−αi), and the proof can be completed as

the proof of Theorem 4.1a. ✷

A Appendix: Auxiliary results

A.1 Two Lemmas

Lemma A.1 If 0 < a < α < 1, then the estimate∫ a

0
tαs(1− t)(1−α)sdt ≤ (s+ 2)−4

∫ 1

0
tαs+1(1− t)(1−α)s+1dt

≤ (s+ 2)−4
∫ 1

0
tαs(1− t)(1−α)sdt

holds for sufficiently large s.

Proof. We choose γ ∈ (a, α). The function t �→ tαs(1 − t)(1−α)s attains its (unique) maximum
at t = α and consequently we have λ := aα(1− a)(1−α)/γα(1− γ)(1−α) < 1. The monotonicity
of this function on (0, α) also implies∫ a

0
tαs(1− t)(1−α)sdt ≤ a[aα(1− a)(1−α)]s = aλs[γα(1− γ)(1−α)]s

≤ a

α− γ λ
s

∫ α

γ

tαs(1− t)(1−α)sdt

≤ a

α− γ
1

α(1− γ) λ
s

∫ α

γ

tαs+1(1− t)(1−α)s+1dt

≤ a

α− γ
1

α(1− γ) λ
s

∫ 1

0
tαs+1(1− t)(1−α)s+1dt.

14



The first inequality in the assertion now follows from (s+2)4λs → 0 as s → ∞, and the second
one is obvious. ✷

An extension of the lemma above is required for the analysis of the multivariate case.

Lemma A.2 Assume that α = (α0, . . . , αd) is an interior point of the set Θ ⊂ ∆ with ∆
being defined in (4.2). Let Θc denote the complement of the set Θ in ∆. With the notation
φ(t) :=

∏d
i=0 t

αi
i , we have for sufficiently large s:

∫
Θc

φ(t)sdt ≤ (s+ d+ 1)−4
∫

∆
φ(t)s

d∏
j=0

tjdt ≤ (s+ d+ 1)−4
∫

∆
φ(t)sdt.

Proof. Set r := φ(α) and note that the function φ attains its unique maximum at the point α.
By compactness, we therefore obtain

λ :=
1
r
sup
t∈Θc

φ(t) < 1.

Now consider the set
T := {t ∈ ∆;φ(t) ≥ λ1/2r}

and let |Θc| and |T | denote the Lebesgue measure of Θc and T , respectively. The product∏d
j=0 tj is positive on the compact set Θ

c. With these preparations we obtain the following
estimates for the integral under consideration∫

Θc

φ(t)sdt ≤ |Θc| sup
t∈Θc

{φ(t)s} = |Θc| (rλ)s

≤ |Θc|λs/2 1
|T |

∫
T

φ(t)sdt

≤ |Θc|
|T | supt∈Θc

{ d∏
j=0

t−1
j

}
λs/2

∫
T

φ(t)s
d∏

j=0

tj dt

≤ |Θc|
|T | supt∈Θc

{ d∏
j=0

t−1
j

}
λs/2

∫
∆
φ(t)s

d∏
j=0

tj dt .

Now the first assertion follows from (s+ d+ 1)4λs/2 → 0 as s → ∞, and the second inequality
is obvious. ✷

A.2 A suboptimal Bayes risk

Lemma A.3 Let mi > 0, i = 0, 1, . . . , d, m = (m0, . . . ,md) and

wm(t) := cm
d∏

j=0

t
mj

j ,

∫
∆
wm(t)dt = 1,(A.1)
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denote the (generalized) beta-prior. Then the Bayes estimate with respect to the normalized risk
(4.4) and the prior (A.1) is

δ∗i(k) =
ki +mi

n+ |m| ,(A.2)

where |m| := ∑d
i=0mi. If moreover |m| = √

n, then the risk of δ∗ is given by (A.4) below and
the Bayes risk is ∫

∆
Rsq(δ∗, t)wm(t)dt =

d

n+
√
n
.(A.3)

Proof. Using the notation t = (t0, . . . , td) we compute the integral under consideration
∫

∆

∑
k

Mn,k(t)
d∑

i=0

(ti − δi(k))2

ti

d∏
j=0

t
mj

j dt

=
∑

k

n!
k0! . . . kd!

d∑
i=0

∫
∆
(ti − δi(k))2 tmi+ki−1

i

∏
j �=i

t
mj+kj

j dt

=
∑

k

n!
k0! . . . kd!

d∑
i=0

{
δi(k)2

∏d
j=0 Γ(mj + kj + 1)

(mi + ki)Γ(|m|+ n+ d)

−2δi(k)

∏d
j=0 Γ(mj + kj + 1)
Γ(|m|+ n+ d+ 1) + const

}
.

When the minimum over all δ(k) is determined, we may add a multiple of
∑d

i=0 δ
i(k)− 1 and

obtain (A.2) by looking for a root of the gradient.
Note that δ∗i(k) depends only on the component ki. Therefore, we can use the reduction to
one-dimensional expressions as given by Lemma 6 of Braess and Sauer (2003). For any set of
functions Gj : [0, 1]× N → R we have

∑
k

Mn,k(θ)
d∑

i=0

Gi (θi, ki) =
d∑

i=0

n∑
j=0

Bn,j (θi) Gi (θi, j) .

The risk for the Bayes estimate is now evaluated

Rsq(δ∗, θ) =
∑

k

Mn,k(θ)
d∑

i=0

1
θi
(θi − δi(k))2

=
d∑

i=0

n∑
j=0

Bn,j(θi)
1
θi

(
θi − j +mi

n+ |m|
)2
.

The sums over Bernstein polynomials and quadratic expressions in j yield quadratic expressions
in θi,

Rsq(δ∗, θ) =
d∑

i=0

1
θi

{
(θi − mi

n+ |m| − n

n+ |m|θi)
2 +

n

(n+ |m|)2 θi(1− θi)
}
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=
1

(n+ |m|)2
d∑

i=0

1
θi

{
(|m|θi −mi)2 + nθi(1− θi)

}
.

Next, we restrict ourselves to the case |m| = √
n to obtain

Rsq(δ∗, θ) =
1

(n+
√
n)2

d∑
i=0

1
θi

{
m2

i − 2|m|miθi + nθi
}

=
1

(n+
√
n)2

{
n(d− 1) +

d∑
i=0

m2
i

θi

}
.(A.4)

Recall that
∫

∆
1
ti

∏
j t

mj

j dt/
∫

∆

∏
j t

mj

j dt = (|m|+ d)/mi, and we have

∫
∆
Rsq(δ∗, θ)wm(t)dt =

1
(n+

√
n)2

{n(d− 1) +
d∑

i=0

mi (|m|+ d)}

=
d

n+
√
n
,

which completes the proof of the lemma. ✷

B Appendix: Proof of Theorem 3.3

The proof of Theorem 3.3 requires several preparations. While the Bayes risk for priors of
the form (3.10) was known for the squared loss and the normalized squared loss, it has to be
established here for the Kullback–Leibler distance.
Given f ∈ C[0, 1] let Bn[f ] denote its n-th Bernstein polynomial

Bn[f ](x) :=
n∑

k=0

Bn,k(x)f(
k

n
) .

Braess and Sauer (2003) established lower bounds for f −Bn[f ], where

f(x) := −x log x+ (1− x) log(1− x) .(B.1)

However, for our purposes upper bounds are required. Fortunately they are more easily obtained
since we can abandon the boundary points 0 and 1 and the trouble that they cause.

Lemma B.1 Let f be defined by (B.1), and 0 < a < b < 1. Then

f(x)−Bn[f ](x) ≤ 1
2n
+
c0
n2 for all a ≤ x ≤ b,

with c0 being a constant that depends only on a and b.
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Proof. Given x0 ∈ [a, b], let Q3 be the Taylor polynomial

Q3(x) = f(x0) + f ′(x0)(x− x0)− 1
2x0(1− x0)

(x− x0)2 +
1
3!
f ′′′(x0)(x− x0)3.

Here we only give an explicit expression for the second derivative since the associated term is
the crucial one. Let a1 := a/2 and b1 := (b+ 1)/2. By Taylor’s remainder formula we have

Q4(x) = Q3(x) +
c′

4!
(x− x0)4 ≥ f(x)(B.2)

for a1 ≤ x ≤ b1 if we set c′ = mina1≤t≤b1{f (4)(t)}. After reducing c′ by a finite amount, we
know that (B.2) holds for all x ∈ [0, 1]. In particular, a compactness argument shows that |c′|
can be bounded by a constant that depends only on a and b.
The monotonicity of the Bernstein operator f �→ Bn[f ] and the inequality (B.2) imply that
Bn[f ](x) ≤ Bn[Q4](x). We will make use of this fact at x = x0. By Proposition 4 of Braess and
Sauer (2003) or Lorentz (1952) we know that:

Bn[1](x0) = 1,

Bn[(x− x0)](x0) = 0,

Bn[(x− x0)2](x0) =
x0(1− x0)

n
,

Bn[(x− x0)3](x0) =
x0(1− x0)

n2 (1− 2x0),

Bn[(x− x0)4](x0) = 3
x2

0(1− x0)2

n2 +
x0(1− x0)

n3 [1− 6x0(1− x0)].

The cubic and the quartic terms give only rise to contributions of order O(n−2) and

Bn[f ](x0) ≤ Bn[Q4](x0) = f(x0)− x0(1− x0)
2nx0(1− x0)

+ c′′
1
n2 .

The difference f(x0)−Bn[f ](x0) yields the required estimate at x = x0. ✷

Lemma B.2 Let m, � > 0. Then the Bayes estimate with respect to the Kullback–Leibler
distance (2.5) and the prior wm−1,�−1 defined in (3.10) is given by the rule δm,� in (3.11). If
moreover m+ � = n1/4, then the risk of δm,� implies

RKL(δm,�, θ) ≥ 1
2n

− c1
n2 for a ≤ x ≤ b(B.3)

with c1 depending only on a and b. If 0 < α < 1, m = αn1/4, and � = (1 − α)n1/4, then the
Bayes risk satisfies ∫ 1

0
RKL(δm,�, t)wm−1,�−1(t)dt ≥ 1

2n
− c2
n2 .(B.4)

with c2 depending only on α.
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Proof. (1) When the Bayes estimate is determined, we may ignore the terms that do not depend
on δ, ∫ 1

0
RKL(δm,�, t)wm−1,�−1(t)dt

= cm,�

n∑
k=0

∫ 1

0
tm+k−1(1− t)�+n−k−1 [t log

1
δk
+ (1− t) log 1

1− δk ] dt

+ const

= cm,�

n∑
k=0

(
n

k

)
Γ(m+ k)Γ(�+ n− k)
Γ(m+ �+ n+ 1)

[(m+ k) log
1
δk
+ (�+ n− k) log 1

1− δk ]

+ const.

Each parameter δk enters only into one summand and the minimum is attained if m+k
δk

− �+n−k
1−δk

=
0 which yields (3.11) as Bayes estimate.
(2) Following Braess and Sauer (2003) we determine the risk for n− 1 instead of n. Recalling
(B.1) we find by a shift of indices

RKL,n−1(δ, θ) =
n−1∑
k=0

(
n− 1
k

)
θk(1− θ)n−1−k

[
θ log

θ

δk
+ (1− θ) log 1− θ

1− δk
]

=
n∑

k=0

(
n

k

)
θk(1− θ)n−k

[k
n
log

1
δk−1

+
n− k
n

log
1

1− δk
]

− f(θ)

=
1
n

n∑
k=0

Bn,k(θ)
[
k log

k/n

δk−1
+ (n− k) log (n− k)/n

1− δk
]
+ (Bn[f ]− f)(θ)

=: ∆RKL(δ, θ) + (Bn[f ]− f)(θ).(B.5)

Only the first term depends on δ. We evaluate it for δ = δm,� to obtain

∆RKL(δm,�, θ) =
1
n

n∑
k=0

Bn,k(θ)
[
k log

k/n

(k − 1 +m)/(n+m+ �− 1)

+(n− k) log (n− k)/n
(n− k + �− 1)/(n+m+ �− 1)

]

=
1
n

n∑
k=0

Bn,k(θ)
[
−k log k +m− 1

k
− (n− k) log n− k + �− 1

n− k
]

+ log
n+m+ �− 1

n
.

The logarithmic terms can be estimated due to z − z2

2 ≤ log(1 + z) ≤ z for 0 ≤ z ≤ 1:

∆RKL(δm,�, θ) ≥ 1
n

n∑
k=0

Bn,k(θ)
[
−(m− 1)− (�− 1)

]
+
m+ �− 1

n
− 1
2

(m+ �− 1
n

)2
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≥ 1
n

− 1
2
n−3/2

if m+ � ≤ n1/4. Combining this with (B.5) and recalling Lemma B.1 we obtain (B.3). – In par-
ticular we conclude from (B.3) and the cited upper estimate that RKL(δm,�, ·) is asymptotically
a nearly constant function in the interior of the interval.
(3) Given α ∈ (0, 1), set a = α/2 and b = (α+ 1)/2. Now (B.3) and Lemma A.1 yield

∫ 1

0
RKL(δm,�, t)wm−1,�−1(t)dt ≥

∫ b

a

RKL(δm,�, t)wm−1,�−1(t)dt

≥
( 1
2n

− c1
n2

) ∫ b

a

wm−1,�−1(t)dt

≥
( 1
2n

− c1
n2

) (
1− 2

n

)
.(B.6)

This proves (B.4), and the proof is complete. ✷

Now we are in a position to complete the
Proof of Theorem 3.3. We may assume that 0 < a and b < 1 since a reduction of the interval
does not enhance the value of the risk. We know from the arguments in Remark 3.5 that the
candidates for the best estimates satisfy

a ≤ δk ≤ b, k = 0, 1, . . . , n,

and we have

RKL(δ, θ) = θ log
θ

δ
+ (1− θ) log 1− θ

1− δ ≤ log
1
a
+ log

1
1− b ∀ θ ∈ [0, 1].(B.7)

The rest of the proof proceeds as for the other loss functions; cf. (3.4). The integral with
weight function wm−1,�−1 over the full interval [0, 1] can be estimated from below by (B.6) and
the integrals over [0, a] and [b, 1] by (B.7) and Lemma A.1. ✷
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